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Abstract

Building genetic tools to engineer microorgan-
isms is at the core of understanding and re-
designing natural biological systems for useful
purposes. Every project to build such a genetic
toolbox for an organism starts with a survey
of available tools. Despite a decade-long in-
vestment and advancement in the field, it is
still challenging to mine information about a
genetic tool published in the literature and con-
nect that information to microbial genomics
and other microbial databases. This informa-
tion gap not only limits our ability to iden-
tify and adopt available tools to a new chas-
sis but also conceals available opportunities
to engineer a new microbial host. Recent ad-
vances in natural language processing (NLP),
particularly large language models (LLMs),
offer solutions by enabling efficient extrac-
tion of genetic terms and biological entities
from a vast array of publications. This work
present a method to automate this process,
using text-mining to refine models with data
from bioRxiv and other databases. We evalu-
ated various LLMs to investigate their ability
to recognize bacterial host organisms and ge-
netic toolboxes for engineering. We demon-
strate our methodology with a web applica-
tion that integrates a conversational LLM and
visualization tool, connecting user inquiries
to genetic resources and literature findings,
thereby saving researchers time, money and
effort in their laboratory work. The code and
data are available at: https://github.com/
boxorange/LLM-GeneticTool-Extraction

1 Introduction

Our planet currently faces significant challenges
concerning biological resources, including limited
renewable energy sources, lack of innovative treat-
ments for endemic infectious diseases, water pollu-
tion, insufficient arable land resulting in food crises,
and the degradation of ecosystems (WEF, 2020;

Arkin et al., 2010), among other urgent issues. We
postulate – as others have – that the capacity to
domesticate and genetically engineer non-model
microorganisms from relevant environments could
facilitate the development of potential solutions to
many of these urgent global problems (Endy, 2005;
Stacey, 2017). Although recent technological ad-
vances have been made at a rapid pace to address
several of these challenges, the information needed
for each potential new model organism is dispersed
across the literature and is not readily accessible to
many practitioners. This situation complicates ev-
ery new synthetic biology, bioenergy, and bioman-
ufacturing project involving a non-model organism
(Mutalik et al., 2013; Council et al., 2015). The
disorganized nature of the information not only
impedes machine-readable approaches but also hin-
ders the assessment of the scope of work and iden-
tification of knowledge gaps, subsequently offering
limited guidance for investment to overcome tech-
nological barriers. For instance, despite decades of
progress in the field of synthetic biology, it remains
challenging to pinpoint suitable microbial targets
for specific applications and conditions, as well as
the genetic tools required for cultivating and engi-
neering non-model microorganisms (Arkin, 2008;
Council et al., 2015; Oberhardt et al., 2015; Price
and Arkin, 2017).

A comprehensive literature mining tool that
monitors emerging technologies and genetic tools
critical for biotechnology professionals would be
highly beneficial. This envisioned tool would allow
us to identify information gaps and detect opportu-
nities concealed within extensive literature. For in-
stance, the tool should efficiently ascertain whether
a chosen organism is suitable for laboratory domes-
tication and which genetic tools are available for
that organism, streamlining the search process and
conserving time, effort, and funding for numerous
lab-oriented projects.

Recent advancements in Natural Language Pro-

mailto:gpark@bnl.gov
https://github.com/boxorange/LLM-GeneticTool-Extraction
https://github.com/boxorange/LLM-GeneticTool-Extraction


371

Figure 1: The project objective and workflow: We propose to use NLP and machine learning models to process and
learn from literature data about growth characteristics, conditions, traits and available in silico models and genetic
tools to engineer microorganisms.

cessing (NLP) and Large Language Model (LLM)
have enabled the analysis of textual data at an un-
precedented scale (e.g., millions of documents),
allowing for the extraction of significant contextual
information in ways that were previously unachiev-
able. These innovative techniques offer consid-
erable potential to bridge the knowledge gap dis-
cussed earlier. In this study, we propose employing
NLP on biological literature to identify organism
traits (as depicted in Figure 1) and systematically
compiling this extracted knowledge. This approach
facilitates the development of automated, curated
centralized systems crucial for the cultivation and
engineering of microorganisms.

This work specifically focuses on the extraction
of information about bacterial organism hosts and
genetic toolbox for them from literature. As de-
tailed in this paper, our contribution is threefold:

1. We present a curated corpus of bacterial host
organisms and genetic toolboxes, classified
into 14 distinct labels derived from scientific
literature, including plasmids, promoters, re-
porters, and other entities of interest. The
selection of a bacterial host organism is deter-
mined by the accessibility and suitability of
genetic toolbox for efficient manipulation and
engineering. This, in turn, informs the fea-
sibility and ease of engineering the selected
host organism for targeted applications within
the synthetic biology field.

2. This paper provides an evaluation of various
publicly available LLMs for the task of rec-
ognizing organism hosts and genetic tools.
Our findings demonstrate the efficacy of fine-
tuning LLMs on an annotated dataset, which

enhances the models’ performance in those
entity recognition.

3. This work presents a chatbot interface de-
signed to facilitate discussions between users
and a specialized chatbot. The chatbot lever-
ages public biological resource such as NCBI
taxonomy, genetic tool databases, and publi-
cation information. Users can pose questions
regarding the genetic engineerability of bi-
ological entities and engage in informative
dialogues on the subject.

2 Related Work

LLMs demonstrated significant improvements in
addressing a multitude of NLP tasks that are
critical to the fields of biology and biomedicine
(Chen et al., 2023; Yu et al., 2024). Instructed
on a broad spectrum of text corpora, encompass-
ing web crawls, medical records, and rigorously
selected datasets, LLMs are equipped with the
proficiency to integrate information from diverse
sources. These sources range from scientific pub-
lications and databases to various other forms of
informational repositories. This integrative abil-
ity enables LLMs to identify complex intercon-
nections, nuanced contextual aspects, and insights
that may remain obscure to traditional methods.
The BioMistral model (Labrak et al., 2024), built
upon the Mistral foundational model and subse-
quently pre-trained on PubMed Central, underwent
evaluation on a benchmark encompassing 10 med-
ical question-answering (QA) tasks. This assess-
ment revealed superior performance compared to
the original model and existing open-source medi-
cal counterparts.
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Figure 2: An example of annotation through the Doccano web server.

McInnes et al. (2022) presents the development
of a synthetic biology knowledge system, wherein
a text processing pipeline utilizes NLP techniques
to extract and correlate information from the liter-
ature aimed at synthetic biology researchers. The
pipeline integrates named entity recognition, rela-
tion extraction, concept grounding, and topic mod-
eling methodologies to extract pertinent informa-
tion from published literature. Subsequently, this
extracted information is utilized to establish con-
nections between articles and elements within the
knowledge system. The findings demonstrate the
effectiveness of each component when applied to
synthetic biology literature and propose avenues
for further enhancing the pipeline’s capabilities.
Gong et al. (2023) explored the potential of various
LLMs such as GPT-4, GPT-3.5, PaLM2, Claude2,
and SenseNova in addressing conceptual biology
questions, including those related to synthetic biol-
ogy, such as principles of genetic circuit design and
CRISPR-based genome editing techniques. While
the findings revealed the adeptness of LLMs in log-
ical reasoning and their potential to support biology
research by facilitating tasks such as data analysis,
hypothesis formulation, and knowledge synthesis,
the authors underscored the necessity for further re-
finement and validation before fully harnessing the
potential of LLMs to expedite biological discovery.

In this study, we assessed the effectiveness of
LLMs in recognizing and extracting pertinent in-
formation regarding host organisms and their as-
sociated genetic engineering tools. Of particu-
lar emphasis was the evaluation of open-source
LLMs, chosen for their heightened adaptability
and transparency in contrast to proprietary coun-
terparts, thereby enabling users to exercise greater
customization and oversight over model operations.
The main objective was to gauge the efficacy of
these models in discerning insights from a collec-

tion of biological literature and resources, thereby
augmenting our comprehension of LLMs’ appli-
cability in biological inquiry and ability to inform
prospective applications within this domain.

3 Host Organisms and Genetic Toolbox
Curation

To the best of our knowledge, there are no pub-
licly available datasets specifically tailored for the
recognition task involving bacterial host organisms
and their associated genetic toolbox by machine
learning models. In order to enhance the profi-
ciency of machine learning models in identifying
such entities through training on labeled datasets,
we undertook an annotation endeavor aimed at la-
beling both organism hosts and genetic tool types
as depicted in biological literature. To facilitate
this annotation task, a comprehensive list of terms
describing the bacterial genetic toolbox was cu-
rated, which is provided in Appendix A. When con-
ducting a search using the genetic toolbox related
terms, numerous papers unrelated to our specific
focus emerge. These papers span topics ranging
from human genetics to plant research. While we
may consider including them at a later stage, our
current emphasis lies on bacteria. Therefore, we
incorporate the compound word “bacteria” along
with relevant keywords to refine our search results.

For the annotation process, a corpus comprising
434 PDF papers was assembled, meticulously se-
lected by two domain experts. Additionally, 376
XML articles containing any of the terms from the
curated list described in Appendix A were obtained
by querying the bioRxiv database within subject
areas encompassing Biochemistry, Bioengineering,
Bioinformatics, Microbiology, Molecular Biology,
Synthetic Biology, and Systems Biology. From this
corpus, a total of 795 text snippets were extracted
from abstracts and main body texts, each compris-
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Entity The number of entities
Plasmid 445
Organism Host 407
Promoter 181
Genome Engineering 169
Cloning Method 158
Reporter 122
Regulator 86
Antibiotic Marker 65
Genetic Screen 40
RBS† 35
Counter Selection 27
Terminator 23
DNA Transfer 14
Operator 5

Table 1: The statistics of 1,777 annotated labels for
organism hosts and genetic tools. †RBS stands for Ri-
bosome Binding Site.

ing a target sentence containing one of the bacterial
genetic toolbox terms, accompanied by two pre-
ceding and two succeeding sentences, all of which
are part of the same paragraph. To ensure non-
redundant annotation, we eliminated duplicate snip-
pets that contain multiple genetic toolbox terms.

To facilitate the annotation process, a Doccano
web server (Nakayama et al., 2018) was employed,
thereby streamlining the task of annotating textual
data. An annotation sample is depicted in Fig-
ure 2. In order to label entities within the text, a
framework comprising 14 distinct entity labels was
defined. Subsequently, a total of 1,777 annotated
entities were obtained across the entire corpus fol-
lowing the completion of the annotation process.
Table 1 presents the 14 labels along with the corre-
sponding number of entities.

4 Evaluation of LLMs for Recognizing
Host Organisms and Genetic Tool Types

Our study aimed to assess the potential of LLMs
for the task of entity type recognition, utilizing
annotated datasets. To this end, we employed a
selection of LLMs, namely Falcon (Almazrouei
et al., 2023), MPT (MosaicML-NLP-Team, 2023),
LLaMA 2 (Touvron et al., 2023), SOLAR (Kim
et al., 2023), Mistral (Jiang et al., 2023), Mixtral
(Jiang et al., 2024), and LLaMA 3 (Meta-AI, 2024).
Model evaluation was conducted utilizing a ques-
tion answering formatted prompt paired with text
snippets acquired from our annotation task. An

illustrative sample of such a prompt for the entity
type recognition task is provided below.

Question: Given the options: “plasmid”, “organ-
ism host”, “promoter”, “genome engineering”,
“cloning method”, “reporter”, “regulator”, “antibi-
otic marker”, “genetic screen”, “RBS”, “counter
selection”, “terminator”, “DNA transfer”, “opera-
tor”, which one is the entity type of J23108 in this
text?

Text: Plasmids were cloned using Gibson Assem-
bly or inverse PCR, propagated in E. coli TG1
competent cells in LB media, and isolated through
miniprep (Qiagen.) Reporter plasmids had a p15A
origin of replication, chloramphenicol resistance,
and the terminator trrnB downstream of the sfGFP
coding sequence. Plasmids for overexpressing ri-
bosomal proteins in vivo had a ColE1 origin of
replication, ampicillin resistance, the synthetic con-
stitutive E. coli promoter J23108 from the Registry
of Standard Biological Parts, and the terminator
trnnB after the protein expression gene.

Answer: promoter

The 1,777 text snippets underwent partition-
ing into distinct train, validation, and test sets,
maintaining an 8:1:1 ratio. A comparative anal-
ysis was then conducted between the original pre-
trained models and their fine-tuned counterparts.
To facilitate the fine-tuning process, we employed
the Low-Rank Adaptation (LoRA) technique (Hu
et al., 2021) coupled with quantization (QLoRA)
(Dettmers et al., 2024), aiming to enhance memory
efficiency and expedite training procedures. The
training was performed on all linear layers within
the models. The experiments were conducted on
4×NVIDIA A100 80GB GPUs. The configura-
tions for fine-tuning the models were established
as follows.

• Batch size: 2

• Training epochs: 5

• QLoRA target modules: all linear layers

• Quantization technique: BitsandBytes

• Quantization: 4-bit

• Learning rate: 1e-4 with AdamW

Table 2 presents the micro and macro F1-scores
derived from the evaluation of the original pre-
trained LLMs and those fine-tuned with QLoRA
adaptation for the entity type recognition task em-
ploying zero-shot prompting. The results indicate
that the LLaMA 3 (70B) model demonstrated su-
perior prediction capability compared to other orig-
inal LLMs. Notably, following adaptation to the
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Model Context Length Original QLoRA adapted
Micro F1 Macro F1 Micro F1 Macro F1

Falcon (7B) 2K 0.4213 0.1795 0.8933 0.7672
Falcon (40B) 2K 0.6966 0.4106 0.8820 0.6857
MPT-Chat (7B) 2K 0.5618 0.3814 0.8708 0.6503
MPT-Chat (30B) 8K 0.7697 0.6152 0.9213 0.8160
LLaMA-2-Chat (7B) 4K 0.5562 0.3703 0.8933 0.6810
LLaMA-2-Chat (70B) 4K 0.7584 0.5701 0.9157 0.8087
SOLAR-10.7B-Instruct (30B) 4K 0.7528 0.5815 0.9045 0.7252
Mistral-7B-Instruct (7B) 8K 0.7022 0.5565 0.9326 0.8351
Mixtral-8x7B-Instruct (46B) 32K 0.7135 0.5499 0.9607 0.7585
LLaMA-3 (8B) 8K 0.6573 0.4969 0.9270 0.6867
LLaMA-3 (70B) 8K 0.8708 0.6194 0.9551 0.8557

Table 2: The original pre-trained and QLoRA fine-tuned LLMs evaluation on the entity type recognition task with
zero-shot prompting.

QLoRA framework, the performance of the LLM
models exhibited a substantial improvement, with
the LLaMA 3 (70B) and Mixtral 8x7B model as
the top performer. The macro F1-scores, being
lower than the micro F1-scores, suggest challenges
encountered by the models in accurately identify-
ing certain classes, such as “RBS” and “genetic
screen”. The potential ambiguity or variability in
interpretation of these terms may arise particularly
in instances where the training data available to
the models lacks comprehensive examples of the
term’s utilization within the context of genetic tech-
niques. Moreover, the effective application and in-
terpretation of these terms can require specialized
knowledge, which may be acquired through ac-
cess to specific datasets within the respective field.
To enhance the models’ capacity to discern and
comprehend the intended meaning of such terms,
it might be necessary to integrate supplementary
sources of information, such as external knowledge
repositories, and to provide explicit contextual ex-
planations upon their introduction.

5 Preliminary Evaluation of a LLM for
Extracting Host Organisms and Genetic
Tools from Raw Articles

Our primary objective is to develop an automated
tool capable of extracting host organisms and ge-
netic tools for engineering purposes from unpro-
cessed textual data. Such a tool would offer prac-
titioners and domain experts a more streamlined
and convenient means of accessing this informa-
tion. As a preliminary phase, we initially evaluated
the performance of a plain LLM in identifying bio-

logical entities and genetic tools within scientific
literature. Employing a question-answering frame-
work, we devised a structured prompt using the full
text of each article. The following exemplifies a
sample prompt for this specific task, incorporating
the entire text of an article.

Question: Which biological entities and genetic
tools are mentioned in this paper, and what are
their types? Choose from the following options:
“plasmid”, “organism host”, “promoter”, “genome
engineering”, “cloning method”, “reporter”, “regula-
tor”, “antibiotic marker”, “genetic screen”, “RBS”,
“counter selection”, “terminator”, “DNA transfer”,
“operator”

Paper: Title: A BioBricks® toolbox for multi-
plexed metabolic engineering of central carbon
metabolism in the tetracenomycin pathway. Full-
Text: The tetracenomycins are aromatic anticancer
polyketides that inhibit peptide translation via bind-
ing to the large ribosomal subunit. Here, we ex-
pressed the elloramycin biosynthetic gene cluster ...

Answer: The biological entities and genetic
tools mentioned in this paper are: 1. Organism
host: "Streptomyces coelicolor M1146, Strep-
tomyces glaucescens GLA.0, Streptomyces oli-
vaceus TTü2353, Amycolatopsis sp. A23, E.
coli JM109, E. coli ET12567/pUZ8002 2. Pro-
moter: ermE*p promoter, sf14p promoter, LacI
promoter 3. Genome engineering: cos16F4iE
cluster, actinophage integrases (e.g. fC31, fBT1,
SV1, TG1, SAM2, VWB) 4. Cloning method: re-
striction digestion, ligation, 3A cloning, isocau-
domer cloning 5. Reporter: red fluorescent protein
(RFP) coding device 6. Regulator: LacI repres-
sor 7. Antibiotic marker: ampicillin, kanamycin,
apramycin, viomycin, hygromycin, nalidixic acid
8. Genetic screen: blue-white colony screening
9. RBS: B0034 strong ribosome binding site 10.
Counter selection: nalidixic acid 11. Terminator:
B0015 transcriptional terminator ....
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As a preliminary evaluation, we employed 233
articles used in our annotation task. Due to the
length of a full text, only the Mixtral 8x7B model
was adopted for this evaluation, which can have
up to 32K input length. The post-processing of
the model output generated a JSON formatted
data. The following illustrates an example of post-
processed model prediction.

T i t l e : "A B i o B r i c k s t o o l b o x f o r m u l t i p l e x e d m e t a b o l i c
e n g i n e e r i n g o f c e n t r a l c a r bo n metabo l i sm
i n t h e t e t r a c e n o m y c i n pathway "

{
" a n t i b i o t i c marker " : [

" a m p i c i l l i n , kanamycin , apramycin , viomycin ,
hygromycin , n a l i d i x i c a c i d "

] ,
" c l o n i n g method " : [

" r e s t r i c t i o n d i g e s t i o n , l i g a t i o n , 3A c l o n i n g ,
i socaudomer c l o n i n g "

] ,
" c o u n t e r s e l e c t i o n " : [

" n a l i d i x i c a c i d "
] ,
" dna t r a n s f e r " : [

" i n t e r g e n e r i c c o n j u g a t i o n , c o n j u g a l mat ings ,
e l e c t r o p o r a t i o n , . . . "

] ,
" g e n e t i c s c r e e n " : [

" b lue − w h i t e c o l on y s c r e e n i n g "
] ,
" genome e n g i n e e r i n g " : [

" cos16F4iE c l u s t e r , a c t i n o p h a g e i n t e g r a s e s
( e . g . fC31 , fBT1 , SV1 , TG1 , SAM2, VWB) "

] ,
" o p e r a t o r " : [

" a t t B s i t e , a t t P s i t e , o r iT , a t t P s i t e "
] ,
" o rgan i sm h o s t " : [

" S t r e p t o m y c e s c o e l i c o l o r M1146 ,
S t r e p t o m y c e s g l a u c e s c e n s GLA. 0 , . . . "

] ,
" p r o m o t e r " : [

" ermE*p promoter , s f 1 4 p promoter , LacI p r o m o t e r "
] ,
"RBS " : [

" B0034 s t r o n g r ibosome b i n d i n g s i t e "
] ,
" r e g u l a t o r " : [

" LacI r e p r e s s o r "
] ,
" r e p o r t e r " : [

" r e d f l u o r e s c e n t p r o t e i n ( RFP ) cod in g d e v i c e "
] ,
" t e r m i n a t o r " : [

" B0015 t r a n s c r i p t i o n a l t e r m i n a t o r "
]

}

Two domain experts vetted this model prediction
for species and tool names/types detection, and the
model’s performance is displayed in Table 3. The
result shows 0.8816 (micro F1) and 0.8734 (macro
F1) for 6,962 entities. The model displays inherent
uncertainty when encountering ambiguous termi-
nology. For example, the term “genetic screen” has
been utilized across diverse contexts, resulting in
confusion within the model. This assertion is sup-
ported by the individual accuracy measurements
presented in Table 4, where “genetic screen” ex-
hibited the lowest level of precision. A similar
observation was made in an earlier experiment, dur-
ing which the models encountered difficulties in
recognizing “genetic screen”.

Model Micro F1 Macro F1
Mixtral-8x7B-Instruct 0.8816 0.8734

Table 3: The Mixtral 8x7B model’s evaluation on the
host organism and genetic toolbox extraction task with
zero-shot prompting.

Entity Count Accuracy
Plasmid 1485 0.8936
Organism Host 716 0.8282
Promoter 656 0.8872
Genome Engineering 601 0.8602
Antibiotic Marker 525 0.9295
Regulator 501 0.9122
Cloning Method 498 0.8313
Reporter 434 0.8594
Operator 356 0.9719
DNA Transfer 356 0.9129
RBS 233 0.8670
Genetic Screen 221 0.8281
Terminator 197 0.8782
Counter Selection 183 0.8634

Table 4: Individual Entity Accuracy

6 Chatbot for Genetic Tool Engineering

Complementing the development of a LLM to as-
sist research in synthetic biology and biomanufac-
turing, KBase (Arkin et al., 2018) provides a web
application for users to interact with this model
through a chatbot interface. Starting from a sim-
ple question, users can ask for information about
bacteria and genetic tools of interest and receive re-
sponses from the trained model. Conversations are
logged, allowing users to provide feedback on the
efficacy of the chatbot’s responses, which serves
as valuable input for refining and enhancing the
system in future iterations (see Figure 3).

Using the "outlines" Python package (Willard
and Louf, 2023) for structured output generation,
we identify any biological entities and their asso-
ciated tools in the model’s response. The genus
of each entity is collected, and a pruned NCBI
taxonomy tree (Schoch et al., 2020) is rendered
that highlights these organisms in the context of
their genus-level neighbors. As a result of the con-
tinuous evolution of taxonomic nomenclature, the
information output by the model may not reflect
the current information in NCBI databases. There-
fore, this tool performs additional checks against
previous names and synonyms for organisms iden-
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Figure 3: A screen shot of the LLM-powered Chatbot in the web application.

tified in the model output. The web application
downloads the most current version of the NCBI
taxonomy database at container startup.

Users may select any organisms on the species
tree, and the selection will be summarized on the
right side of the visualizer. The top right provides
summary information from the BacDive database
(Reimer et al., 2022) to rapidly identify culture con-
ditions amenable to isolation and growth. The bot-
tom right section summarizes genetic tool database
information from the Phage-Host Daily (Albrycht
et al., 2022), Virus-Host (Mihara et al., 2016), and
Plasmid (Schmartz et al., 2022) databases. Addi-
tional information identified by the model is also
described here. This combination of prepackaged
curated databases in conjunction with information
extracted from the model’s large text corpora pro-
vides a comprehensive summary of the available
strains, tools, and publications describing the or-
ganism in question (see Figure 4).

To facilitate the identification of organisms that
do not have isolation or genetic tool informa-
tion, users may elect to visualize other relative
organisms without entries in the accompanying
databases. Similarly, while the tree visualization
is species-focused, users may also select to view

all strains for a given species in order to highlight
strain-level differences in isolation and genetic tool
usage.

The incorporation of this tool into the KBase
infrastructure serves as an additional avenue for
researchers to access pertinent information, estab-
lishing connections not only with biologically rel-
evant organisms for laboratory investigations but
also with the broader ecosystem of KBase, facil-
itating subsequent analyses and dissemination of
findings.

Integration with the KBase platform is under-
taken in adherence to established standards pertain-
ing to containerization, user-oriented tool develop-
ment, and deployment protocols. The tool is being
developed with the intent of serving as a reusable
proof-of-concept that caters to a diverse audience.

7 Conclusion

A significant bottleneck within the domains of syn-
thetic biology and biomanufacturing pertains to
the identification of suitable microbial targets tai-
lored to specific applications and environmental
conditions, alongside the selection of genetic tools
conducive to the cultivation and engineering of
non-model microorganisms. This bottleneck poses
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Figure 4: A screen shot of the species tree view in the web application.

a direct hindrance to the progress of investigations
in synthetic biology and obstructs redesign efforts.
While peer-reviewed publications serve as the pri-
mary repository for biological experimental data,
manual curation proves insufficient for managing
the extensive volume of available literature. Con-
sequently, there arises a need for the automated
extraction of data related to environmental con-
ditions and genetic tools from literature sources.
Recent advancements in NLP and LLMs have pre-
sented promising avenues for addressing this chal-
lenge. This study aims to evaluate the potential
applicability of LLMs in alleviating this issue by
demonstrating the assessment of various LLMs in
recognizing bacterial host organisms and genetic
toolbox, and evaluating the efficacy of annotated
datasets for these entities derived from scientific
literature in enhancing the models’ predictive ca-
pabilities. Additionally, we introduce a web-based
interface through which users can interact with the
LLM and access answers augmented with exter-
nal biological resources. We anticipate that users
will utilize these tools to extract pertinent informa-
tion from literature sources concerning biological
entities and genetic tools and components, encom-
passing organism names and various tools such as

promoters, plasmids, and phages, which are essen-
tial for the engineering of microorganisms.

Acknowledgments

This material is based upon work for the NLP for
Synthetic Biology: Providing Generalizable Litera-
ture Knowledge Mining Through KBASE project
supported by the U.S. Department of Energy, Of-
fice of Science, Office of Biological and Environ-
mental Research, under contract number DE-AC02-
05CH11231 (LBL) and DE-SC-0012704 (BNL).

References
Kamil Albrycht, Adam A Rynkiewicz, Michal Harasym-

czuk, Jakub Barylski, and Andrzej Zielezinski. 2022.
Daily reports on phage-host interactions. Frontiers
in Microbiology, 13:946070.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, et al. 2023.
Falcon-40b: an open large language model with state-
of-the-art performance. Findings of the Association
for Computational Linguistics: ACL, 2023:10755–
10773.

A Arkin, N Baliga, J Braam, G Church, J Collins, R Cot-
tingham, J Ecker, M Gerstein, P Gilna, J Greenberg,



378

et al. 2010. Grand challenges for biological and envi-
ronmental research: A long-term vision. Technical
report.

Adam Arkin. 2008. Setting the standard in synthetic
biology. Nature biotechnology, 26(7):771–774.

Adam P Arkin, Robert W Cottingham, Christopher S
Henry, Nomi L Harris, Rick L Stevens, Sergei
Maslov, Paramvir Dehal, Doreen Ware, Fernando
Perez, Shane Canon, et al. 2018. Kbase: the united
states department of energy systems biology knowl-
edgebase. Nature biotechnology, 36(7):566–569.

Qijie Chen, Haotong Sun, Haoyang Liu, Yinghui Jiang,
Ting Ran, Xurui Jin, Xianglu Xiao, Zhimin Lin,
Hongming Chen, and Zhangmin Niu. 2023. An
extensive benchmark study on biomedical text gen-
eration and mining with chatgpt. Bioinformatics,
39(9):btad557.

National Research Council, Division on Earth, Life
Studies, Board on Life Sciences, Board on Chem-
ical Sciences, Committee on Industrialization of Bi-
ology, and A Roadmap to Accelerate the Advanced
Manufacturing of Chemicals. 2015. Industrialization
of biology: A roadmap to accelerate the advanced
manufacturing of chemicals.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Drew Endy. 2005. Foundations for engineering biology.
Nature, 438(7067):449–453.

Xinyu Gong, Jason Holmes, Yiwei Li, Zhengliang Liu,
Qi Gan, Zihao Wu, Jianli Zhang, Yusong Zou, Yuxi
Teng, Tian Jiang, et al. 2023. Evaluating the poten-
tial of leading large language models in reasoning
biology questions. arXiv preprint arXiv:2311.07582.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung
Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim,
Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. 2023.
Solar 10.7 b: Scaling large language models with
simple yet effective depth up-scaling. arXiv preprint
arXiv:2312.15166.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-
Antoine Gourraud, Mickael Rouvier, and Richard
Dufour. 2024. Biomistral: A collection of open-
source pretrained large language models for medical
domains. arXiv preprint arXiv:2402.10373.

Bridget T McInnes, J Stephen Downie, Yikai Hao, Ja-
cob Jett, Kevin Keating, Gaurav Nakum, Sudhanshu
Ranjan, Nicholas E Rodriguez, Jiawei Tang, Du Xi-
ang, et al. 2022. Discovering content through text
mining for a synthetic biology knowledge system.
ACS synthetic biology, 11(6):2043–2054.

Meta-AI. 2024. Introducing meta llama 3: The most
capable openly available llm to date. https://ai.
meta.com/blog/llama3. Accessed: 2024-04-19.

Tomoko Mihara, Yosuke Nishimura, Yugo Shimizu, Hi-
roki Nishiyama, Genki Yoshikawa, Hideya Uehara,
Pascal Hingamp, Susumu Goto, and Hiroyuki Ogata.
2016. Linking virus genomes with host taxonomy.
Viruses, 8(3):66.

MosaicML-NLP-Team. 2023. Introducing mpt-30b:
Raising the bar for open-source foundation models.
Accessed: 2023-06-22.

Vivek K Mutalik, Joao C Guimaraes, Guillaume Cam-
bray, Colin Lam, Marc Juul Christoffersen, Quynh-
Anh Mai, Andrew B Tran, Morgan Paull, Jay D
Keasling, Adam P Arkin, et al. 2013. Precise and
reliable gene expression via standard transcription
and translation initiation elements. Nature methods,
10(4):354–360.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Matthew A Oberhardt, Raphy Zarecki, Sabine Gronow,
Elke Lang, Hans-Peter Klenk, Uri Gophna, and Eytan
Ruppin. 2015. Harnessing the landscape of micro-
bial culture media to predict new organism–media
pairings. Nature communications, 6(1):8493.

Morgan N Price and Adam P Arkin. 2017. Paperblast:
text mining papers for information about homologs.
Msystems, 2(4):10–1128.

Lorenz Christian Reimer, Joaquim Sardà Carbasse, Ju-
lia Koblitz, Christian Ebeling, Adam Podstawka, and
Jörg Overmann. 2022. Bac dive in 2022: the knowl-
edge base for standardized bacterial and archaeal data.
Nucleic Acids Research, 50(D1):D741–D746.

Georges P Schmartz, Anna Hartung, Pascal Hirsch,
Fabian Kern, Tobias Fehlmann, Rolf Müller, and
Andreas Keller. 2022. Plsdb: advancing a compre-
hensive database of bacterial plasmids. Nucleic Acids
Research, 50(D1):D273–D278.

Conrad L Schoch, Stacy Ciufo, Mikhail Domrachev,
Carol L Hotton, Sivakumar Kannan, Rogneda Kho-
vanskaya, Detlef Leipe, Richard Mcveigh, Kathleen

https://ai.meta.com/blog/llama3
https://ai.meta.com/blog/llama3
https://github.com/doccano/doccano
https://github.com/doccano/doccano


379

O’Neill, Barbara Robbertse, et al. 2020. Ncbi taxon-
omy: a comprehensive update on curation, resources
and tools. Database, 2020:baaa062.

Gary Stacey. 2017. Grand challenges for biological and
environmental research: Progress and future vision. a
report from the biological and environmental research
advisory committee. Technical report, USDOE Of-
fice of Science (SC), Washington, DC (United States).
Biological and . . . .

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

WEF WEF. 2020. The global risks report 2020. In
Davos: World Economic Forum. Retrieved November,
volume 15, page 2020.

Brandon T Willard and Rémi Louf. 2023. Effi-
cient guided generation for llms. arXiv preprint
arXiv:2307.09702.

Huizi Yu, Lizhou Fan, Lingyao Li, Jiayan Zhou, Zihui
Ma, Lu Xian, Wenyue Hua, Sijia He, Mingyu Jin,
Yongfeng Zhang, et al. 2024. Large language models
in biomedical and health informatics: A bibliometric
review. arXiv preprint arXiv:2403.16303.

A A List of Genetic Toolbox Keywords

bacteria antibiotic resistance marker, bacteria aux-
otrophic vector, bacteria bicistronic design, bac-
teria biosensors, bacteria broad-host range, bac-
teria chassis, bacteria counter-selection, bacteria
CRISPR toolbox, bacteria CRISPR tools, bacteria
degradation tags, bacteria fluorescence reporter,
bacteria fluorescent marker, bacteria Fosmid sys-
tem, bacteria genetic elements, bacteria genetic
engineering toolbox, bacteria genetic modifica-
tion, bacteria genetic toolbox, bacteria golden gate
parts, bacteria heterologous expression, bacteria
inducible promoters, bacteria plasmid replicon,
bacteria RBS part, bacteria recombineering tools,
bacteria riboswitch, bacteria ribozyme, bacteria
selection marker, bacteria shuttle vector, bacteria
strain engineering, bacteria suicide vector, bacte-
ria Tn5, bacteria Tn7, bacteria TnSeq, bacteria
transformation method, bacteria transposons, bac-
terial conjugative, bacterial genetic parts, bacte-
rial genetic tools, bacterial genome editing, bacte-
rial inducer, bacterial integrative vector, bacterial
molecular toolbox, bacterial plasmid collection,
bacterial promoter library, bacterial replicative
vector, bacterial reporter, bacterial transcription
terminator, bacterial vectors, bglbrick, biobrick,

counter-selection marker, Cre-lox, genetic toolkit,
lambda red system, standard biological parts, syn-
bio reporter system, synbio toolkit


	Introduction
	Related Work
	Host Organisms and Genetic Toolbox Curation
	Evaluation of LLMs for Recognizing Host Organisms and Genetic Tool Types
	Preliminary Evaluation of a LLM for Extracting Host Organisms and Genetic Tools from Raw Articles
	Chatbot for Genetic Tool Engineering
	Conclusion
	A List of Genetic Toolbox Keywords

