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Abstract

Citations typically mention findings as well as
papers. To model this richer notion of citation,
we introduce a richer form of citation graph
with nodes for both academic papers and their
findings: the finding-citation graph (FCG). We
also present a new pipeline to construct such
a graph, which includes a finding identifica-
tion module and a citation sentence extraction
module. From each paper, it extracts rich basic
information, abstract, and structured full text
first. The abstract and vital sections, such as the
results and discussion, are input into the finding
identification module. This module identifies
multiple findings from a paper, achieving an
80% accuracy in multiple findings evaluation.
The full text is input into the citation sentence
extraction module to identify inline citation sen-
tences and citation markers, achieving 97.7%
accuracy. Then, the graph is constructed using
the outputs from the two modules mentioned
above. We used the Europe PMC to build such
a graph using the pipeline, resulting in a graph
with 14.25 million nodes and 76 million edges.

1 Introduction

In recent years, the volume of biomedical litera-
ture has been constantly growing. More than 3000
articles are published every day on average and
PubMed alone has a total of 29M articles as of
January 2019 (Lee et al., 2019). This makes it
difficult for experts to understand and assess the
publications within a short amount of time.

Citations play a crucial role in academic papers,
linking the new work to related research (Cohan
et al., 2019). They can assist in evaluating research
outputs (Yue and Wilson, 2004), and tracking the
progression of research while predicting future di-
rections (Prabhakaran et al., 2016). The citation
network, a graph that records the citation relation-
ship between papers, is commonly used in such
studies (Gundolf and Filser, 2013; Hota et al., 2020;
Zhao, 2020) .

{
pmid: 38399565,
cited_pmid: 35198509,
article_title: "A Prospective Analysis of the Effects of a Powder- Type Hemostatic Agent 
on the Short- Term Outcomes after Liver Resection",
cited_article_title: "In vivo study for the hemostatic efficacy and foreign body reaction 
of a new powder- type polysaccharide hemostatic agent",
cited_article_finding: "OOZFIX caused a minimal FBR that disappeared within 2 weeks 
in vivo, and its hemostatic performance was comparable with that of an existing agent, 
Arista AH. Further clinical studies are required in the future.",
citation_sentence: "In a study comparing OOZFIX (Theracion Biomedical, Seongnam, 
Republic of Korea), a new polysaccharide hemostatic agent, with Arista AH, both 
products showed comparable hemostatic performance in animal models, with both 
agents demonstrating minimal foreign body reactions that resolved within two weeks 
[18]."
}

Figure 1: An example of the relation between paper and
cited paper’s finding through the citation sentence.

In recent years, many academic databases, which
also can be regarded as academic citation networks,
have been developed to facilitate detailed citation
studies on biomedical publications. They provide
basic information for hundreds of millions of aca-
demic papers and the citations between these doc-
uments. Some of these databases are commercial,
like Clarivate’s Web of Science (WoS) and Else-
vier’s Scopus. Others are open-source, in line with
current trends. These include Microsoft Academic
Graph (MAG) (Sinha et al., 2015), OpenCitations
Index of CrossRef open DOI-DOI citations (COCI)
(Heibi et al., 2019), Dimensions (Herzog et al.,
2020), National Institutes of Health’s Open Cita-
tion Collection (NIH-OCC) (Ian Hutchins et al.,
2019), Semantic Scholar’s Open Research Corpus
(S2ORC) (Lo et al. 2020; Kinney et al. 2023).
Some statistics about these databases are shown in
Table 1.

From Table 1, it is clear that all databases, ex-
cept S2ORC, lack inline citation contexts. These
contexts provide information on what and why a
paper cites information from other papers. For
example, it may cite another paper’s findings or
refer to background or statistical information (Co-
han et al., 2019). The findings of the paper are
the most valuable output of the study. Only cita-
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Database Version Publication Citation Access Disciplines Citation
Contexts

Wos Core 2024 92M 2.2BN Commercial Multi No
Scopus 2024 94M 2.4B Commercial Multi No
MAG 2020-10 240M - Stop Serving Multi No
COCI 2023-01 77M 1.4B Open Source Multi No
Dimensions 2024 140M - Application Needed Multi No
NIH-OCC 2024-04 37M 782M Open Source Health No
S2ORC 2024 214M 2.49B Application Needed Multi Yes

Table 1: A comparison between existing academic databases covering medical corpus.

tions of these findings can be used to evaluate the
value of the publication and the research output.
However, to understand whether a paper cites an-
other paper’s findings and which specific finding
it refers to, the research findings need to be iden-
tified. A relationship between the citations and
findings must also be established. An example
can be seen in the Figure 1. Existing research on
identifying research findings, such as the approach
proposed by Wright et al. (2022) to extract sen-
tences describing research findings and study their
dissemination in scientific communication, can be
helpful in this context. Motivated by the challenges
of current databases and the existing research on
finding identification, we propose the development
of a fine-grained citation graph. This graph will
involve both research findings and citation contexts.
It will enable detailed evaluation and study of find-
ing evolution from the citation perspective.

In this paper, we define the finding-citation graph
first in section 3. Then, we outline the process of
constructing the finding-citation graph using the
European PMC dataset in section 4. We also eval-
uate the construction to ensure quality. The sum-
mary statistics of the graph and some interesting
observations are presented in section 5.

2 Related Work

Constructing a fine-grained citation graph directly
relates to cite-worthiness detection, and finding
identification. We will briefly introduce these as-
pects in the following sub-sections. Since the
biomedical large language model (LLM) has re-
cently gained popularity and may be used in our
project, it will also be introduced in the subsequent
sub-sections.

Cite-Worthiness Detection Cite-worthiness de-
tection involves identifying citation sentences in
an academic paper. These sentences contain ref-

erences to external sources cited within the paper.
There are many different forms of citation, but the
most common are:

• The topic is studied in previous work (Author1
et al. ###).

• The topic is studied in previous work [##].

• The topic is studied in previous work (##).

• The topic is studied using XXX (Author 1 et
al. ###) and XXX (Author1 et al. ###) XXX.

• Author 1 et al, ### (year) performs XXX.

Sugiyama, Kumar, Kan, and Tripathi (2010) sug-
gested the application of Support Vector Machines
(SVMs) with diverse features for cite-worthiness
detection. These features range from unigrams,
bigrams, and the existence of proper nouns, to sec-
tion information, classification of neighboring sen-
tences, and orthographic checking. They designed
a dataset using the ACL Anthology Reference Cor-
pus (ACL-ARC) (Bird et al., 2008), applying reg-
ular expression patterns. Similarly, Färber et al.
(2018b) carried out the same task using convolu-
tional recurrent neural networks on an expanded
dataset. The dataset incorporated three subsets:
ACL-ARC (Bird et al., 2008), arXiv CS (Färber
et al., 2018a), and Scholarly Dataset 2.

However, the datasets from these studies are con-
fined to one or a limited number of domains and
exhibit a high class imbalance. As per Färber et al.
(2018b), only a tenth of all sentences hold at least
one citation marker, leaving the remaining 90%
without any. Furthermore, these studies lack an in-
depth discussion on dataset creation and qualitative
analysis.

In response to these issues, Wright and Au-
genstein (2021) introduced a dataset for spotting
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citation-worthy sources across six domains. They
detailed the process for creating the dataset and
provided a qualitative analysis. However, their
approach to dataset creation was limited to using
regular expressions to identify the first and sec-
ond citation forms mentioned above. Besides, the
authors trained a set of baseline models on their
dataset to evaluate performance and understand the
complexity of the problem. The results of these
models are displayed in Fig 2.

Figure 2: Performance of models on the CITEWORTH
dataset (Wright and Augenstein, 2021)

Finding Identification The process of pinpoint-
ing and extracting results or conclusions from an
academic paper is known as finding identification.
Prabhakaran, Hamilton, McFarland, and Juraf-
sky (2016) designed a Conditional Random Field
(CRF) model that manages sentence-level sequence
labeling, designating each sentence in the abstract
a rhetorical role, including result and conclusion.
Dernoncourt and Lee (2017) introduced a consider-
able sentence classification dataset, PubMed 200K
RCT. This dataset, consisting of roughly 200,000
abstracts of randomized controlled trials (RCTs)
and a total of 2.3 million sentences, labels each
sentence with its rhetorical role, which includes the
result and conclusion. Though it is limited to the
RCT field, this dataset can help find identification.
Inspired by the PubMed 200K RCT dataset, Wright
et al. (2022) curated a dataset of 200K self-labeled
abstracts from PubMed, with no field restrictions.
Then, they fine-tuned a RoBERTa model (Liu et al.,
2019) on this dataset, classifying each sentence in
the abstract into categories such as result, conclu-
sion, method, background, and others. The model
achieved an F1 score of 92%, and when applied
to the full text of papers, it performed well. Pre-
vious studies have overlooked the importance of
certain sections of papers, such as the results and

conclusion sections. These sections often contain
important findings. Past studies mainly focus on
finding extraction, neglecting the potential for find-
ing generation. However, the development of large
generative language models, like Llama (Touvron
et al., 2023), now provides the opportunity for ef-
fective finding generation.

In the finding identification task, there is a sub-
task known as claim identification or argumenta-
tion mining exists. According to the definition
from Achakulvisut et al. (2020b), a claim is (1) a
statement declaring something as superior, (2) a
statement proposing something new, or (3) a state-
ment describing a new discovery or a new cause-
effect relationship. The definition of a claim differs
from that of a finding, being stricter and more pre-
cise. Nonetheless, some ideas from this research
could be useful. Achakulvisut et al. (2020b) de-
veloped a tool for annotating claims and collected
1500 labeled abstracts (SciCE) from PubMed arti-
cles published from 2008 to 2018. These abstracts
incorporate 11,702 sentences in total, with each
sentence labeled as a claim or non-claim. This
tool effectively tackles the issue of data scarcity in
the task. They also constructed a new model in-
corporating transfer learning, which improved the
F1 score by 14 percentage points compared to the
baseline model without transfer learning. In 2023,
Wei et al. undertook the same task, achieving a
new state-of-the-art (SOTA) performance on the
dataset using supervised contrastive learning and
transfer learning, with an 87.45% F1 score. As
observed, all these models operate on the abstract
rather than the full-text article, and the shift to the
full-text article still poses a challenge due to the
writing structure of the complete publication.

Biomedical LLMs Back in 2018, ELMo (Peters
et al., 2018) pioneered the use of a context-sensitive
language model pre-trained on a huge data cor-
pus. This sparked a wave of LLMs such as GPT
(Radford and Narasimhan, 2018), BERT (Devlin
et al., 2019), ERNIE (Zhang et al., 2019), GPT-2
(Radford et al., 2019), GPT3 (Brown et al., 2020),
among others. These LLMs are incredibly useful
for a variety of natural language processing (NLP)
tasks. However, general-purpose LLMs, which
are trained on resources like English Wikipedia
and BookCorpus, often struggle with biomedical
NLP tasks due to the numerous domain-specific
terms and proper nouns. To counter this, many
LLMs have been pre-trained on biomedical corpus
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like PubMed abstracts and PubMed Central full-
text articles, enhancing their performance in the
biomedical field.

There are two main approaches to domain-
specific neural language model paradigms: mix-
domain pre-training and domain-specific pre-
training from scratch. Mix-domain pre-training,
such as BioBERT (Lee et al., 2019) and BlueBERT
(Peng et al., 2019), begins with parameters from
a general-purpose language model and adopts its
vocabulary. On the other hand, domain-specific
pre-training from scratch, like PubMedBERT (Gu
et al., 2021), BioLinkBERT (Yasunaga et al., 2022),
BioMedLM (Bolton et al., 2024), and Bioformer-
8L (Fang et al., 2023), generates vocabulary and
conducts pre-training using only the in-domain cor-
pus. Models like PubMedBERT and BioMedLM
have shown that domain-specific pre-training from
scratch can outperform mix-domain pre-training.

3 The Finding-Citation Graph: Definition

Building on the work of Wright et al. (2022), we
define a finding as a statement that describes a
specific research outcome from a scientific study.
We also describe a citation sentence as a sentence
that references knowledge from other papers.

Subsequently, we define a finding-citation graph
(FCG) as G = (P, F,C,B), where P , F , C, and
B represent sets of papers, findings, citations, and
basic information respectively. A paper in this
graph is an academic paper. A finding in this graph
is a statement same as the above definition. A ci-
tation within the graph refers to instances where
the citation sentence includes the findings of the
cited paper, which we will now refer to as a useful
citation. The basic information includes the author,
journal, publication year, etc. of the paper contain-
ing the finding. The defined finding-citation graph
is a heterogeneous graph and can be perceived as a
variant of the citation graph, where the node is the
paper and the relation is the citation.

4 Constructing the FCG

We now introduce our pipeline to construct the
finding-citation graph (Figure 3), which allows us
to analyze findings from the perspective of the cita-
tion network. The pipeline takes a Europe PubMed
article in XML format as input and produces three
types of information for each paper: basic informa-
tion, all citation sentences, and all findings. This
information is then used to construct the graph. The

pipeline comprises four main modules, as follows:

• An XML parser is utilized to extract essential
paper information and article content from the
XML. The primary components of the article
include the abstract and the full-text article,
composed of various sections.

• The finding identification model aims to iden-
tify sentences that describe findings from the
abstract, conclusion, and result sections.

• The citation sentence extraction module iden-
tifies sentences within the full-text article that
contain citations and links the citation sen-
tences with its cited paper.

• The final module is to build the finding-
citation graph construction based on the out-
put of the above three modules

The above four modules will be introduced in
the following sections excluding the XML parser.
Our parser was primarily based on an open-source
PubMed parser (Achakulvisut et al., 2020a), with
minor changes made to increase speed.

4.1 Finding Identification
This module includes two steps:

• Identify the sentences that discuss the findings,
which are called finding sentences later.

• Generate findings based on the identified find-
ing sentences, which are called findings later.

We performed the first step similar to Prab-
hakaran et al. (2016) and Wright et al. (2022),
where the task was treated as a sentence classifica-
tion task. They classified sentences in the abstract
into five classes: background, result, conclusion,
method, and objective. Sentences labeled as the
result or conclusion can be considered findings sen-
tences. To build the sentence classification model,
we curated a dataset from self-annotated PubMed
abstracts, as shown in Figure 4. After filtering for
PubMed abstracts that met the set format, we ob-
tained 206K suitable abstracts, comprising roughly
2.5 million labeled sentences. We then fine-tuned a
RoBERTa model (Liu et al., 2019) on this curated
dataset, achieving an accuracy score of 91% on a
held-out 13.5% sample. This classifier was applied
to the abstract sentences and other sections of the
paper, like the results and conclusion, generating
multiple finding sentences for each paper.
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Figure 3: Finding-citation graph construction pipeline

We also experimented with LLMs to assess their
potential as a substitute for the current fine-tuned
model. Specifically, we utilized Gemma (Gemma
Team et al., 2024) to assist us in categorizing the
information in the abstract into the five classes men-
tioned above. To evaluate Gemma’s performance,
we compared the organized information for each
class with self-annotated information, calculating
similarity scores. When we set 0.5 as the similarity
threshold, the accuracy was approximately 91%.
As the performance is nearly the same, taking the
time-consuming and resource-consuming into con-
sideration, we chose to use fine-tuned RoBERTa
model in our pipeline.

Figure 4: An example of a self-annotated PubMed ab-
stract from PubMed PMID:10435405.

It is important to note that these finding sen-
tences may contain overlap information with each
other and may discuss multiple discoveries from
the paper. Additionally, not all findings carry equal
importance to the article. Our next step involved
generating multiple findings for each paper, keep-
ing these points in mind. We used a combination
of scientific sentence-BERT (Wright et al., 2022)
and the Affinity Propagation clustering method to
eliminate duplicate sentences and select central sen-

tences as representative findings. This approach
yielded multiple findings (maximum 3) from each
paper. Afterward, we computed the similarity score
between each finding and the title of its correspond-
ing article. This score is considered as the impor-
tance score for each finding within its respective
paper. Consequently, we obtained multiple findings
for each paper along with an importance ranking
score. This procedure is illustrated in Figure 5.
In order to know how the multi-finding module
performs, we randomly sampled 100 articles with
241 findings and got 80% accuracy. We found that
some errors originated from the abstract’s conclu-
sion sentence, which did not accurately represent
the actual conclusions and simply offered a con-
cluding sentence without any useful information.

4.2 Citation Sentence Extraction
The task involves identifying sentences in the arti-
cle that reference external knowledge from other
papers. Unlike other researchers such as Sugiyama
et al. (2010) and Färber et al. (2018b), who em-
ployed binary classification models for this task,
we used a simpler yet effective method: the regular
expression. We addressed three formats of citation
using this method, shown below. The use of regular
expression simplified the process of linking the ci-
tation sentence with its cited paper. This was based
on the citation marker and reference information
derived from the XML. Consequently, we obtained
citation sentences along with the information of the
cited paper for each article.

• The topic is studied ... (Author1 et al. ###).

• The topic is studied ... [###].

• The topic is studied ... (###).

To evaluate how the module performed and max-
imize the use of the open-source dataset, we de-
signed the following two-step evaluation method.
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Figure 5: Finding Identification Procedure

The first is a paper-level evaluation, which checks
the accuracy of the citation relations, i.e., the
PMID-PMID relation. Same as Liang et al. (2021),
we utilized the PMC dataset in PubMed Baseline
as the gold standard for this evaluation. Both the
original and filtered PMID-PMID relations of the
module were evaluated, with the latter excluding
references not found in the Europe PMC dataset. In
order to do the comparison with other open-source
datasets, we used the same evaluation metrics as
Liang et al. (2021), which are precision, recall, F1-
score, and accuracy. It should be noted that only
articles covered by the data source were included in
the evaluation process. The evaluation results can
be seen in Table 2. Even though our performance
is not bad, our precision and recall are not the best
among all the databases because the citation rela-
tions were based on citation sentences and markers,
not the reference list. This discrepancy may lead
to errors and losses in citation relations.

The second evaluation is to assess the cor-
rectness of the tuple, (citing_pmid, citation
_sentence, cited_pmid). This formed the final
output of the module. There is no other database
containing the citation sentences on the PubMed
corpus, except for S2ORC (Lo et al., 2020). How-
ever, the performance evaluation from Step 1 indi-
cates that the S2ORC database did not perform well.
Moreover, the S2ORC paper (Lo et al., 2020) does
not provide a significant evaluation of the citation
sentence, so we do not use it for evaluation. We
randomly sampled 350 tuples and achieved 97.7%
accuracy. We conducted an analysis to determine
why certain tuples are incorrect. We found that
some errors arise from mismatches between the de-
scription citation marker and the basic information
of the cited paper. Other errors occur when the
citation sentences are correctly identified, but the
PMID of the cited paper is lost. This largely con-

firms our previous analysis above that the citations
are based on citation sentences and citation markers
can lead to errors and losses in this module.

4.3 Finding-Citation Graph Construction
So far, we have collected multiple findings for each
paper, along with their importance scores and ci-
tation sentences with basic information about the
cited paper. Using this information, we can create
the finding-citation graph as outlined in Section
3.1. As we construct the graph based on a closed
dataset, Europe PMC, the references without PMID
or not in the closed dataset were dropped.

The graph comprises two types of nodes: articles
and findings. Each article node has some basic at-
tributes such as authors, journal, paper PMID, title,
and publication year. In contrast, the finding node
has no other attributes. The graph also contains
two kinds of edges. The first represents the rela-
tionship between an article and its findings, with
the importance score as an attribute. The second
represents the citation relationship between an ar-
ticle and the findings produced by the cited paper,
with the citation sentence and similarity score as
attributes. We calculate the similarity score using a
fine-tuned scientific sentence-BERT (Wright et al.,
2022). This approach helps us determine whether
a citation sentence contains the findings of another
paper and assess the usefulness of each citation. A
simplified view of the graph can be seen in Figure
6.

5 Experiments

We utilized Europe PMC articles in XML format
for our experiment. Europe PMC is an open-source,
global biomedical literature repository that houses
life science articles, preprints, micropublications,
books, patents, and clinical guidelines from around
the world. Up to Feb 2024, it holds over 40 million
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Metrics COCI.Updated Dimensions NIH-OCC S2ORC S2ORC_new Our_O Our_D
Precision 98.82% 99.60% 99.9% 97.66% 77% 94.32% 92.35%
Recall 85.18% 98.80% 98.99% 79.00% 25.4% 89.65% 93.05%
F1-score 90.95% 99.07% 99.34% 86.27% 34.5% 89.32% 90.7%
Accuracy 15.60% 81.55% 89.08% 5.86% 1.03% 34.4% 55.37%

Table 2: The evaluation of COCI.Updated, Dimensions, NIH-OCC, and S2ORC are from Liang et al. (2021).
Our main comparison is S2ORC, which is the most similar database to use and includes citation contexts, so we
evaluated S2ORC on the latest version again. It is not only for the comparison but also for the confirmation of our
comparison. The Our_O and Our_D are the original and filtered PMID-PMID relations respectively. When we did
the evaluation on the filtered PMID-PMID relations, we did the same filter to the gold dataset.

Paper A Finding AGenerate(importance_score)

Finding C

Finding B

Paper C

Cite(citation_sentence, similarity_score)
Paper B

Generate(importance_score)
Generate(importance_score)

Cite(citation_sentence, similarity_score)

Figure 6: A simplified view of the finding-citation graph

Type of Article Count(%)
Europe PMC XML 6M (100%)
Successfully parsed 5.75M (95.8%)
With PMCID 5.75M (95.8%)
With PMID 5.75M (95.8%)
With Abstract 4.83M (80%)
With Paragraph 5.75M (95.8%)
With References 5.21M (86.8%)

Table 3: Statistics of the XML Parser output.

abstracts and over 9.6 million full-text articles. Of
these, nearly 6 million full-text open-access articles
are available in XML format via the Europe PMC
web services or FTP site.

The XML Parser in our pipeline is used to parse
all the open-access articles mentioned above. The
statistical results of the output of this module are
presented in Table 3.

Next, the parsed text is processed by the finding
identification module and the citation sentence ex-
traction module. In terms of finding identification
results, approximately 4.25 million articles have
at least one finding. On average, we obtained 2.4
findings for each article that had findings, total-
ing around 10 million findings. For citation sen-
tence extraction results, roughly 3.69 million ar-
ticles have at least one citation sentence. We ob-
tained 56 citation sentences on average for each

Figure 7: Statistic of the number of articles over the
years in Europe PMC

article with citation sentences, amounting to ap-
proximately 200 million citation sentences in total.
After dropping the citations not in Europe PMC,
roughly 3.28 million articles have at least one cita-
tion sentence, with 20 citation sentences on average
for each article and 67 million citation sentences in
total.

Finally, the similarity scores were calculated
based on these findings and citation sentences.
These findings, citation sentences, and similarity
scores are then utilized to create the finding-citation
graph. We obtained 14.25 million nodes in total,
consisting of 4.25 million article nodes and 10 mil-
lion finding nodes. We got 77 million edges in total,
of which there are 67 million edges representing
citation relationships.

6 Discussion

6.1 Findings not in the abstract
From the literature review, it is clear that most pre-
vious studies primarily focus on identifying finding
sentences from abstracts, often neglecting other sec-
tions. In our proposal to identify multiple findings,
we are interested in determining how many find-
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ings are not included in the abstract, meaning the
sentences containing these findings are not found
in the abstract. From the 10 million findings we
identified, we discovered that nearly 44% of the
findings are not mentioned in the abstract. This per-
centage is slightly larger than expected. However,
it aligns with our understanding that the abstract
typically only describes the main findings, while
other sections may discuss additional or side find-
ings.

6.2 Distribution of similarity score between
findings and citation sentences

The sentence embedding similarity score is utilized
to measure how much information from the cited
paper’s findings is contained within the citation
sentence. The larger it is, the more information it
contains. The smaller it is, the less information it
contains. Understanding the distribution of such
similarity scores can help us determine how the
findings are cited. The distribution can be seen in
Figure 8. From the figure, it is clear that nearly half
of the similarity scores are lower than 0.4. This
suggests that half of the citation sentences contain
less information about the findings of the cited
papers. It meets our experience that most of the
citations are used in the literature review section
and for providing background information.

Figure 8: Distribution of the similarity score between
citation sentences and cited findings

6.3 Limitations

Currently, our method only extracts sentences with
the sentence marker for the citation, without consid-
ering the citation span. This approach might lead
to some errors in matching the citation sentence
with the findings.

Besides, the citation relations are based on the
citation sentence and citation marker extraction,
which would lead to error and loss to the graph.

Moreover, the citation graph is built using a
closed dataset, specifically the Europe PubMed
dataset. This approach excludes citations and arti-
cles not found in this dataset, inevitably leading to
an incomplete graph.

The mentioned limitations above will help us
identify areas where we can improve our graph
optimization strategies in the future.

7 Conclusion

We introduce a new fine-grained citation graph, the
finding-citation graph. Unlike the traditional cita-
tion graph which only contains papers as nodes,
the finding-citation graph also includes the find-
ings, representing the results of the academic pa-
pers. This graph facilitates more detailed studies at
the finding level, such as evaluating findings and
tracking the progression of research.

We also present a new pipeline for constructing
this graph. This pipeline mainly consists of three
modules: finding identification, citation sentence
extraction, and graph construction. As there is no
such pipeline to build the finding-citation graph, we
design an evaluation to confirm the graph’s quality.
The finding identification module achieved 91%
accuracy for finding sentence identification and
80% accuracy for multiple findings. The citation
sentence extraction module got a 90% F1-score
on the paper-level evaluation and 97.7% accuracy
on the tuple-level evaluation. The outputs of the
two modules are used to construct the graph and
confirm its quality.

Finally, we built a finding-citation graph using
Europe PMC. Our graph comprises 14.25 million
nodes, with 4.25 million being academic papers
and the rest being findings from those papers. It
also includes 76 million edges, with 66 million
representing citation relations.

The definition and creation of the FCG is an
essential step for our future research. We plan to
use it to assess research findings from a citation
perspective and pinpoint future research directions
at the finding level.

Ethics Statement

The paper considers the introduction of a new ci-
tation network, a finding-citation network, and a
pipeline to construct such a graph. We did not work
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with limited datasets and only used open-source
datasets.
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