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Abstract

Prior Authorization delivers safe, appropriate,
and cost-effective care that is medically jus-
tified with evidence-based guidelines. How-
ever, the process often requires labor-intensive
manual comparisons between patient medical
records and clinical guidelines, that is both
repetitive and time-consuming. Recent devel-
opments in Large Language Models (LLMs)
have shown potential in addressing complex
medical NLP tasks with minimal supervision.
This paper explores the application of Multi-
Agent System (MAS) that utilize specialized
LLM agents to automate Prior Authorization
task by breaking them down into simpler and
manageable sub-tasks. Our study systemati-
cally investigates the effects of various prompt-
ing strategies on these agents and benchmarks
the performance of different LLMs. We demon-
strate that GPT-4 achieves an accuracy of
86.2% in predicting checklist item-level judg-
ments with evidence, and 95.6% in determin-
ing overall checklist judgment. Additionally,
we explore how these agents can contribute
to explainability of steps taken in the process,
thereby enhancing trust and transparency in the
system.

1 Introduction

In US healthcare, management of administrative
workflows represents a pivotal yet formidable chal-
lenge. Physicians, nurses, and administrative per-
sonnel frequently allocate a substantial portion of
their working hours to these procedural tasks, dis-
tracting from their primary focus on patient care.
One such workflow, Prior authorization (PA) is
a healthcare management process used by insur-
ance entities to determine whether a proposed treat-
ment or service is covered under a patient’s plan
before it is approved to be carried out. This pro-
cess applies to various treatments and services,
including medications, imaging, and procedures
(Madhusoodanan et al., 2023). Evaluating a PA

application involves assessing medical necessity of
patient-specific health records against prevailing
coverage guidelines. A major part of these cov-
erage guidelines are clinical guidelines which are
systematically developed statements designed to
help practitioners make decisions about appropri-
ate health care for specific clinical circumstances.
Insurance companies review these clinical guide-
lines to to justify medical necessity of a procedure
or treatment (Chambers et al., 2016).

While Prior Authorization ensures safe, appro-
priate, cost-effective and evidence based care to
all members (Jones et al., 2021), it is a major
source of physician and staff burnout as well as
job dissatisfaction.There are several ongoing ef-
forts to improve the prior authorization process.
High-profile innovations include (1) “gold carding”
providers, exempting those who have very high
historical approval rates; and (2) automating the
process through e-prior auth (e-PA) (Lenert et al.,
2023). e-PA proposes a set of transactions convey-
ing the rules for approval in a standardized query
representation in CQL. While such rule based meth-
ods are adequate for simple authorization decisions,
complex cases with temporal data, evidence of re-
sponses and trends in clinical data items can be
difficult to represent in CQL’s rule based format
(Lenert et al., 2023). Also, a nationwide survey
(Salzbrenner et al., 2022) identified that the use of
e-PA was not associated with less provider time
or fewer challenges in preparing and submitting
PA requests. However, the use of e-PA reported a
shorter PA decision time. Additionally, there is an
understanding that AI can potentially improve the
current state of PA filing (Lenert et al., 2023).

The introduction of Large Language Models
(LLMs) (OpenAI, 2024; Touvron et al., 2023) has
catalyzed a transformative shift in the capabilities
of artificial intelligence, enabling the resolution
of complex challenges previously inaccessible to
conventional AI methods. LLMs excel in interpret-
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ing and synthesizing large volumes of unstructured
data, enhancing tasks such as natural language un-
derstanding (Yang et al., 2024), sentiment analysis,
and automated content creation (Zhou et al., 2024).
Building on this foundation, Multi-Agent Systems,
which employs a collective of AI-powered agents,
represents an even further advancement (Guo et al.,
2024). This approach decomposes a singular com-
plex task into multiple, manageable sub-tasks and
distributes them across multiple agents, each spe-
cialized through training for a sub-task. Following
this methodology essentially infuses a microser-
vice architecture into the traditional monolithic AI
framework, enabling more modular, scalable, and
robust AI systems. By integrating the depth and
adaptability of LLMs with the collaborative and dy-
namic nature of Multi-Agent Systems, AI systems
can achieve unprecedented levels of performance
and versatility across various complex problems
(Guo et al., 2024; He et al., 2024).

In this paper, we investigate the application of
multi-agent systems for determining medical ne-
cessity for a medical procedure. Our contributions
are as follows:

• We propose a novel challenge of establish-
ing medical necessity for prior authorizations
(PAs) by reasoning on clinical guidelines
against patient medical records.

• We decompose the problem statement of PA
filing into intermediate sub-tasks, which can
then be effectively solved by LLM Agents.

• We demonstrate through extensive experimen-
tations the effect of LLM choice and prompt-
ing strategies. Specifically, GPT-4 achieves
an accuracy of 86.2% in predicting checklist
item-level judgments and 95.6% in determin-
ing overall checklist judgment.

2 Related Work

Large Language Models (LLMs) have completely
changed the landscape of Natural Language Pro-
cessing (NLP) in the recent years. LLMs have
shown emergent abilities (Wei et al., 2022a) in set-
tings like few-shot prompting (Brown et al., 2020)
and augmented prompting strategies. Augmented
prompting like Chain of Thought (CoT) (Wei et al.,
2022b) and Automatic Chain of Thought (Zhang
et al., 2022) prompting enables LLMs to solve rea-
soning tasks using step by step approach. Addi-
tionally, instruction fine-tuning with human feed-

back has made LLMs able to respond to instruc-
tions describing unseen tasks (Ouyang et al., 2022).
Other advancements include techniques like self-
consistency (Wang et al., 2023) which helps LLMs
solve complex tasks using multiple different ways
of thinking and prompt gradient descent (Pryzant
et al., 2023) which edits prompt in the opposite se-
mantic direction of the gradient to boost prompt’s
performance. Building on this, more dynamic
and complex tasks can be tackled by LLM pow-
ered Multi Agent Systems (LLM-MAS). These
LLM-MAS have collaborative autonomous agents
equipped with unique strategies and behaviour
(Guo et al., 2024). This agentic behaviour is based
on the idea that LLMs can improve in game-play
scenario by using previous experiences and feed-
back (Fu et al., 2023; Madaan et al., 2023).

LLMs have the potential to disrupt medicine.
Models like Med-PaLM (Singhal et al., 2022) out-
performed state of the art on all MultiMedBench
tasks (Tu et al., 2024). GPT-4 has consistently
outperformed task-specific fine-tuned models and
is comparable to human experts on QA datasets
(Zhou et al., 2024). GPT-4 scored 86.65% in United
States Medical Licensing Examination (USMLE)
where passing percentage was 60% (Nori et al.,
2023). It also demonstrates GPT-4’s capacity for
reasoning about concepts tested in USMLE chal-
lenge problems, including explanation, counterfac-
tual reasoning, differential diagnosis, and testing
strategies. Some recent researches have started
to explore the impact of LLMs in discharge sum-
mary generation (Ellershaw et al., 2024; Williams
et al., 2024), care planning (Nashwan and Hani,
2023; Jung et al., 2024), Electronic Health Records
(EHRs) (Cui et al., 2024; Ahsan et al., 2023). Text-
to-SQL parsing has attracted significant interest
(Li et al., 2024). Building on this idea, numer-
ous research efforts, such as EHRSQL (Lee et al.,
2022), are focused on extracting data from EHRs.
Additionally, there are ongoing efforts to develop
solutions for EHR-based question-answering tasks
(Shi et al., 2024).

However, the domain of PA filing is largely un-
touched by LLMs mainly because of lack of pub-
licly available data despite the understanding that
AI can potentially improve its current state (Lenert
et al., 2023). While some efforts have been made to
automate PA filing, for example (Diane et al., 2023)
where ChatGPT is utilised to generate PA letters
for Orthopedic Surgery Practice, but the process
lacks the important step of establishing medical ne-
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Figure 1: Leaf-Level Judgement Prediction where the first agent classifies the documents into supporting and
contradictory sets and then the jury agent determines if the checklist item is satisfied.

cessity using AI. Another study aims to determine
PA Approval for Lumbar Stenosis Surgery with
Machine Learning (De Barros et al., 2023) but it
uses surgery specific symptoms as input variables
which would be difficult to generalize.

3 Problem Statement

As mentioned above, the evaluation of medical
necessity is conducted through a meticulous com-
parison between patient medical records and estab-
lished clinical guidelines. These medical records
are systematically structured in a json-like for-
mat, usually in FHIR 1, within Electronic Health
Records (EHRs) systems. Each object (resource)
can be of type Patient (Patient Demographics), Ob-
servation (Laboratory Results), Procedure (Treat-
ment History), Medication Request, Diagnostic
Report etc. We define a set of EHR documents
(resources) as D = {d}ND

i=1 of size ND

Further, clinical guidelines are formatted in a hi-
erarchical, tree-like structure (referred as checklist
in this paper), where each guideline statement (par-
ent node) can encompass an arbitrary number of
subordinate child statements (sub-checklist or leaf
node) nested within it as shown in Figure 2 and 3.
Thus, we define a coverage guideline or checklist
as C = {c}NC

j=1, where c is a checklist item.
Eventually, the task is to automatically deter-

1https://www.hl7.org/fhir/

mine the medical necessity Y ∈ {−1, 0, 1} where
-1 means the medical necessity is not justified, 1
means it is justified and 0 means there is a lack of
sufficient evidence to justify the medical necessity
criteria.

Recognizing the importance of transparency in
the task, we also aim to provide evidence Ec =
{eck}

Nc
k=1. These evidences can be used down-

stream to cross-reference medical documents used
to establish medical necessity for the procedure.

We aim to construct a machine learning model
M such that:

M(D, C) = {Y, {Ec}} ∀c ∈ C (1)

4 Methodology

Recently Large Language Models have shown great
performance improvements by breaking down com-
plex tasks into simpler sub-problems (Khot et al.,
2022). Motivated by this observation, we propose
a two step solution for our problem statement. First
we determine the judgement of each of the leaf
node checklist item. Subsequently, we propagate
the solution for parent nodes bottom-up based on
its child nodes’ judgements.

4.1 Leaf-Node Judgement Prediction
Considering the immense volume of documents
in Electronic Health Records (EHRs), we propose
a Retrieval-Augmented Setup (Gao et al., 2024).
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Figure 2: Bottom-Up Judgement Propagation where the agent uses the logical operators contained in a checklist
item to determine how the aggregation should take place.

This approach first filters the document pool to
identify a set of likely evidences (top-k evidences).
A Classification Agent is then utilized to select the
relevant evidences for the specific checklist item,
enabling precise and efficient data extraction.

Top-k Evidence Selection: Given the EHR data
D, we first decompose it into its constituent re-
sources (documents) where each document is an
individual entry (individual lab-report data, pro-
cedure etc.) . In order to filter-down documents
that are redundant towards the judgment, we first
obtain top k candidate matches for the checklist
item c from D. To achieve this, we propose to use
a text encoder S to derive semantic representations
for each checklist item c and for each document d
in the EHR data. This method allows us to map
both the checklist items and the documents into a
shared semantic space, facilitating more effective
matching based on relevance. Subsequently, we
employ a semantic similarity metric to calculate
the similarity score between each document d and
the checklist item c. Based on the similarity metric,
we obtain top-k closest matched documents with
the checklist item c. Note that due to cost involved
in using LLMs for this task, we keep2 k < 50.

S({di}|ND
i=1, c) = {di′}|ki′=1 ∀c ∈ C (2)

2In our experiments section, we show how the performance
of our approach varies with k

Evidence Retrieval and Prediction: Our pro-
posed Evidence Classification Agent Me, first
looks at each document di in top-k evidences re-
trieved along with the checklist item c and gives a
verdict vi, whether the document di is a support-
ing evidence, a contradictory evidence or it does
not affect the judgment yc. Note that this agent is
executed k times since there are k retrieved docu-
ments.

Me({di, c}|ki=1) = {vi}|ki=1 ∀c ∈ C (3)

Then our Jury Agent Mj picks up the complete
set of evidences di|ki=1 along with their verdicts
vi|ki=1 and predicts the leaf-level checklist item
judgment yc along with evidences Ec ⊂ si|ki=1 that
acted in favour of the judgement yc. We run this
leaf-node pipeline multiple times (n = 10) and
take vote of all predictions to determine the final
judgement yc. Confidence score fc is calculated
as the percentage of times the majority answer is
predicted by the agent.

Mj({di, vi}|ki=1, c) = {yc, fc, {Ec}} ∀c ∈ C
(4)

4.2 Parent-Node Judgement Prediction
The value of a parent node is contingent upon the
values of its nested child nodes. Hence, we deter-
mine parent node’s value by aggregating children
nodes’ values which are connected through logical
operators (AND, OR, NOT).
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Bottom-Up Judgement Propagation: In order
to obtain the decision over the complete checklist
C, we propose to use an iterative bottom-up ap-
proach. In another words, we start from the leaf
nodes and keep obtaining the judgment of their par-
ent nodes. The iterations are terminated when we
obtain the judgment and scores of the root node in
the checklist C.

Mathematically, at every iteration i, we choose
a set of leaf node checklist items cj |

Npar

j=1 having a
common parent checklist item cpar, having judge-
ments yj |

Npar

j=1 and confidence scores fj |
Npar

j=1 . We
then calculate the judgement ypar and confidence
score fpar of parent node as:

Mp(cpar, {cj , yj , fj}|
Npar

j=1 ) = {ypar, fpar} (5)

where Mp is our Propagator Agent.

5 Data Collection and Annotation

Getting live EHR data for the purpose of this eval-
uation is difficult, costly and full of regulatory re-
quirements. We therefore used de-identified dis-
charge summaries from MIMIC-IV-Note (Johnson
et al., 2023a) as a proxy for this data. All dis-
charge summaries therein have sections like chief
complaint, history of present illness, past medical
history, social history, physical and lab examina-
tions, medications etc. which serves as the ideal
data for this experiment. An average discharge
summary has approximately 300 sentences divided
into different categories. Joining this data with
MIMIC-IV (Johnson et al., 2023b), we can get the
CPT/ICD-10 codes associated with each note. We
also collected a set of publicly available clinical
guidelines (from CMS etc.) pertaining to Cardiol-
ogy and Oncology and cross referenced the CPT
codes in these guidelines to our notes data, thus
creating a dataset of (note, guideline) pairs.

An example checklist 3 is shown in Figure 3. The
checklist shows the clinical guideline for Therapeu-
tic Footwear which consists of two items associated
by AND operator. Item 2 in itself is a sub-checklist
and will be true if any of the sub-checklist item is
True as all of them are connected by OR operator.

5.1 Leaf Node Data Annotation

We hired 10 individuals with experience between
6-10 years in PA filing/reviewing both on payer

3Taken from CMS: https://www.cms.gov/medicare-
coverage-database/search.aspx

Example Checklist

Eligibility Checklist for Therapeutic Footwear

1. The beneficiary has diabetes mellitus; and

2. The certifying physician has documented in
the beneficiary’s medical record one or
more of the following conditions:

(a) Previous amputation of the other foot,
or part of either foot;

(b) History of previous foot ulceration of
either foot;

(c) History of pre-ulcerative calluses of
either foot;

(d) Peripheral neuropathy with evidence of
callus formation of either foot;

(e) Foot deformity of either foot;

(f) Poor circulation in either foot;

Figure 3: An example checklist formatted as a decision
tree

and provider side. They were assigned the task of
annotating leaf nodes of a checklist as either True,
False or No Information. In case of True and False,
the annotator has to also highlight statements in
the data section as the evidences for that checklist
item as shown in Figure 4. Additionally, each (note,
guideline) pair was annotated by 3 different annota-
tors and the final verdict was determined by taking
the majority vote of all annotators for that check-
list item. Following this, we created a dataset of
281 annotated checklists having 4577 leaf checklist
items.

Figure 4: Annotation Dashboard where each annotator
has to mark if the checklist item is True, False or No
Information (can’t be concluded) and mark evidences
for their selection.

5.2 Synthetic Data for Parent Judgement
To test parent-node judgment propagation, we cre-
ated synthetic data. This was needed because the
logical operations required were not within the ex-
pertise of our medical domain annotators. To cre-
ate synthetic data, we first extracted out all sub-
checklists from the unique set of guidelines we had,
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and then manually labelled each sub-checklist with
the operator (AND, OR and NOT) used for the
aggregation of result for that sub-checklist. Then
we randomly assigned each leaf node in all sub-
checklist their judgements and confidence score
and calculated the judgement and confidence score
of the parent node programmatically. With dif-
ferent permutations of True, False and No Infor-
mation used for each sub-checklist, we created a
dataset of 4500 sub-checklists used for the evalu-
ation of parent node judgement propagation. This
method of synthetic assignment is advantageous as
it introduces a range of less likely or extraordinary
judgment combinations, thereby challenging our
Propagator Agent to maximize its robustness.

6 Experiments and Results

Our experiments were categorized into two distinct
segments: assessment of leaf-node judgment and
evaluation of parent-node judgment. To facilitate
this, we established two separate test environments.
Each test-bed was equipped to integrate various
Large Language Models (LLMs) to ascertain the
optimal model for our needs.

6.1 Leaf-node Judgement

Leaf-node judgment encompassed three sequential
tasks. We start by splitting the entire document
into sentences. Note that, with MIMIC data it is
an easy way to chunk EHR data, but in real case
scenario the chunking would happen at FHIR re-
source 4 level i.e. each Observation, Encounter,
Lab Data etc. will act as the smallest chunk that
goes into the pipeline. These chunks (or sentences
here for simplicity) is first passed through the an
encoder module which sorts the sentences accord-
ing to the cosine similarity. The first 20 sentences
are chosen for the experimentation. This simplifies
the task of Classification Agent and also saves on
LLM cost. The classification agent then segregates
these filtered sentences in group of supporting and
contradictory evidences which helps predicting the
final judgement yc by the Jury Agent.

Note that the evidences given by the model for
each checklist item is not generated but classified.
So each evidence will be an exact string match of a
sentence from the input document. We have also
ensured while annotation that the annotators also
selects the evidence from the document as shown
in Figure 4. This will help us measure the recall of

4Refer: https://www.hl7.org/fhir/

encoder and classification agent against annotated
data. The recall metric is defined as:

Recall =
|thuman ∩ tagent|

|thuman|
(6)

where |thuman∩tagent| represents the number of
tokens that intersect between the human annotator
and the agent, and |thuman| is the total number of
tokens identified as evidence by the human anno-
tator. This measures if the Jury Agent had enough
information to conclude the judgement.

Figure 5: Recall of Encoder (MiniLM-L6-v2) model for
various k-values

For encoder model, we used MiniLM-L6 5. We
took the top similarity sentences given by encoder
model for various k-values and calculated recall
against the human evidences and computed the av-
erage recall for all checklist items. The results are
plotted in Figure 5. For k = 40, we get recall as
0.8689, which concludes that using encoder pre-
serves useful information while discarding around
85% of irrelevant data (average MIMIC data has
300 sentences) towards the judgement.

Table 1: Recall metric for Classification Agent with
different k values

Model k = 10 k = 20

GPT-4 0.5792 0.6741
GPT-3.5 0.4844 0.5554
Claude-Opus 0.5254 0.5845
Calude-Sonnet 0.5042 0.5430

On similar lines, we calculated the recall of the
Classification Agent by comparing segregated evi-
dences: if humans marked a checklist item as true,
we compared the supporting evidences from the

5Refer: https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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agent to those identified by humans, and similarly,
if marked as false, we compared the contradictory
evidences. Table 1 shows the recall of Classifica-
tion Agent for various LLMs. Clearly for k = 20
we have significantly higher recall as more evi-
dences were present for the classifier to act upon.
GPT-4 outperfomed other models with a maximum
recall of 0.67 while other models showed slightly
lower values.

Figure 6: Accuracy of various LLMs for Jury Agent

We conducted a comprehensive evaluation of the
Jury Agent (Mj) employing various Large Lan-
guage Models (LLMs), with a primary focus on
accuracy and how it is affected with the number of
retrieved evidences (k). GPT-4 and Opus demon-
strated robust performance, achieving accuracies
of 86% and 72% (Figure 6), respectively. Notably,
while Sonnet exhibited a slightly lower accuracy
of 69% compared to Opus, it provided a consider-
able advantage in terms of latency, reducing it by
approximately 32% (Figure 7).

Figure 7: Latency of various LLM model for the leaf-
node pipeline

Effect of Number of Retrieved Evidences (k):
To better understand the effect of k on our pipeline
and choose the best value we tweaked the value
of k and ran the pipeline on a smaller sample of

our dataset consisting of 20 checklists ( having 680
checklist items). We observed that as we increase
the value of k, the model performance increases till
a value of k = 20, after which the accuracy gets
saturated as shown in Figure 8.

Figure 8: Effect of various k-values on Jury Agent

6.2 Parent-node Judgement

Our Propagator Agent is an LLM-powered Agent,
which takes up a parent node and its correspond-
ing leaf nodes (along with their judgments and
confidence scores) to obtain the judgment and con-
fidence score of the parent node. This was done in
two ways. In the first experiment, the LLM agent is
asked directly to determine the response and score
given parent statement and its child statements, re-
sponses and scores. The agent has to understand
the logical operators (AND, OR, NOT) and then
combine the child responses (True, False, No Infor-
mation) to conclude parent judgement. The logical
rules for No Information items is given in Figure 9
and rules for calculating confidence score is given
in Figure 10. In the second experiment, the LLM
agent was asked to compute the logical operator
between each child item and then the calculation of
response and confidence score was done program-
matically.

We evaluate the performance of the Propagator
Agent across various dimensions. The outcomes of
this analysis are presented in Table 2. The score
accuracy refers to the accuracy of both the response
and confidence score propagated correctly while
the response accuracy is accuracy of only response
being propagated correctly to the parent node re-
sulting from the first experiment. The operator
accuracy refers to the accuracy of the model to cor-
rectly identify the operators as done in the second
experiment.

From the table we can conclude that the Agent
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Table 2: Model performance for Propagator Agent using Chain of Thought (CoT) & In-Context Learning (ICL)

GPT-4 GPT-3.5 Claude-Sonnet Claude-Opus

CoT + ICL ICL CoT + ICL ICL CoT + ICL ICL CoT + ICL ICL CoT + ICL

Response Accuracy (%) 87.17 95.60 78.75 91.20 82.05 85.71 85.34 95.24
Score Accuracy (%) 78.35 93.04 48.35 85.34 53.66 81.31 79.12 94.50
Operator Accuracy (%) 89.27 95.01 81.04 92.82 82.05 87.54 84.78 94.04

is able to propagate response more accurately than
confidence scores, as propagating confidence score
is a more complex task than determining the re-
sponse which involves only logical operations. Sec-
ond experiment shows that the accuracy of operator
determination task is comparable to the response
accuracy determined using first approach. Once
the operators are determined, response and confi-
dence score are calculated programatically. Since
determining operator would be a one time task (to
be done while creating guidelines) taking second
approach would get us similar accuracy but at sig-
nificantly lower cost.

Rule Set for No Information Items

Case I: AND Operator

1. True AND No Information = No Information

2. False AND No Information = False

Case II: OR Operator

1. True OR No Information = True

2. False OR No Information = No Information

Case III: NOT Operator

1. NOT No Information = No Information

Figure 9: Rule Set for No Information Items followed
by Propagator Agent for parent node judgement

Effect of Prompting Strategy: We performed
two sets of experiments. The first involved provid-
ing In-Context Learning (ICL) examples (Min et al.,
2022) and measuring accuracy. Larger models such
as GPT-4 and Opus yielded strong results, whereas
smaller models like Sonnet and GPT-3.5 exhibited
suboptimal performance when relying solely on
ICL prompts. However, in the second experiment,
when supplemented with Chain of Thought (CoT)
prompting (Wei et al., 2022b), the performance of
these smaller models markedly improved, demon-
strating how the step-by-step reasoning process
aids in decomposing the complex task of propa-
gation into manageable segments. However, the

use of Chain of Thought (CoT) prompting substan-
tially increases response times for larger models
due to its generation of an increased number of to-
kens compared to ICL-only prompting. In contrast,
the enhancements in performance observed with
GPT-3.5 are achieved without a marked increase
in latency, particularly when compared to larger
models such as Opus and GPT-4 under similar con-
ditions.

Confidence Score (f ) Calculation

Case I: AND Operator

1. If final response is True:

fpar = min(f of all True child responses)

2. If final response is False:

fpar = max(f of all False child responses)

3. If final response is No Information:

fpar = min(f of all No Information child
responses)

Case II: OR Operator

1. If final response is True:

fpar = max(f of all True child responses)

2. If final response is False:

fpar = min(f of all False child responses)

3. If final response is No Information:

fpar = min(f of all No Information child
responses)

Figure 10: Confidence Score calculation rules followed
by Propagator Agent for parent node judgement

Effect of LLM Choice: We conducted an eval-
uation of the Propagator Agent utilizing various
LLMs, with a particular emphasis on metrics such
as accuracy and latency. Opus and GPT-4 emerged
as the top performers, achieving approximately 94-
95% accuracy when CoT prompting was combined
with ICL examples.

GPT-3.5 is ranked second in terms of accuracy
but presents significant benefits in reduced latency
compared to GPT-4 and Opus, as depicted in Figure
11. Additionally, the operational costs associated
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with GPT-3.5 are substantially lower. Although
selecting the optimal model involves a trade-off,
GPT-3.5 stands out as the preferred option when
considering a balance among cost, latency, and
accuracy. Nonetheless, for scenarios where maxi-
mum accuracy is crucial, the larger models such as
GPT-4 and Opus are more appropriate.

Figure 11: Latency Analysis of LLMs Under ICL and
CoT for Propagator Agent when computing score accu-
racy

7 Conclusion

Our experiments utilized MIMIC-Note data, a set
of string-based data. However, real-world applica-
tions typically involve obtaining resources (FHIR
data) from EHR systems. Converting these re-
sources into stringified data poses a unique engi-
neering challenge. Although manageable, it is cru-
cial to determine whether this data format could
impact the effectiveness of our system.

In our approach, we integrated the use of con-
fidence scores. Agents at the leaf nodes compute
a confidence score for their predictions, which is
then propagated up to the root node alongside the
response. The confidence score at the root node is
vital as it reflects the system’s certainty about the
prediction quality. Checklists with low confidence
scores are directed to a service layer where experi-
enced professionals can review or adjust the model
responses. This feedback loop can be leveraged to
refine and enhance future models.

Given our focus on the healthcare sector, ensur-
ing the explainability of outputs from these LLM
agents was paramount. The decision-making pro-
cess was elucidated through Chain of Thought
(CoT) prompting and evidence collected by the
Classification Agent, enhanced the transparency
needed when AI models are employed in health-
care workflows.

While initially designed to automate prior au-
thorization (PA) filing, this solution could also im-
prove clinical decision support (CDS) systems by
providing real-time alerts to physicians during con-
sultations. For instance, it could alert physicians
to incomplete medical records when prescribing
treatments requiring PA, ensuring necessary doc-
umentation is promptly addressed. Thus, system
responsiveness or latency becomes a critical metric
for assessing its performance.

We have shown that breaking down a large, com-
plex problem into smaller, specialized tasks han-
dled by distinct agents can significantly enhance
our ability to automate sophisticated tasks that were
previously very challenging. This strategy also fa-
cilitates the shift from a monolithic AI solution
(M) to a micro-service architecture-driven solu-
tion (Me, Mj , and Mp). Currently, our method
involves a constrained workflow, but it holds poten-
tial for evolving into a system with loosely coupled
agents that are more dynamic and capable of im-
proved problem-solving.

The ideal implementation of this methodology
would adopt a structure akin to an organization,
where the architecture consists of several pods.
Each pod contains worker agents specialized in
different aspects of the problem, complemented
by checker agents that reassess and validate the
outputs, triggering reruns when necessary. A super-
orchestrator agent would oversee and coordinate
the activities across the architecture. This setup
aims to mitigate common issues like hallucination
often seen in existing LLMs.
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