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Abstract

Clinical text is rich in information, with men-
tions of treatment, medication and anatomy
among many other clinical terms. Multiple
terms can refer to the same core concepts which
can be referred as a clinical entity. Ontolo-
gies like the Unified Medical Language Sys-
tem (UMLS) are developed and maintained
to store millions of clinical entities includ-
ing the definitions, relations and other corre-
sponding information. These ontologies are
used for standardization of clinical text by nor-
malizing varying surface forms of a clinical
term through Biomedical entity linking. With
the introduction of transformer-based language
models, there has been significant progress in
Biomedical entity linking. In this work, we
focus on learning through synonym pairs as-
sociated with the entities. As compared to the
existing approaches, our approach significantly
reduces the training data and resource consump-
tion. Moreover, we propose a suite of context-
based and context-less reranking techniques for
performing the entity disambiguation. Overall,
we achieve similar performance to the state-of-
the-art zero-shot and distant supervised entity
linking techniques on the Medmentions dataset,
the largest annotated dataset on UMLS, with-
out any domain-based training. Finally, we
show that retrieval performance alone might
not be sufficient as an evaluation metric and
introduce an article level quantitative and qual-
itative analysis to reveal further insights on the
performance of entity linking methods.

1 Introduction and Related Work

Medical text consists of a diverse vocabulary de-
rived from various nomenclatures including vary-
ing surface forms corresponding to terms like di-
agnosis, treatment, medications, etc. This diver-
sity poses a challenge for effective communication
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across medical institutions and organizations. One
of the techniques to mitigate this inherent diversity
present in multiple references to the same term is
entity linking. Entity linking is used to map these
references to standardized codes. These codes are
curated and maintained by medical organizations
for standardization of medical nomenclature.

Given a corpus, entity linking includes the map-
ping of a mention m which is a span of k words,
to an entity ϵ, where the entity belongs to a knowl-
edge base such as Wikipedia. In the biomedi-
cal domain, the textual phrases are linked with
the corresponding concepts from a knowledge
base constructed using the medical ontologies
like UMLS (Bodenreider, 2004), SNOMED (El-
Sappagh et al., 2018), etc. The UMLS ontol-
ogy comprises of a broad range of clinical enti-
ties along with rich information for each entity
like synonyms, definitions, etc. Traditional ap-
proaches for entity linking, such as Support Vec-
tor Machines (Cristianini and Shawe-Taylor, 2000)
and Random Forests (Breiman, 2001), rely heavily
on hand-crafted features, thereby restricting gen-
eralization to diverse data. Neural networks have
emerged as a prominent technique for entity linking
due to their ability to learn semantic representations
from textual data.

Alias matching based techniques like (Aron-
son, 2001; Neumann et al., 2019; Liu et al., 2020)
have been proposed where an input mention is
mapped to an alias associated with an entity in
the knowledge-base. However, these techniques re-
quire large amount of training data. Contextualized
entity linking approaches (Zhang et al., 2021) uti-
lize the semantic similarity between contextualized
mentions. This approach requires a list of entities
in advance and includes distant-supervision on arti-
cles containing examples of these entities. Generat-
ing medical codes using large language models can
be error prone (Soroush et al., 2024). In (Yuan et al.,
2022b), the authors use a seq2seq model to map a
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mention to its canonical entity name. This method
is resource intensive and requires generation of
synthetic examples for pretraining, utilizing entity
definitions and synonyms. In (Kong et al., 2021),
the authors propose a zero-shot entity linking ap-
proach by leveraging synonym and graph based
tasks. However, the approaches require training
samples from UMLS for both these tasks. More-
over, entity disambiguation has not been explored
in the work.

Efficient student models like MiniLM (Wang
et al., 2020) can be used to perform contrastive
learning on synonyms of entities. This results in
a significantly less embedding size (384) as com-
pared to the approaches like SAPBERT (Liu et al.,
2020) with an embedding size of 768. The pre-
dicted candidates in alias based techniques are
ranked based on the cosine similarity score. How-
ever, there are ambiguous cases where multiple
entities have similar scores for a common men-
tion. Therefore, there is a requirement to disam-
biguate these candidates through reranking. Cross-
Attention based reranking approaches utilize su-
pervised training on the concatenated mention and
candidate representations as inputs (Zhang et al.,
2021). More recent approaches utilize homonym
disambiguation (Garda and Leser, 2024) and have
shown to improve the performance of autoregres-
sive approaches like GenBioEL.

In comparison to the discussed techniques, we
propose an efficient and low resource zero-shot
biomedical entity linking approach along with a
suite of disambiguation techniques. Furthermore,
we introduce an article level similarity analysis
to obtain further insights. This also allows us to
conduct a qualitative analysis without manually
going through all the articles manually.

Our contributions are as follows:

• Data: We show that the impact of train-
ing is negligible on a finetuned MiniLM
model1 as compared to the pretrained MiniLM
model. Moreover, the pretrained MiniLM
model when finetuned on all UMLS synonym
pairs has worse performance than the all-
MiniLM model.

• Disambiguation We show that reranking on
entity-level semantic information provided in
UMLS can be highly effective for entity dis-
ambiguation. We further propose a parametric

1https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

reranking technique that is beneficial for alias-
based entity linking solutions.

• Evaluation We propose a comprehensive eval-
uation of entity linking which utilizes the se-
mantic representation of articles coupled with
the strict matching and related matching of
predicted and gold standard entities. This eval-
uation is used to highlight issues related to the
annotation granularity, missing context and
surface form bias (for abbreviations) without
the need of going through all the articles.

2 Datasets

In this work, we explore entity linking on the
Medmentions (Mohan and Li, 2019) dataset which
consists of titles and abstracts from 4392 English
biomedical articles. These articles comprise of
textual spans annotated with mentions of UMLS
2017AA entities. The dataset provides two ver-
sions: a full version containing 34724 unique enti-
ties and an st21pv version with 25419 unique enti-
ties, the latter being recommended by the authors
for information retrieval. Further details about the
dataset versions are discussed in Table 9 in (Kartch-
ner et al., 2023).

2.1 Preprocessing
We replace the abbreviations with their correspond-
ing full forms using Ab3p (Sohn et al., 2008).
The abbreviation expansion using Ab3p has shown
to significantly improve the entity linking perfor-
mance across different approaches (Kartchner et al.,
2023). Prior to creating synonym pairs for train-
ing, we remove all the suppressed entities, deleted
entities and deprecated entities. Some deprecated
entities have also been merged with other entities
having a synonymous relation. We map these dep-
recated entities to the corresponding active entities
with a synonymous relation.

st21pv full

merged 181 280
deleted 49 60
non-synonymous 226 348

Table 1: The table shows the details of Medmentions
entities annotated with UMLS 2017AA version that are
deprecated in UMLS 2023AB version.

Some annotations in Medmentions (prepared
with UMLS 2017AA) are deprecated in the UMLS

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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2023AB (see details in table 1). Therefore, ap-
proaches utilizing UMLS 2023AB version may
want to use an updated version of Medmentions.
Furthermore, the prototype space (feature vector
space) consisting of UMLS entities will have to
be updated to the remove deprecated entities. This
would help in avoiding deprecated entities to be
predicted as candidates.

3 Methodology

In this work, we create a prototype vector space
comprising of the encodings (feature vectors) as-
sociated with the canonical name of each entity
in the UMLS ontology. To obtain meaningful en-
codings for constructing this prototype space, we
train an encoder-based transformer (Vaswani et al.,
2017) model on pairs of canonical names of en-
tity synonyms. This is similar to the training ap-
proaches utilized in (Kong et al., 2021) and (Liu
et al., 2020). The prototype space constructed using
this trained model is used for performing semantic
search, where the query encoding is obtained by
passing the mention through the same model. This
step is known as candidate generation. The can-
didate generation may lead to ambiguous results
where multiple predicted entities have equal simi-
larity scores. This is addressed through the rerank-
ing approaches discussed in section 3.3. Finally,
we utilize both semantic similarity and retrieval per-
formance for our quantitaive and qualitative evalua-
tion. The comprehensive structure of our proposed
approaches is depicted in the figure 1.

The following sub-sections discuss the individ-
ual components used in our work:

3.1 Training

We construct a training dataset by taking all the
canonical names for each entity from UMLS and
create pairs of canonical names corresponding to
the same entity. Each pair is of the form (ϵi, ϵ∗i ),
where ϵ∗i represents the canonical name of a syn-
onym of entity ϵi. The preprocessing steps are
discussed in the section 2.1. We use this dataset
to finetune a sentence-transformer (Reimers and
Gurevych, 2019) model using Multiple Negatives
Ranking loss (Henderson et al., 2017). We use
MiniLM (Wang et al., 2020) which is a distilled
version of BERTBASE model obtained using an
effective knowledge distillation approach outper-
forming other lightweight models like TinyBERT
and DistillBERT. We also utilize a finetuned all-

MiniLM2 model for training/finetuning on this
dataset. The all-MiniLM model is obtained by
training the MiniLM model on a 1B sentence pairs
dataset using a contrastive learning objective. The
corresponding MiniLM and all-MiniLM models
trained/finetuned on k examples are hereafter re-
ferred as MiniEL∗

k and MiniELk respectively. For
example, the all-MiniLM model finetuned on 10
pairs/examples is referred as MiniEL10.

The Multiple Negatives Ranking loss function is
defined as:

L(x, y, θ) =
1

B

B∑
j=1

logP (yj |xj) (1)

Here, θ represents the network parameters, (x, y)
represents a pair of phrases and B represents the
batch size. The parameters details for training are
provided in section in Appendix in the section A.1.

3.2 Candidate Generation
A prototype space is prepared for the UMLS
2017AA version comprising of the encodings of
canonical names of each entity and its synonyms.
These encodings are computed using the MiniEL*
and MiniEL models. The prototype space is used
for performing semantic search where the queries
are formed using the labeled mentions from the
Medmentions dataset. The top-k concepts are re-
trieved based on the cosine similarity of the query
and entity encodings. These candidates are referred
as generated candidates.

3.3 Disambiguation
The candidate generation solely relies on the cosine
similarity score between the mention and prototype
space candidate encodings. However, there may
be cases where multiple candidates have similar
scores or the scores alone may not be sufficient to
rank the candidates. Therefore, there is a need to
rerank the candidates. We propose the following
reranking approaches that to perform the entity
disambiguation:

3.3.1 Parametric Reranking
In this section, we propose a parametric approach
to rerank the generated candidates. We consider
three parameters based on the prototype space and
our training framework for disambiguation namely,
cosine similarity score (CSS), representative alias

2https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 1: This figure illustrates the sequential flow of our proposed approaches. Starting from the left, we begin
with leveraging a neural embedding model to create a prototype space on the UMLS entities. The cosine similarity
metric is used to perform semantic search on the queries given the input mentions. The resultant top-k candidates
are reranked using the listed methods for disambiguation and finally a comprehensive evaluation comprising of the
retrieval performance and semantic similarity is performed.

score (RAS) and the candidate entity frequency
score (CEFS) as our parameters. The parameters
have the corresponding coefficients a, b and c re-
spectively. These parameters are used to compute a
new ranking score for each candidate. The equation
below shows the updated score (δ∗(., .)) computa-
tion for reranking each of the generated candidates.

δ∗(q, v) = a ∗ δ(q, v) + b ∗ 1

n

n∑
j=1

δ(q, vj) + c ∗ n (2)

Here, q is the query encoding, v is a generated
candidate encoding and n is the number of aliases
of v in the generated candidates.

The optimal selection of coefficients a, b and c
corresponding to each of these parameters is per-
formed through a grid search on a subset of man-
ually defined bounds. Further details on the grid
search and the impact of the these coefficients are
discussed in appendix in the section A.2.

3.3.2 With UMLS Semantic Information
UMLS comprises of additional classification asso-
ciated with individual entities, grouping them based
on their semantic types and semantic groups. Each
semantic type and semantic group has a canoni-
cal name. In this section, we calculate the cosine
similarity between the mention’s semantic type or
semantic group canonical name encoding and the
corresponding canonical names of the top-k candi-
dates. This similarity score is added to the initial
candidate generation score to rerank the top-k can-
didates.

1. Assuming Availability of Gold Standard
Information: In this case, we assume that
the gold standard semantic type and semantic

group information is available for each men-
tion. We rerank the candidates by utilizing the
following methods:

(a) Semantic Type Based Disambiguation:
In this method, calculate the cosine sim-
ilarity between canonical name encod-
ings of semantic types of a mention and
each of its top-k candidates. The updated
score is computed as follows:

δ∗(q, v) = δ(q, v) + δ(TUI(q), TUI(v)) (3)

Here, TUI(.) maps the input men-
tion/entity to the encoding of correspond-
ing semantic type canonical names.

(b) Semantic Group Based Disambigua-
tion: In this method, calculate the cosine
similarity between canonical name en-
codings of semantic groups of a mention
and each of its top-k candidates. The
updated score is computed as follows:

δ∗(q, v) = δ(q, v) + δ(SG(q), SG(v)) (4)

Here, SG(.) maps the input men-
tion/entity to the encoding of the cor-
responding semantic group canonical
names.

2. Semantic Type/Group Prediction: In scenar-
ios where the semantic type/group informa-
tion of the mentions is not available, the meth-
ods proposed in (Le et al., 2022) and (Mao
et al., 2023) can be used to predict the seman-
tic type or group based on the input mentions.
This can be followed by the computational
methods discussed in the section 3.3.2.
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4 Results and Discussion

We obtain the retrieval performance for the dis-
cussed approaches by considering the top-k closest
candidates (that include aliases) from the prototype
space. We observe that the retrieval performance
(considering top-128 candidates) of all the miniEL
and miniEL1000 approaches is around 87% for the
st21pv version and 88% for the full version of the
Medmentions dataset.

4.1 Quantitative Analysis

In this section, we present the quantitive analy-
sis associated with candidate generation (see sec-
tion 4.1.1 and tables 2, 3) and reranking (see sec-
tion 4.1.2, figure 2 and tables 4). Furthermore, the
intricate analysis on the distribution of exact, re-
lated and missed candidate matches are discussed
in the section 4.1.3.

4.1.1 How much data do we need?
In this section, we discuss the candidate generation
performance of our approaches trained using vary-
ing number of examples. It can be seen that the
performance of miniEL has a negligible training im-
pact and the performance is stable across different
number of examples (see tables 2 and 3). How-
ever, the miniEL∗ approach improves consistently
with increasing number of training examples.The
miniEL approach without any finetuning still out-
performs the miniEL∗ approach trained on all the
training examples.

miniEL* miniEL

Training Samples R@1 R@5 R@1 R@5

0 0.401 0.594 0.553 0.756
10 0.427 0.622 0.552 0.758
1000 0.499 0.693 0.557 0.766
10000 0.518 0.717 0.553 0.76
ALL 0.534 0.736 0.556 0.756

Table 2: This table shows the R@1 and R@5 can-
didate generation performance of the approaches on
the Medmentions (st21pv) dataset. The models are
trained with varying number of training samples used
to train/finetune the MiniEL∗ and MiniEL models.

In comparison, our approach outperforms gener-
ative methods like BioBART (Yuan et al., 2022a)
and BioGenEL (Yuan et al., 2022b) that are re-
source intensive. Since these approaches use the
Medmentions training set to finetune the models,
we only compare the test set performance. The
R@1 candidate generation performance of MiniEL

MiniEL* MiniEL

Training Samples R@1 R@5 R@1 R@5

0 0.462 0.657 0.567 0.782
10 0.477 0.676 0.565 0.783
1000 0.525 0.728 0.569 0.789
10000 0.537 0.747 0.568 0.788
ALL 0.556 0.761 0.568 0.783

Table 3: This table shows the R@1 and R@5 candi-
date generation performance of the approaches on the
Medmentions (full) dataset. The models are trained
with varying number of training samples used to
train/finetune the MiniEL∗ and MiniEL models.

is 0.552 as compared to the overall performance
of 0.496 and 0.520 of BioBART and BioGenEL
respectively (the results are taken from (Kartchner
et al., 2023)).

4.1.2 Reranking Performance
In the following subsections, we discuss the candi-
date reranking results. The results corresponding
to the parametric approach and those correspond-
ing to the semantic disambiguation approaches are
discussed in the following subsections.

Figure 2: This figure highlights the trends associ-
ated with the retrieval performance improvement over
varying top-k candidates using MiniEL0, MinEL and
MiniEL1000 models. The improvement in R@1 is more
significant as compared to that in R@5 for all the mod-
els and reranking methods. It can be observed that the
retrieval performance of PARAMETRIC reranking de-
creases with increase in the top-k (k>15) whereas the
performance of SEMANTIC GROUP and SEMANTIC
TYPE reranking is consistent across the top-k.

1. Parametric Reranking: The top-k candi-
dates selected based on the parametric ap-
proach discussed in section 3.3.1 and the cor-
responding results are shown in figure 2 and
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st21pv full

Reranking top-5 top-10 top-5 top-10

PARAMETRIC 0.604 0.614 0.620 0.630
GROUP 0.638 0.649 0.659 0.670
TYPE 0.648 0.661 0.681 0.697

Table 4: The table shows the R@1 performance of the
MiniEL0 model after applying the listed reranking meth-
ods using the top-5 and top-10 candidates. It can be
seen that there is a significant improvement in the per-
formance as compared to the results in Tables 2 and 3.

table 4. It can be seen that the retrieval perfor-
mance improves by from 0.553 to 0.614 for
the st21pv version and from 0.567 to 0.630
for the full version of Medmentions. The a, b
and c values used to obtain these results have
the proportion a : b : c ∝ 50 : 2 : 1 (see
section A.2 for more details).

2. With UMLS Semantic Information: In this
section, we discuss the retrieval performance
improvements after the reranking using the
semantic type and group information. The
details of these methods are discussed in sec-
tion 3.3.2.

Figure 2 and table 4 show the R@1 perfor-
mance of the MiniEL0 model after applying
these reranking strategies. The performance
improves from 0.553 to 0.649 for semantic
group and to 0.661 for semantic type rerank-
ing for the st21pv version of Medmentions.
Similar observations can be made for the full
version of Medmentions. Moreover, the re-
trieval performance does not deviate signif-
icantly with the increase in the top-k candi-
dates used for reranking (see figure 2 for de-
tails).

The improvement in candidate ranking is ap-
proached in two ways. Firstly, to maximize the
R@1 performance by reranking the generated can-
didates (see details in section 3.3) and secondly, to
include context for addressing the context based
ambiguity (see details in Appendix in section A.3).

4.1.3 How should the performance be
evaluated?

In the retrieval-based evaluation strategy, we com-
pute the retrieval performance on gold standard and
predicted entity matches. However, there are cases
where the most similar candidate is related to the
gold standard entity. It can be seen in the table 5

Approach Exact Related Missed

MiniEL0 0.553 0.220 0.227
MiniEL0 + PARAMETRIC 0.614 0.172 0.214
MiniEL0 + GROUP 0.649 0.188 0.163
MiniEL0 + TYPE 0.661 0.176 0.163

Table 5: This table shows the R@1 retrieval per-
formance distributed into the exact matches, related
matches and missed matches. The top-10 candidates are
used for reranking. Here, we use the st21pv version of
Medmentions.

that about 77% entities are exacting matching or
are related to the gold standard entity. The details
of each type of relation we have considered are
provided by UMLS.3

Figure 3: This heatmap illustrates the percentage
changes in the number of initial exact, related and
missed matches for the MiniEL0 model. The perfor-
mance preceding the changes is labeled ’FROM’ for the
rows, while the subsequent performance is denoted by
’TO’ for the columns. The experiments are performed
on the st21pv version of Medmentions.

Figure 3 shows that the effect of parametric
reranking is directed primarily towards convert-
ing related matches to exact matches, coverting
36% of related matches into exact matches. The
semantic group and semantic type based rerank-
ing approaches convert both missed and related
matches into exact matches.

The following analysis is focused on the further
evaluation of related and missed matches. In this
article level analysis, we replace a mention with the
closest generated candidate’s canonical name for
each mention in the article where the closest can-
didate is a related match or a missed match respec-
tively. This results in an article AP . We compute
the cosine similarity between the original article
A and the modified aricle AP called SP using a

3https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
release/abbreviations.html#mrdoc_REL

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html#mrdoc_REL
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html#mrdoc_REL
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html#mrdoc_REL
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PubmedBERT-base (Gu et al., 2020) model4 fine-
tuned using sentence transformers (Reimers and
Gurevych, 2019) on biomedical data. Similarly, we
also replace the mentions with the gold standard
canonical names to create an article AG. This is fol-
lowed by computation of cosine similarity between
A and AG called SG. We focus on scenarios where
SP and SG deviate significantly as compared to
the mean deviation of the articles. These are high-
lighed in the figure 4. This forms a base for our
qualitative analysis where we use this deviation to
provide insights on the granularity of gold standard
predictions as well as highlight current issues in
the approach.

Figure 4: This figure illustrates the disparity in similar-
ity scores (SG − SP ) at the article level (4392 articles),
alongside the smoothed retrieval performance (R@1)
per article using a moving average with a window size
of 200. The region A consists of semantically closer
predictions and B consists of semantically farther pre-
dictions.

4.2 Qualitative Analysis

We perform a qualitative analysis on the entity link-
ing predictions to highlight the difference in the
granularity of the gold standard and predicted enti-
ties.

In this section, we qualitatively evaluate the arti-
cles displayed in the regions A and B of figure 4.
The region A consists of articles where the pre-
dicted article AP is semantically more similar to
the original article A as compared to the gold stan-
dard articleAG. Whereas, the region B consists of
articles where AG is more similar to A as compared
to AP .

4https://huggingface.co/NeuML/
pubmedbert-base-embeddings

MENTION: "Vitamin D Receptor Activator Use and Cause-
specific...Vitamin D receptor activators (VDRA) may exert...5,635
VDRA users were matched...that VDRA use was"
GOLD: Biologically Active Substance (C0574031)
PREDICTION: VDR protein, human (C3657722) with parent
entity Vitamin D3 Receptor (C0108082)

MENTION: "Influence of Sinus Floor Configuration....the sinus
floor configuration...osteotome sinus grafting procedure...into
the sinus area...sinus floor configuration...sinus floor profile...flat
sinus group...maxillary sinus following...predictable in sinuses
with a concave..."
GOLD: Anatomical space structure (C0229984)
PREDICTION: Nasal sinus (C0030471)

MENTION: "...effectiveness of disc synoptoscope on pa-
tients...effectiveness of disc synoptoscope on binocular-
ity...therapy with disc synoptoscope in...with disc synoptoscope is
effective...disc synoptoscope could serve as an..."
GOLD: Medical Devices (C0025080)
PREDICTION: Synoptophores (C0183765)

MENTION: "...performance of the Afirma gene expression
classifier...the Afirma gene expression classifier (GEC)...on
which GEC was performed...GEC testing was performed...atypia
of undetermined significance (AUS)...the AUS cases...the
AUS group...patients with AUS...value of GEC decreased
from...suspicious GEC result...value of GEC in indetermi-
nate...suspicious GEC result...suspicious GEC result..."
GOLD: Research Activities (C0243095), Finding (C0242481)
PREDICTION: Gene Expression Profiling (C0752248), Atypical
cells of undetermined significance (C0522580)

MENTION: "including the cytoplasmic tails of integrins and com-
ponents of the actin cytoskeleton"
GOLD: CytoPlasmic (C0521449)
PREDICTION: Cytoplasmic Domain (C1511625) with alias ’Cy-
toplasmic Tail’.

Table 6: The table shows qualitative examples selected
from the region A in the figure 4.

Table 6 shows the qualitiative examples from
region A where it can be observed that our ap-
proach is penalized for granular or highly related
predictions. For example, The mention gene expres-
sion classifier has a gold standard entity Research
Activities as compared to the more granular pre-
diction Gene Expression Profiling. Similarly, the
mention cytoplasmic tails has a gold standard ent-
tity CytoPlasmic as compared to the more granular
prediction Cytoplasmic Domain.

Table 7 shows the qualitatuve examples corre-
sponding to the region B where it can be seen
that the gold standard annotation is based on the
context of mention in the article. More specifi-
cally, the mention mice has a gold standard entity:
Laboratory mice based on the article context. How-
ever, this context is missing in the mention surface
form. Therefore, to address these kind of cases,
we need to provide the necessary context in the
query. We utilize three different disambiguation
techniques and show examples of the correspond-
ing predictions. We observe that additional context
from the articles may result in granular predictions.

https://huggingface.co/NeuML/pubmedbert-base-embeddings
https://huggingface.co/NeuML/pubmedbert-base-embeddings
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However, the results are highly sensitive to the
context and overall retrieval performance drops sig-
nificantly (see section A.3 for more details).

We also observe an inconsistency in the granular-
ity of gold standard entities in these examples. The
mention experimental mice has a gold standard en-
tity Animals, Laboratory as compared to the more
granular prediction Laboratory mice.

MENTION: "....iron accumulation in the substantia nigra (SN)
of mice.....the substantia nigra of experimental mice treated with
MPTP."
GOLD: Laboratory mice (C0025929), Animals, Laboratory
(C0003064)
PREDICTION: House mice (C0025914), Laboratory mice
(C0025929)

MENTION: "...mRNA N6-methyladenosine methylation of post-
natal...mRNA m6A methylation during...outcomes of mRNA m6A
methylation...levels of m6A methylation and...by m6A methylation
at...higher m6A methylation and...differential m6A methylation
may..."
GOLD: mRNA methylation (C2611689)
PREDICTION: Methylation (C0025723)

Table 7: The table shows qualitative examples selected
from the region B in the figure 4.

5 Conclusion

Biomedical entity linking has been an active area of
research with various approaches being proposed
to improve medical text standardization (see de-
tails in section 1). We propose a multi-stage ap-
proach where the first stage retrieves candidates
with a high recall (∼ 87% for top-128 candidates).
This is followed by application of the proposed
reranking approaches focused on improving the
R@1 retrieval performance. The reranking im-
proves the performance by more than 10% (see
figure 2 and table 4). We investigate the misses in
R@1 and segregate the candidates into related and
missed matches. Following this, we compute the
article level semantic similarity together with the
article level retrieval performance. This analysis
highlights qualitative examples that can be used to
obtain further insights about the framework. The
semantic analysis is used to select the following
types of qualitative examples: a) low retrieval per-
formance and high similarity and, b) low retrieval
performance and low similarity. The former can be
highlight issues pertaining to granularity of gold
standard entities and the latter can be used to high-
light issues pertaining to the retrieval performance.
Overall, the proposed techniques are highly effec-
tive in entity linking and have negligible training,
prototype-space creation and inference costs (see

table 9 for more details).

5.1 Future Scope
We believe that there is a significant scope for
future developments in biomedical entity linking
across different components of existing deep learn-
ing solutions. Firstly, there can be multiple biomed-
ical normalizations for a mention or surface form.
However, there is no method to determine the
"closeness" of a prediction to a surface form as
opposed to the binary matching. We believe that
there should be a partial scoring instead of a bi-
narized computation in order to accomodate the
quality of predictions in the evaluation. Moreover,
semantic similarities can also determined by ex-
perts to provide a ranking that could be used across
biomedical entity linking for disambiguation.

5.2 Limitations
We observe that while an abbreviation pre-
processing module is utilized in the proposed ap-
proaches, it doesn’t convert all the abbreviations
into their full forms. This causes a high amount
of ambiguity in the results and often times the re-
trieval candidates do not consist of the correct en-
tity. This drawback in positive pairs based learning
has also been highlighted in (Zhang et al., 2021).
Research addressed towards improving abbrevia-
tion expansion can help improve the recall of our
candidate generation. Moreover, the region B in
figure 4 highlights the examples where missing
context in the surface form causes our framework
to predict broader entities as the closest candidates.
We utilize various approaches to include additional
implicit and explicit context into our queries and
analyze the corresponding retrieval performance
(see details in Appendix section A.3).
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A Appendices

A.1 Terminology and Parameters

This section includes the terminology details and
training, inference or other parameters used in this
work.

Term Description

δ Similarity function
m mention
ϵ Entity
q Query
µ Entity canonical name
TUI(.) maps an entity to it’s semantic type canonical name
SG(.) maps an entity to it’s semantic group canonical name

R@n Retrieval performance on top-n unique candidate entities
top-k top-k candidate entities including aliases

Table 8: The table shows the symbols used in our work
and the corresponding descriptions.

Table 9 shows the memory consumption and
carbon emissions associated with the MiniEL0 ap-
proach. It can be seen that our proposed techniques
is low resource and results in very low amount of
carbon emissions.

Phase Memory
(MB)

Emissions (Kg.
Eq. CO2)

Training 0 0
Prototype Space
Creation

1906 0.1

Inference 938 0.04

Table 9: The table shows the memory and carbon emis-
sion details. We utilized a 16GB V100 GPU for our
tasks. The Inference was performed on the st21pv ver-
sion of Medmentions.

A.2 Ablation Studies

In this section, we discuss the influence of param-
eters used in the parametric disambiguation ap-
proach discussed in the section 3.3. Specifically,
we consider the candidate generation results ob-
tained by using the MiniEL0 model and perform
the reranking by removing b and c parameters re-
spectively. To highlight the impact of changing the
a, b and c values, we perform a grid search on a
manually selected range of values.

Furthermore, considering the top-10 candidates
for reranking, removal of the parameter b results
in an R@1 of 0.611, removal of c results in 0.481.
This can be compared to the baseline R@1 0.553
and the R@1 of 0.614 obtained using optimal a,b

Figure 5: This figure shows the grid search on the pa-
rameters a, b and c for optimizing the R@1 performance
of the MiniEL0 model using the parametric approach
discussed in the section 3.3. The optimal combination
of a, b and c is found to be 5, 0.1 and 0.05, respectively.

and c. The performance is computed on the st21pv
version of Medmentions. Overall, the impact of
parameter c is highly significant in the performance
improvement.

A.3 Contextualized Queries

In our framework, the encoded representations of
mentions are queried on the prototype space to
get relevant candidates from UMLS. However, the
mention spans alone may lack the necessary con-
text to map the mention to their corresponding
UMLS entities. In this section, we evaluate mul-
tiple techniques for incorporating context in the
queries. Specifically, we use a running span based
context addition, an implicit context addition and
an attention based span context addition.

A.3.1 Neighboring Context
In this approach, we select a few words before and
after the mention span to update the mention m
and encode the updated mention to form a query.

Firstly, we add 5 neighbouring words before and
after the mention and observe that the retrieval per-
formance drops drastically (R@1 ∼ 10%). There-
fore, we the number of words to 2 on both sides
of the mention which results in a drastic drop in
retrieval performance (R@1 ∼ 22%).

Overall, this context addition approach results in
a significant drop in our retrieval performance and
may not be suitable for contextual disambiguation.

A.3.2 Attention-Based Context
In this section, we perform experiments to identify
the most influential words from the articles that
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attend to the span in consideration. We modify
the original mentions by adding these words as
additional context. This is done by utilizing the
attention mechanism of encoder based transformer
models namely BioBERT (Lee et al., 2020). Firstly,
the entire title and abstract text is tokenized and
passed to these models. The corresponding atten-
tion outputs are obtained and passed to the mention
enrichment algorithm.

Let k be the number of word-piece tokens ob-
tained from the encoder model, for each head H of
Layer L, the attention matrix can be mentioned as:

A =



a11 a12 ... a1k

a21 a22 ... a2k

...
... ....

...
...

... ....
...

ak1 ak2 .... akk

 (5)

The mention spans lie in the range [c, d] where
0 ≤ c < d ≤ k. Therefore, the matrix A can be
shortened to a submatrix of interest B mentioned
as:

B =



acc ac(c+1) ... acd

a(c+1)c a(c+1)(c+1) ... a(c+1)d

...
... ....

...
...

... ....
...

akc ak(c+1) .... akd

 (6)

Equivalently,

B =
[
bc b(c+1) ... bd

]
(7)

where bi represents a column of B. Next, the
token corresponding to the maximum attention
value of each column is obtained as T (max(bi))
where T (j) represents the token at index j ∈
{1, 2, ..., k}in the text spanning from 1st to the kth

token. The resulting token vector from the attention
head Hm and Layer Ln is represented as:

Rnm =
[
T (max(bc) T (max(b(c+1)) ... T (max(bd)

]
(8)

The ENRICH function discussed in the algo-
rithm 1 return the enriched context for a given men-
tion m, which is then modified as shown below:

m∗ = m : Rmn[0], Rmn[1] (9)

Finally, stop words are removed from Rmn[0]
and Rmn[1]. An example mention cold can be mod-
ified as cold: severe,recent where, ’severe, recent’
is the added context.

Algorithm 1 Enrichment Context Selection
procedure SORTmcbl(V : 1D vector) {most common by
length in descending order}

C = {x | count(x) = max(count(T )) ∀ T ∈ V }
C∗ = {x | x ∈ C and len(x) >= len(y) ∀ y ∈ C}
return C∗

end procedure
{Rn denotes the representative token from all attention
heads in Layer n}
{Ln denotes the representative token(s) from Layer n}
{M denotes the representative token(s) for the tokenk in
mention M}
{E denotes the representative token context (E) for mention
M}
procedure ENRICH(Rn : 1D vector) {enrich mention with
context}

C∗ = SORTmcbl(Rnm)
Rn = C∗

1 or Rn = C∗(1)
Ln = {R1, R2, ..., Rz}
C∗ = SORTmcbl(Ln)
Mt = {C∗

1 , C
∗
2}

M = {M1,M2, ...,Mk}
C∗ = SORTmcbl(M)
E = {C∗

1 , C
∗
2}

end procedure

A.3.3 Implicit Context
In this approach, we utilize mean-pooled embed-
ding of the mention encodings taken from the entire
article as an input. Firstly, the entire text is used
as an input to obtain the tokenwise encodings from
the model.

f(text, θ) = {ET1 , ET2 , ..., ETn} (10)

Here, ET is encoding of token T and n are the
number of tokens in the input text.

Given a span s, consisting of l tokens and
tokens in the span {Tk, ...., Tk+l}, we take the
corresponding encodings from the model outputs
{ETk

, ..., ETk+l
}. We perform a mean pooling on

these encodings to obtain the updated query rep-
resentation Q = 1

l

∑k+l
k {ETk

, ..., ETk+l
}. The

prototype space consists of the sentence encodings
of the canonical names of all the entities in UMLS.

The R@1 candidate generation performance
drops drastically in this setup where a drop of more
than 30% is observed. Overall, we observe that
these implicit contextual queries are not helpful in
improvement of retrieval performance.

A.3.4 Evaluation
In this section, we perform the quantitative and
qualitative analysis of our context based ap-
proaches on the Medmentions st21pv version. The
qualitative examples shown below highlight the pre-
dictions provided by the proposed context based
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MENTION: "....iron accumulation in the substantia nigra (SN) of
mice...."
MENTIONAC : "...iron accumulation in the substantia nigra (SN)
of mice: experiment...."
PREDICTIONAC : Laboratory mice (C0025929))
PREDICTIONIC : House mice (C0025914)
PREDICTIONNC : Laboratory mice (C0025929)

MENTION: Kindlin-1 is expressed primarily in epithelial cells,
kindlin-2 is widely distributed and is particularly abundant in ad-
herent cells, and kindlin-3 is expressed primarily in hematopoietic
cells.
MENTIONAC : Kindlin-1: kind,primarily is expressed primarily
in epithelial cells, kindlin-2: distributed,Kind is widely distributed
and is particularly abundant in adherent cells, and kindlin-3:
expressed,Kind is expressed primarily in hematopoietic cells.
PREDICTIONAC,IC,NC : FERMT1 gene (C1423809), FERMT2
gene (C1423716), FERMT3 protein, human (C1311640)
PREDICTIONAC + TYPE: Fermitin Family Homolog 2, human
(C3889282), Fermitin Family Homolog 2, human (C3889282),
FERMT3 protein, human (C1311640)

Table 10: This table shows the qualitative analysis of
the MiniELAC

0 , MiniELIC
0 and MiniELNC

0 approaches
on examples from Medmentions.

approaches. As discussed in the qualitative analy-
sis of region B (see section 4.2), the surface forms
have missing context resulting in an inaccurate pre-
diction.

It can be observed in table 10 that the mention
mice is correctly predicted as the entity Laboratory
mice using the MiniELAC

0 and MiniELNC rerank-
ing approaches. We also highlight the effect se-
mantic type reranking approach though the exam-
ple mentions kindlin-2 and kindlin-3 where the
prediction semantic type changed from ’Gene’ to
the correct type ’Protein’. Here, the MiniELNC

0 ,
MiniELAC

0 and MiniELIC
0 methods correspond to

the results obtained using the Neighboring Con-
text, Attention-based Context and Implicit Context
approaches, respectively, utilizing MiniEL0 as the
base model.

It can be observed that the AC approach pro-
vides meaningful outputs as it includes the neces-
sary context in the surface form. Similar outputs
are provided by the NC approach. However, the
neighbouring words may not necessarily contain
the context and this can be seen in the following
qualitative example listed in the table 11.

We observe that the attention span based context
enrichment approach is sensitive to the context ad-
dition as it induces bias the surface form and the
resulting candidates may be more similar to the bias
term as compared to the base form. Therefore, to
understand the impact of bias on the surface form,
we observe the retrieval performance based on the
number of words in the mention. The figure 6
shows that the performance of MiniELAC

0 is better

MENTION:"...inhibitor of T cell function....hypoxic conditions
influence human T cell functions and found that..."
MENTIONAC :"...inhibitor of T cell function: cell....hypoxic con-
ditions influence human T cell functions: cell and found that..."
GOLD: Cell physiology (C0007613), Cell physiology (C0007613)
PREDICTIONAC : Cell physiology (C0007613), Cell physiology
(C0007613)
PREDICTIONNC : Cell physiology (C0007613), T cell differenti-
ation (C1155013)

Table 11: This table shows the qualitative analysis of
the MiniELAC

0 and MiniELNC
0 approaches on examples

from Medmentions.

Approach R@1 R@5

miniEL0 0.553 0.756

miniELNC
0 0.219 0.405

miniELAC
0 0.384 0.642

miniELIC
0 0.161 0.359

Table 12: The table presents the candidate generation
performance of the listed context based approaches. The
performance is computed the st21pv version of Med-
mentions.

Figure 6: This figure presents the word-count level re-
trieval performance, measured in terms of exact and
related matches, comparing the performance of the
MiniEL0 approach in comparison to its performance
on applying the context based methods.

on mentions with higher length as compared to the
mentions with lower lengths. A similar trend is
observed for the MiniELNC

0 approach. This trend
is not seen for the MiniELIC

0 approach where the
performance drops with the increase in number of
words in the mentions. However, the attention span
based approach has better performance as com-
pared to the neighboring context approach. For
each specific mention word count, we select men-
tions with at least about a 100 examples for this
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analysis.
To summarize, the quantitative and qualita-

tive context enrichment analysis shows that the
MiniELAC

0 approach outperforms the other ap-
proaches and is effective in context addition. How-
ever, the sensitivity in the encodings results in
large deviations in the candidate generation (see ta-
ble 12). Therefore, the robustness of this contextual
approach needs to be improved.
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