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Abstract

In electronic health records, text data is con-
sidered a valuable resource as it complements
a medical history and may contain informa-
tion that cannot be easily included in tables.
But why does the inclusion of clinical texts as
additional input into multimodal models, not
always significantly improve the performance
of medical decision-support systems? Explain-
able AI (XAI) might provide the answer. We
examine which information in text and struc-
tured data influences the performance of mod-
els in the context of multimodal decision sup-
port for biomedical tasks. Using data from an
intensive care unit and targeting a mortality pre-
diction task, we compare information that has
been considered relevant by XAI methods to
the opinion of a physician.

1 Introduction

Electronic health records often contain factual in-
formation in short, tabular form, including labo-
ratory values, diagnoses, gender, and age. They
also include longer texts in various forms written
for many different purposes. Depending on the
origin and context of the data, the text could be a
clinical or nursing note, a discharge summary, or
a radiology report, to name a few. The text might
provide a high-level interpretation of the current pa-
tient situation, taking different kinds and sources of
information into account. The text might refer di-
rectly to some given structured facts in the database
(e.g., a lab value is above borderline) but might also
consider additional information such as general im-
pressions, assumptions, and information gathered
directly from the patient or other medical person-
nel (e.g., the patient is not very adherent). For this
reason, the texts are generally considered valuable
resources in the clinical routine. In the context of
machine learning for healthcare, however, the in-
clusion of such texts has shown in various setups
only marginal effects (Khadanga et al., 2019; Yang

Figure 1: Comparison of human annotation regarding
relevant tokens for in-hospital mortality, versus XAI

and Wu, 2021), although one would assume that
the additional information and complementary per-
spective should improve a system’s performance.

Many papers in this area deal with multi-modal
data, integrating, for instance, image and text, or
structured and unstructured data into one model.
MIMIC-III (Johnson et al., 2016) is a popular
dataset in this context, as it can be easily accessed
by researchers. It contains data from an intensive
care unit (ICU) of a US hospital, including pa-
tient demographics, time series data, or text, such
as nursing notes, discharge summaries, or social
worker notes. However, while many approaches in
other domains do achieve a boost in performance
using multimodal (text) data, the performance dif-
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ference between unimodal and multi-modal mod-
els in the medical context can be modest (Dezn-
abi et al., 2021). In this work, we explore which
information is valuable for multi-modal machine
learning using MIMIC data. More precisely, we
re-implement two multi-model (MM) approaches
for the task of in-hospital mortality prediction. We
then introduce an XAI approach for the given MM
approaches and examine the attributed informa-
tion according to their faithfulness. Finally, we
investigate if the attributions are plausible from a
physician’s perspective.

2 Related Work

Recent years have seen a surge in leveraging deep
learning approaches utilizing diverse clinical data
sources for clinical outcome predictions. These
include textual clinical notes, longitudinal data,
and demographic data. Unimodal approaches like
CNNs (Rocheteau et al., 2021), LSTMs (Choi et al.,
2016), and BERT (Naik et al., 2022) have laid the
groundwork. Later expanded to multimodal ap-
proaches such as additive fusion (Khadanga et al.,
2019; Deznabi et al., 2021) to more sophisticated
cross attention fusion (Zhang et al., 2022; Qiao
et al., 2019). Yang and Wu (2021) and Deznabi
et al. (2021) implemented additive and gated fusion-
based multimodal models for tasks like diagnosis
prediction, acute respiratory failure prediction, and
in-hospital mortality prediction. We extend their
work by applying explainability methods to models
and evaluating the quality of explanations.

Explainable AI (XAI) enhances transparency
and trust in healthcare applications, especially
within medical decision support systems (Markus
et al., 2021) and clinical NLP (Roller et al., 2022a).
Notably, Naylor et al. (2021) compared the faithful-
ness of various explanation methods for models like
BERT in mortality prediction. Additionally, DeY-
oung et al. (2020) introduced a benchmark with hu-
man annotations to evaluate NLP models explain-
ability for faithfulness and plausibility. However,
previous research has mainly focused on quantita-
tive evaluations of explainability methods for uni
models. This study addresses this gap by quantita-
tively evaluating XAI in multimodal models.

3 Method

3.1 Data
We use the Medical Information Mart for Intensive
Care (MIMIC-III) dataset (Johnson et al., 2016)

in our experiments. MIMIC comprises authentic
electronic health record (EHR) data, including vital
signs, laboratory measurements, and clinical notes
(free text), from ICU patients. One of its tasks
involves predicting patient mortality risk in the in-
tensive care unit (ICU) based on the first 48 hours
of patient stay. Mortality, in this context, refers to
the likelihood of a patient dying while receiving
intensive care.

For our cohort selection and setup, we mostly
follow Harutyunyan et al. (2019) and Yang and
Wu (2021) and focus on patients aged 18 years
and older with ICU stays lasting 48 hours or more,
accompanied by clinical notes. The original cohort
of Harutyunyan et al. (2019) includes 17 different
features that undergo different pre-processing steps,
such as inserting missing information by previous
or plausible default values and converting them into
time series data. As we are particularly interested
in text data, we extend the original cohort by two
different sources of text, namely nursing notes and
admission notes.1

The final data consists of three different modal-
ities: a) text, consisting of either nursing notes
or admission notes; b) time series data, such as
heart rate, blood pressure, or glucose; and c) time-
invariant data, such as age or ethnicity. While some
time series features are numeric, others are cate-
gorical (e.g., Glasgow coma scale eye-opening),
which are converted into several binary features
during pre-processing following the approach of
Harutyunyan et al. (2019). More details about data
imputation and a synthetic example of the data are
added to the Appendix B.

3.2 Multimodal Models

In this study, we employ diverse architectures to
encode information from different modalities into
latent vectors. Specifically, we use LSTMs to pro-
cess time series data, linear layers to handle time-
invariant data, and transformer models for textual
data. To integrate all the encoded information ef-
fectively, we use two fusion approaches: The gated
fusion approach proposed by Yang and Wu (2021)
and the concatenation fusion approach introduced
by Deznabi et al. (2021). In the gated fusion ap-
proach, a gated attention mechanism is applied over
the encoded vectors to generate a fused representa-
tion that incorporates context from all the encoded

1Explanation of this terminology can be found in Ap-
pendix A.
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vectors. Conversely, in the concatenated fusion ap-
proach, all the encoded vectors are concatenated
into a single vector to produce a fused representa-
tion. Figure 2 depicts a simplified overview of the
multimodal architectures. Subsequently, the fused
vector from both fusion approaches is projected
into a fully connected layer for prediction.

Figure 2: Combining modalities using concatenation or
gated fusion.

Both approaches use a pre-trained ClinicalBERT
(Huang et al., 2019) to encode the clinical notes
(nursing, radiology, others, etc.). Both approaches
use the average embedding over all the clinical
notes as the encoded textual feature.

3.3 Multi-Modal XAI
To identify which information is crucial for suc-
cessful predictions in our multimodal setup, we in-
tegrate XAI techniques using state-of-the-art meth-
ods based on gradient and attention. For pinpoint-
ing significant information in time series data pro-
cessed by the LSTM, we employ Integrated Gra-
dients (IG) (Sundararajan et al., 2017). For the
textual data fed into the BERT model, we use the
attention vector norm (Kobayashi et al., 2020) and
layer-wise Token-to-token Interaction (ALTI) (Fer-
rando et al., 2022). These methods have shown
promising results in explaining transformer-based
models. They let us identify relevant tokens in
the texts and pertinent features in the time series
data, which we can then compare with annotations
provided by medical professionals.

4 Experimental Results

Our first experiment concerns the reproduction of
multimodal and unimodal methods and application
to the in-hospital mortality task. For the evalua-
tion, we follow a similar methodology to related
work (§2), utilizing ROC (Area Under the Receiver
Operating Characteristic curve) and AUPR (Area
Under the Precision-Recall curve).

In the second experiment, we apply XAI to the
models and examine which information is consid-

ered by the model as valuable for the prediction.
Following Jacovi and Goldberg (2020), we explore
faithfulness by replacing the top X attributed token
or time point of the time series with a mask token
or zero and observe the drop in model performance.

Finally, we conduct a plausibility test, as sug-
gested by DeYoung et al. (2020). Here, we directly
compare the attributions on text and structured data
to the relevant information according to a physi-
cian’s perspective. Only annotation of text data is
quantitatively analyzed based on the overlap be-
tween annotated tokens and attributed tokens, such
overlap matching is not possible for time-series
data. As we are particularly interested in examin-
ing the benefit of text data, we randomly select 100
patient cases in which a multi-modal approach pre-
dicts a higher probability score for mortality than
the unimodal LSTM approach. Likewise, we ran-
domly select 100 cases in which the multi-modal
approach predicts a lower probability score for mor-
tality. For those cases, we assume that text data
provided additional information to make a stronger
prediction assumption (independent of whether the
prediction is correct or not).

A final-year medical student annotated these 200
cases. The student was asked to identify parts of the
text and important time-series features that support
the outcome of mortality or survival. In addition,
the student was asked to provide their estimation
of the patient’s survival and whether the text was
useful in solving the task.

4.1 Results
Model performance: Unimodal vs. multi-modal
Table 1 presents the results of the two multimodal
approaches in comparison to the unimodal mod-
els for both text types. The first observation is
that LSTM provides stronger results compared to
the two BERT approaches, and all multimodal ap-
proaches outperform the unimodal models. This
slight performance gain is particularly visible when
using nursing notes in comparison to admission
notes. Moreover, the more complex gated mecha-
nism shows a slight benefit over the concatenation.
Overall, the presented results are comparable to
what has been reported already in other related
work (Khadanga et al., 2019; Lyu et al., 2022).

We can conclude that for the given data and the
given problem, structured (time series) data seems
to have a stronger influence on the model perfor-
mance, and adding both ‘worlds’ can lead to further,
but rather minor, improvements. However, an ad-
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Table 1: Performance of multimodal (MM) approaches
in comparison to the unimodal models in predicting in-
hospital mortality according to ROC and AUPR.

Model ROC AUPR

BERT (nursing) 0.80 0.37
BERT (admission) 0.74 0.30
LSTM 0.80 0.42
ConcatMM (nursing) 0.81 0.44
ConcatMM (admission) 0.81 0.37
GatedMM (nursing) 0.83 0.43
GatedMM (admission) 0.82 0.39

LSTM w/o height+weight 0.78 0.38

ditional analysis of the data reveals that the two
features height and weight are often missing and
imputed with default values. For this reason, we
removed those two features from the original data
and trained an LSTM. Without those two features,
however, the model suffers a drop in performance.

Explanation faithfulness test Table 2 presents
the faithfulness test, in which we examine which
information influences the models’ prediction. To
do so, we replace the top-5 (top-10 and top-15)
strongest (XAI) attributed tokens or time points of
the time-series data and compare this to a random
replacement of the same amount of information.
The table shows that removing the attributed to-
kens leads to a stronger drop in performance, com-
pared to the random removal. This indicates that
the model relies on information (and particularly
text tokens), which are useful for the mortality pre-
diction task.

Table 2: ROC Performance after replacement of top-X
text tokens or time point of time-series data. The table
compares a random replacement against the replacement
of attributed information (XAI). The table compares
BERT (admission) with ROC=0.80 for text and MM
with ROC=0.83.

Modality Top Attribution Random

5 0.769 (0.031) 0.801 (0.000)
Text 10 0.744 (0.056) 0.800 (0.000)

15 0.734 (0.066) 0.799 (0.001)
5 0.664 (0.166) 0.726 (0.104)

Struct. 10 0.595 (0.235) 0.674 (0.156)
15 0.585 (0.245) 0.632 (0.198)

Regarding the attributed tokens in the text data,
we found the following patterns: First, highly at-
tributed information is often spread widely across
the document. In many cases, attributed tokens in a
document include medical conditions such as symp-
toms or diseases (e.g., pain, cirrhosis, pneumonia),

in some others also body parts such as heart or lung
and sometimes medications. However, many other
seemingly irrelevant tokens are highlighted, such
as the word patient or a specific time mentioned in
the text. Finally, even though information tends to
be spread across the document, the attribution also
covers sequences of words, such as the patient’s
age (‘53 y. o. man’), negations (‘denies pain’), and
other connected information (‘chest pain,’ ‘renal
failure’).

When looking closer at the attributed time-series
data, the following five features play a particu-
larly important role in the model’s performance
drop: Glasgow Coma Scale (total), blood pressure
(mean), Glasgow Coma Scale (motor response),
oxygen saturation, and Glasgow Coma Scale (ver-
bal response).

Explanation plausibility evaluation For the 200
patient cases that a physician annotated, we first
conducted a manual analysis to find differences
and similarities to the attributed tokens. Figure 1
depicts an example text with human and machine
(XAI) annotation. In general, the annotations show
that, in many cases, a few larger chunks of text
sequences were annotated. Moreover, even though
severe conditions seem to be mentioned multiple
times in the documents (redundancy), the physi-
cian often annotated each condition just once – the
explanations, however, also highlight the same con-
dition in multiple parts of the document. More-
over, the physician annotated some measurements
of values as relevant, whereas XAI never detected
anything comparable – although it considers, in
some cases, age and gender as useful. On a time-
series data, the physician considers similar infor-
mation useful compared to XAI, namely the Glas-
gow Coma Scale (eye-opening), the Glasgow Coma
Scale (motor response), the Glasgow Coma Scale
(total), oxygen saturation, and respiratory rate.

Table 3: Plausibility evaluation measuring agreement
with human-annotated of the clinical text (nursing and
admission) for mortality prediction. The table shows
the lenient-f1 scores obtained by measuring the overlap
between the annotated token and the attributed token.

Model Precision Recall Lenient-F1

BERT (nursing) 0.141 0.204 0.166
BERT (admission) 0.064 0.090 0.075
ConcatMM (nursing) 0.102 0.159 0.124
GatedMM (admission) 0.110 0.168 0.133

Second, we quantitatively evaluated plausibility
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by measuring the lenient-F1 score for the over-
lap between annotated and attributed text. Since
our main focus is textual data, we did not create
annotations for time points, making such overlap
evaluation impossible for time series data. Table 3
shows that the BERT model attributions align more
closely with human annotations for nursing notes,
while multimodal models exhibit lower agreement
with human annotations. However, the overall
agreement, as measured by the lenient-F1 score,
is very low. This low agreement is likely because
the models struggle to differentiate between acute
conditions (e.g., active bleeding, signs of severe in-
fection) and pre-existing conditions (e.g., pneumo-
nia, diabetes mellitus), missing out on the negation
of medical conditions by attending only to pathol-
ogy (e.g., ‘no melena’ is annotated by physician
but the model attribution identifies only "melena").

5 Discussion

The initial results align with findings from related
work: text data is a valuable resource for improving
predictions, but its benefit varies depending on the
task and the text source. For instance, nursing notes
led to higher results than admission notes, despite
the fact that nursing notes were often truncated
due to BERT’s restricted input length. Given the
redundancy in clinical texts, it may be beneficial
to compress larger texts into shorter documents to
accommodate additional text sources.

Another notable finding is the performance drop
when removing height and weight, two features
that are often missing and filled with default val-
ues. Our medical expert confirmed that height and
weight do not influence the given task, which may
reduce overall trust in our model. However, it is
not unusual for machine learning models to con-
sider seemingly irrelevant information as useful.
For example, in Roller et al. (2022b), a nephrol-
ogy outcome prediction model found the number
of lab measurements in the last month to be very
useful, which may indirectly indicate a patient’s
deteriorating condition. In our case, the model’s
reliance on height and weight might be justified
by the context in which these features are used.
For instance, weight may be measured over time
to monitor fluid balance. Thus, the model might
be capturing an important dependency that is not
immediately apparent.

In the second experiment evaluating the faithful-
ness of the attributions, we observed a significant

drop in model performance when the top-attributed
information was replaced in the input, compared to
a random replacement. This stronger decline in per-
formance was particularly pronounced when time-
series data was replaced, indicating that time-series
information plays a crucial role in the model’s per-
formance for the given task. Conversely, it also
shows that some tokens, such as medical condi-
tions that are mentioned in the text, have a positive
influence on the model.

In the third experiment, comparing human and
XAI annotations of texts suggests that systems can
extract relevant information (pre-existing condi-
tions are identified more often than acute condi-
tions). On the other hand, the extracted information
is not always humanly plausible. The comparison
of human and XAI annotated time-series features
showed that both the physician and the model con-
sider similar features useful for the given prediction
task. However, multimodal quantitative analysis
of plausibility remains a bottleneck that should be
addressed in future work.

6 Conclusion

We analyzed the relevance of text and structured
data in the context of a multimodal decision support
system for in-hospital mortality. We found that the
source of text influences the model performance
(nursing vs admission notes). Moreover, sparse
information (e.g., patient height and weight) can
benefit the performance of models, although such
information does seem irrelevant from an expert’s
perspective.

In our experiments, we found that the model
performance drops considerably when structured
information (time series) is replaced in the input
compared to textual inputs. In general text data
could provide additional context in a multimodal
setup, but its benefit depends on the task (other
tasks might lead to more benefits) as our results
showed only a marginal boost in performance com-
pared to unimodal models.

Finally, our comparison between human and
XAI annotations of the texts indicates that the mod-
els can extract relevant information but not always.
It seems that for multimodal data such as text and
time series, quantitative analysis of plausibility is
a bottleneck, and it should be addressed in future
work.
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Limitations

Our approach has clear limitations in terms of ap-
plied models (for instance, a multimodal LLM
could have been tested) as well as additional XAI
methods (e.g. LIME or SHAP). Moreover, in order
to gain more insights into the human perspective,
a large-scale annotation from a human perspective
is necessary, considering additional human annota-
tors, patient cases, and datasets.

Ethical Considerations

Although we build multimodal machine learning
models for healthcare with the intention of creating
a positive impact on society, our model is trained
and tested only on retrospective and anonymized
data. In this way, we do not influence patient out-
comes.
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Variable Impute value

Capillary refill rate 0
Diastolic blood pressure 59.0
Fraction inspired oxygen 0.21
Glascow coma scale eye opening 4 spontaneously
Glascow coma scale motor response 6 obeys commands
Glascow coma scale total 15
Glascow coma scale verbal response 5 oriented
Glucose 128.0
Heart Rate 86
Height 170.0
Mean blood pressure 77.0
Oxygen saturation 98.0
Respiratory rate 19
Systolic blood pressure 118.0
Temperature 36.6
Weight 81.0
pH 7.4
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Figure 3: A synthetic sample of a patient’s time-series in the MIMIC-III dataset.

Figure 4: A synthetic sample of a patient’s clinical text in the MIMIC-III dataset.
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