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Abstract

Adolescents exposed to advertisements promot-
ing addictive substances exhibit a higher like-
lihood of subsequent substance use. The pre-
dominant source for youth exposure to such
advertisements is through online content ac-
cessed via smartphones. Detecting these adver-
tisements is crucial for establishing and main-
taining a safer online environment for young
people. In our study, we utilized Multimodal
Large Language Models (MLLMs) to identify
addictive substance advertisements in digital
media. The performance of MLLMs depends
on the quality of the prompt used to instruct
the model. To optimize our prompts, an adap-
tive prompt engineering approach was imple-
mented, leveraging a genetic algorithm to re-
fine and enhance the prompts. To evaluate the
model’s performance, we augmented the RICO
dataset, consisting of Android user interface
screenshots, by superimposing alcohol ads onto
them. Our results indicate that the MLLM can
detect advertisements promoting alcohol with
a 0.94 accuracy and a 0.94 F1 score.

1 Introduction

The exposure of adolescents to advertisements pro-
moting addictive substances is a risk factor for the
subsequent development of maladaptive substance
use patterns (Jackson et al., 2018). In the case of
alcohol, exposure to alcohol advertising and the
level of endorsement for alcohol-related advertise-
ments among twelve-year-olds significantly affect
the severity of alcohol-related issues experienced
by individuals at age fifteen (Grenard et al., 2013).
This impact is mediated by the escalation in alcohol
consumption during this age period. Historically,
studies examining the connection between expo-
sure to addictive substance marketing and early use
initiation among teenagers has predominantly cen-
tred on well-established mediums like television
and newspapers (Anderson et al., 2009). However,
the marketing landscape has evolved, with social

media and web platforms emerging as dominant
sources for advertising addictive substances. This
shift is attributed to the under-regulation of these
platforms and their widespread popularity among
teenagers (Jackler et al., 2018; Zewude et al., 2022;
Clendennen et al., 2020). In addition to advertise-
ments sponsored by alcohol companies, there is a
proliferation of user-generated content actively pro-
moting the consumption of these substances. This
phenomenon results in socially amplified adver-
tising on social networking sites, presenting chal-
lenges in terms of regulation and monitoring (Sal-
imian et al., 2014; Barry et al., 2018).

Multimodal Large Language Models (MLLMs)
can process data from multiple modalities, such as
text, images, and audio. In this study, we employed
an MLLM to automate the detection of alcohol
advertisements within digital media. Similar to
Large Language Models (LLMs), the efficacy of an
MLLM is contingent upon the instructive prompt’s
quality (Grabb, 2023). While substantial efforts
have been directed toward prompt engineering for
models that can only process text (Wei et al., 2022;
Chen et al., 2023; Zelikman et al., 2022; Fernando
et al., 2023), the exploration of prompt engineer-
ing for models capable of handling both text and
images remains relatively underexplored. To op-
timize the instruction prompt for our MLLM, we
employed a genetic algorithm for prompt genera-
tion and selection. Each of the instruction prompts
represented an individual in our genetic algorithm.
Through an iterative process of mutating and re-
producing the fittest prompts, we identified the
one yielding the best results. Each of the instruc-
tion prompts were crafted based on the following
prompt engineering techniques: Chain-of-Thought
(CoT) (Wei et al., 2022), Generated Knowledge
(GK) prompting (Liu et al., 2022), Self-critique
(Wang et al., 2023), and Expert prompting (Xu
et al., 2023). Thus, our research also provides in-
sights into the effectiveness of different prompt
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engineering techniques for MLLMs.
To evaluate the performance of our model, we

augmented the RICO dataset (Deka et al., 2017).
The RICO dataset comprises screenshots of user
interfaces from various Android apps, such as so-
cial, dating, and communication apps. To augment
the dataset, we incorporated advertisements from
alcohol companies by superimposing them onto the
RICO images. The MLLM was employed to clas-
sify the images based on the presence or absence
of alcohol ads. The evaluation involved measuring
the accuracy and F1 score of the classifier.

Our main contributions are as follows:

1. Development of a dataset of user interface
screenshots with alcohol ads.

2. Creation, evaluation, and release of our adap-
tive prompt engineering algorithm for multi-
modal models. Our evaluation provides in-
sights regarding which prompt engineering
technique works best for MLLMs.

2 Related Work

2.1 Detection of addictive substances in digital
media

The proliferation of alcohol advertisements on so-
cial media platforms has played a significant role
in fostering maladaptive drinking behaviors among
adolescents (Berey et al., 2017). As a result, mul-
tiple studies have aimed to develop effective tools
for systematically monitoring the portrayal of alco-
holic beverages and other addictive substance use
within social media content. For example, Shan-
mugam et al. (2022) utilized the Darknet Frame-
work and YOLOv3 for developing a parental con-
trol mobile application. This app enhanced moni-
toring of children’s exposure to inappropriate con-
tent including substance use-related content on mo-
bile devices, achieving an accuracy of 0.87 and
an average precision score of 0.84. Hashmi et al.
(2021) used a Mask R-CNN, Cascade Mask-R-
CNN, and Hybrid Task Cascade to detect smok-
ing images. Their best performing model, Mask
R-CNN, achieved an average precision of 0.79 at
an Intersection over Union (IoU) of 0.5. Using
a further approach, Yang and Luo (2017) utilized
a multimodal analysis method, employing multi-
task learning and decision-level fusion to identify
drug-related posts on Instagram. Their best per-
forming model achieved a precision of 0.83 in the
task of recognizing drug-related posts. Pramanick

et al. (2021) introduced the MOMENTA frame-
work, a novel deep neural network approach that
integrates VGG-19, CLIP Image Encoder, CLIP
Text Encoder, and DistilBERT with self-attention
mechanisms, for detecting alcohol-related harm-
ful content in memes, achieving an accuracy of
0.83 and F1 score of 0.83. Ha et al. (2023) cre-
ated a dataset focused on detecting harmful objects
across six categories: alcohol, blood, cigarettes,
guns, insulting gestures, and knives. This study
showcased the enhanced detection capabilities of
YOLOv5 and Faster R-CNN models, as evidenced
by YOLOv5 achieving the highest mean average
precision (mAP) of 0.94, while Faster R-CNN
achieved a maximum mAP of 0.81 across all cate-
gories.

In contrast to previous approaches, our model
is capable of identifying harmful content, even if
presented in textual form. Additionally, unlike ear-
lier models that evaluated independent images to
determine if the entire image was associated with
harmful content (Hashmi et al., 2021; Yang and
Luo, 2017; Shanmugam et al., 2022; Pramanick
et al., 2021; Ha et al., 2023), our approach also dis-
cerns harmful elements within discrete portions of
an image. This distinction holds particular impor-
tance, given that advertisements featuring harmful
content may not always dominate the entire screen;
they could be confined to small sections within
the overall image. The ability to detect harmful
content in discrete portions of an image provides
flexibility compared to other models. Unlike previ-
ous methods that relied on first extracting all web
image elements from a site and then using classi-
fiers to identify harmful content (Chou et al., 2008;
Invernizzi et al., 2016), our approach is more adapt-
able. This adaptability is particularly valuable in
the context of live stream videos, a format that has
gained popularity in social media (Zimmer, 2018).
In contrast to preloaded and static content, such as
images, live stream videos pose a significant chal-
lenge to substance use image detection systems due
to their real-time and dynamic nature.

2.2 Prompt Engineering
The effectiveness of language models in complet-
ing tasks depends on the quality of the prompts they
receive (Grabb, 2023). Strategies in prompt engi-
neering, such as CoT, Graph of Thoughts (Besta
et al., 2023) and thought decomposition (Xie et al.,
2023), involve incorporating intermediate steps to
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enhance a model’s problem-solving capabilities.
Promoting a diverse set of intermediate steps is a
critical aspect when optimizing prompts, since it
enables a model to explore a vast solution space for
effective problem-solving (Fernando et al., 2023).
Highlighting the impact of prompt diversity on
model performance, self-consistency (Wang et al.,
2022) boosted the performance of CoT by replac-
ing the naive greedy strategy employed in CoT. In
self-consistency, a diverse set of intermediate steps
are initially sampled, as opposed to always opt-
ing for the immediately best one. Subsequently,
the model selects the most consistent answer from
this varied set of intermediate steps. By leverag-
ing the intuition that a complex reasoning prob-
lem admits a diverse set of intermediate steps, self
consistency boost the performance of CoT on a
range of popular arithmetic benchmarks, such as
GSM8K (+17.9%) and SVAMP (+11.0%). Simi-
larly, Auto-Cot (Zhang et al., 2022) underscores
the importance of diversity in intermediate reason-
ing steps to enhance LLMs. By diversifying these
steps, Auto-Cot consistently matched the perfor-
mance of manually crafted CoT across ten public
benchmarks.

Automated prompt strategies, aimed at minimiz-
ing manual intervention in prompt design and op-
timization, have demonstrated promising results.
For instance APE, an Automated Prompt Engineer-
ing (Zhou et al., 2022) scheme, achieved human-
level performance on the 17/21 Big-Bench and
the Instruction Induction datasets. APE leverages
LLMs to generate task-prompts candidates and to
introduce prompt mutation to add variability to the
task-prompts employed for problem-solving. In
our study, we adopted the methodology employed
in PromptBreeder (Fernando et al., 2023), which
aims to enhance diversity within prompts by mod-
ifying both the prompts responsible for mutating
instruction prompts and the instruction prompts
themselves. The Promptbreeder approach uses a
binary tournament genetic algorithm framework
(Harvey, 2009). This entails randomly selecting
two prompts originating from different instruction
tasks, and replacing the prompt with the lower fit-
ness by a mutated version of the one with the higher
fitness.

Given that PromptBreeder consistently opts for
the prompt with the highest fitness at each stage,
this greedy approach introduces the risk of getting
trapped in a local maximum. Greedy algorithms

tend to converge faster than their non-greedy coun-
terpart, this characteristic poses a challenge in the
realm of automated prompt engineering. The rapid
convergence results in prompts resembling only
those with the highest fitness, thus reducing the
diversity of prompts and limiting the search explo-
ration for the optimal one. To prevent convergence
to a local maximum, a distinct heuristic was em-
ployed for winner selection in the genetic tourna-
ment. We used the roulette wheel selection method
to select the individuals for the next generations
(Behera, 2020). Instead of solely relying on indi-
vidual fitness, we normalized the overall fitness of
all prompts. The normalized value is then used in
a probability function to select the winner. This
method maintains a preference for prompts with
higher fitness, while granting prompts with lower
fitness an opportunity to mutate and potentially
contribute to the solution by exploring alternative
paths that might lead to the optimal outcome. This
method promotes a more balanced exploration of
the solution space by increasing the diversity of the
prompts.

Previous prompt engineering techniques were
predominantly either manually crafted or exclu-
sively evaluated for Large Language Models. In
this research, we are pioneering an automated
prompt engineering technique tailored for a Mul-
timodal Large Language Model. Notably, the mu-
tation prompts utilized to evolve the task prompts
are rooted in successful prompt engineering tech-
niques previously designed for LLMs. We system-
atically track the performance of these mutation
prompts, providing valuable insights into their effi-
cacy within the context of MLLMs. This approach
allows us to discern and adapt what proves to be ef-
fective for enhancing the performance of MLLMs.

3 Method

3.1 Data collection
To construct our training and testing dataset, we
utilized the RICO dataset (Deka et al., 2017) by
extracting 2,100 distinct user interface (UI) screen-
shots from it. Additionally, we employed a web
scraper to gather images from Google featuring al-
cohol advertisements. Please see Appendix A for
the terms used to search for alcohol ad images. An
author of the paper reviewed the downloaded im-
ages to remove non-alcohol-related ones, resulting
in a curated dataset of 2,100 different alcohol ad
images. These advertisement images were resized
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Figure 1: To evaluate a prompt’s fitness, we use an MLLM with the prompt and a batch of labeled images as input.
The output from the MLLM is then labeled by a binary text classifier. The resulting accuracy represents the prompt’s
fitness.

to one-eighth of the UI images and superimposed
onto them. Please refer to Figure 5 in Appendix
B for an example of a superimposed image. Con-
sequently, the resultant dataset comprised 4,200
images, which were partitioned into a stratified
training and testing datasets, allocating 3,200 for
training and 1,000 for testing. The training dataset
was then divided into batches of 200 image each,
each one containing an equal number of images
with and without alcohol ads.

3.2 Genetic Algorithm
Let O represent the output from an MLLM when
given an instruction prompt T and an image I as
inputs, expressed as O = MLLM(T, I). Our ge-
netic algorithm aims to find an optimal instruction
prompt P with the goal of maximizing the quality
of O in comparison when T is utilized.

Similar to PromptBreeder, our algorithm mutates
prompts to optimize them. Mutations involve a mu-
tation prompt M and an LLM. A mutated prompt
P ′ is defined as P ′ = LLM(M+ P ), where + de-
notes string concatenation. The pool of mutation-
prompts is elaborated upon in section 3.4. Refer
to Appendix C for a prompt mutation example.
Mutation-prompts are also evolved via hypermu-
tations (Ouertani et al., 2019). To do so a hyper-
mutation prompt H and an LLM are used. An
evolved mutation-prompt M ′ is represented as M ′

= LLM(H + M ).
Given an initial instruction prompt consisting of

detecting alcohol ads in an image, our algorithm
creates an initial population of prompts by evolv-
ing the initial instruction prompt using a set of
random mutation prompts. The mutated prompts
are then used by the MLLM to make predictions on
a random batch from the training dataset. Once the

batch has been processed, the detection accuracy
that the MLLM got using each prompt is stored
as the fitness level of that prompt. Our algorithm
maintains a record of the instruction prompt, the
mutation prompt, and the associated fitness level
that the prompt achieved when processing a batch
of images. Each record represents an individual in
the population.

Once the population is initialized, our evolution-
ary process unfolds in generational iterations. In
each generation, each individual has a mutation
probability of µm, representing the likelihood of
undergoing a mutation that alters its instruction
prompt. After selecting which individuals will un-
dergo a mutation, our algorithm then determines
the type of mutation to be acquired from four op-
tions: Chain of Thought, Generated Knowledge,
Self-verification, or Expert Prompting. To strike
a balance between breadth and depth needed for
a robust evolutionary search (Moreno-Bote et al.,
2020), each mutation mechanism initially has an
equal base probability of being the acquired muta-
tion. However, as generations progress, mutation
types with a proven track record of producing su-
perior fitness outcomes are granted an increased
chance in addition to the base probability.

Upon calculating the mutated individual’s fitness
using a random batch from the training dataset, it
is introduced into the population. This iterative
process continues until the maximum population
cap is reached. Upon reaching the population cap,
succeeding generations employ a roulette wheel
selection method to determine individuals advanc-
ing to the subsequent generation and those being
phased out. To mitigate the risk of falling into a
local maxima, our algorithm samples the surviv-
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Figure 2: In our genetic algorithm, individuals consist of three components: an instruction prompt for guiding the
MLLM, a mutation prompt that was used to generate the instruction prompt, and a corresponding fitness determined
by the accuracy of the MLLM’s performance using that prompt. At the beginning of the algorithm, the initial
population is formed, with one individual generated for each mutation type. During each generational step, there is a
probability for each individual to undergo a mutation that modifies its instruction prompt. The specific mutation type
is chosen from a mutation pool. The individuals that experience mutation are then incorporated into the population.
When the maximum population cap is reached, a fitness-based probabilistic selection is employed to determine
which individuals progress to the next generation.

ing individuals using a probability based on their
fitness (Marsili Libelli and Alba, 2000). While
fitter individuals possess a higher likelihood of sur-
vival, underperforming individuals, with potential
for uncovering global maxima, are still given an
opportunity to contribute to forthcoming genera-
tions. After N generations, the instruction prompt
from the individual with the highest fitness is se-
lected as the optimized prompt. Figure 2 presents
an overview of our algorithm.

3.3 Natural Language Processing Models
Our genetic algorithm was tested using two types of
models, one open-source and one proprietary. The
open-source MLLM we used was LLaVA (Large
Language and Vision Assistant), its code being
licensed under the Apache License 2.0. The selec-
tion of the LLaVA model was driven by its capabil-
ity to be run locally. This attribute is particularly
crucial for applications of this nature, where the
analysis involves social media images that may
contain sensitive and personal information from
users. The ability to execute the model locally en-
hances privacy and security considerations in han-
dling such data. For the proprietary MLLM, we uti-

lized OpenAI’s model ‘gpt-4-vision-preview’. The
choice of OpenAI models was motivated by their
superior performance compared to open source al-
ternatives. The MLLMs received as input an im-
age and an instruction prompt instructing them to
identify any advertisements for alcohol within the
image.

Since the MLLMs can generate diverse textual
outputs to indicate the presence or absence of such
ads, we appended a formatting prompt to the in-
struction prompt, requesting the model to respond
with a ‘yes’ or ‘no’. Subsequently, a BERT text
classifier was utilized to categorize the MLLM’s
outputs. A label of 0 was assigned to responses
indicating no alcohol ad content, while a label of 1
was assigned to responses indicating the presence
of alcohol ads, as demonstrated in Figure 1. This
classification step ensures a standardized and con-
sistent output, which was needed to measure the
performance of the MLLM model. To train the
BERT classifier the MLLM processed one image
batch from our training dataset. Subsequently, we
leveraged OpenAI’s GPT-3.5 Turbo model for data
augmentation, generating a total of 10,000 texts,
with half affirming the presence of harmful content
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and the other half negating it. We then divided
the augmented outputs into a training and testing
dataset, with a distribution of 80% to 20% respec-
tively. We used an Adam optimizer with weight
decay, using a learning rate of 1.0 × 10−5, and
trained it for 10 epochs. The accuracy of the BERT
classifier was 0.98.

For prompt optimization, we used OpenAI’s
GPT-3.5 Turbo model. The computing infrastruc-
ture employed for running all the NLP models was
an NVIDIA A100 GPU.

3.4 Mechanisms of mutation
The pool of mutation prompt types is derived from
prompt engineering techniques employed to en-
hance prompts for LLMs. Refer to Appendix D for
the set of starting prompts for each type of muta-
tion.

3.4.1 Chain-of-Thought
Chain-of-Thought (CoT) is a prompt engineering
technique that leverages task decomposition to en-
hance a model’s performance. This approach in-
volves introducing intermediate reasoning steps, en-
abling LLMs to undertake intricate reasoning tasks.
In our implementation, we utilized the zero-shot
version of Chain-of-Thought, as described by Ko-
jima et al. (Kojima et al., 2023). Specifically, this
technique appends variations of the string "Let’s
think step by step" to the original prompt.

3.4.2 Generated knowledge prompting
Generated Knowledge prompting involves a two-
phase process designed to enhance the performance
of an LLM. The first phase is the knowledge gener-
ation stage, where a language model is tasked with
producing additional valuable information perti-
nent to a specific task. Subsequently, in the knowl-
edge integration phase, a second language model
utilizes this additional information as input to carry
out its designated task.

3.4.3 Self-critique
Self-critique is a two-step process designed to im-
prove the output of an LLM by inspecting and crit-
icizing its own initial output. The initial stage in-
volves forward reasoning, where the model utilizes
a prompt to address a specific task. In the subse-
quent backward-verification phase, a second LLM
scrutinizes the validity of the initial answer.

3.4.4 Expert prompting
Expert prompting involves explicitly indicating to
an LLM that it is proficient in a particular field. In
our scenario, where the goal is to create a versatile
genetic algorithm applicable to various tasks, we
inform the model that its expertise lies in prompt
engineering tasks. Figure 6 in Appendix C illus-
trates an example of a mutation using an expert
prompting technique.

3.4.5 Hyper-mutation
A hyper-mutation occurs when a mutation prompt
is mutated, thereby expanding the dimensions of
the search space for each prompt. To execute this
process, we select a mutation prompt from one of
our mutation prompt pools and utilize it to modify
another prompt from the same pool. For instance,
we can mutate a CoT mutation prompt by employ-
ing another CoT mutation prompt. Subsequently,
this newly generated mutation prompt is incorpo-
rated into its corresponding mutation prompt pool.

3.5 Evaluation
To determine the optimal task prompt, we executed
the genetic algorithm with a population limit set
to 20 individuals, a mutation probability µm of
50%, and spanning a total of 15 generations. Sub-
sequently, we selected the prompt with the highest
fitness level from the surviving population. The
selected prompt became the input for the MLLM,
and we assessed its performance using the images
from the testing dataset. Our evaluation metrics in-
cluded measuring and reporting both the F1-score
and the accuracy achieved by the MLLM on the
testing dataset.

4 Results

In this section, we present our findings derived
from the evaluation tasks. The subsequent section
is dedicated to a comprehensive discussion and
analysis of the implications arising from these out-
comes. The optimized prompts ultimately resulting
from the genetic algorithms were as follows:

1. GPT-4: Examine the image carefully for vi-
sual cues of alcohol, such as beer bottles, wine
glasses, or alcohol brand logos. Pay attention
to color, shape, and context that may indicate
alcohol consumption. Consider the setting of
the image - is it a bar, party, or other alcohol-
present environment? Look for behavioral
cues like people holding drinks or appearing
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Figure 3: Performance metrics: Accuracy and F1 scores
for GPT-4 and LLaVA in alcohol advertisement detec-
tion.

intoxicated, and note any subtle elements sug-
gesting alcohol reference. Answer with a yes
or a no.

2. LLaVA: Does the following image contain
an alcohol ad? Carefully analyze the image
for any alcohol brands, such as beer logos,
wine labels, or liquor bottles. Pay attention to
distinctive colors or shapes commonly found
on alcohol packaging. Make note of labels,
bottles, or glasses that suggest the presence
of alcoholic beverages. Approach the task
systematically, considering each element one
by one. Answer with a yes or a no.

Figure 3 depicts the performance metrics of the
MLLMs employing an optimized prompt gener-
ated through our genetic algorithm. After 15 gen-
erational steps, the classifier utilizing the GPT-4
vision model as the MLLM obtained an accuracy
of 0.94 and an F1-score of 0.94. The classifier em-
ploying the LLaVA model as the MLLM achieved
an accuracy of 0.922 and an F1-score of 0.9215.

In Figure 4, the distribution of mutation types
among individuals across generations is illustrated
for the genetic algorithm employing GPT-4 and
LLaVA. For the GPT-4 model, the CoT mutation
type consistently generated prompts that were se-
lected to advance to the next generation through
the roulette wheel selection method. In the case of
the genetic algorithm utilizing the LLaVA model,
CoT and Generated Knowledge were the mutation
types with the highest-frequency of occurrence that
persisted in each generation.

5 Discussion

The most effective prompts and prevalent mutation
types observed throughout multiple generations
stemmed from the CoT prompt engineering tech-
nique, with the top-performing prompts from the
final generation being a product of a CoT mutation
prompt. However, upon examining the prompts,
we noted their integration of elements from differ-
ent prompt engineering methods. Prompts created
from the generated knowledge mutation prompts
consistently include enumerations of components
for image inspection, as shown in this optimized
prompts. Therefore, our findings suggest that the
optimal prompt engineering approach involves a
blend of different techniques.

The performance of the open-source model in
detecting alcohol ads in images is comparable to
that of the proprietary model. This is a promising
result, as it enables researchers to analyze sensitive
images without the necessity of sending them to
third-party organizations. Moreover, the fact that
the model is open-source potentially reduces costs,
hence increasing accessibility to the tools in less
well-resourced settings.

Our adaptive prompt engineering technique
presents a more accessible approach for public
health researchers seeking to apply automated
methods to the identification of other types of harm-
ful online content. Notably, our method reduces
the need for users to possess a background in ma-
chine learning for training to optimize an MLLM.
Additionally, it operates without reliance on the
model’s proprietary weights or architecture, which
can be inaccessible. Furthermore, users are not
required to possess prompt engineering experience,
as state-of-the-art prompt engineering techniques
are already integrated into the algorithm. Moreover,
our algorithm allows for easy upgrades upon the
discovery of new prompt engineering techniques,
requiring only their addition to the mutation pool.

6 Conclusion

We developed a genetic algorithm to optimize the
prompt for MLLMs to detect harmful content in
images. We also extended the RICO dataset which
contains UI screenshots by superimposing alcohol
advertisements. The optimal prompt achieved an
accuracy score of 0.94 and a F1 score of 0.94.

The mutation prompts utilized in our algorithm
were derived from prompt engineering techniques
traditionally employed for LLMs. However, these
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Figure 4: Number of individuals from a given mutation type in the population at a given generational step. Left:
GPT-4 model; Right: LLaVA model.

approaches had not been previously tested within
the framework of MLLMs. By tracking the perfor-
mance of each mutation type, we identified that,
within the realm of MLLMs, the CoT and the Gen-
erated Knowledge mutations outperformed the Ex-
pert and self-critique approaches.

Although our algorithm was initially designed
and tested for detecting alcohol advertisements,
it can be extended to identify other harmful sub-
stances such as tobacco and drugs when provided
with the appropriate data sets. We envision that by
adapting our algorithm online platforms can detect
and remove harmful content, thereby fostering a
safer online environment.

7 Limitations

Our main objective in implementing the genetic
algorithm was to identify prompts that optimized
the MLLM for detecting harmful content in im-
ages. However, the optimization strategy does not
explicitly address potential biases introduced by
the chosen prompts. For example, if the training
examples lead the model to establish an inaccurate
association between an ethnic group and alcohol
consumption, it could result in the creation of bi-
ased prompts. Generative models may exhibit bi-
ases in their outputs, requiring a comprehensive ex-
amination to mitigate the inadvertent propagation
of such biases (Hemmatian and Varshney, 2022;
Abid et al., 2021; Cabrera Lozoya et al., 2023).

Due to resource constraints associated with us-
ing a paid MLLM, we faced limitations in con-
ducting additional experiments to evaluate the ro-

bustness of our models. Various hyperparameters
could have been explored, such as adjusting the
mutation rate, maximum population size, or the
number of generations employed to discover the
optimal prompt. Additionally, both GPT-3.5 Turbo
and GPT-4 Vision possess the capability to handle
multiple languages. However, our collection of
ads exclusively consisted of English ads. Further-
more, due to hardware constraints, we opted for
the 7 billion LLaVA model, despite the existence
of larger models that outperform the one chosen.
Consequently, this decision limits our ability to
demonstrate the potential of an open-source model
for detecting harmful content.

While the detection of alcohol advertisements
serves to protect vulnerable populations, notably
teenagers, from the impact of marketing materials
on their attitudes and behaviors related to alcohol
consumption, the utilization of such technologies
carries inherent risks of improper use. There is
a potential for entities to exploit the technology
beyond its intended public health purpose, conduct-
ing surveillance or accessing sensitive information,
thus posing a threat to privacy and civil liberties.
Hence, the application of our image detector re-
quires a balanced ethical framework. Achieving a
careful balance is crucial, seeking to maximize the
tool’s positive contributions to public health while
actively addressing potential concerns through ro-
bust privacy safeguards, bias mitigation, and re-
sponsible deployment practices.
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The following is the list of terms used to search
for alcohol advertisements: Alcohol ads, Beer ads,
Whiskey ads, Tequila ads, Lager ads, Ale ads, Red
wine ads, White wine ads, Vodka ads, Stout ads,
Scotch ads, Brandy ads, Champagne ads, Cider
ads, Sake ads, Mezcal ads, Soju ads, Rosé ads,
Rum ads, Gin ads, Cognac ads, Bailey irish cream
ads, Grand Marnier ads, Amaretto ads, Khalúa ads,
Triple Seca ads, Schnapps ads, Raki ads, Baijiu ads,
Flavored Vodka ads, Extra añejo tequila ads, Blano
tequila ads, Reposado tequila ads, Añejo tequila
ads, Wheat vodka ads, Grappa ads, Pilsner ads, and
Pisco ads.

B Image example

Figure 5 illustrates an example of an original UI
screenshot from the RICO dataset, and a version
with an alcohol ad superimposed.

C Mutation example

Figure 6 illustrates an example of a mutation step.
In this scenario a mutated prompt is created by
using a mutation prompt from the Expert pool to
mutate an instruction prompt.

D Prompts

Table 1. presents the initial prompts for each type
of mutation.
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Figure 5: Examples of RICO UI screenshots and their modified version with an alcohol ad.

Figure 6: Example of a mutation step.
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Mutation type Prompts
Chain of thought Append to the following instruction the following text, "Let’s think step by step."

Decompose and rewrite the instruction as a set of logical steps, rewrite it as a
sentence.
Rewrite the following instruction by adding intermediate steps to enhance its perfor-
mance.

Expert Act as an expert in prompt engineering with 10 years of experience designing
and debugging prompts. Identify the strengths and weaknesses of the following
instruction, think about what changes you would make, and suggest an improved
version.
Imagine you are an expert in generating instructions for large multimodal models.
You are designing an instruction to achieve the best possible result. A colleague
shares their best instruction with you; identify why it is good and generate an even
better one.
Simulate being an expert program in improving instructions, detecting their strengths,
weaknesses, and consistently providing better results. Take this prompt and make it
better.

Generated
Knowledge

Enhance the effectiveness of the following prompt by generating and appending
additional content. Focus on providing specific examples, detailed criteria, or relevant
guidelines to elevate its performance.
Improve the prompt’s performance through the strategic generation and integration
of supplementary content, fostering heightened efficacy within the experimental
domain.
Optimize the prompt’s performance via the meticulous generation and incorporation
of additional content.

Critique Critique the following instruction and propose enhancements to address any identified
shortcomings. Please provide only the refined version in your response.
Review the given instruction, identify any areas for improvement, and suggest
changes to enhance its quality. Please provide a refined version that incorporate these
improvements.
Examine the given instruction, analyze it for potential shortcomings, and suggest
improvements to address any identified issues. Submit only the refined version in
your response, integrating enhancements to elevate its overall quality.

Table 1: Starting prompts for each mutation type.
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