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Abstract

Radiology Report Generation (RRG) seeks to
leverage deep learning techniques to automate
the reporting process of radiologists. Current
methods are typically modelling RRG as an
image-to-text generation task that takes X-ray
images as input and generates textual reports
describing the corresponding clinical observa-
tions. However, the wording of the same clini-
cal observation could have been influenced by
the expression preference of radiologists. Nev-
ertheless, such variability can be mitigated by
normalizing textual reports into structured rep-
resentations such as a graph structure. In this
study, we attempt a novel paradigm for incorpo-
rating graph structural data into the RRG model.
Our approach involves predicting graph labels
based on visual features and subsequently initi-
ating the decoding process through a template
injection conditioned on the predicted labels.
We trained and evaluated our model on the
BioNLP 2024 Shared Task on Large-Scale Ra-
diology Report Generation and submitted our
results to the ViLMedic RRG leaderboard. Al-
though our model showed a moderate ranking
on the leaderboard, the results provide prelim-
inary evidence for the feasibility of this new
paradigm, warranting further exploration and
refinement.

1 Introduction

Radiology Report Generation (RRG) seeks to lib-
erate radiologists from the repetitive reporting pro-
cess, allowing them to focus on revising the reports
and thereby enhancing the accuracy and efficiency
of clinical communication. As a multi-modality
task, RRG models usually employ the encoder-
decoder architecture, where the encoder is a vision
model that is responsible for extracting visual fea-
tures from radiology images while the decoder is a
language model that is responsible for converting
visual features into narrative reports. Compared
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with the general image captioning task, the clinical
observations in radiology images are more subtle.
Moreover, the wording of the same clinical observa-
tion could have been influenced by the expression
preference of radiologists. This raises a challenge
to the model’s learning ability in terms of extracting
fine-grained visual features and generate accurate
clinical narratives.

Our recent review of this field proposed that
structured reports can alleviate the inherent diver-
sity of natural language, thus contributing to more
accurate results in the model training and evalu-
ation (Liao et al., 2023). Benefiting from the ad-
vent of RadGraph (Jain et al., 2021), a graph-based
representation of clinically significant fine-grained
information extracted from reports, recent research
has commenced utilising such structured represen-
tation of reports to enhance the RRG models. Rel-
evant studies can be broadly classified into two
paradigms. One paradigm fuses the graph features
with visual features, letting the decoder learn how
to generate the next word from a given input and
the fused features (Wang et al., 2022; Yan et al.,
2023; Yang et al., 2022; Li et al., 2023). Another
paradigm focuses on graph generation based on the
visual features and decouples the visual features
from the decoding stage, allowing the language
model to learn solely how to generate text based
on the predicted graph (Nooralahzadeh et al., 2021;
Xiong et al., 2024).

This has sparked our interest, as it raises a
research question of whether there exists a new
paradigm that can explicitly leverage graph struc-
tures to improve the quality of generative language
models, while also enabling visual features to sup-
plement the predicted graph with missing infor-
mation. Based on this idea, we attempt a novel
approach, whereby the predicted graphs are fed
into a template prompt, replacing the traditional
special token as the initial input to the decoder,
aiming to enable a clearer query to the associated
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image features during the generation process.

2 Related Work

In early research on RRG, many studies introduced
disease labels to enhance their models (Jing et al.,
2018; Yin et al., 2019; Yuan et al., 2019; Harzig
et al., 2019; Wang et al., 2018). As research pro-
gressed, some studies began to explore the use of
graph to replace disease labels as it can represent
more fine-grained information (Zhang et al., 2020;
Li et al., 2019). The graph is considered as a nor-
malized representation of a report in terms of the
the key information entities and their relationships
(Jain et al., 2021).

To utilise graph data, Nooralahzadeh et al. (2021)
and Yan et al. (2023) proposed modelling RRG as a
pipeline of image-to-graph and graph-to-text tasks.
Xiong et al. (2024) followed the same paradigm
although their study contained only the first part.
In contrast, Wang et al. (2022) interpreted the RRG
as an image-to-text task where a graph prediction
module was appended to the visual encoder. Ad-
ditionally, the graph features were combined with
visual features and passed to the text decoder, al-
lowing the text decoder to learn to attend to differ-
ent features. Yang et al. (2022) and Li et al. (2023)
employed a similar feature fusion approach, yet
their graph was not directly predicted from visual
features, but rather retrieved from the paired report
of a similar image identified by comparing their
visual features.

3 Method

3.1 Vision Encoder Decoder Model
Our model comprises a pre-trained Transformer-
based vision model as the encoder and a pre-trained
language model as the decoder. A cross-attention
layer and a language model head are appended to
the decoder to support generation.

Let I denote a radiology image and T denote
the corresponding report text. A cross-attention
feature ΦT,I is computed by Attention(Q,K,V),
where the query Q represents the encoded text fea-
tures ΦT , and the key K and value V represent the
encoded visual features ΦI . During the training
stage, ΦT,I is passed to a language model head to
generate a complete text sequence T̂ at once. The
model is updated by the cross-entropy loss between
the probability of the predicted tokens in T̂ and the
target tokens in T . During the inference stage, the
model takes an image as the encoder input and a

special token as the decoder input and generates
the next token through an auto-regressive decoding
process.

In this architecture, the prevailing methods that
combine the graph or label features with visual
features can be interpreted as providing more in-
formation to K and V to be queried. However, we
assume that the visual features have sufficient infor-
mation, thus, we aim to enhance Q to better utilise
the information from the visual features.

3.2 Graph Label Selection
We first customized a structured reporting tool
based on RadGraph to preprocess the raw text.
RadGraph is an information extraction tool that
can convert narrative radiology reports into graphs.
In RadGraph, each node is an entity that cor-
responds to a continuous span of text. Each
edge is a uni-directional relation that connects
two entities. Entities are assorted into four types:
Anatomy, Observation-Present/Absent/Uncertain.
Relations are assorted into three types: Suggestive-
Of, Located-At, and Modify. We refer the reader
to the original paper for details (Jain et al., 2021).
We refined RadGraph by combining the Observa-
tion and Anatomy nodes that are linked with a
Located-At edge such as "lung hyperinflate", while
the other nodes were omitted. Label’s text con-
tent was lemmatized. We selected labels that have
appeared in more than 5,000 reports, resulting in
79, 22 and 10 label classes representing present,
absent, and uncertain, respectively. For any other
label, we assigned a dummy label to represent the
corresponding category. Therefore, each report can
be enhanced by 114 informative labels.

3.3 Multi-label Classification
Let the Lctg denote the labels of a specific cat-
egory ctg = {present, absent, uncertain} ex-
tracted from a report T . We first introduced an
auxiliary task of multi-label classification (MLC)
between the encoding-decoding process:

pctg = σ(FFNN(θctg;ΦI)), (1)

where FFNN represents a feed-forward neural net-
work classifier with learning parameters θ that pre-
dicts the probability distribution pctg of labels in
a specific category ctg, taking the average pooled
visual features ΦI as input to get optimised θctg.
The classification loss is computed by the cross-
entropy loss between the predicted probabilities
and the target labels for all categories.
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By incorporating the MLC task into the model,
the overall objective is thus to optimize the text gen-
eration loss and label classification loss, denoted
as Lall = λTLT + λMLCLMLC , where λT and
λMLC are pre-defined weights that balance two
losses.

3.4 Conditionally Initiated Decoding

To enhance the query Q in the cross-attention layer,
we inject the labels directly into the decoder as its
initial input. Specifically, the labels are rewritten as
a label text sequence via a template: "Observation
present: []; absent: []; uncertain: []. Describe them
in detail: ". Each label string is filled into one of the
brackets according to its category while the dummy
label is filled as "others".

During training, we employ a teacher-forcing
approach that uses the target labels as the source
labels to fill the template. Therefore, the decoder
input sequence is formed as "<BOS>label text se-
quence<EOS><EOS>report text sequence<EOS>".
During the inference stage, we combine the pre-
dicted labels from the three classifiers and select no
more than top-k labels with probabilities exceeding
the threshold as the source label for the template.
Therefore, the initial decoder input is transformed
into "<BOS>label text sequence<EOS><EOS>"
and the next token is generated through an auto-
regressive decoding process. A workflow of our
model is illustrated in Figue 1.

3.5 Batch Inference

When performing batch inference on the data, the
inconsistency in the number and length of the ac-
tivated label poses an alignment issue when con-
structing the input tensor. To address this, we em-
ploy left padding during the inference stage to en-
sure the generated tokens and the initial decoder
input are semantically continuous. Furthermore,
the padding tokens are also marked out from the
decoder attention mask to prevent them from influ-
encing other tokens.

4 Experiments

4.1 Experimental Settings

Our experiments are conducted on the BioNLP
2024 Shared Task on Large-Scale Radiology Re-
port Generation (Xu et al., 2024), which proposes
the first standard to the community regarding the
use of the dataset and evaluation metrics.

4.1.1 Datasets

This shared task provides the first large-scale col-
lection of RRG datasets based on MIMIC-CXR
(Johnson et al., 2019), CheXpert (Chambon et al.,
2024), OpenI (Demner-Fushman et al., 2015), Pad-
Chest (Bustos et al., 2020) and CANDID-PTX
(Vayá et al., 2020). Each data item represents a
radiology examination consisting of at least one
X-ray image and two pieces of text correspond-
ing to the findings and impression sections of the
radiology report. Any non-English reports were
translated into English via GPT-4. The provided
dataset has been split into training, validation, test-
ing subsets. Testing data were further split into
public and hidden subsets.

4.1.2 Metrics

The models are automatically evaluated by the
ViLMedic metric package (Delbrouck et al.,
2022b) using the following metrics: Bertscore
(Zhang et al., 2019), Bilingual Evaluation Under-
study: 4-gram (BLUE-4) (Papineni et al., 2002),
Recall-Oriented Understudy for Gisting Evalua-
tion: Longest Common Subsequence (ROUGE-
L) (Lin, 2004), F1-RadGraph: partial (Delbrouck
et al., 2022a) and all-micro-F1-CheXbert (Smit
et al., 2020).

4.1.3 Implementation Details

Our model uses Swinv2-base (Liu et al., 2022) as
the visual encoder and Roberta-base (Liu et al.,
2019) as the text decoder. The encoder takes only
the first image as input for each data. The decoder
input sequence accepts a maximum of 512 tokens,
where any surplus tokens are truncated. The de-
coder input sequences are padded to the longest
sequence in each batch. We trained the model on
the finding and impression respectively. In all ex-
periments, the model was trained on NVIDIA RTX
4090 24G for 30 epochs using a learning rate of
1e-4 and a batch size of 12. A weight decay of 0.01
is set to the encoder and decoder. We updated the
model with the AdamW optimizer using a linear
scheduler with a warmup ratio of 0.1, and a gra-
dient clipping set to 1. λT and λMLC are set to
1 and 5, respectively. During inference, we adopt
the beam search strategy and set the beam size to
3 and the maximum generation length to 128. For
the conditionally initiated decoding, we selected no
more than 10 labels with probabilities exceeding
0.5.
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Figure 1: The workflow of our model during training (left) and inference (right). The blue text represents the
conditionally initiated decoder input, which substitutes the original special token that functioned as the decoder’s
first input.

4.2 Results and Discussion

The performance of our model in generating the
findings and impression sections of a report are il-
lustrated in Table 1. The performance gap between
the findings and impression sections is mainly due
to the early termination of training to meet the sys-
tem submission deadline. Although our model only
exhibits a medium result on the ViLMedic RRG
leaderboard (Delbrouck et al., 2022b), we assume
this prototype model is feasible and has the poten-
tial to be improved.

Table 1: Model performance on the public and hidden
test subsets.

Data subsets BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
Public test-set
Findings 8.29 24.38 52.28 51.13 22.26
Impression 5.25 18.71 41.72 42.86 15.13

Hidden test-set
Findings 7.46 23.3 50.89 50.47 21.45
Impression 7.13 20.41 43.67 39.64 15.19

Firstly, we utilised only the first image from each
data item as the encoder input. Given that a radi-
ologist may refer to multiple images when com-
posing a report, using the image features extracted
from a single image may result in information loss
when multiple images are available. However, the
number of available images for each data item is
uncertain, raising a challenge to the visual model
in terms of its adaption.

Secondly, properly utilising the graph data re-
mains unexplored yet has direct impacts on various
aspects of the model. For example, the selection
of graph labels can directly affect the learning dif-
ficulty of multi-label classification (MLC). If the
number of labels is too small, the amount of in-

formation provided to the Conditionally Initiated
Decoding (CID) may be limited even with good
MLC performance. Conversely, if the number of
labels is too large, the MLC performance may be
significantly affected, making it impossible to pro-
vide accurate information to the CID during infer-
ence. Currently, our MLC on the finding section
achieved precision/recall of 76%/40%, 63%/39%
and 31%/15% on the present, absent, and uncertain
labels, respectively. The trade-off between these
factors requires further study. Besides, the impact
of the label text template on the decoder remains
unclear.

Thirdly, the current selection of model hyperpa-
rameters and the base pre-trained models for the
encoder and decoder was based on experience. Due
to time constraints, we did not systematically ex-
plore other combinations. Comprehensive experi-
ments with the hyperparameters and the pre-trained
models are also required in future work.

5 Conclusion

In this study, we propose a novel approach for uti-
lizing graph structural data to support RRG. This
approach involves predicting graph labels based on
visual features and leveraging the predicted labels
to initialize the decoder input through a template
injection. We evaluated our model following the
BioNLP 2024 Shared Task 1: Radiology Report
Generation, where the results have been submitted
to the ViLMedic RRG leaderboard. We discuss the
limitations of our preliminary RRG model and the
initial experiments and outline several directions
for improving our model. Our model and codes are
available on GitHub (Liao, 2024).
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6 Limitations

Firstly, our model only accepts a single radiology
image per data item as input, whereas the data
item could contain multiple images, resulting in
the loss of significant input information. Secondly,
it remains uncertain to what extent the quality of
the generated text is influenced by the decoder in-
put initialized with graph-structured data. Thirdly,
the selection of current hyperparameters and pre-
trained models is based on intuition rather than
appropriate experimentation. More details have
been discussed in Section 4.2.

Finally, our model requires an additional GPU-
CPU-GPU switch during inference, leading to in-
creased time costs. Specifically, the Conditionally
Initiated Decoding process requires switching to
the CPU to dynamically construct the decoder in-
put with a tokenizer for each batch. However, we
suppose that this issue can be addressed by pre-
tokenizing and caching the template text and all
graph labels. The improvement the model effi-
ciency will be conducted in our future work.
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