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Abstract

This paper presents the approach of the iHealth-
Chile-1 team for the shared task of Large-Scale
Radiology Report Generation at the BioNLP
workshop, inspired by progress in large mul-
timodal models for processing images and
text. In this work, we leverage LLaVA, a
Visual-Language Model (VLM), composed of a
vision-encoder, a vision-language connector or
adapter, and a large language model able to pro-
cess text and visual embeddings. We achieve
our best result by enriching the input prompt of
LLaVA with the text output of a simpler report
generation model. With this enriched-prompt
technique, we improve our results in 4 of 5
metrics (BLEU-4, Rouge-L, BertScore, and
F1-RadGraph,), only doing in-context learning.
Moreover, we provide details about different
architecture settings, fine-tuning strategies, and
dataset configurations. Models parameters can
be found in HuggingFace 1.

1 Introduction

The task of radiology report generation (RRG)
from medical imaging through deep neural net-
works is an active area of research (Monshi et al.,
2020; Messina et al., 2022). For one thing, ad-
dressing and solving this task can help radiologists
in identifying anomalies from one or more input
images, as well as save them time on administra-
tive chores like typing text reports. Thus, doctors
can spend more time with patients rather than clini-
cal software (Topol, 2019). There have been sev-
eral methods introduced in recent years to address
this task but only recently the progress in open-
source multimodal generative systems has opened
the room for improving performance by integrating
different modalities (text and images) in the same
model. In this article, we describe our work lever-
aging the multimodal model LLaVA (Liu et al.,
2023) to address this task.

1https://huggingface.co/dcampanini

There are several options to leverage LlaVA for
this challenge, such as utilizing the original ver-
sion LLaVA-1.0 (Liu et al., 2023), the clinically
finetuned version LLaVA-Med (Li et al., 2023), as
well as the newest version LLaVA-1.5 (Liu et al.,
2024). Due to hardware limitations, in this chal-
lenge, we used the language model component with
7 billion parameters (LLaMA 1.0 and Vicuna) and
we tested several configurations focusing on the
findings generation task.

In this document, we describe details of sev-
eral configurations tested, including different vi-
sion encoders (CLIP and BiomedCLIP), VL pro-
jector (matrix and MLP) and language model for
text decoding (LLaMA1.0 and Vicuna-7b). Among
our findings, we highlight that integrating the out-
put of another method as input context for LLaVA
resulted in our best version for the challenge.

2 Task Description

2.1 Datasets

The data provided by the challenge (Xu et al.,
2024) consists of 5 datasets PadChest (Bustos
et al., 2020), BIMCV-COVID19 (Vayá et al., 2020),
CheXpert (Chambon et al., 2024), OpenI, and
MIMIC-CXR (Johnson et al., 2019). All of them
have a medical report with at least the finding sec-
tion, in total, we have 344, 394 training samples.

In the present work, we focus only on the finding
generation, in each training step we use the findings
section, of the official train datasets. We do not use
any extra dataset or data augmentation techniques.

The results reported in this work are measured
in the challenge hidden test set which has 1, 063
samples for the generation of the finding section.

3 Methodology

3.1 Model Architecture

The architecture used in this work is known
as Large Language and Vision Assistant for

https://huggingface.co/dcampanini
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BioMedicine (LLaVA-Med Li et al., 2023), we fine-
tuned this system following different approaches
described in the section 3.2.

The LLaVA-Med system has 3 main blocks (Fig-
ure 1), the first is a vision encoder, then a vision-
language connector to project the image features
into the word embedding space, and finally, a Large
Language Model (LLM) that processes visual and
language tokens to generate a final answer.

Vision
Encoder

Write the finding
section of a chest x-
ray radiology report

Tokenizer
and

Embedding

Vision
Language
Projector

Large Language Model

PA and lateral views of the chest are
obtained. There is a mild pectus deformity

noted on the lateral view. The lungs appear
well expanded without focal consolidation,

effusion, or pneumothorax.

Figure 1: LLaVA-Med architecture used in this work.
The Large Language Model (LLM) processes the fea-
tures extracted from the image and the prompt.

There are different options for each block, in
our case, we use 3 different vision encoders all of
them based on CLIP (Radford et al., 2021), they
are clip-vit-L-patch14, clip-vit-large-patch14-336,
and BiomedCLIP (Zhang et al., 2023). For the con-
nector, we choose a projection matrix and a 2 layer
MLP. Finally, for the LLM we select LLaMA1.0-
7B, and Vicuna-7b-v1.5. Table 1 summarizes the 3
model versions used during the challenge.

3.2 Training Strategy

We train our models in 2 stages, similar to the
strategy proposed in Liu et al., 2023, but adapted
for report generation, and not for instruction tuning.
The stages are detailed as follows:

• Stage 1 or alignment: the image encoder and
the LLM are frozen, and the MLP or projec-
tion matrix are trained.

• Stage 2 or fine-tuning: the MLP or projec-
tion matrix and the LLM are trained.

For both stages, we train with samples formed by
one image and the respective finding section. Our
models process one image at a time. Therefore,
we manipulate the training dataset when more than
one image is associated with a medical report.

For the dataset MIMIC-CXR, for each medical
report we select the Anterior Posterior (AP) im-
age or the Posterior Anterior (PA) image, and the
finding section.

We use the image’s name to select the frontal
images for CheXpert, which indicates the view
presented in the X-ray exam (frontal or lateral).

For the last 3 datasets PadChest, BIMCV-
COVID19, and OpenI, we take the first image in
the array of images associated with each medical
report, which was, in general, a frontal view.

For the Model-1.0 (Table 1) we start the fine-
tuning from a LLaVA-Med checkpoint shared in
the official GitHub repository2, and we update the
linear matrix and the LLM using different combina-
tions of the official train datasets. Stage 1 is omitted
for this model since the based model was trained in
biomedical data extracted from PMC-15M (Zhang
et al., 2023) an image-text dataset extracted from
scientific publications.

For Model-1.1 and Model-1.2 (Table 1) we train
following the 2 stages strategy, for the stage 1 we
use the complete challenge train dataset, consider-
ing only one image per finding section, we employ
more training samples in this stage since is more
general than stage 2, so more broad data can help
the final model performance.

On the other hand, for stage 2, we only use
MIMIC-CXR. This decision is discussed in the
section 4. For these 2 models, we have to execute
stage 1, since we don’t have a projector specialized
in medicine to connect the vision-encoder with the
LLM embedding space.

For stage 1 we always use a learning rate of 1×
10−3 and a cosine learning rate with a warmup ratio
of 3%. Similarly, for stage 2 we employ the same
scheduling and warmup ratio but with a learning
rate of 1 × 10−4. Every stage is performed in a
GPU NVIDIA RTX A6000 with 48 GB of memory.

2https://github.com/microsoft/LLaVA-Med

https://github.com/microsoft/LLaVA-Med
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Model version Vision-encoder VL Projector LLM
Model-1.0 clip-vit-L-patch14 Matrix LLaMA1.0-7b
Model-1.1 clip-vit-large-patch14-336 MLP Vicuna-7b-v1.5
Model-1.2 BiomedCLIP MLP Vicuna-7b-v1.5

Table 1: Configuration of the 3 model architectures used during the challenge.

3.3 Text Prompt

The prompt given to the LLMs performs an impor-
tant role in getting a solid model performance. In
our work, the LLM can receive as input the image
feature and the prompt.

For stage 1, we follow the strategy mentioned in
Chaves et al., 2024 and we use only the image to
train the projector, no prompt or extra information
is provided to the model, in this way, we force the
LLM to focus on the images.

On the other hand, for stage 2, the prompt is
formed by the model context and the instruction,
with the first we can control for example the model
personality, asking to be polite, and in our case,
we also define that the LLM does not have to pro-
vide dates, hours or text with enumeration in the
report. The final instruction to the LLM is: Write
the finding section of a chest x-ray radiology re-
port. The complete prompt (context + instruction)
is described in the following paragraph:

• Context: You are LLaVA-Med, a large lan-
guage and vision assistant. Write in the style
of a radiologist, write one fluent text without
enumeration, dates, or hours of the day, be
concise, and don’t provide explanations.

• Instruction: Write the finding section of a
chest x-ray radiology report.

The previously described prompt is used in stage
2 and inference.

Additionally, we have considered making an-
other test, improving the prompt using as extra
information other findings sections, generated by a
multilabel classifier and a group of templates (Pino
et al., 2021). This different system consists of a
DenseNet-121 CNN trained to classify 13 patholo-
gies for chest X-ray images, and then using the out-
put labels, we generate the finding section based on
a group of template sentences. The LLM receives
as input the image features and the new prompt
with extra information, which we call enriched-
prompt. The new prompt instruction looks as fol-
lows:

• Instruction: Write the finding section of a
chest x-ray radiology report using the image,
and the following information: the lungs are
clear. heart size is normal the cardiomedi-
astinal silhouette is normal. there is noted left
sided or right sided , small, moderate, or large
pneumothorax in the lung no pleural effusions.
there is no evidence of fibrosis no displaced
fracture is seen there is a noted right sided or
left sided picc or tube

4 Experiments and Results

In Table 2 we report the results of the 3 model ver-
sions trained with different dataset configurations
and performing or not stage 1. All results are only
for the finding generation task.

The metrics outline in Table 2 are BLEU4 (B4
Papineni et al., 2002), ROUGEL (RL Lin, 2004),
Bertscore (BS Zhang et al., 2019), F1-cheXbert
(F1-cXb Smit et al., 2020), and F1-RadGraph (F1-
RG Delbrouck et al., 2022a), the last column rep-
resents the average between these metrics. All the
values are calculated using the official leaderboard
web page with the framework VilMedic (Delbrouck
et al., 2022b).

The first result in Table 2 is for the Model-1.0
without any posterior finituning or training, which
is the original LLaVa-Med shared in the official
repository, it has a poor performance generating
finding. It is by far our worst model, so it should be
fine-tuned to get good results even in tasks inside
the biomedical domain.

From our experiments with Model-1.0, we see
that considering only MIMIC-CXR we have good
enough results comparable to using MIMIC-CXR
+ CheXpert, and consistently outperforming the
same Model-1.0 trained with the complete chal-
lenge datasets (Table 2). For this reason, the train-
ing of the other models is performed only employ-
ing MIMIC-CXR for stage 2.

When we make use of BiomedClip (Zhang et al.,
2023) we see a clear improvement in 6.31 per-
centual points for F1-cheXbert in comparison with
the second-best model in this metrics (29.37 vs
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Stage1 Ep Stage2 Ep B4 RL BS F1-cXb F1-RG Avg
Model-1.0 Clip LLaMA1.0-7B
None 0 None 0 0.95 11.69 27.79 15.46 4.15 12.01
None 0 MIMIC-CXR 1 4.67 19.58 48.74 18.00 16.29 21.46
None 0 MIMIC-CXR 3 5.05 19.13 47.51 23.06 15.77 22.10
None 0 MIMIC-CXR + CheXpert 1 4.78 19.19 47.57 20.25 15.47 21.45
None 0 All 1 3.24 15.45 42.12 18.11 11.79 18.14
Model-1.1 Clip-336 Vicuna1.5-7B
All 1 MIMIC-CXR 1 5.16 19.68 47.92 11.61 16.78 20.23
All 1 MIMIC-CXR 3 3.92 19.75 48.06 5.92 16.06 18.74
Model-1.1 Clip-336 Vicuna1.5-7B Enriched-prompt
All 1 MIMIC-CXR 1 6.46 20.51 49.23 9.35 18.59 20.83
Model-1.2 BiomedClip Vicuna1.5-7B
All 1 MIMIC-CXR 1 3.48 16.31 35.49 29.37 15.51 20.03

Table 2: Results on the hidden test set, for all 3 model versions without applying enriched-prompt, and the
Model-1.1 improved through the enriched-prompt technique. All numbers are calculated using Vilmedic on the
official challenge web page.

Model B4 RL BS F1-cXb F1-RG Avg
Model-1.1 Clip-336 Vicuna1.5-7B 5.16 19.68 47.92 11.61 16.78 20.23
DenseNet-121 classifier + templates 4.81 15.96 44.03 33.69 18.41 23.38
Model-1.1 Clip-336 Vicuna1.5-7B +
enriched prompt from DenseNet-121 classifier

6.46 20.51 49.23 9.35 18.59 20.83

Table 3: Efects of the enrich-prompt technique. The last row represents the metrics of the resulting system, which
is the Model-1.1 but enhanced with the enriched prompt coming from the DenseNet-121+templates system.

Model B4 RL BS F1-cXb F1-RG Avg
Model-1.1 Clip-336 Vicuna1.5-7B 5.16 19.68 47.92 11.61 16.78 20.23
DenseNet-121 classifier + templates v1 4.81 15.96 44.03 33.69 18.41 23.38
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v1 6.46 20.51 49.23 9.35 18.59 20.83
DenseNet-121 classifier + templates v2 4.74 16.17 47.28 27.44 13.08 21.74
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v2 5.94 19.40 47.20 7.15 16.87 19.31
DenseNet-121 classifier + templates v3 5.50 17.11 48.97 26.26 14.47 22.46
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v3 5.10 19.98 48.94 8.11 17.47 19.92
DenseNet-121 classifier + templates v4 4.18 17.05 42.91 27.20 19.42 22.15
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v4 5.21 20.80 50.14 5.90 18.51 20.11

Table 4: Impact of the enriched prompt technique using different template models, and the same multimodal model
highlighted in gray. The resulting model’s metrics are pointed out in yellow.

23.06). This suggests that the feature extracted
from the image with this vision encoder allows to
the model classify properly more pathologies than
the previous vision encoders, considering that F1-
cheXbert is a metric focus in the classification of
14 labels.

We apply the enriched-prompt technique to the
model with the best F1-RadGraph, which is the
Model-1.1 Clip-336 Vicuna1.5-7B, the result of em-
ploying this procedure is an improvement in BLEU-

4, Rouge-L, Bert-Score, and F1-RadGraph, but a
big fall in F1-cheXbert (Table 2, 3), this indicates
that the model is not good at classifying the 14
classes considered by the metric.

Table 3 shows the change in the metrics for 2
base models, combined across the prompt. When
we apply in-context learning to the Model-1.1 Clip-
336 Vicuna1.5-7B adding to the prompt the reports
generated by the DenseNet-121+templates, the re-
sulting model overcomes the metrics of both previ-
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ous systems, except for F1-cheXpert.
Another consequence of implementing an en-

riched prompt is the generation of shorter findings
in comparison with those generated by the other
model versions and by the classifier plus template
sentences.

In Table 4 we show more evidence of the en-
riched prompt technique. The most consistent ef-
fect over the two base models is observed in the
F1-RadGraph metric, improving up to 1.81 percent-
age points (pp) in the base multimodal model, and
up to 3.79 pp for the template models. For Rouge-
L, and Bert-Score we can also see an enhancement
in the based models, the most outstanding result
is the increase of 7.23 pp in Bert-Score for the
DenseNet-121 classifier + templates v4. The dif-
ferent versions of the template models consider
distinct types of templates and classifier hyperpa-
rameters, more detail about it can be found in the
paper of iHealth-Chile-3&2. On the other hand,
the effect of the enriched prompt technique in F1-
cheXbert is always a big fall.

5 Conclusion

In this work, we performed an analysis of different
model architectures based on LLaVA-Med, we con-
clude that using the best possible vision-encoder,
and LLM we can improve some specific aspects of
the system, such as the NLP overlapping (BLEU-4
and Rouge-L) or the more classification related met-
rics (F1-cheXbert), nevertheless to see more con-
sistent results we suggest that more quality data is
needed, particularly for alignment (stage 1). More-
over, since the promising results in F1-cheXbert
obtained with BiomedCLIP is convenient to de-
velop a vision-encoder custom to x-ray images.

Finally, the enriched-prompt techniques show
auspicious results. It can work as a guide for the
LLM, it shows good metrics when we calculate
BLEU-4, Rouge-L, BertScore, and F1-RadGraph,
but it should be complemented with an accurate
classifier system to improve the F1-cheXbert.

Limitations

There are some limitations in the system that we
propose. For instance, our model is unable to use
multiple images, however, the medical reports for
chest x-rays are usually formed by two or three
views of the patient chest, so we are missing poten-
tially important information.

The quality of the medical report generated with

the enriched prompt technique should be analyzed
in more depth, especially because of the large drop
in the F1-cheXbert metric.

Another limitation is that our approach is com-
putationally expensive, which limits the quantity
of experiments that we can perform. Finally, our
reports are not hallucinations free, for example in
some cases, the model generates findings referring
to another report for the same patient, but this is a
problem because the model does not know previous
patient exams.
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