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Abstract
This paper presents the approaches of the
iHealth-Chile-3 and iHealth-Chile-2 teams for
the shared task of Large-Scale Radiology Re-
port Generation at the BioNLP workshop. In-
spired by prior work on template-based report
generation, both teams focused on exploring
various template-based strategies, using pre-
dictions from multi-label image classifiers as
input. Our best approach achieved a modest
F1-RadGraph score of 19.42 on the findings
hidden test set, ranking 7th on the leaderboard.
Notably, we consistently observed a discrep-
ancy between our classification metrics and
the F1-CheXbert metric reported on the leader-
board, which always showed lower scores. This
suggests that the F1-CheXbert metric may be
missing some of the labels mentioned by the
templates.

1 Introduction

The generation of radiology reports (RRG) from
medical imaging using deep learning represents a
significant area of ongoing research (Messina et al.,
2022). Successfully implementing this task can
help reduce the workload and time spent on ad-
ministrative duties, such as composing text reports.
This efficiency enables physicians to focus more on
patient interaction (Topol, 2019) and in identifying
anomalies from multiple input images.

There is a pressing need for eXplainable AI
(XAI) (Gunning et al., 2019) in critical domains
like medicine. In the context of report genera-
tion, the explainability aspect remains understudied
(Messina et al., 2022). Some models address this
issue by generating saliency maps that highlight
important pixels, using techniques such as Grad-
CAM (Selvaraju et al., 2019) for CNN networks
or visualizing attention maps for Transformer net-
works. However, some authors argue against rely-
ing solely on saliency maps as explanations. For
instance, Rudin (2019) advocates for using inher-
ently interpretable models that are constrained by

domain knowledge, making them transparent and
understandable for humans.

To enhance transparency and understandability
of our implementation in the Shared task (Xu et al.,
2024), we use a simple template-based report gen-
eration model. Specifically, we reimplement and
modify the template-based strategy proposed by
Pino et al. (2021). The team iHealth-Chile-3 fo-
cused on meticulously reproducing Pino et al.’s
approach, employing DenseNet-121 and a conven-
tional multilabel classification layer for 13 CheX-
pert classes (excluding "No Findings"), as shown
in Figure 2. Meanwhile, team iHealth-Chile-2
developed a different image classifier that com-
bines DenseNet-121 with text embeddings of fac-
tual statements, which can be both classified and
visually grounded, leveraging very recent work on
fact extraction and encoding from radiology reports
(Messina et al., 2024). This approach, shown in
Figure 3, can be seen as a more general version of
stage 1 of CheXfusion (Kim, 2023), the winning
method in the ICCV CVAMD 2023 Shared Task on
CXR-LT: Multi-Label Long-Tailed Classification
on Chest X-Rays (Holste et al., 2023).

2 Task Description

2.1 Datasets

The data provided by the challenge consists of five
datasets: PadChest (Bustos et al., 2020), BIMCV-
COVID19 (Vayá et al., 2020), CheXpert (Cham-
bon et al., 2024), OpenI (Demner-Fushman et al.,
2016), and MIMIC-CXR (Johnson et al., 2019).
Each of these datasets includes radiology reports
paired with at least one image. The entire train-
ing set comprises 344, 394 reports with at least the
Findings section and 366, 413 reports with at least
the Impression section. Additionally, the challenge
permitted the use of VinDr-CXR (Nguyen et al.,
2022), which contains 18, 000 frontal chest X-ray
images with labels and bounding box annotations,
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but no reports.
In this participation, iHealth-Chile-3 focused on

training using only MIMIC-CXR and CheXpert,
utilizing the CheXpert labels (Irvin et al., 2019)
from both datasets. For training the CNN, this team
only used the 13 labels associated with findings
(excluding the "No Findings" label) and treated the
uncertain label (-1) as negative (0). iHealth-Chile-
3 did not employ any additional datasets or data
augmentation techniques.

On the other hand, iHealth-Chile-2 leveraged
concurrent work on fact extraction and encoding
from radiology reports, which includes 591,920
factual statements extracted from MIMIC-CXR ra-
diology reports. A representative subset of these
facts was sampled, and with the assistance of a Nat-
ural Language Inference (NLI) system (the expla-
nation of which is beyond the scope of this paper),
negative facts were identified for all the reports.
Furthermore, by combining 78 classes from the
Chest ImaGenome dataset (Wu et al., 2021) and
the 26 classes from the CXR-LT 2023 challenge
(Holste et al., 2023) and removing the overlap, a
total of 93 classes were exhaustively annotated by
the same NLI system, providing more standard-
ized supervision for MIMIC-CXR. iHealth-Chile-2
also utilized CheXpert, with the 14 classes adapted
as short factual statements, VinDr-CXR, with its
28 classes adapted for fact classification, and the
22 bounding box classes used for visual ground-
ing supervision. OpenI was also adapted for fact
classification by converting its manual and auto-
matic tags into short sentences with the assistance
of GPT-4.

The results reported in this work are measured
using the challenge’s hidden test set, which con-
tains 1, 063 samples for the generation of the Find-
ings section.

3 Methodology

3.1 Model Architecture

The approaches followed by both teams are summa-
rized in Figure 1. Essentially, an image classifier is
trained for multi-label classification. This classifier
is then used to make predictions over one or more
views, which are processed by a rule-based algo-
rithm to build the final report. Both teams used the
PyTorch implementation of DenseNet-121 (Huang
et al., 2017) as the visual backbone of their models,
outputting 1024-D feature vectors.

The specific implementation by iHealth-Chile-3

is shown in Figure 2. This approach strictly follows
Pino et al.’s straightforward implementation (Pino
et al., 2021). A fully connected layer predicts 13
classes. For each classified label, there is a pair of
fixed sentences: one for when the label is classified
as present and another for when it is absent. These
sentences are then concatenated to form the final
report.

In contrast, iHealth-Chile-2 replaces the fully
connected layer with a more sophisticated attention-
based pooling mechanism conditioned on a fact
embedding, as shown in Figure 3. This approach
has the added advantage that the attention can be
supervised with ground-truth visual grounding an-
notations if available, such as bounding boxes in
the case of VinDr-CXR. Furthermore, its use of text
embeddings to indicate the fact to classify allows
the model to work as an open-vocabulary multi-
label classifier, which can be easily applied to an
arbitrary number of datasets with different number
of classes or factual statements.

3.2 Training Strategy and Implementation
Details

iHealth-Chile-3. This team trained models on
MIMIC-CXR and CheXpert using CheXpert la-
bels, selecting the first image in the array of images
associated with each medical report, which was
generally a frontal view.

To address class imbalance, a Weighted Binary
Cross Entropy Loss was employed. The model
was optimized using Adam with a learning rate of
0.0001 and a weight decay of 0.00001. Addition-
ally, a learning rate scheduler reduced the learning
rate by a factor of 0.1 if the monitored metric did
not improve for three consecutive epochs. This
dynamic adjustment helps refine the training pro-
cess and achieve better convergence based on the
model’s performance. The input images were re-
sized to 256 × 256 and normalized with a mean and
standard deviation of 0.5.

The model was trained for 12 epochs with a
batch size of 110, using an NVIDIA RTX A6000
GPU, with an estimated training time of 42 hours.

iHealth-Chile-2. This team utilized the MIMIC-
CXR, CheXpert, VinDr-CXR, and OpenI datasets.
To ensure a more balanced sampling of all datasets
in subsequent batches, a multi-dataset dataloader
was implemented. This dataloader sampled from
each dataset with a weight of 5.0 for MIMIC-
CXR and 1.0 for each of the other datasets, giving
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Figure 1: Overview of the template-based approach followed by both teams. During training, a single-view image
classifier is trained for multi-label classification. During inference, the image classifier is used to predict labels for
one or all the views associated with a given report to generate. These classification predictions are then processed
by a handcrafted rule-based algorithm that builds the final report.
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Heart size is normal. Pulmonary edema is seen.
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Figure 2: Template-Based Architecture of iHealth-
Chile-3. The DenseNet is trained to classify the 13
labels as shown in the scheme. After the training is
complete, in inference, the DenseNet is frozen and clas-
sifies the 13 labels for an input image. For each label, a
template sentence is chosen depending on the absence
or presence of the label. Finally, the chosen template
sentences are concatenated into a final report.

MIMIC-CXR more weight due to its larger number
of facts to classify, as discussed in Section 2.1.

For CheXpert and VinDr-CXR, a hybrid loss
combining standard BCE, Weighted by Class BCE,
and Focal Loss was used because these datasets
have a fixed number of classes. For MIMIC-CXR
and OpenI, BCE + Focal Loss was employed. In
the case of VinDr-CXR, the Mean Absolute Error
(MAE) between the predicted attention map and the
ground-truth bounding boxes is used as attention
supervision loss for visual grounding of the clas-
sified facts. The AdamW optimizer (Loshchilov
and Hutter, 2019) was used with a cyclic exponen-
tial learning rate varying from 1e-4 to 1e-6 over
8 epochs. Each epoch consisted of approximately
800 batches. The model was trained for about 20
hours, after which no significant gains in valida-
tion metrics were observed. The batch size was

13 images per batch, with about 40 facts sampled
per image. Combined with 10 gradient accumula-
tion steps, the effective batch size was 130 images.
Images were resized to 416 × 416.

All experiments were implemented using Python
3.10.10 with PyTorch version 1.13.1+cu117
(Paszke et al., 2017). The experiments were
conducted on a computing node equipped with
a 20-core Intel(R) Core(TM) i9-9900X CPU @
3.50GHz, three NVIDIA GPUs—two GeForce
RTX 2080 Ti with 11GB memory and one GeForce
RTX 3090 with 24GB memory. The system was
complemented by 125GB of RAM.

3.3 Report Generation using Templates

For report generation, curated sets of two sentences
per abnormality were manually selected to indicate
presence and absence. These sets are categorized
into different types of templates (Pino et al., 2021):
Mimic Style, Ambiguous, Fusion, and Fusion +
Groups.

The Mimic Style sentences correspond to a sim-
ple template shown in Appendix Table 5, while the
Ambiguous sentences correspond to the template
shown in Appendix Table 6. On the other hand, the
Fusion template combines the absent template sen-
tences from Mimic Style with the present template
sentences from Ambiguous.

The Fusion + Groups template functions differ-
ently from the other templates. Instead of replacing
a sentence for each label, it groups labels together.
If a group of labels matches the value of abnormal-
ities specified in a grouped template (see Appendix
Table 7), that template is added to the final report.
After iterating through all grouped templates, the
remaining abnormalities are addressed using the
Fusion template for each individual disease, thus
giving the template its name Fusion + Groups.
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Figure 3: Fact Classifier architecture of iHealth-Chile-2. CXRFE stands for Chest X-Ray Fact Encoder, an improved
version of CXR-BERT (Boecking et al., 2022) via several NLP tasks, as outlined in a concurrent publication (Messina
et al., 2024). This Fact Classifier is an experimental architecture, that seeks to generalize the stage-1 classifier of
CheXfusion (Kim, 2023). Unlike iHealth-Chile-3, the Fact Classifier is trained on all views, and during inference
the predictions from all views are aggregated via max-pooling.

Table 1: Classification metrics on the MIMIC-CXR
and CheXpert validation sets using the CNN trained by
iHealth-Chile-3.

Precision Recall F1-Micro F1-Macro
0.36 0.74 0.48 0.36

4 Experiments and Results

iHealth-Chile-3. After training the CNN, we ob-
tained the classification results shown in Table 1.
We achieved a precision of 0.36, which, being rela-
tively low, immediately impacts our performance
on the NLP metrics discussed later in this section.
Furthermore, the significantly lower value of F1-
Macro compared to F1-Micro suggests that the
model performs notably weaker on specific labels,
likely due to class imbalance.

Table 2 presents the results of report generation
on the findings and impression hidden test sets. The
metrics detailed are BLEU4 (B4 Papineni et al.,
2002), ROUGE-L (RL Lin, 2004), BERTScore
(BS Zhang et al., 2019), F1-CheXbert (chX Smit
et al., 2020), and F1-RadGraph (RG Delbrouck
et al., 2022a). All values were calculated using the
official leaderboard web page with the VilMedic
framework (Delbrouck et al., 2022b). By examin-
ing Table 2, we can observe that the Template Type
which most increases the F1-RadGraph score is the
Ambiguous Template type, improving this score
by at least 2 points compared to the Mimic Style
Template. This improvement is likely due to the
inclusion of location-specific terms like "left" and
"right." However, there is a corresponding decrease
in BLEU4, possibly because the ground-truth re-
port specifies the location of the disease, and the

addition of terms like "left" and "right" might in-
troduce inaccuracies.

Additionally, Table 2 reveals that the best
Template for the findings section, based on F1-
RadGraph, is the Fusion + Groups template, while
for the impression section, the best is the Fusion
Template.

On the other hand, the F1-CheXbert score is
lower than the F1-Macro and F1-Micro scores for
the classification of CheXpert labels. This suggests
that the BERT model used for the F1-CheXbert
metric may not accurately detect some of the labels
encoded in the template-generated sentences, even
if they are simple, making this metric potentially
unreliable for this task. A similar issue is observed
with BERTScore, which does not consistently align
with the other metrics.

iHealth-Chile-2. Table 3 presents the classifica-
tion and template-based report generation metrics
on the MIMIC-CXR and CheXpert validation sets.
We highlight two notable results from this Table:
(1) The Fact Classifier achieves significantly higher
scores when evaluated with labels produced by the
same tool used to annotate the training set (i.e.,
VisualCheXbert for CheXpert and the NLI labeler
for MIMIC-CXR); and (2) The performance drops
when the CheXpert labeler and CheXbert evaluate
a template-based report built from the classifica-
tions, particularly with F1-CheXbert (macro and
micro). This provides further evidence that the met-
ric may be missing some of the labels mentioned
in the templates.

Additional evidence of the impact of the labeling
tool on the evaluation is provided in Appendix Ta-
ble 8. One evaluation considers 78 classes from the
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Table 2: iHealth-Chile-3’s metrics on the hidden test sets. All metrics are calculated using Vilmedic on the official
challenge web page. The abbreviations used are: B4 (BLEU4), RL (ROUGE-L), BS (Bertscore), cXb (F1-cheXbert),
and RG (F1-RadGraph).

Template Type
Findings Hidden Test Set Impression Hidden Test Set

B4 RL BS cXb RG B4 RL BS cXb RG
Mimic Style 4.74 16.17 47.28 27.44 13.08 1.72 9.41 36.18 24.55 8.30
Ambiguous 3.58 14.65 44.99 29.35 15.85 1.64 9.84 37.38 26.84 10.34
Fusion 4.80 16.88 46.73 28.20 18.70 1.66 10.21 37.21 25.82 11.58
Fusion + Groups 4.18 17.05 42.91 27.20 19.42 1.42 10.13 33.01 24.91 11.53

Table 3: Classification and Template-based Report Generation results on the validation sets of MIMIC-CXR and
CheXpert. The classes considered are the 14 classes of the CheXpert dataset. On MIMIC-CXR we consider two
sources of ground-truth labels for evaluation: the CheXpert labeler and our own NLI labeler. In the case of CheXpert,
we use the labels produced by VisualCheXbert (Jain et al., 2021) that were released with the dataset. The reports
were produced with the Fusion + Groups technique.

Classification: CheXpert labeler / VisualCheXbert Classification: NLI labeler (ours) Template-based Report Generation

F1
(micro)

F1
(macro)

PRC-
AUC

(micro)

PRC-
AUC

(macro)

F1
(micro)

F1
(macro)

PRC-
AUC

(micro)

PRC-
AUC

(macro)

F1-
CheXp
(micro)

F1-
CheXp
(macro)

F1-
CheXb
(micro)

F1-
CheXb
(macro)

MIMIC-CXR validation set (9178 images)
0.491 0.405 0.418 0.416 0.628 0.519 0.668 0.557 0.510 0.424 0.430 0.372

CheXpert validation set (5468 images)
0.679 0.554 0.719 0.717 - - - - 0.539 0.417 0.442 0.358

Table 4: iHealth-Chile-2’s metrics on the findings-hidden-test-set and impression-hidden-test-set.

Dataset Method B4 RL BS cXb RG

findings-hidden-test-set Fact Classifier + Templates (Fusion + Groups) 4.81 15.96 44.03 33.69 18.41
findings-hidden-test-set Fact Classifier + BART (findings, v1) 2.33 14.22 43.39 28.00 14.48
findings-hidden-test-set Fact Classifier + BART (findings, v2) 2.78 14.29 43.40 31.00 14.74

impression-hidden-test-set Fact Classifier + BART (impression) 2.28 11.33 35.98 20.87 7.59

Chest ImaGenome dataset (Wu et al., 2021), while
the other considers the 26 classes from the CXR-LT
2023 challenge (Holste et al., 2023). Noticeably,
the performance drops significantly when evalu-
ated with the original labels compared to the labels
generated by our NLI system. This discrepancy
suggests that either our NLI system is incorrect, or
the labels provided by the original datasets, which
were also extracted from reports, are inaccurate.
This issue warrants further investigation in future
work.

Lastly, Table 4 presents all submissions by
iHealth-Chile-2 to the hidden test set (findings and
impression). The best approach is clearly based
on templates. However, for completeness, we also
include unsuccessful attempts at producing reports
generatively using BART (Lewis et al., 2020), a
sequence-to-sequence model, by training it to gen-
erate reports from templates. This approach de-
graded performance, so we advise against it.

5 Conclusions and Future Work

We have presented the results of the iHealth-Chile-
3 and iHealth-Chile-2 teams in the Large-Scale Ra-
diology Report Generation shared task. Both teams
used a template-based method, where an image
classifier predicts specific classes, which are then
used to generate a report with predefined templates.
The performance in the challenge was modest. In-
terestingly, despite the templates being tailored for
CheXpert classes, the F1-CheXbert metrics were
consistently lower than the classification metrics.

Based on these results, future work should fo-
cus on: (1) Thoroughly evaluating report genera-
tion metrics to identify and address limitations in
existing ones; (2) Improving chest X-ray image
classifiers, particularly for long-tail classes; and (3)
Developing more advanced report generation sys-
tems that surpass rigid templates while preserving
classifier accuracy for long-tail classes.
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6 Limitations

The iHealth-Chile-3’s approach has several limita-
tions that warrant discussion. Firstly, this approach
is restricted in its ability to specify the location
of detected abnormalities. It can only confirm the
presence or absence of these abnormalities without
providing detailed localization within the images.
This spatial limitation may affect clinical applica-
bility, where precise localization is often critical.

Secondly, the overall performance of the reports
generated by this approach is inherently tied to the
performance of the multi-label classifier employed.
Any deficiencies or inaccuracies in the classifier
directly impact the quality and reliability of the gen-
erated reports. Moreover, even if the multi-label
classifier were to achieve perfect performance, the
scope of the reports would still be confined to the
13 specific labels used in this approach. This means
that any abnormalities outside these predefined cat-
egories would go unreported, potentially missing
other clinically significant findings.

Additionally, the resolution of the images used
in this study, limited to 256x256 pixels, could fur-
ther constrain the performance. Lower resolution
images may lack the necessary detail for accurate
detection and classification of certain abnormali-
ties, leading to potential misclassification or over-
sight. Future work could explore the impact of
using higher resolution images to determine if this
enhances the diagnostic accuracy and overall utility
of the approach.

The strategy adopted by iHealth-Chile-2 has no-
table limitations as well. Firstly, it is based on
an experimental architecture still under develop-
ment and unpublished at the time of this writing.
It also depends on an auxiliary Natural Language
Inference (NLI) system that is being developed con-
currently, with significant involvement of GPT-4.
As discussed in Section 4, the discrepancies be-
tween the original labels from source datasets and
our NLI-based labels highlight the need for further
investigation. We aim to elaborate on these aspects
in future publications.

The Fact Classifier tested by iHealth-Chile-2
may also be limited by its use of DenseNet-121
as its visual backbone. Given the advances in archi-
tectures based on vision transformers, such as the
Swin Transformer (Liu et al., 2021), DenseNet-121
might not be the optimal choice. This limitation is
also shared by iHealth-Chile-3.

Lastly, a significant limitation in the classifica-

tion approach itself followed by both teams is the
lack of a clear strategy for translating classifications
into a final natural language report. Even if an opti-
mal open-vocabulary classifier were to accurately
identify a comprehensive list of abnormalities with
good visual grounding, it remains unclear how to
convert these predictions into a report that scores
well according to the challenge metrics. This gap
between classification/visual grounding and report
generation warrants further investigation.
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A Appendix

A.1 Templates used by Health-Chile-3’s
approach

The Mimic Style template set, shown in Table 5,
corresponds to sentences which simply indicate
presence or absence of the labels. This template set
was named Mimic Style because the sentences were
chosen manually to imitate the sentences found in
the MIMIC-CXR reports.

The Ambiguous template set, shown in Table 6,
corresponds to sentences which when they indicate
presence are ambiguous. For example, they can
be ambiguous in terms of location, indicating the
presence of an abnormality on the left or right side
of the image.

Finally, the Group template set (not to be con-
fused with the Fusion + Groups template approach)
serves as an auxiliary template to be combined with
the simpler templates that indicate the single pres-
ence of labels. This template set is shown in detail
in Table 7.
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Table 5: Sentences in the Mimic Style template set.

Abnormality Absence template Presence template
Cardiomegaly Heart size is normal The heart is enlarged
Enlarged Cardiomed. The mediastinal contour is normal The cardiomediastinal silhouette is enlarged
Consolidation No focal consolidation There is focal consolidation
Lung Opacity The lungs are free of focal airspace disease One or more airspace opacities are seen
Atelectasis No atelectasis Appearance suggest atelectasis
Pleural Effusion No pleural effusion Pleural effusion is seen
Pleural Other No fibrosis Pleural thickening is present
Pneumonia No pneumonia There is evidence of pneumonia
Pneumothorax No pneumothorax is seen There is pneumothorax
Edema No pulmonary edema Pulmonary edema is seen
Lung Lesion No pulmonary nodules or mass lesions identified There are pulmonary nodules or mass identified
Fracture No fracture is seen A fracture is identified
Support Devices - A device is seen

Table 6: Sentences in the Ambiguous template set.

Abnormality Absence template Presence template
Cardiomegaly no cardiomegaly the heart is stable, mild, moderate, severe or enlarged in size
Enlarged Cardiomed. mediastinal contour is normal the cardiomediastinal silhouette is unchanged, enlarged or widened
Consolidation no consolidation there is observed left or right lung consolidation
Lung Opacity free of focal airspace disease there are left or right present lung airspace opacities
Atelectasis no atelectasis there is observed left or right lung present atelectasis
Pleural Effusion no pleural effusion there is an observed left, right or bilateral, small, moderate or large

pleural effusion
Pleural Other no fibrosis there is present left or right, minimal, mild or severe pleural thick-

ening
Pneumonia no pneumonia observed process left or right lung pneumonia
Pneumothorax no pneumothorax there is noted left sided or right sided, small, moderate or large

pneumothorax in the lung
Edema no pulmonary edema there is noted mild, moderate or severe pulmonary edema
Lung Lesion no pulmonary nodules there are left or right pulmonary lung nodules observed
Fracture no fracture there is a rib or clavicular left or right sided fracture
Support Devices there is no picc line there is a noted right sided or left sided picc or tube

Table 7: Sentences for Group Template.

Abnormalities Value of labels Template Group Sentence
’Lung Lesion’, ’Lung Opacity’,
’Edema’, ’Consolidation’, ’Pneu-
monia’, ’Atelectasis’

0 (all absent) the lungs are clear

’Consolidation’, ’Pleural Effu-
sion’, ’Pneumothorax’

0 (all absent) there is no focal consolidation , pleural effusion , or
pneumothorax .

’Pneumothorax’, ’Pleural Effu-
sion’

0 (all absent) there is no pleural effusion or pneumothorax .

’Pneumothorax’, ’Consolidation’ 0 (all absent) there is no focal consolidation or pneumothorax .
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Table 8: Fact classification results on MIMIC-CXR test set. These results are shown for illustrative purposes only.
The performance achieved by the fact classifier according to the labels produced by our NLI labeler is significantly
higher than the performance according to the original labeling tools of the datasets.

Original Labeler NLI labeler
F1

(micro)
F1

(macro)
F1

(micro)
F1

(macro)
CXR-LT (26 classes)

0.451 0.306 0.620 0.454
Chest ImaGenome (78 classes)

0.321 0.261 0.533 0.355


