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Abstract
We introduce a radiology-focused visual lan-
guage model designed to generate radiology
reports from chest X-rays. Building on pre-
vious findings that large language models
(LLMs) can acquire multimodal capabilities
when aligned with pretrained vision encoders,
we demonstrate similar potential with chest X-
ray images. This integration enhances the abil-
ity of model to understand and describe chest
X-ray images. Our model combines an image
encoder with a fine-tuned LLM based on the
Vicuna-7B architecture, enabling it to generate
different sections of a radiology report with no-
table accuracy. The training process involves
a two-stage approach: (i) initial alignment of
chest X-ray features with the LLM (ii) followed
by fine-tuning for radiology report generation1.

1 Introduction

Radiology reports constitute the primary medium
through which radiologists convey the findings
and conclusions derived from radiography, such
as chest X-rays. These reports play a pivotal role
in the diagnostic and therapeutic processes across
a wide range of diseases, emphasizing their sig-
nificance in contemporary medical practice (Engle
et al., 2021). Structured to enhance clarity and effi-
cacy in medical communication, radiology reports
primarily feature FINDINGS and IMPRESSIONS
sections (Kahn et al., 2009). The FINDINGS sec-
tion details the critical observations of the radiolo-
gist on the image, while the IMPRESSIONS sec-
tion summarizes the conclusions and recommenda-
tions of the radiologist. These sections collectively
ensure that radiology reports are indispensable in
diagnostic and therapeutic decision-making, com-
bining image analysis and clinical insight. Table 1
shows an example generated by GPT-4 (OpenAI
et al., 2024), which delineates these sections.

* Corresponding author.
1https://github.com/Glasgow-AI4BioMed/

RRG-BioNLP-ACL2024.

FINDINGS
There has been an increase in size of the left
pleural effusion compared to the prior exam.
The right lung remains clear with no evidence
of consolidation or pneumothorax. The heart
size is mildly enlarged but stable. The medi-
astinum appears unremarkable. Mild degener-
ative changes are noted in the thoracic spine
and ribs. The upper abdomen is without re-
markable findings.
IMPRESSIONS
Increase in left pleural effusion compared to
prior. Stable mild cardiomegaly. No evidence
of right lung pathology.

Table 1: FINDINGS and IMPRESSIONS in a synthetic
radiology report generated by GPT-4.

Radiology report generation (RRG) is crucial
for advancing future medical artificial intelligence
systems (Monshi et al., 2020). This task involves
transforming images into text, necessitating align-
ment between imaging and textual data. Signifi-
cant advancements in natural language processing
have driven progress in this area, with large gen-
erative visual language models like LLaVA (Liu
et al., 2023), InstructBLIP (Dai et al., 2023), and
Flamingo (Alayrac et al., 2022) leading the way.

The prevailing visual language models, such as
those mentioned above, aim to address the chal-
lenge of multimodal alignment by leveraging large-
scale pretraining. Typically, this involves adapting
a vision encoder for integration with a pretrained
LLM. To meet specific task requirements, various
degrees of finetuning are applied. For example,
LLaVA (Liu et al., 2023) represents a novel end-
to-end trained large multimodal model for general-
purpose visual and language understanding, achiev-
ing impressive chat capabilities. However, in the
context of our work, the focus is on fine-tuning

https://github.com/Glasgow-AI4BioMed/RRG-BioNLP-ACL2024
https://github.com/Glasgow-AI4BioMed/RRG-BioNLP-ACL2024
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image-text pairs, specifically for tasks related to
medical images, to enhance the capability of the
visual language model in radiology report genera-
tion.

In the specialized area of radiographic report
generation, it is paramount for models to discern
nuanced details within multiple medical images.
These details include subtle variations in opac-
ity against a backdrop of overlapping structures
(Panayides et al., 2020). Therefore, the radio-
graphic report generation task extends beyond the
mere extraction of details from a single image.
Models must interpret the clinical implications of
these nuances to generate precise and medically
rigorous text in reports. This is a particularly cru-
cial capability for radiographic report generation
models, since it enhances the clinical utility and
effectiveness of radiology reports and ensures their
accuracy and relevance in clinical settings.

General-domain models have proven inadequate
for generating findings in radiology reports (Hy-
land et al., 2024). In this work, we propose a
radiology-specific visual language model designed
for solving the radiology report generation task by
fine-tuning across various sections of medical re-
ports. Our model utilizes a two-stage fine-tuning
process that significantly enhances its performance.
In particular, we initially align the large language
model with image embedding through a pretrain-
ing phase. In the second stage, we further fine-tune
the LLM using Low-Rank adaptation (LoRA) tech-
niques (Hu et al., 2021). Both stages are trained on
the dataset in this workshop (Xu et al., 2024).

Additionally, we use a straightforward strategy
of merging and stitching multiple images to form
a single cohesive input, enabling the model to ef-
fectively process and integrate information from
multiple X-ray images. Using the dataset provided
by this workshop, which includes a collection of
chest X-rays and their corresponding sections, we
fine-tune our model to enhance the accuracy and
specificity of the generated radiology reports.

This paper investigates the fine-tuning of visual
instruction for a visual language model in the spe-
cific domain of radiology report generation. We
describe the training of two distinct models devel-
oped for the Shared Task on Large-Scale Radiol-
ogy Report Generation (RRG24) at the BioNLP
2024 Workshop (Xu et al., 2024). In the public
test set, we achieved an F1-RadGraph score (Del-
brouck et al., 2022a) of 24.13 and 22.79 in the
Findings and Impressions sections, respectively.

In the hidden test set, we achieved F1-RadGraph
scores (Delbrouck et al., 2022a) of 24.13 and 22.10
in the Findings and Impressions sections, respec-
tively, which places us 4th on the leaderboard at
the time of submission. The contributions of this
research are as follows:

• We enhance domain adaptation for radiol-
ogy by implementing visual instruction tun-
ing, which further fine-tunes the visual lan-
guage model specifically for image-to-text
tasks. This approach optimizes performance
in interpreting and translating visual data into
descriptive, clinically relevant text.

• We adopt a method of stitching multiple im-
ages together, allowing a single image encoder
to process multiple image inputs simultane-
ously. This strategy obviates the need for sep-
arate encoding of each image, enabling the
model to adapt to varying numbers of image
inputs using limited resources.

2 Related Work

Nowadays, exemplified by open-source projects
such as LLaVA (Liu et al., 2023), the effective-
ness of self-supervised vision-language models
(VLMs) using parallel data has been demonstrated
in different research domains. These VLMs, when
instruction-tuned with multimodal inputs, align
well with human intentions and perform robustly
in various downstream tasks, including converting
images to text (Park and Kim, 2023).

However, the unique characteristics of biomedi-
cal image-text pairs significantly differ from those
in general domains. Biomedical images often con-
tain subtle and complex features that require pre-
cise interpretation, while the corresponding text
must convey highly specific medical information
(Huff et al., 2021). In biomedical settings, VLMs
designed for general domains often fail to meet
these specialized needs, as they lack the ability
to accurately interpret medical data and generate
relevant clinical descriptions (Chang et al., 2023).
This discrepancy underscores the urgent need for
domain-specific fine-tuning. By tailoring VLMs to
the distinct demands of the biomedical field, such
fine-tuning can enhance their ability to capture and
convey the intricate details necessary for accurate
medical interpretations and reports.

Recent advancements have been made in adapt-
ing general-purpose foundation models for med-
ical applications, particularly in radiology. The
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Med-Flamingo (Moor et al., 2023), an extension
of the OpenFlamingo framework (Awadalla et al.,
2023), leverages images and captions from medi-
cal textbooks to enhance few-shot visual question-
answering capabilities. Similarly, the Med-PaLM
M, developed by Tu et al. (2023), fine-tuned the
PaLM-E model (Driess et al., 2023) using compre-
hensive biomedical datasets. LLaVA-Med, pro-
posed by Li et al. (2023), modifies the LLaVA
(Liu et al., 2023) framework with image-text pair-
ings and multimodal instructions from PubMed
data. Additionally, the ELIXR model, developed
by Xu et al. (2023), integrates the SupCon CXR
encoder (Sellergren et al., 2022) with the PaLM
2-S model (Anil et al., 2023) to support classifi-
cation, semantic search, question answering, and
quality assurance. Finally, the Radiology-GPT, cre-
ated by Liu et al. (2024), utilizes radiology reports
from MIMIC-CXR (Johnson et al., 2019) to facili-
tate the generation of findings-to-impression text,
based on the Alpaca instruction-tuning framework
(Taori et al., 2023).

Historically, research in radiology report genera-
tion has varied, with some studies focusing exclu-
sively on either the Findings or the Impressions sec-
tions (Jin et al., 2024; Yan et al., 2023), while others
have addressed both. Notably, Endo et al. (2021)
and Bannur et al. (2023) specialized in generating
only the Impressions section. In contrast, studies
by Miura et al. (2021), Delbrouck et al. (2022a),
Tanida et al. (2023), Nicolson et al. (2023), and Tu
et al. (2023) concentrated on the Findings section.
Comprehensive analyses by Yu et al. (2023) and
Jeong et al. (2023) covered all settings, demonstrat-
ing that the choice of sections significantly influ-
ences reported performance metrics, complicating
comparative evaluations across different study de-
signs.

However, these existing models have limitations.
Most notably, they are typically designed to pro-
cess single images and often fall short in gener-
ating reports that match the depth and detail of
those written by human radiologists. Additionally,
they do not fully replicate the workflow of med-
ical professionals, who often reference multiple
images to enhance report accuracy. Our work ad-
dresses these gaps by developing a model capable
of handling multiple images simultaneously and
generating comprehensive radiology reports. This
approach aims to more closely mimic the process
used by medical professionals, thereby improving
the accuracy and quality of the generated reports.

3 Methodology

In our study, we follow the observations from
LLaVA-Med (Li et al., 2023), suggesting superior
performance when initiating with a language-only
pretrained LLM rather than a multimodal-trained
base. Our model architecture incorporates an im-
age encoder and a learnable adapter placed atop the
image outputs, mirroring the LLaVA-1.5 model de-
sign (Liu et al., 2023). We adopt an auto-regressive
language modelling approach using cross-entropy
loss (Graves, 2014) and align hyperparameters with
those from LLaVA-1.5, including a joint tuning
phase for the LLM and adapter (Liu et al., 2023). In
alignment with LLaVA-1.5 protocols, we initially
pretrain the adapter alone for one epoch, followed
by a full training cycle lasting three epochs, em-
ploying Low-Rank Adaptation of Large Language
Models techniques (LoRA) (Hu et al., 2021) for
efficient parameter tuning.

3.1 Task Description

A key application of natural language generation
in medicine is developing support systems that pro-
duce written reports from X-ray images, detailing
clinical findings. Such systems are highly valu-
able, potentially reducing the routine workload of
radiologists and improving the efficacy of clinical
interactions. The objective of this shared task is to
generate radiology reports from one or more chest
X-rays taken during a single study, specifically tar-
geting two sections: ‘Findings’ and ‘Impressions’
(as shown in Table 1).

Consequently, our team is dedicated to the task
of exclusively producing either the ‘Findings’ or
‘Impressions’ sections of the report. We have de-
veloped separate models for each section because
their focuses are different. The ‘Findings’ section
provides a factual description based on the images,
while the ‘Impressions’ section offers the radiolo-
gist’s conclusions and recommendations. By sep-
arating the models, we can tailor each to better
address its specific requirements.

For the radiology report section generation, han-
dling multiple images is crucial as it allows the
model to provide a detailed and accurate descrip-
tion of the observed facts, similar to how radiol-
ogists analyze multiple images to form a compre-
hensive understanding. This approach enhances
the model’s ability of to mimic the actual work-
flow of medical professionals, who often reference
multiple images.
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Figure 1: Our two-stage training framework. In the first stage, visual features are aligned with LLM. In the second
stage, the model focuses on the training of radiology report generation tasks.

3.2 The Proposed Models

To solve the RRG24 shared task, we fine-tune a
large visual language model for radiology report
generation based on the provided dataset. Specif-
ically, we propose two separate models, called
Med-CXRGen-F and Med-CXRGen-I, fine-tuned
on Findings and Impressions sections respectively.

We use CLIP (Radford et al., 2021) as an image
encoder and Vicuna-1.5 (Chiang et al., 2023) as a
large language model. Our adaptation module con-
sists of a multi-layer perceptron (MLP) featuring
GELU activations (Hendrycks and Gimpel, 2023)
and a uniform hidden size of 1024 across all layers.

The interaction with the model involves alternat-
ing system messages linked with the corresponding
image. The training objective of the model is to
generate accurate responses. Initially, we convert
the image into a series of image patch tokens via
the image encoder, selecting embeddings from the
penultimate layer. These image features are then
processed by the MLP adapter, aligning them to
the input specifications of the LLM.

The instructional prompt of the report gener-
ation task we employed is: "Provide a descrip-
tion of the findings/impressions from the radiology
<image>\n image." In this prompt, "<image>\n"
represents the image holder token, as shown in Fig-
ure 1, which indicates to the LLM that it should

base its generation on the input image.

3.3 Training
The same network architecture is utilized for dif-
ferent radiology report sections, where an MLP
adapter connects the vision encoder and the lan-
guage model. For model training, we use a two-
stage procedure: (as shown in Figure 1)

• Stage 1: Chest X-ray Feature Alignment
In the first epoch training phase on the pro-
vided dataset, each sample, accompanied by
instructions and image input, prompts the
model to predict the original caption. Dur-
ing this stage, we keep the visual encoder and
LLM weights unchanged, focusing solely on
updating the MLP adapter. This approach
aligns the features from chest X-ray images
with their textual embeddings in the LLM.
Training is limited to a single epoch, which
facilitates the expansion of the vocabulary of
aligned image-text tokens specific to the radi-
ology domain.
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• Stage 2: Fine-tune for Radiology Report
Generation
In the second phase, the visual encoder
weights and adapter are kept frozen while
continuing to update the pre-trained LLM
weights using LoRA (Hu et al., 2021) tech-
nology. Further fine-tuning is conducted on
the provided dataset through visual instrumen-
tal tuning with three epochs.

4 Evaluation

4.1 Dataset

We fine-tune and evaluate our models using the
RRG24 dataset hosted on the BioNLP ACL’24 (Xu
et al., 2024), which includes data from MIMIC-
CXR (Johnson et al., 2019), CheXpert (Cham-
bon et al., 2024), PadChest (Bustos et al., 2020),
BIMCV-COVID19 (de la Iglesia Vayá et al., 2020),
and OpenI, with their statistics shown in Table 2.

Dataset FINDINGS IMPRESSIONS

training 344,394 366,413
validation 8,839 9,331
test-public 2,692 2,967
test-hidden 1,063 1,428

Table 2: Distribution of shared task on Large-Scale
Radiology Report Generation.

We conducted training in two stages (refer to
section 3.3). To ensure consistency between train-
ing and inference processes, we analysed the word
count distribution, as shown in Table 3. Conse-
quently, we have set a maximum length of 1024
for both the text input and inference output to min-
imise computational expense. On the other hand,
as illustrated in Table 4, some datasets contain mul-
tiple images, therefore, we select up to the first four
images for the image input. We merge multiple
images horizontally to form a single-image input,
which is proven to be robust in our experiments.

Dataset FINDINGS IMPRESSIONS

training 259 (±180) 216 (±153)
validation 257 (±176) 217 (±155)
test-public 380 (±161) 257 (±224)

Table 3: Average word count and standard deviation on
Large-Scale Radiology Report Generation.

Dataset FINDINGS IMPRESSIONS

training 1.57 (±0.63) 1.45 (±0.62)
validation 1.58 (±0.62) 1.45 (±0.62)
test-public 1.70 (±0.71) 1.67 (±0.71)

Table 4: Average number of images and standard devia-
tion on Large-Scale Radiology Report Generation.

4.2 Metrics

We assess the generated reports through a dual
approach involving both general lexical metrics
and specialized radiology metrics. Focusing on the
accuracy of described medical findings, radiology-
specific metrics provide a deeper insight into the
clinical relevance of the reports, beyond surface-
level phrasing variations. According to the RRG24
guidelines, we consider five evaluation metrics for
this work, including BLEU4 (Papineni et al., 2002),
ROUGEL (Lin, 2004), BERT score (Zhang et al.,
2020), F1-cheXbert (Smit et al., 2020), and F1-
RadGraph (Delbrouck et al., 2022a).

4.3 Training details

We evaluated our two proposed models, i.e. Med-
CXRGen-F and Med-CXRGen-I, on the workshop
evaluation datasets, based on a computational in-
frastructure utilizing an A6000 GPU (48GB mem-
ory each) with the Deepspeed zero-3 configuration
(Rajbhandari et al., 2020) with BF16 enabled. We
employ a cosine learning rate scheduler that begins
with a warm-up phase of 0.03 and sets the learn-
ing rate at 1 · 10−5. The global batch size for our
experiments is set at 16. Observations of the small-
est loss on the evaluation dataset throughout the
training process guide us to select this as the final
checkpoint for all runs. For inference on the test
dataset, we decode in 32-bit precision up to 150
tokens, consistent with the baseline model on the
leaderboard (Delbrouck et al., 2022b). Each model
required approximately 215 hours of training.

5 Results

We report the performance of our two proposed
models over five evaluation metrics in Table 5. As
shown in Table 5, in the public test set, we achieved
an F1-RadGraph score (Delbrouck et al., 2022a) of
24.13 and 22.79 in the Findings and Impressions
sections, respectively. In the hidden test set, we
achieved F1-RadGraph scores (Delbrouck et al.,
2022a) of 24.13 and 22.10 in the Findings and
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Model Dataset Section BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph

Med-CXRGen-F
validation Findings 7.02 23.33 48.93 40.42 21.94
test-public Findings 8.07 24.90 53.45 45.91 24.13
test-hidden Findings 7.65 24.35 52.69 46.21 24.13

Med-CXRGen-I
validation Impressions 10.18 28.10 51.78 50.51 26.65
test-public Impressions 7.10 25.11 47.39 47.43 22.79
test-hidden Impressions 9.60 25.27 48.60 46.74 22.10

Table 5: Evaluation results on different datasets.

Impressions sections, respectively, which places
us 4th on the leaderboard2 at the time of submis-
sion. Additionally, our model achieved notable
Bertscore results in the test-public set, with 53.45
for Findings and 47.39 for Impressions. These re-
sults demonstrate the effectiveness of our approach
in generating high-quality medical reports across
different datasets.

6 Discussion

Performance disparities observed between the Find-
ings and Impressions sections of the test results can
be attributed to several factors. Firstly, the Impres-
sion and Findings sections address distinct medical
purposes, resulting in performance disparities. The
Findings section offers an objective description of
symptoms, while the Impressions are oriented to-
wards diagnostic conclusions. The variability in
word count between these sections also affects the
complexity of model inference, as reflected in the
lexical evaluation scores.

Additionally, significant discrepancies in the
medical evaluation metrics highlight a varied dis-
tribution of diseases within the test set. This het-
erogeneity could impact the generalisability and
accuracy of the model. Furthermore, our analy-
sis indicates that the performance may be compro-
mised in multi-image inference scenarios where
it does not account for superfluous images. Such
factors are essential to consider when assessing the
diagnostic accuracy and reliability of the model in
clinical settings. Enhancing the ability of model
to differentiate between relevant and superfluous
images could significantly improve diagnostic ac-
curacy.

Furthermore, exploring domain-specific adap-
tations and fine-tuning strategies tailored to the
unique characteristics of medical data could further
enhance model performance. Incorporating tem-
poral dynamics into the model to capture changes

2https://vilmedic.app/misc/bionlp24/leaderboard

over time and developing more sophisticated frame-
works for generating multi-modal radiology reports
are other promising avenues for future research.
These advancements are expected to enhance both
the practicality and accuracy of our model within
clinical scenarios.

7 Conclusion

In this work, we have developed a vision-language
model capable of processing multiple images.
Through visual instruction tuning, we achieved
alignment between two modalities and further fine-
tuning for specific downstream tasks. Notably, our
system attained a commendable fourth-place stand-
ing across four diverse test datasets at the RRG24 at
BioNLP 2024 workshop (Xu et al., 2024), substan-
tiating the practicality of vision-language models
within specialized medical tasks.

Moving forward, we intend to conduct in-depth
research into more sophisticated methods for gen-
erating multi-modal radiology reports. This will
involve incorporating temporal dynamics and de-
veloping frameworks specifically focused on text
generation. Such advancements are expected to
enhance both the practicality and accuracy of our
model within the clinical scenario.
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8 Limitations

The following section outlines the limitations iden-
tified in our study:

1. Prevalence of certain conditions: Some dis-
eases are more easily detected, which may
lead to artificially high medical assessment
scores.

2. Imaging modalities and anatomical struc-
tures: There is a notable imbalance in the
imaging modalities and anatomical structures
covered in the training dataset. Variations
such as the number of images per patient and
the considerable disparity in the length of med-
ical reports exacerbate this imbalance.

3. Radiologist and radiology department pref-
erences: Preferences and writing styles vary
among radiologists and radiology depart-
ments. This diversity adds complexity to med-
ical reports by introducing inconsistencies
and uncertainties that are, to a certain extent,
human-induced. For example, the dataset pro-
vided in this workshop demonstrates that even
the same radiology section descriptions have
varying styles. These elements significantly
complicate the task of report generation.

These limitations highlight areas for improvement
and the need for methodological refinements to
enhance model effectiveness and reliability in clin-
ical environments. These challenges were not ad-
dressed within the scope of this workshop.
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