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Abstract

Radiology report generation (RRG) aims to
create free-text radiology reports from clinical
imaging. Our solution employs a lightweight
multimodal language model (MLLM) en-
hanced with a two-stage post-processing strat-
egy, utilizing a Large Language Model (LLM)
to boost diagnostic accuracy and ensure patient
safety. We introduce the "First, Do No Harm"
SafetyNet, which incorporates X-Raydar, an
advanced X-ray classification model, to cross-
verify the model outputs and specifically ad-
dress false negative errors from the MLLM.
This comprehensive approach combines the ef-
ficiency of lightweight models with the robust-
ness of thorough post-processing techniques,
offering a reliable solution for radiology report
generation. Our system achieved fourth place
on the F1-Radgraph metric for findings genera-
tion in the Radiology Report Generation Shared
Task (RRG24).1

1 Introduction

Radiology is indispensable in healthcare, offer-
ing non-invasive methods to diagnose and mon-
itor medical conditions. Central to this practice
are radiology reports, which provide detailed in-
terpretations of medical images crucial for clinical
decision-making (Mityul et al., 2018). However,
writing these reports is a meticulous process that de-
mands significant domain expertise (Hartung et al.,
2020). Radiologists must manually review images
and formulate descriptive narratives, a task that is

1https://stanford-aimi.github.io/RRG24/

not only time-consuming but also susceptible to
variability and errors, potentially affecting patient
care and outcomes (Alexander et al., 2022).

One of the primary challenges in radiology re-
port writing is the sheer volume of imaging studies
that radiologists must interpret (Bruls and Kwee,
2020; Zhan et al., 2020). With the increasing use of
imaging modalities such as computed tomography
(CT), magnetic resonance imaging (MRI), and X-
ray, radiologists are facing a growing workload that
exceeds their capacity to provide timely and accu-
rate reports (Winder et al., 2021; Bruls and Kwee,
2020). This challenge is further compounded by
the rising demand for imaging services due to an
aging population and the increasing prevalence of
chronic diseases.

Another imperative issue in radiology report gen-
eration is the variability in report quality and consis-
tency (Minn et al., 2015; Pool and Goergen, 2010).
Different radiologists may interpret the same set
of images differently, leading to inconsistencies
in the information provided in the reports. This
variability can stem from differences in writing
styles, experience levels, and individual biases, all
of which can have significant implications for pa-
tient care (Plumb et al., 2009; Naik et al., 2001;
Brady et al., 2012). Inconsistencies in reports may
lead to missed diagnoses or incorrect treatment de-
cisions, underscoring the importance of standard-
ized and automated approaches to report genera-
tion.

To address these challenges, Automated systems

https://stanford-aimi.github.io/RRG24/
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have the potential to enhance the efficiency and
accuracy of radiology report generation (Liao et al.,
2023; Pang et al., 2023; Liu et al., 2023). These
systems can reduce the time and effort required
by radiologists while standardizing reporting prac-
tices to ensure consistency and relevance in reports.
Moreover, automation can help address the increas-
ing workload and demand for imaging services.

As Large Language Models (LLMs) have be-
come widely available, numerous studies have
explored the development of Multimodal LLMs
(MLLMs) capable of natively processing additional
modalities, such as images (Lu et al., 2023; Yang
et al., 2023). Although there have been significant
advancements in the development of MLLMs for
various tasks (Chen et al., 2023; Wu et al., 2023),
none have specifically focused on lightweight mod-
els for the medical domain.

Local deployment is critical as many hospitals
are concerned that uploading images to the cloud
for AI processing may violate privacy laws such as
the General Data Protection Regulation (GDPR) in
Europe or the Personal Data Protection Act (PDPA)
in Thailand. Addressing this issue is essential to en-
sure that patients can receive enhanced medical ser-
vices while maintaining their privacy. Additionally,
most hospitals in developing countries are GPU-
constrained and lack access to high-end GPUs
which are typically required for deployment. There-
fore, it is imperative to develop lightweight models
capable of performing inference on-premise using
consumer-grade GPUs.

Motivated by these challenges, we investigate
various architectures with a focus on identifying
models that offer the optimal cost-to-performance
ratio for local deployment. For the purposes of
this study, we concentrate on the task of findings
generation.

Our contributions are summarized as follows:
• We developed and trained a lightweight Mul-

timodal Large Language Model (MLLM) for
the radiology report generation task using a
two-stage training strategy, achieving perfor-
mance metrics comparable to those of larger
models.

• We introduced a novel two-stage post-
processing strategy. The first stage enhances
the readability and clarity of the reports. The
second stage, "First, Do No Harm" SafetyNet,
employs the X-Raydar classification model to
cross-verify the model outputs, significantly
improving diagnostic accuracy and ensuring

patient safety.

2 Methodology

2.1 Model Architecture
Impressed by its superior performance, which
surpasses even some larger models despite its
lightweight nature in general domain, we decided
to follow model architecture design of Bunny for
this study (He et al., 2024). Our model components
include the SigLIP-so400m2 (Zhai et al., 2023) as
the visual encoder, a two-layer Multi-layer percep-
tron (MLP) with a GELU activation as the vision-
language connector, and the Phi-2 2.7B as our LLM
(Hughes, 2023).

The SigLIP visual encoder extracts meaning-
ful features from chest X-ray images, enabling
the model to capture relevant visual information.
The MLP integrates these visual features with lan-
guage representations. Phi-2, a 2.7 billion param-
eter lightweight language model trained on high-
quality data, achieves performance metrics com-
parable to substantially larger models. It demon-
strates exceptional proficiency in benchmarks such
as commonsense reasoning, language comprehen-
sion, question-answering, and coding tasks, fre-
quently surpassing models with significantly more
parameters.

2.2 Training Strategy & Datasets
We employ a two-stage training strategy to opti-
mize our model’s performance. In the first stage,
we train only the MLP connector using the LLaVa-
Med alignment 500k dataset (Li et al., 2023; Zhang
et al., 2023), while keeping the rest of the model
frozen. LLaVa-Med is a large-scale dataset specif-
ically curated for medical vision-language tasks,
containing a diverse collection of medical imaging
modalities and tasks. By pretraining on this dataset,
the MLP connector learns to effectively map visual
features to language representations in the medical
domain.

The second stage involves fine-tuning both
the vision-language connector and the Language
Model (LLM), while keeping the visual encoder
frozen. This fine-tuning process utilizes the
interpret-cxr dataset (Xu et al., 2024) comprising a
mixture of multiple chest X-ray datasets: CheXpert
(Chambon et al., 2024), PadChest (Bustos et al.,
2020), BIMCV COVID-19 (Vayá et al., 2020), and
MIMIC-CXR-JPG (Johnson et al., 2019). This

2SigLIP HuggingFace Link

https://huggingface.co/google/siglip-so400m-patch14-384
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dataset includes chest X-ray images along with
their corresponding radiology reports, providing
task-specific training data. For our study, we com-
bined both findings and impressions into a single
dataset, totaling 710,807 image-text pairs. In our
preliminary study, retaining only the first image
from each study outperformed using all images, as
shown in 3. Therefore, we heuristically kept only
the first image to preserve report diversity.

2.3 Two-Stage Post-Processing Strategy

In addition to our model’s architecture and training
strategies, we implement a crucial post-processing
strategy, wherein the model outputs undergo se-
quential processing to enhance the overall qual-
ity of the reports (See Appendix C for detailed
prompts).

2.3.1 First stage: Report Refinement
In the first stage, we utilize a Large Language
Model (LLM) to enhance the comprehensiveness
of the findings reports. Our key objectives are to
improve readability and clarity, eliminate nonsensi-
cal words, and remove duplicated sentences from
the model hallucinations. For normal chest X-ray
(CXR) findings, we provide detailed, standardized
explanations to clarify the condition. We use a rec-
ommended vocabulary list to maintain consistency
across reports. Our methodology promotes concise
reporting by focusing on critical findings, while
still adhering to a professional radiology report for-
mat. This includes transforming simple statements
like "No significant findings" into comprehensive
and detailed descriptions.

2.3.2 Second stage: "First, Do No Harm"
SafetyNet

This post-processing strategy, termed "First, Do
No Harm" SafetyNet, involves using an advanced
X-ray classification model, X-Raydar, to provide
a second opinion on chest X-ray images. This
methodology mirrors the practice of doctors con-
sulting with colleagues to validate the diagnoses,
thereby mitigating the risk of errors that could po-
tentially harm patients.

X-Raydar Integration X-Raydar, a state-of-the-
art X-ray classification model, is trained on a sub-
stantial dataset of 1.8 million chest X-rays, cover-
ing a wide range of pathologies (Cid et al., 2024).
By integrating X-Raydar into our post-processing
strategy, we leverage its robust performance to
cross-verify and refine the outputs generated by

our MLLM.
Second Opinion Inference A major challenge

in findings generation is the occurrence of false neg-
ative errors, such as incorrectly reporting "lungs
are clear" or "no cardiomegaly" To mitigate this is-
sue, we use Llama3 70B3 with a specially designed
prompt to detect and correct such critical errors.
The prompt incorporates the classification results
from X-Raydar to specifically address common
false negative errors. For example, if X-Raydar
identifies signs of cardiomegaly but the initial re-
port states "no cardiomegaly," our tailored prompt
for Llama3 ensures that the final report accurately
reflects the patient’s condition. This dual-check
strategy significantly increases agreement with the
ground truth report, thereby improving diagnostic
accuracy and enhancing patient safety.

3 Experimental Setup

3.1 Evaluation

We evaluated our approach using metrics for natu-
ral language generation (NLG) quality and clinical
accuracy, as implemented by the Vilmedic frame-
work (Delbrouck et al., 2022b).

NLG Metrics
• BLEU measures the precision of n-grams in

the generated text compared to a reference
text (Papineni et al., 2002).

• ROUGE-L focuses on the longest common
subsequence between the generated and refer-
ence texts (Lin, 2004).

• BERTscore uses contextual embeddings to
compare semantic similarity between the gen-
erated and reference texts (Zhang et al., 2019).

Clinical Accuracy Metrics
• F1-CheXbert computes the F1 score based

on the similarity of indicator vectors for 14
pathologies (Smit et al., 2020).

• F1-RadGraph calculates the overlap in clin-
ical entities and relations extracted from the
reports (Delbrouck et al., 2022a).

These metrics provide a comprehensive evaluation
of our model’s performance in generating accurate
and clinically relevant radiology reports.

3.2 Model Architecture Ablations

To investigate the complex relationship between
model architecture and overall performance across

3LLaMa3 70B Instruct HuggingFace Link

https://huggingface.co/chat/models/meta-llama/Meta-Llama-3-70B-Instruct
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Table 1: Performance of Various LLM and Visual Encoder Combinations on the Public Findings Benchmark (One
Epoch ≈ 5000 Steps)

Model Step BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
Phi-2 + SigLIP 4000 5.83 20.98 46.72 49.69 19.21
Phi-2 + SigLIP 8000 6.93 23.41 50.81 55.70 22.05
Phi-2 + SigLIP 12000 6.96 23.26 51.63 52.91 22.86
Phi-2 + SigLIP (S2) 4000 5.08 19.85 45.67 47.96 18.53
Phi-2 + SigLIP (S2) 8000 7.47 23.38 50.56 55.30 22.32
Phi-2 + SigLIP (S2) 12000 7.3 22.9 50.82 52.84 21.93
Llama3 (OpenBio) + SigLIP (S2) 4000 2.26 16.03 41.42 37.49 12.98
Llama3 (OpenBio) + SigLIP (S2) 8000 5.21 20.32 47.06 45.78 18.11
Llama3 (OpenBio) + SigLIP (S2) 12000 6.01 20.75 48.24 49.72 18.09

various metrics and tasks, we designed and con-
ducted the following series of experiments to iso-
late specific architectural elements and their effects:

• Language Model:
– Phi-2 2.7B
– Llama3-OpenBioLLM 8B4

• Visual Encoder:
– SigLIP
– SigLIP with S2-Wrapper

In addition to our base model, Phi-2 2.7B with
the SigLIP visual encoder, we conducted further
ablation studies to understand the impact of differ-
ent model architectures. For the language model
(LLM), we selected Llama3-OpenBioLLM 8B as
our larger model to investigate whether initializing
from a medical LLM could enhance the perfor-
mance of a MLLM on findings generation task.
The model was fine-tuned using a comprehensive
dataset of high-quality biomedical data, allowing
it to comprehend and generate text with precise
domain-specific accuracy and fluency. The Llama3-
OpenBioLLM 8B demonstrated exceptional per-
formance on multiple medical LLM benchmarks5,
surpassing even some larger models.

For the visual encoder, we employed the S2-
Wrapper, an extension designed to extract multi-
scale features from images (Shi et al., 2024). This
approach was chosen to evaluate the impact of
multi-scale feature extraction on the findings gener-
ation task. The integration of the S2-Wrapper aims
to enhance the model’s ability to handle complex
visual features and improve the overall accuracy of
the generated reports.

4 Results & Discussion

4.1 Model Architecture Ablations

Our best architecture, Phi-2 combined with SigLIP
visual encoder, demonstrates superior performance
as indicated by the F1-Radgraph metric as pre-
sented in Table 1. Notably, this configuration

4LLaMa3 OpenBioLLM 8B HuggingFace Link
5OpenLLM Leaderboard

outperforms the S2-wrapper extension. We hy-
pothesize that the general domain SigLIP visual
encoder encounters difficulties in effectively ex-
tracting useful information from X-ray images at
multiple scales. Additionally, this architecture sur-
passes the performance of the larger medical do-
main Llama3-OpenBioLLM 8B, suggesting that
the success in this specific findings generation task
may be more dependent on the quality of image
information extracted by the visual encoder rather
than the pretrained knowledge of LLMs.

4.2 Post-processing

Table 2: Performance improvement of each post-
processing stage on Hidden Findings Benchmark.

Model F1-RadGraph
Phi-2 + SigLIP 22.61
Phi-2 + SigLIP (Stage 1) 23.11 (+0.5)
Phi-2 + SigLIP (Stage 1&2) 24.62 (+1.51)

Our two-stage post-processing strategy markedly
improves the performance metrics for our findings
generation task, as demonstrated by the hidden-
findings test results in Table 2. In the first stage,
report refinement increased the F1-Radgraph met-
ric from 22.61 to 23.11 (+0.5). The incorporation
of the "First, Do No Harm" SafetyNet in the second
stage further elevated the F1-Radgraph metric from
23.11 to 24.62 (+1.51), resulting in a total improve-
ment of 2.01 points over the default model. This
comprehensive approach not only enhances report
readability but also significantly boosts diagnos-
tic accuracy and patient safety, leading to higher
quality radiology reports.

5 Conclusion

We present our approach to the Radiology Report
Generation task in the BioNLP 2024 shared task.
This study investigates various training configu-
rations and data mixtures to develop lightweight
models for generating radiology reports from chest
X-ray images. Our findings demonstrate that even
a smaller model, such as the Phi-2 language model,
can perform comparably to larger models in the

https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B
https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard
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report generation task. Additionally, incorporating
post-processing techniques significantly enhances
the quality of the reports and ensures patient safety.
This is particularly crucial for hospitals in resource-
constrained settings. By focusing on models that
can be fine-tuned on a single A100 GPU and oper-
ated on-premises with a consumer-grade GPU, we
address privacy concerns and improve the accessi-
bility of this technology.

Limitations

In this work, we utilized the Llama3-70b-instruct
model on HuggingChat for post-processing in both
stages, demonstrating that it improves the metric
(F1-RadGraph) of the generated reports. However,
we did not explicitly analyze the quality of post-
processing with smaller LLMs to determine if they
can achieve similar results. Future research could
explore post-processing with multiple LLM sizes
to understand the impact of model size on per-
formance. Additionally, our current approach in-
volves sequential two-stage post-processing, which
may not fully leverage the LLM’s capabilities and
could introduce unnecessary complexity and la-
tency. Combining these stages into a single step
could reduce latency and streamline the overall
process.
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A Preliminary Study

To investigate the impact of data composition and
transfer learning on model performance, we con-
ducted the following experiments:

A.1 Initialization and Training Strategies:

We explored two initialization and training strate-
gies:

• Initialization from MLLM Pretrained on Gen-
eral Domain: This approach involves contin-
ually fine-tuning the pretrained multimodal
language model (MLLM) on the interpret-cxr
dataset, focusing solely on the final stage of
training (stage 2).

• Initialization from LLM and Randomly Ini-
tialized Adapter: In this method, the language
model (LLM) is pretrained on the LLaVa-
MED dataset (stage 1) with a randomly initial-
ized adapter, followed by fine-tuning on the
interpret-cxr dataset (stage 2). This two-stage
process aims to leverage domain-specific pre-
training to enhance performance.

Our results indicated that this two-stage ap-
proach, which leverages domain-specific knowl-
edge from LLaVa-MED, is beneficial and enhances
performance.

A.2 Image Selection

We examined the effect of different image selection
techniques:

• Reusing the Same Report When Multiple Im-
ages Are Provided: This technique involves
using all available images for a given report,
resulting in 1 million image-text pairs. This
approach aims to maximize the amount of vi-
sual information provided to the model.

• Using Only the First X-ray Image When Mul-
tiple Images Are Provided: Here, only the
first image from each study is used, leading
to a dataset of 700,000 image-text pairs. This
method is intended to reduce redundancy and
potential bias in the reports by focusing on the
most relevant image.

Our data mixture study revealed that using only
the first image from each study yielded slightly
better performance than using all images, ensuring
the diversity of the radiology reports.

B Dataset Cleaning

In the preliminary inspection of the dataset, we ob-
served that numerous reports within the interpret-

cxr dataset contained sentences with information
that could not be derived solely from the X-ray
images. These sentences included details such as
dates, doctor information, references to other imag-
ing modalities, and comparisons with previous find-
ings. Such extraneous information introduces noise
that may lead the model to hallucinate incorrect
dates, numbers, and comparisons with non-existent
prior studies (Chen et al., 2024).

To mitigate this issue, we attempted to utilize
GPT-3.5 Turbo to remove this irrelevant informa-
tion from the dataset. The dataset cleaning prompts
and examples are detailed in Appendix B.1 and
B.2. However, during the evaluation, we observed
a slight decline in performance metrics, as illus-
trated in Table 4, following the removal of these
sentences. We suspected that the public-test and
hidden-test datasets did not undergo similar clean-
ing procedures, resulting in uncleaned test sets.
Therefore, to maximize of our performance met-
rics, we decided to use the original dataset without
data cleaning for the remaining of our study.

B.1 Cleaning Prompt
We provide the prompt used for preprocessing and
cleaning the training dataset to remove information
that cannot be obtained solely from X-ray images.
Findings: "Remove non-x-rays discernible infor-
mation from chest x-ray findings i.e. date, previous
report mentions and comparison, and information
from other imaging modality. Keep all remaining
sentences unchanged:"
Impression: "Remove non-x-rays discernible in-
formation from chest x-ray impression i.e. date,
doctor information, previous report mentions and
comparison, and information from other imaging
modality. Keep all remaining sentences unchanged.
But if there is nothing left, return |None| and stop
generating:"

B.2 Examples
B.2.1 Comparison with previous report
Original: Compared with the previous one, the
x-ray is slightly inspired. no lung consolidations or
pleural effusion are observed.
Clean: No lung consolidations or pleural effusion
are observed.

B.2.2 Date Mentions
Original: AP chest radiograph on 12/11/08 at
2315 demonstrates a dual lead AICD. Stable car-
diomegaly and stable left basilar opacities, likely
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Table 3: Preliminary Evaluation of Initialization Strategies and Image Selection for Radiology Report Generation.
This table compares the performance metrics of models initialized from a pretrained MLLM versus those initialized
from an LLM with a randomly initialized adapter, as well as the impact of using only the first image from each study
versus using all provided images. The results indicate that initializing from an LLM with a randomly initialized
adapter yields better performance, and selecting the first image from each study slightly improves the metrics.
Consequently, we heuristically retained only the first image to reduce redundancy and maintain report diversity.

LLM + Visual Encoder Train Data Epoch BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
Phi-2 + SigLIP (init from Bunny) LLaVa-Med + CXR 1 4.84 20.05 45.81 48.39 18.13
Phi-2 + SigLIP LLaVa-Med + CXR 1 5.74 20.72 47.32 49.46 19.13
Phi-2 + SigLIP LLaVa-Med + CXR (First) 1 5.45 21.17 47.43 51.10 19.52

Table 4: Results of the dataset cleaning experiment on findings and impressions. We performed stage 2 finetuning
on the SigLIP and Phi-2 2.7B model architecture with different data mixtures for this experiment. "Raw" refers to
the original interpret-cxr dataset, while "Clean" denotes the dataset cleaned by GPT-3.5 Turbo using the specified
cleaning prompt.

Report Type Train Data Epoch BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
findings Raw 1 6.19 24.49 47.61 43.91 18.08
findings Clean 1 5.84 24.17 47.14 44.19 17.83
impression Raw 1 9.87 27.65 50.57 51.80 23.96
impression Clean 1 6.62 23.66 50.74 49 24.62

atelectasis. Persistent right-sided pleural effusion.
Diffuse reticular opacities, mild interstitial edema.
Elevation of the left hemidiaphragm. Hiatal hernia.
Partially visualized abdominal aortic stent graft.
AP chest radiograph on 12-11-2008 at 3:11 a.m.
demonstrates no significant interval change in car-
diopulmonary status.
Clean: AP chest radiograph demonstrates a dual
lead AICD. Stable cardiomegaly and stable left
basilar opacities, likely atelectasis. Persistent right-
sided pleural effusion. Diffuse reticular opacities,
mild interstitial edema. Elevation of the left hemidi-
aphragm. Hiatal hernia. Demonstrates no signifi-
cant interval change in cardiopulmonary status.

B.2.3 Other Modalities Mentions
Original: Chest x-ray. bilateral bronchiectasis
with a predominance on the right side, noting an in-
crease in density around these right basal bronchiec-
tasis in relation to consolidations described in previ-
ous ct. there is no pleural effusion. cardiomedasti-
nal silhouette and hila are within normal limits.
biapical caps. bone and soft parts without notable
findings.
Clean: Chest x-ray. Bilateral bronchiectasis with a
predominance on the right side. There is no pleural
effusion. Cardiomedastinal silhouette and hila are
within normal limits. Biapical caps. Bone and soft
parts without notable findings.

B.2.4 Doctor information
Original: 1.Interval development and resolution
of a right upper lobe opacification, possibly rep-
resenting interval resolution of right upper lobe
aspiration or asymmetric pulmonary edema. 2. Per-
sistent small bilateral pleural effusions. ""Physi-

cian to Physician Radiology Consult Line: (753)
619-1110"" I have personally reviewed the images
for this examination and agreed with the report
transcribed above.
Clean: 1.Interval development and resolution of a
right upper lobe opacification, possibly represent-
ing interval resolution of right upper lobe aspira-
tion or asymmetric pulmonary edema. 2. Persistent
small bilateral pleural effusions."

C LLM Prompts

We provide a template of our post-processing
prompt for the LLM to enhance diverse aspects
generated report. The Report Refinement prompt
enhance the readability and clarify the report while
the "First, Do No Harm" SafetyNet prompt of
Llama3 combines the results of our MLLM model
and the classification results from X-Raydar.
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Prompt 1: First Stage: Report Refinement

Radiology Reporting Instructions
You are an experienced radiologist tasked with interpreting CXR images and generating reports from free-text descrip-
tions. Your primary objectives are to:

• Enhance readability and clarity of the text.

• Conduct Radgraph sterilization to ensure data integrity and accuracy.

When processing normal CXR findings, provide detailed explanations to clarify the condition. For instance:

Input Examples
• No significant findings.

• No acute cardiopulmonary findings.

• No acute cardiopulmonary abnormality.

• The heart is normal in size. The mediastinum is unremarkable. The lungs are clear.

• The heart size and pulmonary vascularity appear within normal limits. The lungs are free of focal airspace disease.
No pleural effusion or pneumothorax is seen.

• No acute cardiopulmonary findings.

Expected Output
• The lungs are clear. No cardiomegaly. The cardiomediastinal and hilar contours are normal. There is no focal

consolidation, pleural effusion, or pneumothorax. The pulmonary vascular markings are normal. No free air
beneath the diaphragm.

Use a recommended vocabulary list to standardize report language and maintain consistency across reports. This list
includes [’AC’, ’Bony’, ’Borderline’, ’CHF’, ’Calcified’, ’Cardiac’, ’Cardiomediastinal’, ’Cardiomegaly’, ’Clips’,
’Dense’, ’Dobbhoff’, ’Esophageal’, ’Extensive’, ’Heart’, ’Healing’, ’Hilar’, ’Hyperinflated’, ’IJ’, ’Increase’, ’Increased’,
’Interval’, ’Interposition’, ’Lung’, ’Lungs’, ’Lucency’, ’Minimal’, ’Moderate’, ’Mild’, ’Mildly’, ’Monitoring’, ’Multi-
ple’, ’Nasogastric’, ’Nearly’, ’New’, ’Normal’, ’Orphaned’, ’PICC’, ’Pneumomediastinum’, ’Pneumothorax’, ’Port - A -
Cath’, ’Pulmonary’, ’Right-sided’, ’Small’, ’Slight’, ’Slightly’, ’Stable’, ’Subcutaneous’, ’Tip’, ’Venous’, ’Widespread’,
’Worsening’, ’Zone’, ’accessory’, ’acute’, ’adenocarcinoma’, ’air’, ’air-filled’, ’airspace’, ’along’, ’angles’, ’anterior’,
’anteriorly’, ’apparent’, ’appearance’, ’appropriately’, ’area’, ’areation’, ’artifact’, ’atelectasis’, ’axilla’, ’benign’,
’bibasal’, ’bilaterally’, ’blunting’, ’borderline’, ’bowel’, ’bronchovascular’, ’caliber’, ’calcification’, ’calcified’, ’cancer’,
’cardiac’, ’cardiomegaly’, ’central’, ’change’, ’chest’, ’chf’, ’clavicle’, ’clavicular’, ’clear’, ’clips’]
Reports should be styled succinctly, focusing on critical findings and summarizing significant observations without
omitting essential details. Each report should follow the professional radiology report format:

Example of Good Reports
• The lungs are clear without focal consolidation. No pleural effusion or pneumothorax is seen. Heart size is

top-normal. The mediastinal silhouette is unremarkable.

• Portable frontal radiograph of the chest demonstrates a right chest tube in unchanged position ending at the right
apex. The right basilar pneumothorax continues to decrease in size. The pneumomediastinum is also decreasing.
Extensive subcutaneous emphysema persists. Stable heart size and mediastinal contours. Small left pleural
effusion is unchanged.

• The cardiac, mediastinal and hilar contours appear stable. Streaky left basilar opacity suggests minor atelectasis.
The lateral view depicts a greater degree of right middle lobe atelectasis than before, more coalescent. There is no
definite pleural effusion or pneumothorax.

• Persistent hila with a congestive appearance possibly due to pulmonary edema, but without evidence of significant
consolidations or pleural effusion. to be correlated clinically.

• Cardiac silhouette is unchanged. Aortic arch calcification seen. Pulmonary vascularity is within normal limits.
There is trace right pleural effusion noted. Bibasilar atelectasis is seen. There is no pneumothorax. Multilevel
degenerative changes seen in the thoracic spine.

(answer only summarize report to text paragraph)
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Prompt 2: "Second Stage: First, Do No Harm" SafetyNet

Refine ’Input’ with ’Refine information’ indicating that the patient has conditions as refine infor-
mation with the following conditions:

1. If the input and refined information have mismatched information, such as Refine informa-
tion indicating an additional pathology not mentioned in the input, prioritize the refined
information.

2. However, if the ’Refine information’ suggests a pathology already included in the ’Input’, we
will not refine the input.

3. We will remove the sentence "lungs are clear" if there is any abnormality in the lung, pul-
monary, or pleura.

Example 1:
Input = The lungs are clear. No cardiomegaly. The cardiomediastinal and hilar contours are
normal. There is no focal consolidation, pleural effusion, or pneumothorax. The pulmonary
vascular markings are normal.
Refine information = This patient has cardiomegaly and pleural effusion.
Output should be = There is cardiomegaly. The cardiomediastinal and hilar contours are normal.
There is pleural effusion. There is no focal consolidation or pneumothorax. The pulmonary
vascular markings are normal.
Example 2:
Input = The lungs are clear. No cardiomegaly. The cardiomediastinal and hilar contours are
normal. There is no focal consolidation, pleural effusion, or pneumothorax. The pulmonary
vascular markings are normal.
Refine information = This patient has cardiomegaly.
Output should be = There is cardiomegaly. The lungs are clear. The cardiomediastinal and hilar
contours are normal. There is no focal consolidation, pleural effusion, or pneumothorax. The
pulmonary vascular markings are normal.
Your answer should provide only the ’Output’ format and not include any other comments.
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