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Abstract

This paper presents the first study for temporal
relation extraction in a zero-shot setting focus-
ing on biomedical text. We employ two types
of prompts and five Large Language Models
(LLMs; GPT-3.5, Mixtral, Llama 2, Gemma,
and PMC-LLaMA) to obtain responses about
the temporal relations between two events. Our
experiments demonstrate that LLMs struggle
in the zero-shot setting, performing worse than
fine-tuned specialized models in terms of F1
score. This highlights the challenging nature
of this task and underscores the need for fur-
ther research to enhance the performance of
LLMs in this context. We further contribute
a novel comprehensive temporal analysis by
calculating consistency scores for each LLM.
Our findings reveal that LLMs face challenges
in providing responses consistent with the tem-
poral properties of uniqueness and transitivity.
Moreover, we study the relation between the
temporal consistency of an LLM and its accu-
racy, and whether the latter can be improved by
solving temporal inconsistencies. Our analysis
shows that even when temporal consistency is
achieved, the predictions can remain inaccu-
rate.

1 Introduction

Reasoning regarding the temporality of events de-
tected in a text (e.g., understanding their duration,
frequency, and order) is an essential part of natural
language understanding (Allen, 1983; Wenzel and
Jatowt, 2023). Event ordering can be approached as
identifying temporal relations between two events,
a task often referred to as temporal relation ex-
traction (TempRE). This task can also be applied
to medical text (BioTempRE), e.g., clinical notes
written by clinicians regarding a patient’s visit, and
various medical events such as symptoms, treat-
ments, tests, and other medical terms (see Figure 1).
BioTempRE has numerous useful applications in

Figure 1: An example of three event pairs annotated
with temporal relations. In the right part, the order of
the events with respect to time (t) is shown and the
consistency of uniqueness and transitivity.

healthcare and can assist in medical diagnosis, in-
cluding adverse drug event detection and medical
history construction (Sun et al., 2013; Gumiel et al.,
2021; Haq et al., 2021; Tu et al., 2023). Current
state-of-the-art methods perform supervised learn-
ing, which requires annotated datasets (Wang et al.,
2022; Yao et al., 2022; Knez and Žitnik, 2024).
However, acquiring high-quality annotated data for
TempRE poses significant challenges causing prob-
lems to existing datasets like missing relations and
low inter-annotator agreement (Ning et al., 2017).
In the biomedical domain, this challenge is aggra-
vated by the need for expert knowledge and the
sensitive nature of medical data.

In TempRE, there are important properties that
emerge from the temporal nature of this task and de-
termine the relations between events (see Figure 1).
Such properties are symmetry (e.g., A BEFORE B
⇒ B AFTER A) and transitivity (e.g., A BEFORE
B and B BEFORE C ⇒ A BEFORE C). Addition-
ally, we identify the property of uniqueness: each
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pair of events can have only one temporal relation
since they are mutually exclusive. These properties
can be utilized to enforce global temporal consis-
tency on a model’s predictions: for example, on
a unified output of different classifiers (Chambers
et al., 2014; Tang et al., 2013), on a model that op-
erates locally (i.e., with one pair of events as input,
Ning et al. (2017)), or on predicted relations be-
tween different types of events (Wang et al., 2022).

Recently, Large Language Models (LLMs) have
shown remarkable performance in several tasks
even in a zero-shot setting, which helps to tackle
the need for training data (Bubeck et al., 2023; Wei
et al., 2022a). Numerous works experiment with
predictions of LLMs and study their reasoning abil-
ities and the impact of various prompts in different
tasks (Wu et al., 2023b; Jain et al., 2023; Tan et al.,
2023). Despite the success of LLMs, studies show
that these models continue to face challenges in
temporal reasoning, especially in TempRE (Tan
et al., 2023; Jain et al., 2023; Yuan et al., 2023), as
well as in biomedical tasks (Wu et al., 2023b). In
zero-shot TempRE, Yuan et al. (2023) employed
different prompts for ChatGPT and found that it
has a considerably lower performance compared
to standard supervised methods. They also report
ChatGPT’s tendency to provide temporally incon-
sistent responses, but only in terms of symmetry
and did not perform an evaluation of temporal con-
sistency specifically. Furthermore, to the best of
our knowledge, we are the first ones to investigate
the temporal reasoning capabilities of LLMs on
medical data.

In this paper, we perform zero-shot BioTempRE
on clinical notes (i.e., medical texts documenting
patients visits) by using prompts consisting of a
clinical note and questions regarding which tem-
poral relation exists between a pair of events.1 We
experiment with two different prompting strategies
(BatchQA and CoT) and five widely-used LLMs
(GPT-3.5, Mixtral 8x7B, Llama2 70B, Gemma 7B,
and PMC-LLaMA 13B). Our findings reveal that
LLMs perform poorly in this task, with a differ-
ence of approximately 0.2 in F1 score compared
to supervised models. Furthermore, we calculate
consistency scores for uniqueness and transitivity
for each LLM in order to assess their temporal con-
sistency and its impact on accuracy. Consistency
is later enforced on the predictions with an Integer

1We do not perform event detection and instead consider
the events in each text already known.

Linear Programming (ILP) method, revealing that
solving the inconsistencies does not improve the
F1 score.

Overall, our contributions are:

• To the best of our knowledge, this is the first
study of zero-shot BioTempRE.

• We provide extensive quantitative results of
two types of prompts and five different LLMs.

• We perform a novel temporal consistency anal-
ysis by calculating consistency scores for tem-
poral properties.

• We study how temporal consistency relates to
accuracy and enforce it using an ILP method.

• The code and data containing the prompts,
the raw and the processed responses by the
LLMs for around 600,000 pair instances, will
be publicly shared for further analysis.2

2 Related Work

2.1 Temporal Relation Extraction

Multiple studies on addressing TempRE have ap-
plied temporal properties to classifiers’ predictions,
either during training or at inference time, aiming
to improve their performance (Tang et al., 2013;
Chambers et al., 2014; Ning et al., 2017, 2018;
Wang et al., 2022). Other works have also em-
ployed linguistic properties or properties based
on causality (Chambers et al., 2014; Ning et al.,
2018). Ning et al. (2018) formulated temporal,
causal, and linguistic properties as constraints for
an ILP method. Later, Liu et al. (2021) showed
that ILP constraints can improve temporal consis-
tency, although in certain cases, the F1 score may
decrease.

Temporal Relation Extraction in the Medical
Domain. The 2012 Informatics for Integrating
Biology and the Bedside (i2b2) challenge was the
first to address the BioTempRE task (Sun et al.,
2013). The best-performing method involved merg-
ing predictions from different SVM and CRF clas-
sifiers with regard to temporal consistency (Tang
et al., 2013). Following challenges at SemEval,
called Clinical TempEval, were organized from
2015 to 2017 (Bethard et al., 2015, 2016, 2017)
and utilized the THYME corpus (Styler IV et al.,

2https://github.com/vasilikikou/consistent_
bioTempRE

https://github.com/vasilikikou/consistent_bioTempRE
https://github.com/vasilikikou/consistent_bioTempRE


74

2014).3 In 2015 and 2016, the best-performing
methods were CRF- and SVM- based (Velupil-
lai et al., 2015; Lee et al., 2016; Khalifa et al.,
2016), while in 2017 the winning approach em-
ployed an LSTM (Tourille et al., 2017). Following
approaches have utilized BERT (Lin et al., 2019;
Haq et al., 2021; Tu et al., 2023) for relation clas-
sification given a text and an event pair. Recently,
Knez and Žitnik (2024) introduced a multimodal
method in which, they constructed a graph with
medical information and then, they combined tex-
tual representations (extracted by BERT) and graph
representations (extracted by a GNN). However,
even though temporal consistency has been used
in existing TempRE works, it has not been utilized
for analyzing the performance of a model by calcu-
lating consistency scores.

2.2 Zero-Shot Temporal Relation Extraction

Zero-shot learning (Xian et al., 2019) enables mod-
els to execute tasks without explicit training, a capa-
bility demonstrated by scaling models since GPT-3
(Brown et al., 2020; Wei et al., 2022a). Instruction
tuning techniques (Wei et al., 2022a) further en-
hance zero-shot learning in LLMs. Recent openly
available LLMs like LLama (Touvron et al., 2023)
and Mixtral (Jiang et al., 2024) narrow the gap
with closed-source models, while chain-of-thought
(CoT) prompting (Wei et al., 2022b) has enhanced
their ability to handle complex tasks. Research
studies have shown that the temporal reasoning
tasks remain challenging for LLMs (Jain et al.,
2023), and specifically for TempRE, where Yuan
et al. (2023) explored zero-shot TempRE with Chat-
GPT and found that it yields a large performance
gap compared to supervised methods. However,
previous research has not analyzed zero-shot Tem-
pRE in the medical domain or the temporal consis-
tency and its impact on the performance of zero-
shot TempRE - both gaps we aim to fill in our work.
In this paper, we calculate consistency scores and
study their connection to the F1 scores.

3 Methodology

3.1 Problem Formulation

Given a text document D and a set of events
E = {e1, .., e|E|} mentioned in the text, we cre-
ate pairs of events, which are represented by the

3The i2b2 dataset is publicly available. The THYME cor-
pus is provided upon request, however our requests were not
answered.

set P = {p1, .., pi, .., p|P |}, where pi indicates the
ith pair, 1 ≤ i ≤ |P |. BioTempRE aims at as-
signing the appropriate temporal relation r to the
corresponding pair of events. Each pi ∈ P is
described by two distinct events {ej , ek}, where
1 ≤ j, k ≤ |E|. Furthermore, each event e ∈ E
is characterized by the points in time at which it
began and finished. These temporal points are de-
noted as b and f , respectively.

Following the work of Ning et al. (2018), we em-
ploy the same relation scheme, which consists of 5
different types of temporal relations r: before, after,
includes, is included, and simultaneously, repre-
sented by the label set RT = {rB, rA, rI , rII , rS}.
We choose this set of relations based on the fact
that they are fine-grained and well-defined, and
hence, suitable for creating temporal rules for our
analysis. An rB temporal relation indicates that
b(ej) < b(ek) and f(ej) < f(ek) , while an rA
temporal relation signifies that b(ej) > b(ek) and
f(ej) > f(ek). Furthermore, rI indicates that
b(ej) ≤ b(ek) and that f(ej) ≥ f(ek), and rII
signifies that b(ej) ≥ b(ek) and that f(ej) ≤
f(ek). Finally, rS signifies that b(ej) = b(ek) and
f(ej) = f(ek).

3.2 Zero-shot BioTempRE

We experiment with two different types of prompt-
ing: Batch-of-Questions (BatchQA) and Chain-of-
Thought (CoT) (Wei et al., 2022b; Yuan et al., 2023)
(see Figure 4 in Appendix A). In both, we start with
a preamble consisting of the document text (D)
and an instruction. Then, we introduce questions
regarding the temporal relations for a pair of events
pi consisting of events ej and ek.4 We formulate
the question for each relation based on its temporal
definition, as follows:

• BEFORE: Did ej start before ek started and
end before ek ended?

• AFTER: Did ej start after ek started and end
after ek ended?

• INCLUDES: Did ek start and end while ej
was happening?

• IS INCLUDED: Did ej start and end while ek
was happening?

• SIMULTANEOUS: Did ej and ek start and end
at the same time?

4The questions were ordered randomly.
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We also specify the desired output format by adding
“Answer with Yes or No.” to the end of each ques-
tion. For each event pair there is an independent
interaction with the LLM, and depending on the
type of prompt the questions mentioned above are
sent to the LLM in one or multiple prompts.

Batch-of-Questions (BatchQA). In BatchQA, a
single prompt is sent to the LLM. In the pream-
ble, after the document D, this instruction follows:

“Given document D, answer the following questions
ONLY with Yes or No.”. Next, all the questions
regarding the temporal relations are added in the
same prompt. The expected model response in-
cludes five Yes/No answers for each of the ques-
tions.

Chain-of-Thought (CoT). We use the same for-
mat of temporal prompts as in Yuan et al. (2023)
(based on their examples in the paper), and we
formulate the questions for the set of the 5 tempo-
ral relations used in Ning et al. (2018). The first
prompt is the preamble composed of the document
D and the question “Given the document D, are ej
and ek referring to the same event? Answer ONLY
with Yes or No.”. If the response is No, then the
questions are sent, each one after another, as they
are defined above. If the response is Yes, the phrase

“In that event,” is appended at the beginning of each
question.

4 Experimental Setup

4.1 Data

In our experiments, we use the dataset created for
the 2012 i2b2 challenge, which consists of 310
discharge summaries, 190 for training and 120 for
testing. The texts were initially annotated with 8
fine-grained relations but due to low inter-annotator
agreement these relations were merged to the fol-
lowing three: before, after and overlap. Each
discharge text contains 30.8 sentences on average,
with each sentence having an average number of
17.7 tokens. The average number of tokens per
discharge text is 514.

The i2b2 dataset contains three types of events:
1) medical events, 2) time expressions, and 3) the
dates of admission and discharge. The average
number of medical events per discharge summary is
86.7, while the average number of time expressions
is 10.5. The admission and discharge dates are
included in each text; however, in a few cases, one
of them might be missing. The annotators of i2b2

have assigned temporal relations to 27,540 pairs of
events (gold pairs).

An important step in TempRE is to identify
the pairs of events for which the models will de-
cide if there is a relation expressed or not since
it would not be feasible to check for every pair
of events mentioned in a document. In order to
generate candidate event pairs, we follow the ap-
proach of the best-performing method in the i2b2
challenge (Tang et al., 2013). This is a rule-based
approach, which creates pairs consisting of every
event and the admission and discharge dates, every
two consecutive events within the same sentence,
and events in the same as well as in different sen-
tences based on linguistic rules. The generated
candidate pairs are 60,840 in total, from which
28.16% appears also in the gold pairs.

The five relations we use in our experiments (see
Section 3) are different from the gold ones existing
in the dataset. In order to evaluate the prediction of
our methods, we map the five relations to the three
gold ones as follows: before → before, after →
after, includes → overlap, is included → overlap
and simultaneously → overlap.

4.2 Methods
LLMs We employ the following five (one closed-
source and four open-weight) models of various
sizes: GPT-3.5 (“ChatGPT”),5 Gemma 7B (Team
et al., 2024),6 Mixtral 8x7B (Jiang et al., 2024),7

Llama2 70B (Touvron et al., 2023),8 and PMC-
LLaMA 13B, which is pre-trained on medical
text (Wu et al., 2023a).9 PMC-LLaMA is only
instruction-tuned on QA data (respond to one ques-
tion at a time) and thus does not follow the format
of BatchQA prompts, which expect multiple out-
puts. Therefore, we use it only for CoT. The exper-
iments were costly in terms of time (and money for
GPT-3.5), especially for CoT, where each question
is sent separately. The running times ranged from
three hours (Gemma BatchQA) to 7 days (Llama
CoT) (see more details in Appendix A).

Baselines We implement a rule-based baseline,
called W-order, where only the before and after

5https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

6https://huggingface.co/google/gemma-1.
1-7b-it

7https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

8https://huggingface.co/meta-llama/
Llama-2-70b-chat-hf

9https://huggingface.co/axiong/PMC_LLaMA_13B

https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://huggingface.co/google/gemma-1.1-7b-it
https://huggingface.co/google/gemma-1.1-7b-it
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/axiong/PMC_LLaMA_13B
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relations are predicted for each event pair based
on the order in which the events are mentioned
in the text. A combination of the predictions of
each LLM with the W-order predictions is also
implemented. In cases where the LLM gives a
negative or uncertain prediction for all the relations,
the prediction of W-order is used instead.

5 Zero-shot TempRE results

To evaluate the correctness of the predicted rela-
tions, we calculate the precision, recall and F1
scores. For each pair of events pi = (ej , ek), we
check if the predicted relation ri matches the gold
relation. Hence, we calculate the triple (ej , ek, ri)
match between the predictions and the ground truth.
In Table 1, the results for the gold and candidate
pairs are presented. In order to perform a fair com-
parison, considering that not every candidate pair
of events has a gold annotation (and therefore it is
unknown whether a prediction is correct or wrong),
we only evaluate those generated candidate pairs
that are also contained in the gold pairs. If a gold
pair does not exist in the generated candidate pairs,
there is no prediction for it, and that would affect
the recall score negatively. In the Supervised set-
ting, we show scores reported by the corresponding
papers. Knez and Žitnik (2024) do not mention
event detection or candidate pair generation, hence
we assume they used the gold pairs. On the other
hand, we show the results from Haq et al. (2021)
and Tu et al. (2023) in the Candidate column since
they operate on events they have detected in the
text.

Our experiments demonstrate that the best per-
forming methods are the same for the gold and
the candidate pairs. As expected, the F1 score of
the methods when the candidate pairs are used is
lower, mostly due to the decrease in recall. The
best performing method is Llama CoT + W-order
in terms of F1 score. On the other hand, Mixtral
CoT achieves the best precision score and Gemma
BatchQA + W-order the best recall. Overall, the su-
pervised methods consistently outperform the meth-
ods in the zero-shot setting, with an average differ-
ence of approximately 20% F1 score. In general,
most LLMs (except for Gemma) exhibit improved
performance when the CoT prompting approach is
used. However, in an LLM-based comparison, we
observe that the performance varies depending on
the type of prompt used. For example, Llama with
CoT has the highest F1 score, but when BatchQA

is used, the score drops almost in half. Moreover,
the combination of W-order predictions with the
zero-shot methods yields improvements in recall
and F1 score, but in most cases, it harms preci-
sion. Notably, PMC-LLaMA, the medical LLM
we employed, has low results and is often outper-
formed by the general domain LLMs, showing no
advantage from pre-training on biomedical text.

6 Temporal consistency analysis

Considering the temporal nature of the TempRE
task, we investigate the impact of incorporating the
following two temporal properties in the zero-shot
setting: 1. uniqueness, requiring that each event
pair has exactly one relation, and 2. transitivity
(see transitivity rules in Table 4 in the Appendix).
First, we evaluate the zero-shot methods based on
their consistency, i.e., if their predictions follow
the temporal properties or not. Then, we use ILP
to enforce temporal consistency on the predictions.
Specifically, we examine the following three ques-
tions:

• How consistent are different zero-shot meth-
ods?

• How is the temporal consistency of the predic-
tions connected to their correctness?

• Can the predictions be improved by a tempo-
ral constraint-based ILP method?

How consistent are different zero-shot meth-
ods? We calculate two consistency scores: one
for uniqueness cU and one for transitivity cT , which
show the percentage of cases where the correspond-
ing temporal property was not violated. The con-
sistency score for uniqueness is calculated based
on the number of pairs as follows:

cU =

∑P
i=1 pi,|ri|=1

|P |
, (1)

where only the pairs pi with a singular predicted re-
lation ri are considered. In Table 2, the consistency
scores for uniqueness are reported. Furthermore,
we present the number of pairs for which no rela-
tion was predicted (# 0) and the number of pairs
with more than one predicted relation (# >1). We
observe that all the models struggle to keep consis-
tency, especially because of assigning more than
one relation to a pair. For the majority of the evalu-
ated LLMs, this occurs for at least 50% of the pairs
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Setting Method Gold Candidate
P R F1 P R F1

Rule-based W-order 0.348 0.348 0.348 0.382 0.305 0.339

Supervised
Haq et al. (2021)† - - - - - 0.736
Tu et al. (2023)† - - - 0.645 0.672 0.650
Knez and Žitnik (2024) - - 0.820 - - -
Tang et al. (2013) - - - 0.714 0.673 0.693

Zero-shot

GPT-3.5 BatchQA 0.588 0.083 0.132 0.607 0.060 0.101
GPT-3.5 BatchQA + W-order 0.395 0.397 0.396 0.424 0.340 0.377
GPT-3.5 CoT 0.400 0.641 0.491 0.387 0.494 0.432
GPT-3.5 CoT + W-order 0.400 0.677 0.502 0.390 0.528 0.447
Mixtral BatchQA 0.458 0.534 0.491 0.420 0.392 0.404
Mixtral BatchQA + W-order 0.452 0.572 0.504 0.422 0.428 0.424
Mixtral CoT 0.681 0.504 0.576 0.694 0.422 0.520
Mixtral CoT + W-order 0.545 0.596 0.569 0.561 0.494 0.524
Llama BatchQA 0.366 0.371 0.367 0.316 0.254 0.281
Llama BatchQA + W-order 0.367 0.411 0.387 0.327 0.292 0.308
Llama CoT 0.549 0.710 0.615 0.551 0.567 0.555
Llama CoT + W-order 0.534 0.742 0.620 0.538 0.595 0.564
Gemma BatchQA 0.426 0.837 0.564 0.425 0.667 0.519
Gemma BatchQA + W-order 0.426 0.838 0.565 0.425 0.668 0.519
Gemma CoT 0.429 0.398 0.401 0.449 0.318 0.358
Gemma CoT + W-order 0.385 0.552 0.452 0.407 0.458 0.429
PMC-LLaMA CoT 0.395 0.516 0.439 0.406 0.425 0.408
PMC-LLaMA CoT + W-order 0.390 0.574 0.463 0.403 0.476 0.435

Table 1: Precision (P), recall (R) and F1 scores of TempRE methods on the gold and candidate pairs. Methods with
† use a different candidate pair generation than ours, so their results are not directly comparable to ours.

Method Gold Candidate
cU (%) # 0 # >1 cT (%) cU (%) # 0 # >1 cT (%)

GPT-3.5 BatchQA 8.03 24,476 860 70.34 5.06 56,457 1,306 68.78
GPT-3.5 CoT 13.07 2,657 21,284 46.58 14.91 6,194 45,573 47.29
Mixtral BatchQA 59.94 3,102 7,931 71.20 60.13 7,192 17,063 71.87
Mixtral CoT 37.60 10,315 6,868 68.99 35.22 27,434 11,980 67.44
Llama BatchQA 71.67 2,858 4,945 82.35 70.58 6,451 11,446 80.05
Llama CoT 30.55 2,916 16,211 60.39 33.64 6,864 33,507 59.45
Gemma BatchQA 2.67 57 26,747 63.04 2.26 115 59,347 62.59
Gemma CoT 3.82 14,159 12,335 60.00 3.00 32,605 26,411 60.56
PMC-LLaMA CoT 33.18 7,469 10,933 60.45 31.88 17,977 23,465 59.85
W/ ILP reasoning 100 0 0 100 100 0 0 100

Table 2: Temporal consistency scores for uniqueness (cU ) and transitivity (cT ) for each model. The consistency
scores show the percentage of pairs which are consistent for the corresponding property. # 0 and # >1 shows the
number of pairs with none and more than one predictions respectively.

and can go up to 97% (Gemma BatchQA). In this
evaluation, we also find that there is no clear win-
ner among the LLMs or the prompt types, since the
same LLM shows different levels of consistency
with different prompt types. The combination with
the highest consistency for uniqueness is Llama

with BatchQA.
The consistency score for transitivity is calcu-

lated based on triples of event pairs in the follow-
ing form: ((ei, ej), (ej , ek), (ei, ek)). We first find
these triples in the dataset and then obtain the rela-
tions predicted for them. If r1, r2 and r3 are the pre-
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dictions for each respective pair in the triple, then
for r3, it should hold that r3 ∈ trans(r1, r2).10 If
it does not hold, then we have a transitivity viola-
tion. Therefore cT is calculated as:

cT =

∑|Tr|
i=1 ti,r3∈trans(r1,r2)

|Tr|
, (2)

where Tr is the set of transitivity triples and, for
each triple ti, the transitivity for the predicted rela-
tions holds.11 Table 2 showcases the cT scores for
each of the evaluated methods. Similar to unique-
ness, Llama BatchQA demonstrates the highest
consistency for transitivity. In general, for all
LLMs, we observe that the BatchQA approach
yields higher transitivity consistency scores than
CoT.

How is the temporal consistency of the predic-
tions connected to their correctness? When
comparing the consistency scores with F1, we ob-
serve a contradiction. Models that have high con-
sistency have a lower F1 score. In particular, Llama
BatchQA is the most consistent in terms of unique-
ness and transitivity, but has one of the lowest F1
scores. Especially for the candidate pairs, the F1
score is even lower than the rule-based baseline, yet
cU is 70.58% and cT is 80.05%. Moreover, Llama
CoT, which is the best in terms of F1 score, has low
consistency with around only 30% of predictions
being unique and 60% correct transitivity triples.
These insights suggest that temporal consistency
does not always mean correctness.

Can the predictions be improved by a tempo-
ral constraint-based ILP approach? Follow-
ing the approach proposed by Ning et al. (2017,
2018), we implemented an ILP step that uses the
temporal properties as constraints and changes in-
consistent predictions so that the constraints are not
violated.12 This study aims to investigate whether
enforcing consistency can improve the accuracy of
the predictions. First, we assign a confidence score
sc to each triple (ei, ej , rk),∀rk ∈ RT . The score
sc for a pair of events p = (ei, ej) equals 1, if the
relation was predicted from the model, and 0.2 oth-
erwise. Next, we create a binary vector, which is

10The transitive relations for the relation set we used can be
found in Table 4 in Appendix A.

11Triples where at least one pair was not assigned a relation
are excluded from this calculation.

12For the ILP implementation we used the Gurobi
optimizer (https://www.gurobi.com/solutions/
gurobi-optimizer/).

optimized with ILP. We refer to it as the indicator
I(pi, ri) ∈ [0, 1], ∀p ∈ P, r ∈ RT . We formulate
the constraints as follows:

• Uniqueness: ∑
p∈P,r∈RT

I(p, r) = 1 (3)

• Symmetry:

I(pi, ri) = I(psi , r̄i) (4)

where pi = (ei, ej) and psi = (ej , ei), and r̄i
is the reverse relation of ri.13

• Transitivity:

I((ei, ej), r1)+I((ej , ek), r2)−
∑

r3∈tr(r1,r2)

≤ 1

(5)

where r1, r2, r3 ∈ RT and trans(r1, r2) is
the set of relations that are the transitive of
relations r1 and r2.

The objective of the ILP method is to maximize
the confidence score sc based on the indicator I:

∧
I = argmax

∑
p∈P

∑
r∈RT

sc(p, r)I(p, r) (6)

As shown in Table 2, when the ILP reasoning
step is applied, the consistency scores for both
uniqueness and transitivity reach 100%. We ap-
plied this step to the predictions of Llama BatchQA
and Llama CoT, which are the models with the
highest contradiction between F1 and consistency.
In Table 3, we show the results before and after
applying the temporal constraints. Even though
the consistency of the predictions after reasoning is
100%, the F1 score decreases slightly for BatchQA
and by 0.066 for CoT. This means that the pre-
dictions are temporally consistent, but they are not
accurate. To get a better understanding of this issue,
Figure 2 demonstrates two examples of transitivity
triples for which the predictions violate the tran-
sitivity constraint. This indicates that at least one
of the three predictions is incorrect and needs to
change. In the top example, the first two relations
were correct, but these relations were changed by
the ILP step, resulting in only one relation being

13The reverse of each relation can be found in Table 5 in
Appendix A.

https://www.gurobi.com/solutions/gurobi-optimizer/
https://www.gurobi.com/solutions/gurobi-optimizer/
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Method W/o ILP reasoning W/ ILP reasoning
P R F1 P R F1

Llama BatchQA 0.366 0.371 0.367 0.366 0.366 0.366
Llama CoT 0.549 0.710 0.615 0.549 0.549 0.549

Table 3: Precision (P), recall (R) and F1 scores before and after the ILP temporal reasoning step on the gold pairs.

Transitive triples Inconsistent predictions Consistent predictions

(E2, E0), (E0, T0), (E2, T0)

before, is included, includes includes, simultaneous, includes

ILP

(E103, E102), (E102, T1), (E103, T1)

before, before, includes before, before, before

overlap, overlap, overlap

Gold relations

before, overlap, beforeMerge to 3 relations

before, before, before

Merge to 3 relations overlap, before, before

ILP

before, overlap, overlap

Merge to 3 relations

before, before, overlap

Merge to 3 relations

Figure 2: Examples of two transitive triples with inconsistent predictions. After the ILP the predictions are consistent
but still different from the gold relations.
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Figure 3: Barplot where each bar represents a range of
distances between events in the gold pairs. The y axis
shows the F1 score of the predictions for the pairs in
each bar.

correct in the consistent predictions. In the bot-
tom example, only one relation was changed to
enforce consistency. This resulted in two correctly
predicted relations after the ILP, but still the first re-
lation remained incorrect. This analysis highlights
our previous observation regarding the relation be-
tween consistency and accuracy, and points out to
the need of aligning these two aspects more effec-
tively in order for models to achieve an improved
performance in temporal reasoning.

7 Pairs distance-based analysis

Since clinical notes contain long texts (see Sec-
tion 4.1), we perform an analysis based on the dis-

tance of event pairs for the best-performing LLM
(Llama CoT). First, we calculate the distance in
terms of characters between the events for all the
gold pairs. Then, we sort the pairs by their dis-
tances and split them to 10 bins, so that each bin
contains roughly the same amount of pairs. Finally,
the F1 score is calculated for the prediction of the
pairs contained in each bin. Figure 3 depicts the
barplot with the bars representing the pairs in the
specific distance range and the corresponding F1
scores. We observe that 37.5% of the pairs have a
distance of 0 to 100 characters. Larger distances
appear less frequently and hence the range of dis-
tance is smaller in the first bars, while the last bars
have larger ranges. There is no consistent decrease
in F1 score as the distance increases, meaning that
the model is not affected by the distance of events
in the text.

8 Conclusion

In this paper, we performed BioTempRE on clinical
notes in a zero-shot setting employing five different
LLMs. Two types of prompts were used, namely
BatchQA and CoT, in order to obtain LLMs’ re-
sponses. The zero-shot performance of all LLMs
is lower compared to supervised learning methods.
Moreover, we perform a temporal evaluation by
calculating the consistency score of each LLM for
the temporal properties of uniqueness and transiv-
ity. We find that, in general, LLMs’ predictions
are temporally inconsistent and, interestingly, the
model with the higher consistency scores (Llama
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BatchQA) has one of the lowest F1 scores. An
ILP method utilized to enforce consistency on the
models’ predictions fails to improve their accuracy.
These findings indicate the importance of the rela-
tion between temporal consistency and correctness,
emphasizing the need for further study in order to
assist temporal reasoning.
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Limitations

The gold relations annotated in the dataset are only
three, coarse-grained and not well-defined with re-
spect to when they start and end. The consistency
analysis we performed is based on rules, which are
connected to the definition of relations and their
starting and end points. So in order to make sure
that the consistency is calculated accurately, we
used a set of 5 well-defined fine-grained relations.
However, for evaluating the results we need to map
the 5 relations to the original set of 3. This, in
some cases, could lead to an inaccurate compari-
son between the gold and the predicted relations.
Also, for the prompts, we used only the set of ques-
tions mentioned in Section 3.2 and did not perform
any prompt tuning. Experimenting with different
ways of formulating the questions could help in
finding prompts that yield better results. Another
research direction could be to add instructions to
the prompts for uniqueness and transitivity towards
obtaining consistent predictions.
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Figure 4: Examples of an interaction with the LLM using two different prompting strategies: BatchQA and
Chain-of-Thought.

r1 r2 trans(r1, r2)

before before before
after after after

includes includes includes
is included is included is included

simultaneous simultaneous simultaneous
before simultaneous before
after simultaneous after

includes simultaneous includes
is included simultaneous is included

before after [before, after, includes, is included, simultaneous]
before includes [before, includes]
before is included [before, is included]
after before [before, after, includes, is included, simultaneous]
after includes [after, includes]
after is included [after, is included]

includes before [before, includes]
includes after [after, includes]
includes is included [before, after, includes, is included, simultaneous]

is included before [before, is included]
is included after [after, is included]
is included includes [before, after, includes, is included, simultaneous]

simultaneous before before
simultaneous after after
simultaneous includes includes
simultaneous is included is included

Table 4: Transitivity rules for the five temporal relations used in this study.
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r r̄

before after
after before

includes is included
is included includes

simultaneous simultaneous

Table 5: Symmetry rules for the five temporal relations used in this study.
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