@inproceedings{frayling-etal-2024-uog,
title = "{U}o{G} Siephers at {``}Discharge Me!{''}: Exploring Ways to Generate Synthetic Patient Notes From Multi-Part Electronic Health Records",
author = "Frayling, Erlend and
Lever, Jake and
McDonald, Graham",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.62",
doi = "10.18653/v1/2024.bionlp-1.62",
pages = "712--718",
abstract = "This paper presents the UoG Siephers team participation at the Discharge Me! Shared Task on Streamlining Discharge Documentation. For our participation, we investigate appropriately selecting and encoding specific sections of Electronic Health Records (EHR) as input data for sequence-to-sequence models, to generate the discharge instructions and brief hospital course sections of a patient{'}s EHR. We found that, despite the large volume of disparate information that is often available in EHRs, selectively choosing an appropriate EHR section for training and prompting sequence-to-sequence models resulted in improved generative quality. In particular, we found that using only the history of present illness section of an EHR as input often led to better performance than using multiple EHR sections.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="frayling-etal-2024-uog">
<titleInfo>
<title>UoG Siephers at “Discharge Me!”: Exploring Ways to Generate Synthetic Patient Notes From Multi-Part Electronic Health Records</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erlend</namePart>
<namePart type="family">Frayling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jake</namePart>
<namePart type="family">Lever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">McDonald</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Workshop on Biomedical Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the UoG Siephers team participation at the Discharge Me! Shared Task on Streamlining Discharge Documentation. For our participation, we investigate appropriately selecting and encoding specific sections of Electronic Health Records (EHR) as input data for sequence-to-sequence models, to generate the discharge instructions and brief hospital course sections of a patient’s EHR. We found that, despite the large volume of disparate information that is often available in EHRs, selectively choosing an appropriate EHR section for training and prompting sequence-to-sequence models resulted in improved generative quality. In particular, we found that using only the history of present illness section of an EHR as input often led to better performance than using multiple EHR sections.</abstract>
<identifier type="citekey">frayling-etal-2024-uog</identifier>
<identifier type="doi">10.18653/v1/2024.bionlp-1.62</identifier>
<location>
<url>https://aclanthology.org/2024.bionlp-1.62</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>712</start>
<end>718</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UoG Siephers at “Discharge Me!”: Exploring Ways to Generate Synthetic Patient Notes From Multi-Part Electronic Health Records
%A Frayling, Erlend
%A Lever, Jake
%A McDonald, Graham
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Miwa, Makoto
%Y Roberts, Kirk
%Y Tsujii, Junichi
%S Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F frayling-etal-2024-uog
%X This paper presents the UoG Siephers team participation at the Discharge Me! Shared Task on Streamlining Discharge Documentation. For our participation, we investigate appropriately selecting and encoding specific sections of Electronic Health Records (EHR) as input data for sequence-to-sequence models, to generate the discharge instructions and brief hospital course sections of a patient’s EHR. We found that, despite the large volume of disparate information that is often available in EHRs, selectively choosing an appropriate EHR section for training and prompting sequence-to-sequence models resulted in improved generative quality. In particular, we found that using only the history of present illness section of an EHR as input often led to better performance than using multiple EHR sections.
%R 10.18653/v1/2024.bionlp-1.62
%U https://aclanthology.org/2024.bionlp-1.62
%U https://doi.org/10.18653/v1/2024.bionlp-1.62
%P 712-718
Markdown (Informal)
[UoG Siephers at “Discharge Me!”: Exploring Ways to Generate Synthetic Patient Notes From Multi-Part Electronic Health Records](https://aclanthology.org/2024.bionlp-1.62) (Frayling et al., BioNLP-WS 2024)
ACL