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Abstract

This paper presents the UoG Siephers team par-
ticipation at the Discharge Me! Shared Task on
Streamlining Discharge Documentation. For
our participation, we investigate appropriately
selecting and encoding specific sections of
Electronic Health Records (EHR) as input data
for sequence-to-sequence models, to generate
the discharge instructions and brief hospital
course sections of a patient’s EHR. We found
that, despite the large volume of disparate infor-
mation that is often available in EHRs, selec-
tively choosing an appropriate EHR section for
training and prompting sequence-to-sequence
models resulted in improved generative qual-
ity. In particular, we found that using only the
history of present illness section of an EHR as
input often led to better performance than using
multiple EHR sections.

1 Introduction

In the clinical domain, writing notes about patients’
health, diagnoses, and treatments is a necessary
part of the patient healthcare journey, but it is also
time consuming (Weiner and Biondich, 2006; Sin-
sky et al., 2016). The time spent by essential care
staff, such as doctors and nurses, writing the notes
in Electronic Health Records (EHRs) could be time
better spent performing important clinical duties.

The Discharge Me! BioNLP ACL’24 Shared
Task on Streamlining Discharge Documentation
challenged participants to produce a system that
can automatically generate: discharge instructions,
which contain detailed guidelines provided to a pa-
tient upon their discharge from hospital; and Brief
Hospital Courses, which summarise the key events,
treatments and progress for a patient during their
hospital stay (Xu et al., 2024). Discharge Me! par-
ticipants were provided a dataset curated from the
MIMIC-IV database (Johnson et al., 2023), which
contains de-identified patients’ EHRs.

EHRs are complex collections of, often long and

disparate, reports about a patient’s stay in hospital,
including reports on patient demographics, medical
history, laboratory tests and results, instructions for
the patient and many more sections. In this work,
we investigate several ways of appropriately select-
ing and encoding specific sections of EHRs as input
data for sequence-to-sequence (seq2seq) models to
generate the two target sections of the Discharge
Me! shared task, i.e., the discharge instruction
and the brief hospital course. In particular, in this
work we investigate the following three research
questions that guide our experimentation:

RQ1: What is the effect of using different sections
of EHRs as training data for seq2seq models?

RQ2: Can a model that uses multiple EHR sec-
tions as input achieve better performance than
models trained on single sections of EHRs?

RQ3: When concatenating multiple EHR sections
as input, is it better to concatenate lexically,
or concatenate embeddings post-encoding?

2 Related Work

Most relevant to our work is that of Hartman and
Campion (2022), who employed various encoder-
decoder models with different pre-trained check-
points (Rothe et al., 2020) to generate a brief hos-
pital course. Hartman and Campion attempted to
summarise EHR records as short day-by-day sum-
maries so that the EHR summaries would fit within
the context limit of seq2seq encoder-decoder mod-
els. In our work, instead of summarising the input
data to fit the context limit of an encoder-decoder
model, we experiment with selectively choosing
individual subsections of the EHR records to train
seq2seq models.

Pal et al. (Pal et al., 2023) used the nursing re-
port section of EHRs to generate a variety of EHR
sections, such as the history of present illness and
discharge instructions. The authors showed that
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seq2seq models, such as T5 and BART, can be ef-
fective for this task (Raffel et al., 2020; Lewis et al.,
2019). Differently from Pal et al., we explore using
multiple sections of the EHR as input data, and
ways to combine EHR sections as input.

Finally, the work of Liu et al. (2022) used the
discharge instructions of historic patients, who had
similar symptoms to a new patient, to write the new
patient’s discharge instruction. They used graph-
based reasoning to generate the new discharge in-
struction based on the historic patients’ instructions.
Differently, we focus on using information that is
entirely available in the patients own record and do
not rely on the information of other patients.

3 Methods

In this section we describe our approaches for
generating discharge instruction and brief hos-
pital course sections of EHRs. Using different
pre-trained encoder and/or decoder models within
seq2seq models has been shown to be an effective
way to adapt such models for different tasks (Rothe
et al., 2020; Hartman and Campion, 2022). There-
fore, in this work, we investigate three approaches
for constructing the input data for seq2seq models,
such that we can use the models’ limited context ef-
fectively to model the EHRs sections. For each
of our approaches, we deploy encoder-decoder
models following the work of Hartman and Cam-
pion (Hartman and Campion, 2022).

3.1 Separate Text Sections

Our first approach uses individual EHR sections
as the input to the seq2seq model. By using a
specific self-contained section, we ensure that the
training data is a focused and coherent report about
the patient’s medical history. In our experiments,
we compare the effectiveness of two separate EHR
sections, namely: History of Present Illness (HPI),
which contains information about patients’ stays in
hospital; Radiology Report (RR), which contains
information about patients’ radiology exams.

We choose to evaluate the HPI and RR sections
since the HPI sections encompass a lot of infor-
mation that is also discussed in other sections of
EHRs. Therefore, HPI sections can act as a general
overview of the patient’s condition, their reason for
visiting the hospital, and their care plan. Differ-
ently, the RR section details specific observations
about the physical condition of the patient. Indeed,
there is little intersection between the information
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Figure 1: Two EHR sections (purple and orange) are
passed to the encoder separately, then their separate
embedded representations, of corresponding colour, are
concatenated before being passed to the decoder model.

that is contained in the HPI and RR sections. There-
fore, evaluating the sections separately can provide
valuable insights about what kinds of information
are most useful for automatically generating dis-
charge instructions and brief hospital courses.

3.2 Concatenating Text Sections

Secondly, we consider that multiple EHR sections
may contain information that is essential for gener-
ating a correct discharge instruction or brief hospi-
tal course. In such a case, the approach presented
in Section 3.1 would not be able to model all of the
required information, due to the limited context of
seq2seq models. Therefore, in this approach, we
concatenate the text of the HPI and RR sections and
use an encoder model that accepts longer context,
i.e., Longformer (Beltagy et al., 2020).

3.3 Concatenating Embedded Sections

Finally, instead of concatenating the text of the dif-
ferent EHR sections, as described in Section 3.2, in
this approach we encode the HPI and RR sections
separately and then concatenate the encoded sec-
tions, before passing the concatenated encodings
to the cross attention layers of the decoder model.
This approach is inspired by how the reader com-
ponent of Fusion-in-Decoders (Izacard and Grave,
2020) performs question answering tasks with mul-
tiple retrieved context documents. We therefore
refer to this approach as our fusion approach.

Figure 1 illustrates our fusion approach. In this
approach, a model with a shorter context limit can
be used, though encoding the multiple sections sep-
arately increases computation time linearly. More-
over, the sections to be encoded are distinct, sep-
arate reports. Concatenating the sections into a
single long passage to encode, such as in Section
3.2, may result in a low-quality embedded repre-
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sentation that cannot capture the diversity of the
different textually concatenated reports. In this ap-
proach, by encoding EHR sections separately, the
contextual separation is retained for each section
and we hypothesise that this may improve perfor-
mance in the overall seq2seq generation task.

4 Experimental Setup

In this section, we present the experimental setup
to investigate the three research questions that we
presented in Section 1.

4.1 Dataset

The dataset for the task was provided by the or-
ganisers of the Discharge Me! shared task and is
curated from the MIMIC-IV database. The data
can be downloaded from Physionet.1 The dataset
is split into a training set (68,785 samples), a val-
idation set (14719 samples), a phase 1 testing set
(14702 samples) and a phase 2 testing set (10962
samples). Each sample corresponds to an emer-
gency department admission with an associated
discharge summary, which contains many different
reports on a patient’s stay in hospital. Each sample
also contains at least one RR. Finally, each sample
also contains a discharge instruction and a brief
hospital course section, which are the two target
sections to be generated. The dataset includes gold
standard discharge instruction and brief hospital
course sections for each of the training, validation,
phase 1 testing and phase 2 testing sets.

For our approaches described in Section 3, we
extract the HPI section and the most recent RR
section (some samples contain more than one RR
section) for each sample in the dataset using Python
Regular Expressions. From early exploratory work,
we discovered that, for the models that we evalu-
ate, using a large number of samples for training
offers little performance improvements compared
to using a smaller subset of the data. We therefore
use a subset dataset of 5000 random samples from
the training set, and 1000 random samples from the
validation set to train our chosen models.

4.2 Models

We now provide a description of the different mod-
els and model architectures that we deploy in our
experiments. In all cases we train two versions
of each model. One version is trained to generate
the target discharge instruction, while the other is

1https://physionet.org/

trained to generate the target brief hospital course.
In all cases, we train the models using the HPI
and/or RR sections to generate the target sections.

Firstly, to investigate the approach presented in
Section 3.1, we evaluate several encoder-decoder
seq2seq models that are trained on a single input,
either HPI or RR, and leverage pre-trained check-
points following Rothe et al. (Rothe et al., 2020).
We deploy three encoder models: a RoBERTa en-
coder (Liu et al., 2019), since it was found to be
the best performing by Rothe et al. (Rothe et al.,
2020); the ClinicalBERT encoder (Alsentzer et al.,
2019), as it is pre-trained on MIMIC data; and the
BERT encoder (Devlin et al., 2018) as an appropri-
ate baseline. We deploy the same decoder, GPT-
2 (Radford et al., 2019), in all instances. Addition-
ally, we also deploy a base-size T5 model (Raffel
et al., 2020) since it has been shown to be effec-
tive for seq2seq tasks. Our participation in the
Discharge Me! shared task investigated the effec-
tiveness of different encoder-decoder models, how-
ever for completeness we deploy two decoder-only
models, namely GPT-2 (Radford et al., 2019) and
Llama 3 8B (Meta, 2024). We train the decoder-
only models by passing the input and target sec-
tions as one string, where the sections are separated
by three newline characters. At inference time the
models are passed only the input data and newline
characters.

For our approach that we described in Sec-
tion 3.2, we deploy an encoder-decoder model with
a pre-trained Longformer encoder model (Beltagy
et al., 2020) and GPT-2 decoder. The Longformer
model has a context window of up to 4096 tokens,
ensuring that for EHR samples in our dataset the
HPI and RR sections can be concatenated before
encoding, as described in Section 3.2. We concate-
nate the sections as separate paragraphs by joining
the sections with connecting newline characters.

Finally, for our fusion approach, presented in
Section 3.3, we deploy two encoder-decoder mod-
els. Both models use a RoBERTa encoder and
GPT-2 decoders. One model uses the base size
GPT-2 decoder, the other model uses GPT-2 large.
We refer to these models as Fusion-roBERTa-GPT2
and Fusion-roBERTa-GPT2-large respectively.2

For all of our models, we perform 15 runs
of hyperparameter tuning using Optuna (Akiba

2We also submitted BERT-GPT2 and ClinicalBERT-GPT2
fusion runs to the Discharge Me! leader board. However, the
official evaluation script was not able to generate results for
us to evaluate these models.
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Model Overall Score BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
Encoder-Decoder Architectures

T5 (HPI) 0.191 0.017 0.341 0.108 0.209 0.268 0.247 0.143 0.193
T5 (RR) 0.079 0.001 0.128 0.008 0.080 0.130 0.073 0.157 0.054
BERT-GPT2 (HPI) 0.144 0.012 0.258 0.045 0.124 0.245 0.242 0.113 0.114
BERT-GPT2 (RR) 0.156 0.011 0.294 0.055 0.157 0.253 0.244 0.105 0.128
roBERTa-GPT2 (HPI) 0.143 0.009 0.250 0.025 0.135 0.251 0.239 0.107 0.124
roBERTa-GPT2 (RR) 0.110 0.005 0.183 0.010 0.092 0.198 0.188 0.119 0.083
ClinicaBERT-GPT2 (HPI) 0.143 0.011 0.254 0.020 0.131 0.252 0.239 0.108 0.124
ClinicalBERT-GPT2 (RR) 0.149 0.012 0.272 0.046 0.144 0.252 0.240 0.106 0123
LongFormer-GPT2 0.152 0.013 0.278 0.030 0.153 0.255 0.244 0.110 0.135
Fusion-roBERTa-GPT2 0.148 0.011 0.264 0.029 0.137 0.255 0.243 0.113 0.130
Fusion-roBERTa-GPT2-large 0.159 0.039 0.222 0.042 0.146 0.251 0.266 0.134 0.169

Decoder-only Models
GPT-2 (HPI) 0.153 0.009 0.284 0.035 0.139 0.241 0.206 0.167 0.151
GPT-2 (RR) 0.128 0.011 0.160 0.021 0.101 0.232 0.212 0.158 0.131
Llama 3 (HPI) 0.196 0.028 0.350 0.091 0.180 0.300 0.218 0.172 0.230
Llama 3 (RR) 0.168 0.016 0.322 0.072 0.160 0.264 0.195 0.151 0.167

Table 1: Results for our different methods evaluated by the official Discharge Me! submission system. Bold text
indicates the best scoring encoder-decoder results. Underlined text indicates the best scoring decoder-only results.

et al., 2019), searching learning rate (1e-6 to 1e-
3), weight decay (1e-4 to 1e-2), and number of
epochs (1 to 9). We optimise for evaluation loss
and use the best hyperparameter configuration to
train a final model that is used in evaluation, all
using 3 NVIDIA RTX A6000 GPUs. To fine-tune
the Llama 3 model we use gradient accumulation
(Goodfellow et al., 2016; Bengio, 2012), process-
ing batches of 4 and accumulating to batches of 8, 8
being the batch size we use to train all of our other
models. We also use Quantised Low Rank Adap-
tation to fine-tune the Llama 3 model (Dettmers
et al., 2024)

4.3 Evaluation Metrics
The two generated target texts of each model are
evaluated independently against their correspond-
ing gold standard texts using a variety of text-based
similarity metrics and factual correctness metrics.
The metrics used for evaluation are: BLEU-4 (Pap-
ineni et al., 2002); the ROUGE metrics including
ROUGE-1, ROUGE-2 and ROUGE-L (Lin, 2004);
BertScore; Meteor (Banerjee and Lavie, 2005);
AlignScore (Zha et al., 2023), and MEDCON (Yim
et al., 2023). Each of the eight metric scores for
each of the two generated datasets are then aver-
aged to get combined score for each metric, and
then finally all eight scores are average again to
produce a single overall score.

5 Results

This section describes our findings relating to the
research questions presented in Section 1. Table
1 provides the results our models achieved when

submitted to Discharge Me! leaderboard (Xu et al.,
2024). Overall for the encoder-decoder models, a
T5 model trained on HPI sections of patient EHRs
was the best performing model, achieving 0.191
Overall Score, with the next best approach BERT-
GPT2(RR) achieving 0.156 Overall Score. Addi-
tionally, the Llama 3 decoder-only model achieves
competitive performance with the T5 model when
using the HPI sections of EHRs. This is, arguably,
to be expected given the much larger size, and
recency of the model. Furthermore, both decoder-
only models, Llama 3 and GPT-2, perform better
when using the HPI as input rather than the RR sec-
tion. This is in line with our findings for encoder-
decoder models.

Concerning RQ1, the T5 and RoBERTa-GPT2
models perform better when trained on the HPI in-
put. On the other hand, the BERT-GPT2 model and
ClinicalBERT-GPT2 model perform better when
trained with RR input. However, the performance
increases that are obtained from training on HPI
data are notably greater than any performance im-
provements that are obtained from training on RR
data. The T5(HPI) model shows 141% improve-
ment in Overall Score compared to the T5(RR)
model, whereas the BERT-GPT2(HPI) model re-
sulted in only a 7% Overall Score drop compared
to its BERT-GPT2(RR) counterpart. Similarly,
roBERTa-GPT2(HPI) achieves a 29% improve-
ment over roBERTa-GPT2(RR), while there is only
a 4% drop in Overall Score between ClinicalBERT-
GPT2(RR) and ClinicalBERT-GPT2(HPI). An-
swering RQ1, we find that when training on indi-
vidual record sections, training on HPI most often
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leads to better performance compared to models
trained on RR. Indeed, the gains in Overall Score
from training on HPI compared to RR are notably
greater.

In answering RQ2, we find that training seq2seq
models on multiple concatenated sections of EHR
with models does not outperform models trained
on a single input section of a record. Our best per-
forming concatenation model, LongFormer-GPT-2,
outperforms several models trained on single EHR
sections. However, both BERT-GPT2(RR) and
T5(HPI) both outperform the Longformer-GPT2
model. This indicates that choosing a single in-
put section for the right model can outperform a
model that has access to both sections of the data.
Specifically, we see that the Longformer-GPT2 out-
performs the BERT-GPT2(RR) model by a small
margin in BERTScore and Meteor. However, the
two models perform very similarly, indicating that
the additional information in HPI that was available
to the Longformer-GPT2 model did not improve
its performance markedly. Thus, training on addi-
tional information is not always beneficial.

Regarding RQ3, we find that concatenating the
different sections of EHR records lexically, and
then using an encoder with a larger context win-
dow is a more effective method for this task than
encoding the different sections separately as pro-
posed in Section 3.3. Neither of our fusion mod-
els beat the LongFormer-GPT2 model in overall
score, despite Fusion-roBERTa-GPT2-large using
a larger decoder model. Considering this in the
context of the findings of our first and second re-
search question, this may indicate that the decoder
model is not able to utilise the separately embedded
records sections as effectively as it is able to under-
stand embeddings of a single section of the report.
Replacing the decoder with a larger model does
improve performance, but still the performance is
worse than a T5-base model trained on the single
HPI section.

6 Qualitative Analysis

In this section we investigate the generated record
quality for the best performing seq2seq model,
T5(HPI). We analyse the ten highest and ten lowest
scoring generated discharge instructions and brief
hospital course, in terms of their ROUGE-1 scores.

In the highest scoring generated EHR sections,
the core ailments of the patients are correctly de-
scribed. In the generated discharge instructions,

the recommended followup treatment is often inac-
curate but the structure of the instructions, which
all contain subheadings (e.g. "why you were in
hospital", "what you should do after leaving"), are
usually correctly generated and match the target
texts. This improves the overall quality of the gen-
erated discharge instructions. The generated brief
hospital courses match most of the text of their
corresponding target texts exactly. However, they
deviate towards the end of the text often adding
extended information that is still topically relevant,
but not actually part of the true target text.

Inspecting the lowest scoring generated samples,
we find common problems with the generation pro-
cess for both the discharge instructions and brief
hospital courses. While our models are effective at
writing structured discharge instructions with spe-
cific sub headings, and brief hospital courses that
contain a verbose description of the patient’s prob-
lems, the effectiveness of the generation degrades
when the target texts are not in line with these
formats. For example, when the target discharge
instruction is a short single-line note, such as in-
structions about avoiding a certain kind of food,
or a reminder for the patient to weigh themselves,
the models attempts to generate a long instruction
with many unnecessary subsections. Similarly, our
model will attempt to generate a verbose brief hos-
pital course, even when the true target is a list of
vital-sign readings. Uniquely to the discharge in-
struction generation, we find that several of the tar-
get sections are written in Spanish. In such cases,
our model still attempts to generate English text, as
the input section is always written in English.

7 Conclusion

To conclude, we have found that training a seq2seq
model to generate discharge instructions and brief
hospital courses using single sections from Elec-
tronic Health Records (EHR) as input, outper-
formed models trained using multiple sections of
EHR as input. Moreover, choosing which single
section to use as input is an important factor that
depends on the chosen seq2seq model and that
generally, some sections can expect to provide rea-
sonable performance overall compared to others.
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8 Limitations

We note that there are many potential extension
to our experiments that could provide additional
valuable insights beyond the scope of this work.
Firstly, in our work we use only a GPT-2 decoder
in all our encoder-decoder models, while in Table 1
we find that a Llama 3 decoder-only model outper-
forms the GPT-2 decoder-only model. Therefore,
we could, for example, evaluate Llama 3 as the
decoder in an encoder-decoder architecture. More-
over, evaluating different sizes of decoder models
would also bring additional insights. For example,
the results for the Fusion-roBERTa-GPT2-large
model in Table 1 show that using a larger variant of
GPT-2 decoder in the encoder-decoder architecture
improves overall performance.

Secondly, in our work we only investigate using
two sections of EHRs, namely the History of
Present Illness section and the Radiology Report.
Though ultimately we found using one of these
two sections to train a model was more effective
than combining both sections as input, further
research to explore the use of other sections of the
EHR poses interesting questions. For example,
are there other sections that are better to use
as input than the ones we have chosen to use?
Moreover, concerning the approaches described
in Sections 3.2 and 3.3, how does increasing the
number of EHR sections that are concatenated as
input affect performance?
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