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Abstract

In this work, we propose our top-ranking (2nd
place) pipeline for the generation of discharge
summary subsections as a part of the BioNLP
2024 Shared Task 2: "Discharge Me!". We eval-
uate both encoder-decoder and state-of-the-art
decoder-only language models on the genera-
tion of two key sections of the discharge sum-
mary. To evaluate the ability of NLP methods
to further alleviate the documentation burden
on physicians, we also design a novel pipeline
to generate the brief hospital course directly
from structured information found in the EHR.
Finally, we evaluate a constrained beam search
approach to inject external knowledge about
relevant patient problems into the text genera-
tion process. We find that a BioBART model
fine-tuned on a larger fraction of the data with-
out constrained beam search outperforms all
other models.

1 Introduction

Discharge summaries are vital sources of infor-
mation that provide a bridge between inpatient
treatment and continuation of care in rehabilitation,
outpatient, or other intermediate settings. These
summaries are often the only form of communica-
tion that follows a patient to their next setting of
care (Kind and Smith, 2011). This documentation
serves many roles, including next action items nec-
essary for the patient, clear identification of inciden-
tal findings necessitating follow-up, new treatment
regiments, and many other important components
of patient treatment plan (Chatterton et al., 2023).
The discharge summary is a complex document
that addresses not only a wide array of members of
the care team including the patient’s primary care
physician, specialists, ancillary departments, but
also the patient themselves. Within the discharge
summary, two sections are particularly instrumen-
tal in the continuity of care and complex in their
content: the Brief Hospital Course (BHC) and the

Discharge Instructions.
The BHC summarizes the course of events that

occurred from the moment a patient presents to the
emergency department (ED) through their hospi-
tal course, ending in discharge. This summary is
often structured by problem list or procedure and
depends heavily on the discharging service (medi-
cal vs. surgical etc.) Discharge instructions serve
to inform the patient through lay language about
key details of their hospital stay, as well as to struc-
ture the complex follow-up care that patients will
navigate after discharge, enabling them to manage
their health effectively in collaboration with their
outpatient medical team (Becker et al., 2021; Dubb
et al., 2022).

Large Language Models (LLMs), such as Chat-
GPT, offer a potential solution to the long-standing
issue of inaccessible medical communication and
the time-demanding nature of synthesis of dis-
charge summaries. Creating high-quality discharge
summaries is a challenging and time-consuming
task. Significant prior work has demonstrated the
broad capabilities of LLMs in clinical natural lan-
guage processing (Gilson et al., 2023; Nayak et al.,
2023; Eppler et al., 2023; Zaretsky et al., 2024).
This work suggests that LLMs could be leveraged
for the automated generation of discharge sum-
maries. The automatic generation of discharge sum-
maries from inpatient documentation could support
alleviating the burden of clinical documentation,
particularly under the significant pressures of the
inpatient setting (Searle et al., 2023; O’Donnell
et al., 2009).

2 Background

2.1 Task Description

The BioNLP 2024 Task 2 Challenge, Discharge
Me! (Xu et al., 2024), consists of two subtasks: (1)
generation of Brief Hospital Courses (BHC) and
(2) generation of Discharge Instructions.
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Task Model Overall BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
B
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e
AIMI-Baseline 0.1141 0.0171 0.1184 0.0698 0.1348 0.1726 0.0889 0.1714 0.1398
GPT 3.5 (0-shot) 0.2035 0.0210 0.3472 0.0983 0.2289 0.2815 0.2232 0.1865 0.2410
Clinical-T5 0.2068 0.0357 0.3145 0.1378 0.2273 0.3180 0.1678 0.2251 0.2285
BioBART 0.2198 0.0576 0.3161 0.1100 0.2021 0.3383 0.2823 0.2007 0.2515
BioBART v2 0.2227 0.0600 0.3310 0.1239 0.2231 0.3354 0.2802 0.1941 0.2340
BioBART-Shuffled 0.2464 0.0488 0.3807 0.2052 0.3003 0.3278 0.2661 0.1959 0.2463
GPT-3.5 + Pseudo-SOAP notes* 0.1498 0.0032 0.2603 0.0345 0.1233 0.2374 0.2037 0.2000 0.1360
BioBART + Constrained Generation 0.1255 0.0045 0.2015 0.0381 0.0900 0.1607 0.2070 0.1739 0.1282

D
is

ch
ar

ge
In

st
ru

ct
io

ns AIMI-Baseline 0.0909 0.0119 0.1343 0.0335 0.0910 0.1026 0.0889 0.1622 0.1025
GPT-3.5 (0-shot) 0.2289 0.0299 0.3761 0.1312 0.2271 0.3047 0.3109 0.1821 0.2690
BioBART 0.3308 0.1458 0.4465 0.1796 0.2679 0.4382 0.3976 0.3527 0.4183

Table 1: Results for Black-box GPT models, BART, and T5 pipelines for brief hospital course (subtask 1) and
discharge instruction (subtask 2) generation. * indicates that only 121/250 summaries were used, as not all patients
had transfer events in structured data.

Formally, we define both problems as sequence-
to-sequence text generation tasks. Subtask 1 can
be seen as abstractive summarization of the text
preceding the BHC. As much of this text is auto-
generated by the EHR (e.g. demographics, past
medical history, pertinent labs), we can leverage
this information without increasing the burden of
documentation on physicians. Subtask 2 can also
be considered summarization, but requires that the
generated text be patient-readable. In this setting,
we use the BHC that would have already been gen-
erated and attempt to simplify the hospital course,
while also providing recommendations for follow-
up care. In this work, we evaluate both encoder-
decoder models (e.g. BART, T5) and decoder-only
models (black-box Azure GPT-3.5). We also pro-
pose 2 additional pipelines: (1) a structured data-
only BHC generation pipeline that completely re-
moves the need for physician documentation and
(2) a constrained beam search approach to improve
recall of clinical concepts in BHCs.

2.2 Dataset

The challenge dataset included discharge sum-
maries from 109,168 visits to the Emergency De-
partment (ED) from the note and ED modules
of MIMIC-IV. MIMIC-IV is a publicly available
database sourced from the Beth Israel Deaconess
Medical Center electronic health record (EHR) that
provides a wide array of de-identified patient in-
formation containing both structured and unstruc-
tured data (Johnson et al., 2023). The text data con-
sisted of a discharge summary, chief complaints,
and at least one radiology report. The dataset
also included demographics and ED diagnoses as
structured data. For our models developed using
only structured information, we used data from the
MIMIC-IV hosp module that included additional
demographics (e.g. admission times, treatment

wards), hospital diagnoses, procedures, laboratory
values, inpatient medications, and lab culture re-
sults. These structured data elements were used in
a GPT-3.5 pipeline described in Section 3.2.3. The
data set was divided into training, validation, and
testing (phase I and II) testing sets, of which 250
discharge summaries were selected for standard-
ized final evaluation (Xu et al., 2024).

2.3 SOAP Notes
The subjective, objective, assessment, and plan
(SOAP) note is a widely used standard method of
documentation used by healthcare providers. The
SOAP note is a method of standardizing medical
documentation to help physicians streamline clini-
cal decision making (Weed, 1968). The subjective
commonly contains the chief complaint, history
of present illness (HPI), past medical history, and
review of systems. Objective information contains
vital signs, physical exam findings, and diagnostic
data such as labs, imaging, and other testing. The
assessment represents a synthesis of the informa-
tion collected in prior sections and a presentation of
a differential diagnosis. The plan reflects the next
steps, frequently including important action items
such as consults, additional testing, medications,
and other interventions (Tait, 1979).

3 Method

3.1 Data Preprocessing
For the generation of BHCs, we extract all preced-
ing text prior to the brief hospital course. For the
generation of discharge instructions, we use the
provided ground-truth BHC. For all models that we
fine-tuned, we tokenized text based on the encoding
scheme used during model training. BART-based
models (Lewis et al., 2020) use Byte-pair encod-
ing (Radford et al., 2019) and truncate input and
output tokens to the max sequence length of 1024.
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Unlike BART-based models, T5 models (Raffel
et al., 2020) use Sentencepiece tokenization (Kudo
and Richardson, 2018) and relative position embed-
dings, so while input tokens are truncated to 512
(max context length), output tokens are set to the
maximum for our dataset (3903 tokens).

3.2 Subtask 1: Brief Hospital Course

3.2.1 Generation from Unstructured Data
We train three model classes to generate brief hospi-
tal courses: BART-based, T5-based, and black box
GPT models. We opt for continuously-pretrained
biomedical encoder-decoder models as previous
work has demonstrated that these models outper-
form those trained from scratch (Gu et al., 2021).
BioBART-Large (Yuan et al., 2022) is a 12-layer
encoder-decoder model with 406M parameters ini-
tialized from a general domain model and contin-
uously pretrained on biomedical paper abstracts
from PubMed. The other encoder-decoder model,
Clinical-T5-Large (Hernandez et al., 2023), with
770M parameters, was instead trained from scratch
on MIMIC-III (Johnson et al., 2016) and MIMIC-
IV notes. Due to the relative position embeddings
in Clinical-T5, it can generate longer summaries,
unlike the BioBART model, which is limited to
1024 tokens of output, due to its fixed position
embeddings. Given that 10.3% of the challenge
dataset has greater than 1024 tokens, we hypothe-
size that the Clinical-T5 model will achieve better
performance.

We also compare fine-tuning with 0-shot perfor-
mance of an Azure OpenAI GPT-3.5 Turbo model*
with human-based abuse monitoring switched off,
in keeping with MIMIC’s data use agreement. Dur-
ing preliminary evaluations, no significant differ-
ences were observed between GPT-3.5 and GPT-4,
leading us to choose the more economical option.

3.2.2 Constrained Generation
Upon manual review during phase II testing, we
noticed that our encoder-decoder models often
failed to provide key formatting or content sec-
tions in the BHC. For example, summaries gen-
erated by CMED (Cardiac Medical) services tend
to contain summaries structured by problem list
(e.g. # UTI:...# Cough...). Due to the variabil-
ity in discharge summaries based on individual
physician preferences, discharge ward, and patient
context, encoder-decoder models seemed to strug-

*version: 2023-07-01-preview

Figure 1: GPT-3.5 Pipeline for generation of brief hos-
pital courses using only structured data

gle to learn summary structure. Therefore, we at-
tempted to enforce the inclusion of important prob-
lems through constrained beam search generation
(Anderson et al., 2016; Post and Vilar, 2018; Hu
et al., 2019). Constrained beam search injects ex-
ternal knowledge into the generative beam search
process by including additional beams for tokens
of interest. To identify relevant concepts of inter-
est, we used MedCat (Kraljevic et al., 2021) to tag
the history of present illness section preceding the
BHC with UMLS (Bodenreider, 2004) concepts.
We then constrained our best-performing BioBART
model to include these concepts during its beam
search. We called this model BioBART + Con-
strained Generation.

3.2.3 Generation from Structured Data
To evaluate the ability of GPT-based models to fur-
ther alleviate documentation burden, we develop
a pipeline to generate BHCs directly from struc-
tured data. As shown in Figure 1, we first extract
all relevant structured information for each patient:
demographics, ED diagnoses, procedures, inpatient
medications, lab values, and lab culture results. As
SOAP notes are generally generated either daily
or for each service, we generate individual SOAP
notes for each transfer during the patient’s hospital
admission. These SOAP notes are then provided to
the GPT-3.5 model in a 0-shot setting to generate
brief hospital courses.

3.3 Subtask 2: Discharge Instructions

Similar to subtask 1, we evaluate both fine-tuning
and in-context learning (ICL) in the generation
of discharge instructions. Namely, we fine-tune
BioBART-Large on the brief hospital course text,
under the assumption that discharge summaries are
generated sequentially and this information would
be available to the model in practice. A limited
subset of BHCs was provided to GPT-3.5 LLM
in a 2-shot approach. In this setting, we noticed
that in-context learning did not necessarily improve
generation structure so we opted to not evaluate the
full test set in the 2-shot setting. Therefore, we
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provided GPT-3.5 with BHCs and evaluated it in
a 0-shot setting. GPT-4 LLM also did not demon-
strate performance improvement as measured by
ROUGE in a limited subset of 375 notes (GPT-3.5
R-1: 0.306, R-2: 0.083, R-L: 0.159, GPT-4 R-1:
0.309, R-2: 0.079, R-L: 0.157, respectively). As a
result, GPT-3.5 was provided the entire test set of
BHCs in a 0-shot setting for discharge instruction
generation.

4 Experiments and Results

4.1 Quantitative Evaluation

To evaluate the performance of the models, a
suite of automated summarization metrics includ-
ing BLEU, ROUGE-1, ROUGE-2, ROUGE-L,
BERTScore, Meteor, AlignScore, and MEDCON
were calculated (Papineni et al., 2002; Lin, 2004;
Zhang et al., 2019; Banerjee and Lavie, 2005; Zha
et al., 2023; Yim et al., 2023). We report summa-
rization metrics for all model variations in Table
1. On BHC generation, we trained two encoder-
decoder models: the Clinical-T5 and BioBART
models finding that BioBART performed better.
Manual review showed that while Clinical-T5 was
fine-tuned on larger generations (up to 3903 to-
kens), its original pre-training truncated generation
to 512 tokens, and therefore the model remained
biased towards shorter generations. To evaluate
the impact of in-domain vocabulary on BHC gener-
ation, we also tested BioBART v2, continuously
pre-trained with a larger, cross-domain vocabu-
lary, as opposed to the standard general domain
vocabulary (Yuan et al., 2022). We found that Bio-
BART outperformed BioBART v2, potentially due
to the expanded vocabulary coming from biomedi-
cal literature rather than the clinical notes found in
this challenge. Finally, we also tested the impact
of increased training data size (BioBART-Shuffled)
by shuffling the phase I training, validation and
testing data set, before recombining for an addi-
tional 14,690 discharge summaries in the training
set. Across the encoder-decoder models, BioBART-
Shuffled performed best, yielding us 2nd place on
the challenge leaderboard.

We also compared these results to a GPT-3.5
0-shot model, finding that black-box GPT-3.5 per-
formed worse than the best performing fine-tuned
model. When repeating this experiment with our
structured data-only method (GPT-3.5 + Pseudo-
SOAP notes) as well as constrained generation, we
found that neither of these methods offered im-

Evaluation Criteria Brief Hospital Course Discharge Instructions
Completeness 3.52 4.27
Correctness 2.57 3.95
Readability 2.11 -

Overall 1.53 2.36

Table 2: Average ratings across 3 criteria for 3 clinicians
(Discharge instruction readability was not assessed as
the target audience are patients)

provement over our best-performing model, Bio-
BART. In the generation of discharge instructions,
the BioBART outperformed GPT-3.5, and so was
included as our challenge submission.

4.2 Qualitative Evaluation

To evaluate the clinical validity of generated brief
hospital courses and discharge instructions, a team
of 3 clinicians reviewed a random sample of 25
generations from the hidden set of 250 discharge
summaries. Each clinician rated both the brief hos-
pital courses and discharge instructions according
to 3 criteria: Completeness (captures important
information), Correctness (contains less false in-
formation), and Readability. They also provide a
holistic assessment as an overall score (Xu et al.,
2024). All metrics are averaged, and results are pre-
sented in Table 2, showing that both the brief hospi-
tal course and discharge instructions received their
highest grades in completeness and lowest in the
overall evaluation criteria. Selected discharge in-
structions received higher grades across complete-
ness, correctness, and overall criteria compared to
brief hospital course. This is likely due to the na-
ture of the increased complexity and wider range
of information often necessary for inclusion in a
brief hospital course.

5 Limitations

While our methods were able to produce reason-
able BHCs and discharge instructions, there are
several important limitations to our study. Com-
putationally, we were unable to perform a rigor-
ous hyperparameter search across all our experi-
mental conditions due to computational constraints.
There is potential for improvement given further
resources. Namely, we were surprised that Con-
strained Generation performed significantly worse
than vanilla BioBART models. This is potentially
due to the additional hyperparameters that need
to be tuned, including the tokens of interest that
MedCat identified and beam sizes.

Furthermore, we believe that there is limited clin-
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ical validity in the current task as it has been framed.
The automated generation of BHC and discharge
instructions utilizing physician generated preced-
ing text does not truly automate the task, nor does
it obviate the need for the core summarization task
of note-writing on the part of the physician (rather
than documentation of findings). We attempted to
model a more representative use case by including
the generation of Pseudo-SOAP notes but found sig-
nificantly worse performance, demonstrating this
difficulty of the real-world clinical task. Further-
more, the format and physician- and institution-
specific stylistic choices had a significant impact
on automated performance, as demonstrated by the
significant variation in documentation length and
lack of standard templates even within services
that discharged patients. The Challenge organizers
did attempt to alleviate concerns around general-
izability with a qualitative analysis by clinicians,
but further efforts in automated metrics involving
semantic comparison are necessary.

6 Conclusion

In this work, we present experiments for the au-
tomated generation of brief hospital courses and
discharge instructions from structured and unstruc-
tured data captured during an ED encounter. We
find that a BioBART model with increased train-
ing data performed better than both other encoder-
decoder models and a black-box decoder-only
model. We also find that constraining generation to
emphasize generation of UMLS concepts worsens
performance. Finally, we show that GPT-3.5 can
generate brief hospital courses purely from struc-
tured information, further reducing the annotation
burden for physicians.
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