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Abstract

This paper presents our contribution to the
BioLaySumm 2024 shared task of the 23rd
BioNLP Workshop. The task is to create a lay
summary, given a biomedical research article
and its technical summary. As the input to the
system could be large, a Longformer Encoder-
Decoder (LED) has been used. We continu-
ously pre-trained a general domain LED model
with biomedical data to adapt it to this specific
domain. In the pre-training phase, several pre-
training tasks were aggregated to inject linguis-
tic knowledge and increase the abstractivity of
the generated summaries. Since the distribution
of samples between the two datasets, eLife and
PLOS, is unbalanced, we fine-tuned two mod-
els: one for eLife and another for PLOS. To
increase the quality of the lay summaries of the
system, we developed a regression model that
helps us rank the summaries generated by the
summarization models. This regression model
predicts the quality of the summary in three
different aspects: Relevance, Readability, and
Factuality. We present the results of our models
and a study to measure the ranking capabilities
of the regression model.

1 Introduction

Nowadays, there is more information than ever at
the disposal of the general public. In the specific
domain of biomedical research, there is informa-
tion that would be interesting to non-expert audi-
ences, including journalists or even members of
the public, such as what occurred during the recent
COVID-19 global pandemic (Wang et al., 2020).
However, the technical language is a barrier for the
non-specialist public that may prevent them from
accessing that information (Goldsack et al., 2022;
Guo et al., 2021).

Abstract summarization models should be useful
in reducing the gap in understanding information.
Since the models can generate a concise summary

of a given text and capture its most relevant in-
formation (Raffel et al., 2020; Lewis et al., 2020;
Brown et al., 2020; Beltagy et al., 2020). It is possi-
ble to obtain new models that generate summaries
adapted to a much wider audience; what is known
as lay summary. In a lay summary, the text should
contain the main ideas of the article that would be
interesting for a non-expert audience, enhancing
readability by adding background information and
reducing (or avoiding) technical terminology.

In this paper, we present the results and analysis
of our system in the participation at the BioLay-
Summ (Goldsack et al., 2024) at the 23rd BioNLP
Workshop (Demner-Fushman et al., 2024).

2 Task Drescription

In the 2024 edition, the BioLaySumm poses a sin-
gle shared task, rather than two, as in the previous
edition (Goldsack et al., 2023). The task is to create
a lay summary, given a biomedical research article
and its technical summary (abstract section of the
article).

The organization provides a biomedical dataset
(Goldsack et al., 2022) that contains biomedical
research articles from two sources: eLife Sciences1

and Public Library of Science (PLOS)2. Each sam-
ple contains the text of the article, the technical
summary, and the reference lay summary. The
dataset is divided into three partitions: train, val,
and test.

train val test

eLife 4346 (91.9) 241 (5.1) 142 (3.0)
PLOS 24 773 (94.3) 1376 (5.2) 142 (0.5)

Table 1: Dataset samples distribution per partition and
source. Additionally to the number of samples, the table
also shows the percentage over the source.

Table 1 shows the sample distribution of each
1https://elifesciences.org/
2https://plos.org

https://elifesciences.org/
https://plos.org
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source. It can be observed that the number of sam-
ples is way unbalanced towards the PLOS source,
even though test presents the same number of
samples for each source. This kind of distribution
would be challenging when someone would like
to develop a single summarization model without
prompting or instructions. The alternative would
be to create separate summarization models, one
for eLife and the other for PLOS. The BioLay-
Summ organizers invited the participants to present
solutions indistinctly using one or two models.

To measure the performance of the systems, the
organizers of the competition selected a set of mea-
sures that would help to evaluate the performance
in three different aspects: Relevance, Readabil-
ity, and Factuality. For Relevance the follow-
ing scores were chosen: ROUGE (1, 2, L) (Lin,
2004), BERTScore (Zhang* et al., 2020). To mea-
sure the Readability aspect: Flesch-Kincaid Grade
Level (FKGL) (Kincaid et al., 1975), Dale-Chall
Readability Score (DCRS) (Dale and Chall, 1948),
Coleman-Liau Index (CLI) (Coleman and Liau,
1975), and LENS (Maddela et al., 2023). Finally,
to measure Factuality, two scores were selected:
AlignScore (Zha et al., 2023), SummaC (Laban
et al., 2022).

3 Pre-trainined Model

For this task, we have used a Longformer Encoder-
Decoder (LED) (Beltagy et al., 2020) since we
were approaching summarizing long texts, such
as the case of scientific articles. This lets us in-
crease the amount of information available on the
encoder side. We used as a starting point the LED
base model from AI23, publicly available at the
repository of HuggingFace (Wolf et al., 2020), and
continuously pre-trained it with in-domain data.

For the continual pre-training phase, we fol-
lowed the training methodology used in the News
Abstractive Summarization models (NAS) work
(Ahuir et al., 2021). This methodology combines
multiple pre-training tasks to incorporate linguistic
knowledge in the pre-training phase and enhance
the abstract nature of the produced summaries. In-
corporating those tasks in continuous pre-training
should help the model to transfer knowledge spe-
cific to the summarization task and increase the
performance of the downstream model after fine-
tuning, just as it did in the original NAS work.

3https://huggingface.co/allenai/
led-base-16384

The data used for continuous pre-training was
chosen specifically to adapt the model to the
biomedical research domain. We collected text
from three different sources: abstracts (technical
summaries) from PubMed (National Center for
Biotechnology Information (NCBI), 2024) (17M
samples), PubMed articles and abstracts from the
scientific_papers4 dataset (Cohan et al., 2018)
(240K). Also, articles and technical summaries
from the dataset train partition used in this compe-
tition (eLife + PLOS) (29K).

Due to infrastructure limitations, we limited the
encoder input to work with no more than 4096
tokens. Taking into account this restriction, and
with the objective of maximizing the amount of
data, we split text by lines, using a window of no
more than 4000 words. We generated subsamples
that contained at least a new line and filled the
windows with as many words as possible. The final
amount of samples went up to 59M samples.

When working with LongFormers, you have to
select which tokens will receive global attention
in addition to local attention. In the original work
(Beltagy et al., 2020), the authors recommend set-
ting [CLS] token with global attention. However,
we hypothesized that adding landmarks across the
input with global attention could increase perfor-
mance. For this reason, we added a special token
with global attention (<sent>) after a certain num-
ber of sentences. The number of sentences was
not constant but dictated by a minimum number of
words of separation between <sent> tokens. Thus,
the special token was placed at the end of every
number of sentences with a total length of at least
k words. Previous experimentation was carried out
to determine the number of words. The best re-
sults were obtained with at least k = 20 words of
separation.

The base model was pre-trained for three epochs
in our Research Institute’s cluster with 8 NVIDIA
A40 graphic cards with 48GB of VRAM were used
for the process; which took a month. The main
hyperparameters are: 128 samples per device, 4
gradient accumulation steps, a learning rate of 5×
10−5 with a constant scheduler, gradient checking,
and an 8-bit quantified optimizer.

4 Lay Summarization Models

We developed two different approaches for the com-
petition. In the first approach (M1), the model re-

4http://tiny.cc/54x2yz/scientific_papers

https://huggingface.co/allenai/led-base-16384
https://huggingface.co/allenai/led-base-16384
http://tiny.cc/54x2yz/scientific_papers
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ceives the technical summary and adapts the text
and information to a lay summary style. In the
second approach (M2), additional text is included
beside the technical summary, that was, the intro-
duction and the discussion sections of the article,
similar to (Poornash et al., 2023).

Since the distribution of samples is not well-
balanced, we fine-tuned two models per approach:
one for eLife and another for PLOS. The four mod-
els were fine-tuned for ten epochs each with an
NVIDIA RTX 3090 with 24GB; each approxima-
tion took nearly 24 hours. The relevant hyperpa-
rameters are: 4 samples per device and a learning
rate of 5× 10−5 with a linear scheduler.

In our tests over validation, M1 outperformed
M2 in the overall performance. The detailed results
can be seen in Table 3 (Appendix A).

5 Ranking Model

In order to increase the quality of the lay summaries
of the system, we developed a regression model to
rank the summaries generated by the summariza-
tion models. This regression model predicts the
quality of the summary in three different aspects:
Relevance, Readability, and Factuality.

5.1 Dataset Creation and Model Development

We use a Longformer encoder already trained in
the biomedical domain5 to develop the regression
model. The classification layer was modified from
the default in HuggingFace. We use a mean-max
function of the hidden states of the last attention
layer to calculate the embedding that feeds the
feedforward classification layer. In mean-max, the
mean of the hidden states is concatenated with the
max values of those hidden states.

To fine-tune the model, we needed first to find
a way to obtain sample variability in the scores in
the three aspects. For this reason, we employed
data augmentation based on LLMs. For this pur-
pose, we adapted to our needs the novel framework
TextMachina (Sarvazyan et al., 2024) and generated
new samples using four LLMs: Vicuna 13b (Chi-
ang et al., 2023), Alpaca 13b (Taori et al., 2023),
OpenChat 7.5b (Wang et al., 2023), and Llama2
13b (Touvron et al., 2023). Using the technical
summary and the lay summary from randomly se-
lected samples of both sources, we applied differ-
ent prompts to gain diversity in the quality of the

5https://huggingface.co/kiddothe2b/
biomedical-longformer-large

samples in the three aspects. With this data aug-
mentation, we obtained 16 236 new samples for
training and 4212 for validation.

To create the training and validation partitions
for regression, we use the generated samples and
the technical and lay summaries from the corre-
sponding partition of the competition dataset. To
obtain the reference scores, we computed Readabil-
ity, Relevance, and Factuality, using the formulas
shown in Appendix B. At this point, we should
remark on two details: (a) it can be noticed that
all the scores are in a range [0, 1], and always cor-
relate positively with the quality of the summary,
(b) due to time constraints, the Factuality score is
only measured with AlignScore in the regression
dataset.

The regression model was trained for five epochs
in VRAIN’s cluster for two days with 4 NVIDIA
A30 with 24GB of VRAM. The main hyperparam-
eters are: 6 samples per device, 2 gradient accu-
mulation steps, a learning rate of 5 × 10−5 with
a lineal scheduler, gradient checking, and an 8-bit
quantified optimizer.

5.2 Usage and Performance
To rank the samples, we first score them. For scor-
ing the quality of a lay summary, we used the re-
gression model to measure the quality regarding
the Relevance, Readability, and Factuality. With
those values, we compute a single score based on
the harmonic mean of those three values. The har-
monic mean would give better scores to summaries
that simultaneously hold high quality on the three
aspects. We will refer to this score as hm-score
for clarity.

In order to measure the ranking capabilities of
the regression model, we measured the Normal Dis-
counted Cumulative Gain (NDCG) over the real
hm-score of the score of the best summary avail-
able and the real score of the chosen summary,
based on the predicted hm-score.

In Fig. 1, we observe the distribution of the
NDCG scores when the model ranks one approach
(M1 or M2) and when the model ranks a mix of
both (M1+M2). It can be noticed that with M1, it
has better ranking capabilities than with M2. How-
ever, in both approaches, the scores are mainly in
range of [0.95, 1.0], which means that most of the
time, one of the best summaries is chosen. When
we mix the sources, the regression model reduces
its ranking capabilities, which could indicate that
it would be less precise when the quality of sum-

https://huggingface.co/kiddothe2b/biomedical-longformer-large
https://huggingface.co/kiddothe2b/biomedical-longformer-large
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Figure 1: Distribution of the NDCG1 scores obtained
by the ranking model, when we consider both sources
(eLife+PLOS). In M1 and M2, the model ranks 10 sum-
maries per sample; 20 summaries in M1+M2.

maries to choose from varies a lot.

The improvements in validation using the Rank-
ing can be seen in Table 3 (Appendix A) can be
seen for M1 M2, and M1+M2.

6 Results

For the competition, we sent a total of three submis-
sions. S1 that included lay summaries generated
with M1 approach without any kind of ranking. S2
that contained lay summaries generated with M1
and selected with the rank model (10 summaries
per sample). Additionally, we sent a third submis-
sion (S3) that contained summaries from M1 and
M2 and selected with the regression model (20
summaries per sample).

Table 2 shows official results for the test parti-
tion for the three submissions. It can be noticed
that S2 provided the best results. Compared to S1,
S2 increased the performance thanks to the rank-
ing model. However, if the summarization model
can not generate a wider variety of proposals, the
ranking model will not help too much. Regarding
S3, which includes the M1 and M2 summaries, we
notice a lower quality of the final selection. Nev-
ertheless, this submission increases the Factuality
aspect, which could be attributed to the fact that
M2 manages more information, reducing the factu-
ality errors. Finally, regarding the relative perfor-
mance (RP), our solution obtained more than 90%
of performance in most of the scores, compared
to the best overall submission. Further improve-
ments need to be made, especially in the readability
aspect.

S1 S2 S3 RP(%)
Relevance
↑ ROUGE-1 47.99 48.15 48.01 98.39
↑ ROUGE-2 13.61 13.66 13.60 87.06
↑ ROUGE-L 42.90 43.09 43.06 94.07
↑ BERTScore 85.94 85.95 85.91 99.05

Readability
↓ FKGL 13.64 13.61 13.65 86.33
↓ DCRS 10.89 10.86 10.90 86.00
↓ CLI 14.71 14.66 14.70 91.13
↑ LENS 47.90 48.02 33.42 90.96

Factuality
↑ AlignScore 78.37 78.21 78.72 97.71
↑ SummaC 60.91 60.66 61.37 82.67

hm-score 48.68 48.69 46.59 90.08

Table 2: Official results comparison for test partition for
the three submissions (S1, S2, S3), and relative perfor-
mance (RP) of S2 compared to the best overall system
in the competition (UIUC_BioNLP). Bold values are
the best values for each score. The up arrow (↑) indi-
cates that the value of the score correlates positively
with the quality of the lay summary, and the down arrow
(↓) negatively. The hm-score is also included, which is
not part of the official results.

7 Discusions

The results presented in Section 6 raise the benefits
and constraints that must be taken into account
when combining generation models with ranking
models to choose which text will be presented to
the end user.

Regarding the benefits, they are evident. With
the ranking models, we can enhance the quality of
the summaries presented to the user even though we
use the same automatic summarization models. We
use the ranking model to choose those summaries
that obtained the best ranking scores since those
texts will have better quality compared to other
summaries generated by the same models. This
selection should boost the overall performance of
the system in most cases.

In relation to the constraints. The ranking model
does not generate summaries or make texts better;
it just rates summaries generated by the summa-
rization models, and we select the best summaries
based on those scores. Therefore, if summarization
models have a bad performance and/or we can not
provide enough variety to choose from, the bene-
fits will be diminished. For this reason, we should
combine the ranking models with summarization
models that can complement each other depending
on the text to summarize and offer variety in the
generated summaries.
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8 Conclusions

In this work, we have presented our contribution
to the BioLaySumm 2024 shared task of the 23rd
BioNLP Workshop. We used LED models to allow
adding more text in the model input. Although we
started from the same pre-trained model, different
fine-tuned models were trained for the two sources
of the competition: eLife and PLOS. Two different
approaches were followed, one with just the techni-
cal summary as input, and another with additional
text beside the technical summary. Our prelimi-
nary evaluation showed that the first approach per-
formed better, but the second should be developed
further since the larger input context improved the
Factuality aspect. An additional contribution of our
approach is the use of a regression-based ranking
model that helped to boost the quality of the final
summary by choosing the promising one from a set
of summaries generated by the models. The model
that obtained the best results in the competition was
the one that combined the first approach and the
ranking model.

Limitations

The data augmentation followed in this work to
obtain the dataset for training the dataset is attached
to the inner behavior of pre-trained LLMs. Those
could present biases or limitations that we have not
studied or detected. This could lead to limitations
in the diversity and quality of the dataset, which
could be inherited by the regression model.
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A Results in Evaluation (val partition)

M1 M2 M1R M2R AR
Relevance score 48.23 45.02 48.28 45.26 47.26

↑ ROUGE-1 48.88 44.06 48.97 44.44 47.60
↑ ROUGE-2 14.52 11.20 14.54 11.38 13.30
↑ ROUGE-L 43.60 40.39 43.68 40.77 42.70
↑ BERTScore 85.90 84.41 85.91 84.44 85.42

Readability score 38.51 28.16 38.64 28.49 37.74

↓ FKGL 13.67 15.03 13.66 14.89 13.58
↓ DCRS 10.85 11.69 10.82 11.61 10.85
↓ CLI 14.47 15.53 14.43 15.43 14.22
↑ LENS 49.00 23.87 49.11 23.61 44.20

Factuality score 68.49 81.35 68.16 80.96 70.37

↑ AlignScore 77.00 86.65 76.64 85.67 77.36
↑ SummaC 59.97 76.04 59.68 76.25 63.38

hm-score 48.94 42.85 48.97 43.14 48.49

Table 3: Results comparison for validation partition for
the two approaches without using ranking (M1 and M2),
with ranking (M1R, M2R), and M1+M2 ranked (AR).
Bold values are the best values achieved for each score.
The up arrow (↑) indicates that the value of the score
correlates positively with the quality of the lay summary,
and the down arrow (↓) negatively.

Table 3 shows the results of the two model types
when one summary is requested (columns M1 and
M2). Or, when 10 summaries are requested per
sample, rank with our ranking model and select
the top-ranked summary for each sample (columns
M1+R and M2+R).

B Relevance, Readability and Factuality
scores.

We defined Relevance as the average of the follow-
ing scores: ROUGE-1, ROUGE-2, ROUGE-L and
BERTScore. Factuality is the average values of

AlignScore and SummaC scores.

For defining Readability, we start first defining
the function Clamp and Complement (CC):

CCz
f (x) =

z − f(x)|[0,z]
z

(1)

Eq. (1) shows that, given a function f , an integer
number z > 0, and sample x. The sample x is
evaluated with f . Then, the score is clamped in a
range from [0, z], complemented, and normalized.

Therefore, we define Readability as follows:

Readability(x) = (

CC20
FKGL(x)+

CC20
DCRS(x)+ (2)

CC20
CLI(x)+

LENS(x)

100

) · 1
4

Eq. (2), shows that Readability is defined as
the average of the following four scores: FKGL,
DCRS, CLI, and LENS. For the three first scores
(FKGL, DCRS, and CLI), the values below 20 are
clamped since we consider that 20 is already a re-
ally high readability level for lay summarization
purposes. Additionally, values are complemented
and normalized when needed.
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