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Abstract

Lay summarization is essential but challeng-
ing, as it simplifies scientific information for
non-experts and keeps them updated with the
latest scientific knowledge. In our participa-
tion in the Shared Task: Lay Summarization
of Biomedical Research Articles @ BioNLP
Workshop (Goldsack et al., 2024), ACL 2024,
we conducted a comprehensive evaluation on
abstractive summarization of biomedical liter-
ature using Large Language Models (LLMs)
and assessed the performance using ten metrics
across three categories: relevance, readability,
and factuality, using eLife and PLOS datasets
provided by the organizers. We developed a
two-stage framework for lay summarization
of biomedical scientific articles. In the first
stage, we generated summaries using BART
and PEGASUS LLMs by fine-tuning them on
the given datasets. In the second stage, we com-
bined the generated summaries and input them
to BioBART, and then fine-tuned it on the same
datasets. Our findings show that combining
general and domain-specific LLMs enhances
performance.

1 Introduction

In today’s era, a lot of research is being conducted
in the field of biomedical science, resulting in a
huge amount of biomedical literature. The vast sci-
entific knowledge poses a challenge for healthcare
professionals, researchers, and the non-expert pub-
lic in staying informed about advancements in the
biomedical domain (Bishop et al., 2022; Karotia
and Susan, 2023). Making the information acces-
sible and understandable, regardless of their back-
ground knowledge, is difficult. Manually summa-
rizing long scientific articles requires too much
domain-oriented knowledge, effort, and time, espe-
cially for lay summarization. First, summarizing
and then transforming the summarized information
for non-experts is impractical. This problem can
be tackled by designing lay summarization systems

that bridge the gap between non-experts and ex-
perts by modifying intricate scientific knowledge
into a clear and condensed form with increased
readability. This step will increase scientific liter-
acy and enable decision-making for experts and
non-experts.

This study’s contributions include:

• In the first phase of the model, BART (Lewis
et al., 2020) and PEGASUS (Zhang et al.,
2020) general domain LLMs were used.
These LLMs were fine-tuned on eLife and
PLOS datasets for the summarization task.

• The outputs from both LLMs are combined,
and sentences are deduplicated to eliminate
redundant data and enhance diversity and in-
clusivity.

• In the second phase, the deduplicated data was
sent to the BioBART (Yuan et al., 2022) LLM,
which is pre-trained on biomedical datasets
and further fine-tuned by the authors on the
dataset made accessible by the challenge or-
ganizers.

• Performance evaluation and analyses are done
for relevance, readability, and factuality met-
rics.

2 Related Work

Recent studies have showcased the significant po-
tential of large language models (LLMs) in natural
language generation tasks. In addition, the first
version of the BioLaySum (Goldsack et al., 2023)
illustrated the effectiveness of utilizing LLMs in
both summary formation (Turbitt et al., 2023) and
data augmentation (Sim et al., 2023). LLMs exhibit
proficiency in perceiving complex relationship pat-
terns due to their training on diverse large-scale
datasets across various tasks (Karotia and Susan,
2022).
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(Liu et al., 2023) utilized two different LLMs,
BART and PEGASUS, for the BioLaySum task
at ACL 2023, respectively focusing on the eLife
and PLOS datasets, aiming to optimize memory
usage. (Phan et al., 2023) processed long docu-
ments using an effective framework comprising of
BioBART and a factorized energy-centric method.
(Turbitt et al., 2023) performed comprehensive ex-
periments with general and domain-specific GPT
models using zero-shot and few-shot methods. (Al-
Hussaini et al., 2023) utilized T5 and BART LLMs
with an attention mechanism for information se-
lection and further applied a zero-shot method for
language simplification. (Reddy et al., 2023) em-
ployed BART to generate summaries by incorporat-
ing sentence labels, which significantly improved
results. (Chen et al., 2023) used various models
for each submission, including PRIMERA, PEGA-
SUS, and BART-LongFormer.

3 Methodology

In recent times, Large Language Models such as
BioBART pre-trained on biomedical corpora have
achieved enhanced performance for biomedical nat-
ural language generation tasks. However, the read-
ability of the generated summaries needs to be im-
proved from the perspective of a non-expert audi-
ence. To achieve this aim, a two-stage framework
is designed in this work, as shown in Figure 1, to
generate lay summaries for complex and lengthy
scientific research articles, targeting non-expert au-
diences. In the first phase of the framework, BART
and PEGASUS general-purpose LLMs are selected
for summary generation by fine-tuning them on the
challenge datasets: eLife and PLOS. Both mod-
els performed well on validation and test sets, in-
dicating their capability to generate high-quality
summaries due to their pre-training on multiple
tasks and large datasets. As these transformers
have limited input lengths, the first 1024 tokens are
used for training because these LLMs are resource-
intensive and time-consuming. Specifically, train-
ing with starting information proves to be more
efficient, as studies indicate that important infor-
mation is typically presented at the beginning and
end of research articles (Cai et al., 2022). BART
and PEGASUS are transformer-based models that
excel in text generation and are specifically de-
signed for abstractive summarization. In the initial
phase of our approach, we fine-tune these models
using article-lay summary pairs from the eLife and

PLOS datasets separately. This process involves
setting the hyperparameters specified in Table 1, as
discussed in Section 4. After fine-tuning, the sum-
maries generated by both models are merged. The
aggregated text is further processed to handle re-
dundant information, which is eliminated through
sentence deduplication. This results in diverse and
non-redundant data, making it suitable to be input
into the second phase of the framework for further
fine-tuning.

Figure 1: Proposed framework.

The authors observed two cases of redundancy
after summary generation in the first phase, lead-
ing to the need for deduplication of sentences to
ensure non-redundant information for the second
phase. First, identical sentences are present within
the same summary generated by the models. Sec-
ond, the summaries generated by both models have
identical sentences. This issue does not arise for all
samples. But even in a few cases, it is important to
ensure that non-redundant information is used for
further processing to generate a quality summary.

Algorithm 1 outlines the steps for deduplicating
sentences in aggregated text. This process removes
identical sentences while considering case sensi-
tivity (lower-case), ensuring non-redundant infor-
mation. In the second and final phase of the
framework, the deduplicated text for a correspond-
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Algorithm 1: Sentence Deduplication
Data: Ctxt (Aggregated text)
Result: Dtxt (Deduplicated text)
Stokenized← sentence_tokenize(Ctxt) ;
Nnon_duplicate_sentences← empty list to

store non-duplicate sentences;
Duplicatessentences← empty list to store

duplicate sentences;
for each s in Stokenized do

if s is not in Nnon_duplicate_sentences
then

Append s to
Nnon_duplicate_sentences;

else
Append s to Duplicatessentences;

end
end
Dtxt←

Concatenate(Nnon_duplicate_sentences);
Dtxt

ing document is considered salient information that
guides the domain-specific LLM to generate more
accurate summaries. For this phase, the BioBART
LLM (Yuan et al., 2022) is selected for fine-tuning,
as this model is pre-trained on a vast amount of
biomedical datasets and showed promising results
in the first edition of the BioLaySum task. In place
of the original article, the deduplicated lay sum-
mary generated in the first phase is used as input
for fine-tuning BIOBART in the second phase of
the proposed model. The summary obtained af-
ter fine-tuning with BioBART results in improved
performance on both datasets.

Hyperparameter Values

Batch size 16
Learning rate 5e-5
Early stopping 3
Max input length 1024
Min and max target length (eLife) 350, 512
Min and max target length (PLOS) 180, 200
No. of beams 4
Penalty 2

Table 1: Hyperparameter settings for all the baseline
methods and the proposed model.

4 Experimental Setup

The experiments in this study are conducted on the
Google Colab Pro Plus platform, using an NVIDIA
A100 GPU with 40 GB of GPU RAM for training
and inferencing. Appendix A provides insights
into the datasets used, while Table 1 details the
hyperparameter settings for all the models.

4.1 Datasets
The organizers provided the two biomedical
datasets, eLife (Goldsack et al., 2022) and The
Public Library of Science (PLOS) (Goldsack et al.,
2022), used in this study, across which all the mod-
els were trained and evaluated. Appendix A shows
the detailed dataset statistics.

4.2 Baseline and Hyperparameter Settings
1PEGASUS (Zhang et al., 2020): This model is
pre-trained on the C4 and HugeNews datasets for
abstractive summarization by utilizing the gap sen-
tence ratio methodology, and stochastic sampling
was employed for key sentence identification. It
is fine-tuned on eLife and PLOS with 10 and 8
epochs, respectively.

2BART (Lewis et al., 2020): This model was
pre-trained for language generation and translation
tasks in English, and fine-tuned on the CNN/DM
dataset, specifically for summarization purposes. It
is fine-tuned for 13 epochs on eLife and 12 epochs
on PLOS.

3T5-small (Raffel et al., 2020): This model, a
smaller version of T5, is pre-trained on the C4
dataset for varied tasks that include paraphrasing
and natural language generation. It is fine-tuned
with 15 epochs on eLife and 11 epochs on the
PLOS dataset.

4BIOBART (Yuan et al., 2022): BioBART has
efficiently adapted the BART framework for gen-
erative tasks specifically tailored to the biomedical
domain. The model is pre-trained on several lan-
guage generation tasks, including: 1) A medical
dialogue system, where the objective is to emu-
late a human doctor communicating with real pa-
tients, trained using the CovidDialog dataset. 2)
Abstractive summarization on the iCliniq, Health-
CareMagic, and MeQSum datasets. 3) Entity link-
ing on the MedMentions, BC5CDR, and AskAP-
atients datasets. 4) Named entity recognition on

1https://huggingface.co/google/pegasus-cnn_dailymail
2https://huggingface.co/facebook/bart-large-cnn
3https://huggingface.co/google-t5/t5-small
4https://huggingface.co/GanjinZero/biobart-large
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the ShARe13 and CADEC datasets. This model
is fine-tuned with 7 epochs on eLife and 5 epochs
on the PLOS dataset. The proposed model is also
fine-tuned for 12 epochs using the same parameters
listed in Table 1.

4.3 Evaluation metrics

Various metrics have been employed to evaluate the
model’s performance, categorized into three main
aspects: relevance, readability, and factuality.

Relevance: Four metrics are employed to as-
sess the relevance aspect: ROUGE-1, ROUGE-2,
ROUGE-L (Lin, 2004), and BERTScore (Zhang
et al.). Higher scores on these metrics indicate
better performance.

Readability: The Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score (DCRS),
Coleman-Liau Index (CLI), and LENS are used
as readability metrics. Lower scores for FKGL,
DCRS, and CLI indicate better readability, whereas
higher scores for LENS are considered.

Factuality: AlignScore and SummaC are the met-
rics evaluated to measure the factual accuracy of
the generated summaries. Higher scores on these
metrics indicate higher quality in terms of factual-
ity.

4.4 Results and Discussion

The performance of the baseline methods and the
system proposed in this study is shown in Table 2
and Table 3 for the validation and test sets of the
eLife and PLOS datasets. All performances are
evaluated using the script provided by the organiz-
ers before the deadline for the validation sets of
both datasets. The baselines are evaluated on the
Codabench platform for the test set, but only the
proposed model is evaluated after the challenge’s
deadline on the test set.

As shown in Table 2, the proposed model
achieves better performance for relevance met-
rics with the best scores of ROUGE-1 (0.4681),
ROUGE-2 (0.131), ROUGE-L (0.4475), and
BERTScore (0.8404). It also attains the best scores
for CLI (10.4805) and LENS (63.4962) metrics on
the validation set of eLife. Meanwhile, the vali-
dation set of PLOS shows significantly improved
performance for the readability metrics FKGL
(14.1426), CLI (15.0911), and LENS (52.9523)
compared to the listed baselines. Additionally, the
BERTScore relevance metric performed well, scor-
ing 0.858.

As observed from Table 3, the proposed model
demonstrates superior performance in relevance
metrics, achieving the best scores for ROUGE-1
(0.4635), ROUGE-2 (0.1228), ROUGE-L (0.4428),
and BERTScore (0.8411). It also achieves top
scores for CLI (10.9776) and LENS (65.7387) met-
rics on the eLife test set. In the PLOS test set,
the model significantly improves readability met-
rics, with FKGL (13.8401), CLI (15.1084), and
LENS (52.9811) scores surpassing those of the
baselines. Additionally, the relevance metrics for
the PLOS test set show notable improvements, with
ROUGE-1 (0.4396), ROUGE-L (0.3988), and a
strong BERTScore of 0.8578.

5 Conclusion and Future Scope

A two-stage fine-tuning framework combining
general-purpose BART and PEGASUS LLMs with
the biomedical-specific BioBART LLM showcased
satisfactory performance for generating lay sum-
maries of biomedical scientific articles. In the first
phase, BART and PEGSUS were fine-tuned on the
training data of eLife and PLOS datasets, while in
the second phase, BioBART was fine-tuned on the
merged and deduplicated lay summary generated
in the first phase. All hyperparameters were set
using the validation set. This framework achieved
promising results for relevance and readability met-
rics but at the cost of marginally lower performance
for factuality metrics. In the future, different com-
binations of domain-specific LLMs can be em-
ployed, along with language simplification tech-
niques, to generate high-quality lay summaries for
non-experts, optimizing scores for relevance, read-
ability, and factuality. metrics. In the future, dif-
ferent combinations of domain-specific LLMs can
be employed, along with language simplification
techniques, to generate high-quality lay summaries
for non-experts, optimizing scores for relevance,
readability, and factuality.

6 Limitations

Adapting LLMs to new domains requires substan-
tial fine-tuning, which may not always transfer
knowledge effectively across the target domain. In
the proposed model, fine-tuning of LLMs in two
consecutive stages results in high computational
cost and time. A significant problem is the length
limitation associated with these LLMs. Although
important information often resides at the begin-
ning of scientific articles, the need to restrict input
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Model eLife

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.386 0.0964 0.3742 0.8211 9.232 6.5566 11.7579 24.1684 0.3513 0.7091
BART 0.4442 0.1086 0.4145 0.8357 13.5909 10.169 13.5704 43.9951 0.7752 0.7033
PEGASUS 0.4068 0.1006 0.3919 0.8291 9.5149 6.5603 10.8472 42.6606 0.717 0.6209
BIOBART 0.4325 0.109 0.3669 0.8277 19.1071 9.7971 13.1439 27.72 0.5935 0.5149
Ours 0.4681 0.131 0.4475 0.8404 10.2465 7.8174 10.4805 63.4962 0.6264 0.5263

Model PLOS

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.3402 0.0973 0.3113 0.8304 15.469 9.2281 16.4606 35.0077 0.8612 0.7057
BART 0.4483 0.1456 0.4053 0.8565 14.3844 11.8589 15.7053 49.3006 0.8766 0.8281
PEGASUS 0.455 0.1561 0.4123 0.8579 14.6704 11.5939 16.2672 49.6905 0.8055 0.8736
BIOBART 0.4323 0.1479 0.3893 0.85 14.2208 12.07 15.9739 51.6555 0.8991 0.8396
Ours 0.4525 0.1458 0.4109 0.858 14.1426 11.4252 15.0911 52.9523 0.801 0.7152

Table 2: Results on the validation sets of eLife and PLOS datasets.

Model eLife

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.2614 0.0453 0.2404 0.8015 16.0014 7.6351 16.4143 26.2303 0.9157 0.691
BART 0.4479 0.1054 0.4169 0.8385 13.9387 10.3756 14.3257 49.2375 0.8131 0.7296
PEGASUS 0.3987 0.096 0.383 0.8295 9.8937 6.5202 11.1935 44.0906 0.7398 0.6401
BIOBART 0.4343 0.1043 0.3589 0.8308 20.131 9.9165 13.7818 30.8928 0.638 0.5341
Ours 0.4635 0.1228 0.4428 0.8411 10.3915 7.7965 10.9776 65.7387 0.6409 0.5443

Model PLOS

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.3316 0.0995 0.3034 0.8324 14.8563 9.1379 16.4704 34.5145 0.8647 0.6981
BART 0.4317 0.1376 0.391 0.8556 14.4732 11.8719 15.9178 49.9099 0.8876 0.8423
PEGASUS 0.4363 0.1439 0.3932 0.851 14.8366 11.6496 16.473 13.8482 0.8116 0.8695
BIOBART 0.4248 0.142 0.3839 0.8508 14.2641 12.0685 16.338 52.5272 0.9066 0.8366
Ours 0.4396 0.1405 0.3988 0.8578 13.8401 11.3222 15.1084 52.9811 0.8183 0.7273

Table 3: Results on the test sets of eLife and PLOS datasets.

length and truncate the rest can lead to a potential
loss of information, ultimately affecting the quality
of the generated summary.
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A Appendix

eLife: The eLife dataset contains research papers
associated with lay summaries written by domain
experts. The train, validation, and test sets consist
of 4346, 241, and 142 articles, respectively. The
average word count for lay summaries across all
data splits ranges between 382-400, while for ar-
ticles, it ranges from 8900-10201. Similarly, the
average sentence count for lay summaries and ar-
ticles ranges between 18-19 and 382-583, respec-
tively. The minimum and maximum word counts
for the train, validation, and test sets for lay sum-
maries are (177, 686), (234, 672), and (244, 642),
respectively. For articles, the minimum and maxi-
mum word counts for the train, validation, and test
sets are (324, 28696), (3408, 23048), and (2492,
16880), respectively.

PLOS: This includes research papers and their
corresponding lay summaries from domain experts.
The dataset is divided into training, validation, and
test sets with 24773, 1376, and 142 articles, respec-
tively. Lay summaries have an average word count
between 180 and 195 across all splits, whereas the
articles range from 6742 to 6754 words. The av-
erage sentence length for lay summaries is 8; for
articles, it is between 298 - 311 sentences. For
lay summaries, the minimum and maximum word
counts are 4 and 511 for the training set, 55 and
384 for the validation set, and 16 and 293 for the
test set. Articles have word count ranges of 748
to 26643 for the training set, 751 to 20423 for the
validation set, and 1587 to 18477 for the test set.
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Data
Elife PLOS

Train Validation Test Train Validation Test

Number of samples 4346 241 142 24773 1376 142
Avg. word count (LS) 382 390 400 195 195 180
Avg. sentence count (LS) 18 18 19 8 8 8
Max. word count (LS) 686 672 642 511 384 293
Min. word count (LS) 177 234 244 4 55 16
Avg. word count (A) 10200 10021 8909 6754 6742 6939
Avg. sentence count (A) 382 583 445 299 298 311
Max. word count (A) 28696 23048 16880 26643 20423 18477
Min. word count (A) 324 3408 2492 748 751 1587

Table 1: Detailed statistics and analysis of eLife and PLOS datasets, where LS stands for Lay Summary and A
stands for Article.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.3631 0.0969 0.3428 0.8258 12.3505 7.8924 14.1093 29.5881 0.6063 0.7074
BART 0.4463 0.1271 0.4099 0.8461 13.9877 11.014 14.6379 46.6479 0.8259 0.7657
PEGASUS 0.4309 0.1284 0.4021 0.8435 12.0927 9.0771 13.5572 46.1756 0.7613 0.7473
BIOBART 0.4324 0.1285 0.3781 0.8436 16.664 10.9336 14.5589 39.6878 0.7463 0.6773
Ours 0.4603 0.1384 0.4292 0.8492 12.1946 9.6213 12.7858 58.2243 0.7137 0.6208

Table 2: Average scores achieved for eLife and PLOS on the validation set.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.2965 0.0724 0.2719 0.817 15.4289 8.3865 16.4424 30.3724 0.8902 0.6946
BART 0.4398 0.1215 0.404 0.8471 14.206 11.1238 15.1218 49.5737 0.8504 0.786
PEGASUS 0.4175 0.12 0.3881 0.8403 12.3652 9.0849 13.8333 28.9694 0.7757 0.7548
BIOBART 0.4296 0.1232 0.3714 0.8458 17.1976 10.9925 15.0599 41.71 0.7723 0.6854
Ours 0.4516 0.1317 0.4208 0.8495 12.1158 9.5594 13.043 59.3599 0.7296 0.6358

Table 3: Average scores achieved for eLife and PLOS on the test set.
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