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Abstract

This article presents our submission to the Bio-
LaySumm 2024 shared task: Lay Summariza-
tion of Biomedical Research Articles. The ob-
jective of this task is to generate summaries
that are simplified in a concise and less tech-
nical way, in order to facilitate comprehension
by non-experts users. A pre-trained BioBART
model was employed to fine-tune the articles
from the two journals, thereby generating two
models, one for each journal. The submission
achieved the 12th best ranking in the task, at-
taining a meritorious first place in the Rele-
vance ROUGE-1 metric.

1 Introduction

In the context of the rapidly expanding quantity
and complexity of biomedical literature, the ability
to effectively and accurately summarise documents
has become crucial for researchers and healthcare
professionals. In this regard, Natural Language
Processing (NLP) technologies have emerged as
promising tools to address this need. The objective
of BioLaySumm 2024 shared task (Goldsack et al.,
2024) is the simplification of biomedical research
articles playing a vital role in making information
more comprehensible to non-experts thus enabling
a wider audience to understand and use medical
information effectively.

Concerning generating summaries, there are a
number of different approaches that can be em-
ployed. One such approach is the extractive model,
which involves selecting the most important sen-
tences from the original text and incorporating
them directly into the summary. These models
were the first to emerge and the most widely used
until the abstractive models came onto the scene.
These models have the capacity to comprehend the
content of the input text and generate summaries
that may include new sentences and expressions
that are not present in the original text (Nallapati

et al., 2017)(Widyassari et al., 2022). The first pa-
per to describe an abstractive summarisation model
was (Cohan et al., 2018), and from that moment on,
they began to gain greater relevance and were used
more frequently than the extractive models. In this
paper, we will employ abstractive models.

In our participation in the BioLaySumm 2024
shared task, we utilise existing large language mod-
els (LLMs), such as Bio-BART (Yuan et al., 2022),
which is a biomedical variant of the BART model
(Lewis et al., 2020), and Longformer Encoder-
Decoder (LED) (Beltagy et al., 2020), to train
our models for the generation of summaries from
the provided articles. The summaries generated
by the various models were evaluated in accor-
dance with the metrics provided by the organis-
ers. (ROUGE(1,2 and L) (Lin, 2004), BERTScore
(Zhang et al., 2020), FKGL (Kincaid et al., 1975),
DCRS (Chall and Dale, 1995), CLI (Coleman and
Liau, 1975), LENS (Maddela et al., 2023), Align-
Score (Zha et al., 2023) and SummaC (Laban et al.,
2021)). The experiment that yielded the most
favourable results was the one that used the Bio-
BART pre-trained model. This model was used
to train two models, one for each of the journals
from which the articles were obtained. These mod-
els were used to generate the abstracts for each
journal.

This release achieved excellent results in the Rel-
evance metric of the shared task, with the highest
score in the ROUGE-1 metric. However, the Read-
ability and Factuality metrics yielded less impres-
sive outcomes, resulting in a final ranking of 12th
place. Nevertheless, this remains a satisfactory per-
formance, as it places the team in the top half of
the table of all participants.
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PLOS Dataset
data train validation test
size 24733 1376 142

avg-length 6754.09 6741.48 6939.28
min-length 748 751 1587
max-length 26643 20423 18477

Table 1: Data statistics of PLOS dataset. Size corre-
sponds to the number of articles present in the dataset.
The min-length and max-length values correspond to
the minimum and maximum length of the words in the
dataset. Finally, avg-length corresponds to the average
word length of all texts in the dataset.

eLife Dataset
data train validation test
size 4346 241 142

avg-length 10200.27 10031.25 8909.15
min-length 324 3408 2492
max-length 28696 23048 16880

Table 2: Data statistics of eLife dataset.

2 Method

2.1 Dataset
In order to participate in the BioLaySumm 2024
shared task, all participants are provided with two
datasets containing biomedical research articles,
the expert abstract, the name of the article sec-
tions and finally the keywords of each article. The
first dataset contains approximately 25,000 articles
from the Public Library of Science (PLOS), while
the second dataset contains approximately 5,000 ar-
ticles from the journal eLIfe. Details of the dataset
are provided in (Goldsack et al., 2022).

In the tables 1 and 2 we can see the different
statistics of the two journals (PLOS and eLife), in
them we can see for each split its length of texts,
the average number of words in each split, as well
as the maximum and minimum length. The average
length of articles varies depending on the journal
to which they belong. For example, the average
length of articles in the eLife journal is 10,200
words, while the average length of articles in PLOS
is 6,754 words. In addition, there are notable dif-
ferences in the length of the abstracts. The average
length of an eLife abstract is twice that of a PLOS
abstract, at 382 words versus 194, respectively.

2.2 Models
In order to generate the summaries, a number of ap-
proaches were tested, with two Transformer models

being employed: Longformer (LED) and BioBART.
Longformer

Upon examination of the datasets in the previous
study, it became evident that the articles were
relatively lengthy. This prompted the decision to
utilise a model that could process a substantial
number of tokens as input. Consequently, the
Longformer model, specifically the LED (Long-
former Encoder - Decoder) variant, was selected
(Beltagy et al., 2020). This model follows a
sequence-to-sequence architecture (seq2seq) and
is based on Transformer-base models. However,
these are limited to short input sequences due to the
exponential growth in computational complexity
with the length of the inputs. Longformer models
address this issue by introducing a mechanism
whereby the complexity grows linearly in relation
to the inputs. For the experiments, the pre-trained
model allenai/led-base-163841 was utilised, which
is capable of supporting inputs of up to 16,000
tokens. This is feasible due to the fact that it was
initiated from a BART-base model. However,
the BART model is only capable of processing
texts up to 1,000 tokens. Consequently, the
embedding matrix from the BART-base was copied
and replicated 16 times in order to enable the
Longformer model to process texts up to 16,000
tokens.

Bio-BART

Given the nature of this biomedical article sum-
marisation and simplification task, it was deemed
appropriate to utilise a model that has been pre-
trained in this specific domain. Consequently, the
BioBART model was employed (Yuan et al., 2022),
as it has already demonstrated its efficacy in tasks
of a similar nature and was employed in last year’s
task such as in (Phan et al., 2023). This model
is based on a base BART model that has been
pre-trained on a corpus of biomedical texts, ren-
dering it an optimal choice for biomedical tasks.
The model for the experiments is the pre-training
GanjinZero/biobart-v2-large2.

1https://huggingface.co/allenai/
led-base-16384

2https://huggingface.co/GanjinZero/
biobart-v2-base

https://huggingface.co/allenai/led-base-16384
https://huggingface.co/allenai/led-base-16384
https://huggingface.co/GanjinZero/biobart-v2-base
https://huggingface.co/GanjinZero/biobart-v2-base
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3 Experiments

3.1 Evaluation Measures

Submissions for the shared task are evaluated ac-
cording to three distinct criteria: relevance, read-
ability and factuality.

• The relevance measure assesses the extent to
which the generated abstract contains the key
information from the original article. Four
metrics will be employed to evaluate this:
ROUGE-1 ↑, ROUGE-2↑, ROUGE-L ↑ (Lin,
2004) and BERTScore↑ (Zhang et al., 2020).

• Readability is a measure of the readability
of the generated abstract, with the objective
of ensuring that it is as understandable as
possible for humans. In evaluating the read-
ability of the abstract, four metrics are em-
ployed: Flesch-Kincaid Grade Level (FKGL)
↓ (Kincaid et al., 1975), Dale-Chall Readabil-
ity Score (DCRS )↓ (Chall and Dale, 1995),
Coleman-Liau Index (CLI) ↓ (Coleman and
Liau, 1975) and LENS ↑ (Maddela et al.,
2023).

• Factuality is the extent to which the generated
summary is accurate and based on verifiable
facts. For this, two metrics will be employed:
AlignScore ↑ (Zha et al., 2023) and SummaC
↑ (Laban et al., 2021).

The objective of the relevance and factuality
measures is to maximise the metrics, while in rel-
evance we seek to minimise them, except for the
LENS metric, which, like the previous ones, we
seek to maximise.

3.2 Experiments

Three distinct experiments were conducted
utilising the two previously trained models.

Longformer
The pre-trained allenai/led-base-16384 model is

employed in the experiments, which is capable of
supporting inputs of up to 16,384 tokens. In this
experiment, a single model will be trained on the
texts of the two journals, and the summaries will
be generated from the same model. Consequently,
the training of the model employs the texts of
the two journals. Despite the maximum input
capacity of the model being 16,384 tokens, the
texts are limited to those below 12,000 words due

to identified constraints. Nevertheless, the training
is based on more than 20,000 texts.

Bio-BART

The experiment employs the
GanjinZero/biobart-v2-large pre-training model,
which is a biomedical pre-training model. How-
ever, as a bart model, it has an input limitation
of 1024 tokens. Consequently, for the training
process, the complete dataset is utilised, with only
the initial tokens of each text being employed.
This approach allows for the retention of the initial
tokens, which are then used for the training process.
The information retained is the abstract, which has
an average length of 300 tokens plus the beginning
of the introduction. The average number of tokens
in these two fields is 1080, demonstrating that by
utilising these two sections, we are able to retain
a substantial amount of information. In contrast
to the aforementioned experiment with the LED
model, two distinct training sets will be employed
in this instance. One will comprise articles from
the PLOS journal, while the other will comprise
articles from the eLife journal. This approach will
result in the generation of two independent models,
each of which will produce summaries of the
articles in their respective test sets. The fine-tuning
process will utilise both complete datasets.

Longformer + Bio-BART

Finally, in order to enhance the outcomes of the
preceding experiments, we opted to integrate the
two models in order to retain the most advanta-
geous aspects of each. This integration will allow
us to leverage the capacity of the LED model to pro-
cess voluminous text inputs while simultaneously
capitalising on the BioBART model’s aptitude for
biomedical simplifications. As with the BioBART
model, in this experiment we will utilise two inde-
pendent models, one for PLOS journal and one for
eLife.

In order to achieve this, the Longformer model
is first employed. The input for this model is the
full articles, and the output is between 700 and
800 words, which is more than double the aver-
age length of the final summaries to be delivered.
Once the first summaries have been generated by
the Longformer model, they are used as input to the
BioBART models, which generate the final sum-
maries.
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Relevance Readability Factuality
ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BERTScore FKGL↓ DCRS↓ CLI↓ LENS↑ AlignScore↑ SummaC↑

Best Score 0.487 0.156 0.454 0.867 10.459 6.760 11.044 81.205 0.930 0.902
LED 0.411 0.113 0.386 0.846 13.592 8.810 14.966 27.749 0.753 0.652

BioBART 0.487 0.147 0.452 0.862 12.710 10.433 14.080 49.344 0.667 0.670
LED + BioBART 0.456 0.131 0.426 0.857 13.025 9.605 13.360 52.124 0.580 0.540

Table 3: The results of the three experiments (LED, BioBART, LED + BioBART) are presented alongside a
comparison with the best results obtained in each metric in the competition.

Relevance Readability Factuality
ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BERTScore FKGL↓ DCRS↓ CLI↓ LENS↑ AlignScore↑ SummaC↑

LED
Average 0.411 0.113 0.386 0.846 13.592 8.810 14.966 27.749 0.753 0.652
PLOS 0.421 0.142 0.393 0.855 13.389 8.956 14.850 29.155 0.784 0.701
eLife 0.400 0.084 0.379 0.837 13.794 8.665 15.082 26.343 0.723 0.604

BioBART
Average 0.487 0.147 0.452 0.862 12.710 10.433 14.080 49.344 0.667 0.670
PLOS 0.465 0.155 0.425 0.863 14.566 11.936 16.550 34.079 0.791 0.827
eLife 0.509 0.138 0.479 0.861 10.854 8.930 11.610 64.609 0.542 0.514

LED + BioBART
Average 0.456 0.131 0.426 0.857 13.025 9.605 13.360 52.124 0.580 0.540
PLOS 0.426 0.134 0.392 0.857 15.231 10.365 15.034 41.056 0.651 0.597
eLife 0.487 0.127 0.459 0.856 10.820 8.846 11.685 63.192 0.509 0.540

Table 4: The results of the metrics in the PLOS and eLife journals for each of the three experiments are presented
below.

3.3 Environment Parameters

All experiments were conducted on a Tesla T4
GPU, with a series of hyperparameters set, includ-
ing a learning rate of 2e-5, a batch size of 4, and
two epochs.

4 Results and discussions

The table 3 presents the outcomes of the exper-
iments, displayed in the context of the various
metrics. Furthermore, an additional row has been
included, in which the best value for each met-
ric within the competition is presented. Table 4
presents the results obtained for each journal, al-
lowing for a more detailed analysis. Upon exam-
ination of the results, the following observations
can be made.

The first of these observations is that our Bio-
BART value in the ROUGE-1 metric is the best
value in the competition. In addition to this ex-
cellent result in this metric, we can also see that
in the other relevance metrics we also obtain very
good results, being very close to the best results.
Furthermore, an analysis of the results by journal
reveals that there are minimal differences between
the texts of the two groups. The journal PLOS out-
performs the other texts in two metrics (ROUGE-2
and BERTScore), while eLife excels in two others
(ROUGE-1 and ROUGE-L). This indicates that the
model generates summaries that retain a substantial
amount of relevant information. In the experiment
in which we combined LED and BioBART, we
also obtained very good results, which suggests

that these results are due to the BioBART model.
Conversely, an analysis of the Readability met-

rics reveals that the optimal outcome is achieved
when the two models are combined. However,
when the Dalle-Chall Readability Score (DCRS)
metric is considered, the LED model exhibits sig-
nificantly superior performance. Furthermore, this
metric presents an intriguing phenomenon: the re-
sults in the BioBART model are quite poor, with a
score of 1.5 points above our best result. This is a
significant drawback for the model in terms of its
final score. In contrast to the previous observation
regarding relevance, the texts of the journal eLife
obtain much better results than those of the journal
PLOS.

With regard to the Factuality metrics, the Bio-
BART model yielded the most favourable results,
with the exception of the eLife journal, where the
outcomes were considerably less favourable. Con-
sequently, the average score was reduced, resulting
in the LED model, which is more balanced, achiev-
ing better results in the AlignScore metric.

The findings of this study indicate that while
the information is well-maintained, as evidenced
by the relevance metrics. The PLOS journal ar-
ticles contain more accurate information but are
more challenging to comprehend. This discrepancy
may be attributed to the smaller abstracts (175-220
words), which may have a detrimental impact on
the readability metrics.

The BioBART model is the most effective in
terms of relevance, outperforming all the met-
rics in this category thanks to its specific biomed-
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ical training. Although the combined Long-
former+BioBART model improves readability, it
loses accuracy due to the double simplification of
the content. On the other hand, the Longformer
model, although it obtained good results in some
metrics, did not stand out in any of them; this could
be an effect of having trained a single model with
the texts of the two journals.

4.1 Selection of approach

Following the completion of the three experiments
and the analysis of the results obtained from the
various metrics, it was determined that the most
optimal approach would be to utilise the BioBART
model, as it yielded the most favourable outcomes
in six out of the ten metrics, with at least one in
each of the three categories.

5 Conclusions

This paper presents our participation in the BioLay-
Summ 2024 shared task, which aimed to generate
lay summaries of large biomedical documents. In
this task, we trained two different models (LED
and BioBART) from which we generated three dif-
ferent experiments. Upon completion of the task,
we observed that the best results were obtained by
training two BioBART models (one for the PLOS
journal articles and another for the eLife articles).
This is our final submission to the competition,
which resulted in a 12th-place finish. Our perfor-
mance was particularly noteworthy in the ROUGE-
1 metric, where we achieved first place, as well as
in the Relevance metrics.

As future work, we would have liked to experi-
ment with other models that we found interesting,
particularly trained with medical data, such as med-
ical mT5 (García-Ferrero et al., 2024). With respect
to the models we have presented, we would like
to continue working with them to improve the re-
sults in the Readability and Factuality metrics, in
which we have not obtained such good results. We
would like to study what happened in generating
not adequate summaries by conducting an analy-
sis of errors. We believe that managing specific
medical terminology would help to generate more
lay-oriented medical terms to ascertain the efficacy
of the keyword translation from the original text to
the summary. In the event that this process is not
executed correctly, due to the inherent complexity
of the keywords, an external dataset comprising
words from the biomedical field and a translation

into simpler expressions could be employed as a
preprocessing step for the texts prior to training.
See the open-access and collaborative (OAC) con-
sumer health vocabulary3 (CHV) as an example of
a medical lay-oriented vocabulary.

Limitations

Our best result is obtained by using a BioBART
model, which restricts the input of words to a max-
imum length of 1024 tokens. This represents the
initial and most significant limitation encountered,
given that the dataset comprises lengthy texts. Con-
sequently, this limitation precludes the training of
models with all available information, which would
result in enhanced outcomes. Another limitation
identified was the use of the Tesla T4 GPU. The
extensive training data required for this device re-
sulted in lengthy training times, which impeded the
development of the models.

Acknowledgments

This work was supported by ACCESS2MEET
project (PID2020-116527RB-I0) supported by
MCIN AEI/10.13039/501100011033/.

References

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
Preprint, arXiv:2004.05150.

J.S. Chall and E. Dale. 1995. Readability Revisited:
The New Dale-Chall Readability Formula. Brookline
Books.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents.
Preprint, arXiv:1804.05685.

Meri Coleman and T. L. Liau. 1975. A computer read-
ability formula designed for machine scoring. Jour-
nal of Applied Psychology, 60(2):283–284.

Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa
Salazar, Elena Cabrio, Iker de la Iglesia, Alberto
Lavelli, Bernardo Magnini, Benjamin Molinet, Jo-
hana Ramirez-Romero, German Rigau, Jose Maria
Villa-Gonzalez, Serena Villata, and Andrea Zaninello.
2024. Medical mt5: An open-source multilingual
text-to-text llm for the medical domain. Preprint,
arXiv:2404.07613.

3https://biomedinfo.smhs.gwu.edu/chv-files

https://arxiv.org/abs/2004.05150
https://books.google.co.uk/books?id=2nbuAAAAMAAJ
https://books.google.co.uk/books?id=2nbuAAAAMAAJ
https://arxiv.org/abs/1804.05685
https://arxiv.org/abs/1804.05685
https://doi.org/10.1037/h0076540
https://doi.org/10.1037/h0076540
https://arxiv.org/abs/2404.07613
https://arxiv.org/abs/2404.07613
https://biomedinfo.smhs.gwu.edu/chv-files


785

Tomas Goldsack, Carolina Scarton, Matthew Shardlow,
and Chenghua Lin. 2024. Overview of the biolay-
summ 2024 shared task on the lay summarization
of biomedical research articles. In The 23rd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Tomas Goldsack, Zhihao Zhang, Chenghua Lin, and
Carolina Scarton. 2022. Making science simple: Cor-
pora for the lay summarisation of scientific literature.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10589–10604, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Peter Kincaid, Robert P. Fishburne, Richard L. Rogers,
and Brad S. Chissom. 1975. Derivation of new read-
ability formulas (automated readability index, fog
count and flesch reading ease formula) for navy en-
listed personnel.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2021. Summac: Re-visiting nli-
based models for inconsistency detection in summa-
rization. Preprint, arXiv:2111.09525.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Mounica Maddela, Yao Dou, David Heineman, and Wei
Xu. 2023. Lens: A learnable evaluation metric for
text simplification. Preprint, arXiv:2212.09739.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based
sequence model for extractive summarization of doc-
uments. In Proceedings of the AAAI conference on
artificial intelligence, volume 31.

Phuc Phan, Tri Tran, and Hai-Long Trieu. 2023. VBD-
NLP at BioLaySumm task 1: Explicit and implicit
key information selection for lay summarization on
biomedical long documents. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 574–578, Toronto,
Canada. Association for Computational Linguistics.

Adhika Pramita Widyassari, Supriadi Rustad, Guruh Fa-
jar Shidik, Edi Noersasongko, Abdul Syukur, Af-
fandy Affandy, and De Rosal Ignatius Moses Setiadi.
2022. Review of automatic text summarization tech-
niques methods. Journal of King Saud University
- Computer and Information Sciences, 34(4):1029–
1046.

Hongyi Yuan, Zheng Yuan, Ruyi Gan, Jiaxing Zhang,
Yutao Xie, and Sheng Yu. 2022. Biobart: Pretraining
and evaluation of a biomedical generative language
model. Preprint, arXiv:2204.03905.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting
Hu. 2023. Alignscore: Evaluating factual consis-
tency with a unified alignment function. Preprint,
arXiv:2305.16739.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

https://aclanthology.org/2022.emnlp-main.724
https://aclanthology.org/2022.emnlp-main.724
https://api.semanticscholar.org/CorpusID:61131325
https://api.semanticscholar.org/CorpusID:61131325
https://api.semanticscholar.org/CorpusID:61131325
https://api.semanticscholar.org/CorpusID:61131325
https://arxiv.org/abs/2111.09525
https://arxiv.org/abs/2111.09525
https://arxiv.org/abs/2111.09525
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2212.09739
https://arxiv.org/abs/2212.09739
https://doi.org/10.18653/v1/2023.bionlp-1.60
https://doi.org/10.18653/v1/2023.bionlp-1.60
https://doi.org/10.18653/v1/2023.bionlp-1.60
https://doi.org/10.18653/v1/2023.bionlp-1.60
https://doi.org/10.1016/j.jksuci.2020.05.006
https://doi.org/10.1016/j.jksuci.2020.05.006
https://arxiv.org/abs/2204.03905
https://arxiv.org/abs/2204.03905
https://arxiv.org/abs/2204.03905
https://arxiv.org/abs/2305.16739
https://arxiv.org/abs/2305.16739
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675

	Introduction
	Method
	Dataset
	Models

	Experiments
	Evaluation Measures
	Experiments
	Environment Parameters

	Results and discussions
	Selection of approach

	Conclusions

