@inproceedings{stefanou-etal-2024-auth,
title = "{AUTH} at {B}io{L}ay{S}umm 2024: Bringing Scientific Content to Kids",
author = "Stefanou, Loukritia and
Passali, Tatiana and
Tsoumakas, Grigorios",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.73",
doi = "10.18653/v1/2024.bionlp-1.73",
pages = "793--803",
abstract = "The BioLaySumm 2024 shared task at the ACL 2024 BioNLP workshop aims to transform biomedical research articles into lay summaries suitable for a broad audience, including children. We utilize the BioBART model, designed for the biomedical sector, to convert complex scientific data into clear, concise summaries. Our dataset, which includes a range of scientific abstracts, enables us to address the diverse information needs of our audience. This focus ensures that our summaries are accessible to both general and younger lay audience. Additionally, we employ specialized tokens and augmentation techniques to optimize the model{'}s performance. Our methodology proved effective, earning us the 7th rank on the final leaderboard out of 57 participants.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stefanou-etal-2024-auth">
<titleInfo>
<title>AUTH at BioLaySumm 2024: Bringing Scientific Content to Kids</title>
</titleInfo>
<name type="personal">
<namePart type="given">Loukritia</namePart>
<namePart type="family">Stefanou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Passali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grigorios</namePart>
<namePart type="family">Tsoumakas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Workshop on Biomedical Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The BioLaySumm 2024 shared task at the ACL 2024 BioNLP workshop aims to transform biomedical research articles into lay summaries suitable for a broad audience, including children. We utilize the BioBART model, designed for the biomedical sector, to convert complex scientific data into clear, concise summaries. Our dataset, which includes a range of scientific abstracts, enables us to address the diverse information needs of our audience. This focus ensures that our summaries are accessible to both general and younger lay audience. Additionally, we employ specialized tokens and augmentation techniques to optimize the model’s performance. Our methodology proved effective, earning us the 7th rank on the final leaderboard out of 57 participants.</abstract>
<identifier type="citekey">stefanou-etal-2024-auth</identifier>
<identifier type="doi">10.18653/v1/2024.bionlp-1.73</identifier>
<location>
<url>https://aclanthology.org/2024.bionlp-1.73</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>793</start>
<end>803</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AUTH at BioLaySumm 2024: Bringing Scientific Content to Kids
%A Stefanou, Loukritia
%A Passali, Tatiana
%A Tsoumakas, Grigorios
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Miwa, Makoto
%Y Roberts, Kirk
%Y Tsujii, Junichi
%S Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F stefanou-etal-2024-auth
%X The BioLaySumm 2024 shared task at the ACL 2024 BioNLP workshop aims to transform biomedical research articles into lay summaries suitable for a broad audience, including children. We utilize the BioBART model, designed for the biomedical sector, to convert complex scientific data into clear, concise summaries. Our dataset, which includes a range of scientific abstracts, enables us to address the diverse information needs of our audience. This focus ensures that our summaries are accessible to both general and younger lay audience. Additionally, we employ specialized tokens and augmentation techniques to optimize the model’s performance. Our methodology proved effective, earning us the 7th rank on the final leaderboard out of 57 participants.
%R 10.18653/v1/2024.bionlp-1.73
%U https://aclanthology.org/2024.bionlp-1.73
%U https://doi.org/10.18653/v1/2024.bionlp-1.73
%P 793-803
Markdown (Informal)
[AUTH at BioLaySumm 2024: Bringing Scientific Content to Kids](https://aclanthology.org/2024.bionlp-1.73) (Stefanou et al., BioNLP-WS 2024)
ACL