@inproceedings{modi-karthikeyan-2024-eulerian,
title = "Eulerian at {B}io{L}ay{S}umm: Preprocessing Over Abstract is All You Need",
author = "Modi, Satyam and
Karthikeyan, T",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.77",
doi = "10.18653/v1/2024.bionlp-1.77",
pages = "826--830",
abstract = "In this paper, we present our approach to the BioLaySumm 2024 Shared Task on Lay Sum- marization of Biomedical Research Articles at BioNLP workshop 2024. The task aims to generate lay summaries from the abstract and main texts of biomedical research articles, making them understandable to lay audiences. We used some preprocessing techniques and finetuned FLAN-T5 models for the summarization task. Our method achieved an AlignScore of 0.9914 and a SummaC metric score of 0.944.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="modi-karthikeyan-2024-eulerian">
<titleInfo>
<title>Eulerian at BioLaySumm: Preprocessing Over Abstract is All You Need</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satyam</namePart>
<namePart type="family">Modi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Karthikeyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Workshop on Biomedical Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present our approach to the BioLaySumm 2024 Shared Task on Lay Sum- marization of Biomedical Research Articles at BioNLP workshop 2024. The task aims to generate lay summaries from the abstract and main texts of biomedical research articles, making them understandable to lay audiences. We used some preprocessing techniques and finetuned FLAN-T5 models for the summarization task. Our method achieved an AlignScore of 0.9914 and a SummaC metric score of 0.944.</abstract>
<identifier type="citekey">modi-karthikeyan-2024-eulerian</identifier>
<identifier type="doi">10.18653/v1/2024.bionlp-1.77</identifier>
<location>
<url>https://aclanthology.org/2024.bionlp-1.77</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>826</start>
<end>830</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Eulerian at BioLaySumm: Preprocessing Over Abstract is All You Need
%A Modi, Satyam
%A Karthikeyan, T.
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Miwa, Makoto
%Y Roberts, Kirk
%Y Tsujii, Junichi
%S Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F modi-karthikeyan-2024-eulerian
%X In this paper, we present our approach to the BioLaySumm 2024 Shared Task on Lay Sum- marization of Biomedical Research Articles at BioNLP workshop 2024. The task aims to generate lay summaries from the abstract and main texts of biomedical research articles, making them understandable to lay audiences. We used some preprocessing techniques and finetuned FLAN-T5 models for the summarization task. Our method achieved an AlignScore of 0.9914 and a SummaC metric score of 0.944.
%R 10.18653/v1/2024.bionlp-1.77
%U https://aclanthology.org/2024.bionlp-1.77
%U https://doi.org/10.18653/v1/2024.bionlp-1.77
%P 826-830
Markdown (Informal)
[Eulerian at BioLaySumm: Preprocessing Over Abstract is All You Need](https://aclanthology.org/2024.bionlp-1.77) (Modi & Karthikeyan, BioNLP-WS 2024)
ACL