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Abstract

Lay summaries play a crucial role in making
scientific research accessible to a wider audi-
ence. However, generating lay summaries from
lengthy articles poses significant challenges.
We consider two approaches to address this is-
sue: Hard Truncation, which preserves the most
informative initial portion of the article, and
Text Chunking, which segments articles into
smaller, manageable chunks. Our workflow en-
compasses data preprocessing, augmentation,
prompt engineering, and fine-tuning large lan-
guage models. We explore the influence of pre-
trained model selection, inference prompt de-
sign, and hyperparameter tuning on summariza-
tion performance. Our methods demonstrate
effectiveness in generating high-quality, infor-
mative lay summaries, achieving the second-
best performance in the BioLaySumm shared
task at BioNLP 2024.

1 Introduction

Biomedical publications serve as a critical channel
for disseminating cutting-edge research findings
on a wide range of health-related topics. While
biomedical publications are essential for advanc-
ing medical knowledge and public health aware-
ness, the technical terminology and lack of back-
groud information often render them inaccessible
to non-expert audiences(Guo et al., 2021). The
BioLaySumm shared task addresses this need by
developing effective models to generate lay sum-
maries of biomedical articles aimed at non-expert
audiences(Goldsack et al., 2024).

The challenge in the BioLaySumm shared task
is to distill complex biomedical content into lay
summaries that are both comprehensible and en-
gaging to non-expert audiences. Large language
models (LLMs) have shown remarkable capabili-
ties in generating coherent and contextually accu-
rate texts(Naveed et al., 2023), which could refor-
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File Key Min Max Mean Median

eLife
lay summary 225 893 478 473

article 444 54,539 16,555 15,866

PLOS
lay summary 17 674 268 270

article 1,046 37,770 10,289 10,029

Table 1: Token length statistics for the eLife and PLOS
datasets, obtained using the Mistral tokenizer.

mulate complex technical information into simpler
narratives(Turbitt et al., 2023). Thus, LLMs are
ideal for the generation of lay summaries. LLMs
have witnessed the great advancement, each show-
casing unique capabilities and specialized applica-
tions(Zhao et al., 2023), such as Mistral(Jiang et al.,
2023), Qwen(Bai et al., 2023) and Llama(Touvron
et al., 2023).

To tackle the challenge of lengthy articles in
the BioLaySumm shared task, we consider two ap-
proaches: Hard Truncation and Text Chunking. We
preprocess the data using these methods, apply data
augmentation and prompt engineering, and fine-
tune large language models on the task-specific
data. We explore the effect of pretrained mod-
els, inference prompts, and hyperparameters on
the quality of the generated lay summaries. Our
experiments show that our approach effectively ex-
tracts key information and produces informative,
easy-to-understand summaries.

2 Related Work

2.1 Large Languange Model Generation

Recent advancements in generation models have
been dominated by the emergence of LLMs such
as Mistral(Jiang et al., 2023), Llama(Touvron et al.,
2023) and GPT-4(OpenAI et al., 2024). In the do-
main of biomedical summarization, LLMs have
been adapted to interpret and summarize complex
scientific texts, providing a foundation for tasks
like BioLaySumm (Brown et al., 2020). Moreover,
text chunking, an essential natural language pro-
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Figure 1: Text Chunking processes articles based on their token count. For articles with fewer than 15k tokens,
the original content is preserved. Articles exceeding 15k tokens are divided into chunks, and the lay summary is
generated using an LLM for each chunk. The generated lay summary chunks are then merged and used as input,
with the original lay summary serving as the output.

cessing (NLP) technique, plays a critical role in Bi-
oLaySumm by breaking down large texts into man-
ageable chunks(Reddy et al., 2023). This process
enhances the accuracy of embedded content and
improves important information retrieval, thereby
enhancing the efficiency and quality of text retrieval
and generation in the biomedical field.

2.2 Data Augmentation

Data augmentation (Shorten et al., 2021) in LLMs
involves enriching the training dataset with arti-
ficially generated samples, which enhances the
model’s robustness and generalization capabilities.
In biomedical summarization, data augmentation
techniques such as back-translation (Sugiyama and
Yoshinaga, 2019) and paraphrasing(Mi et al., 2022)
have been used to expand the diversity of training
examples, helping models to better handle a range
of linguistic structures and terminologies found in
medical texts (Li et al., 2022).

3 Data Preprocessing

3.1 Dataset

The dataset for BioLaySumm shared task is a
combination of two biomedical datasets, PLOS
and eLife(Goldsack et al., 2022). These datasets
contain research articles and corresponding lay
summaries written by experts .The diversity of
these datasets presents a challenge for participants
in developing models that effectively summarize
biomedical literature for a general audience.

Between the two provided datasets, PLOS is
larger, with 24,773 instances for training and 1,376

for validation, while eLife has 4,346 training in-
stances and 241 validation instances.

3.2 Optimizing Input Article

Given the computational constraints, we limit the
maximum context length to 15k tokens. Table 1
presents the token length statistics in the eLife and
PLOS datasets. The statistics reveal that a con-
siderable number of articles surpass the 15k token
limit. We evaluate two approaches to address this
challenge when applying Supervised Fine-Tuning
(SFT) to adapt pretrained language models for spe-
cific tasks: Hard Truncation and Text Chunking.

Hard Truncation: This approach truncates arti-
cles, keeping only the first 15k tokens. It relies on
the typical structure of articles, where crucial infor-
mation is often presented initially. Truncating the
latter part minimizes the loss of critical information
while using only the provided data corpus. How-
ever, for longer articles, it may lead to information
loss and potentially cause the model to generate
content not present in the input.

Text Chunking: As shown in Figure 1, Text
Chunking uses Langchain’s Text Splitters* to di-
vide articles into chunks of 15k tokens or less. This
ensures the entire article is used in the SFT data.
However, chunking introduces artificial boundaries
within the text, which may disrupt the natural flow
and context of the article, potentially impacting
model performance. It also increases the number
of training data entries, as a single entry may be

*https://python.langchain.com/v0.1/docs/
modules/data_connection/document_transformers/
recursive_text_splitter/

https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/
https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/
https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/
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split into multiple chunks. This could result in
longer articles having a disproportionate influence
on the training process, as they contribute more
chunks to the dataset.

We evaluate both methods on different datasets
to determine the most optimal approach for each.

3.3 Data Augmentation
Hard Truncation does not introduce new content,
but Text Chunking splits articles into fragments
that do not match the original lay summaries. To
address this issue, we use data augmentation with
Mixtral 8x7B (Jiang et al., 2024) (hereafter Mix-
tral). Mixtral generates lay summaries for these
fragments by finding the corresponding content
from the full-text lay summary. It uses the original
text as much as possible.

To include the full-text lay summary in the train-
ing data, we use the Mixtral-generated summaries
as input and the original full-text summary as out-
put. This incorporates the full-text summary into
the training process for Text Chunking.

Data augmentation with Mixtral generates sum-
maries that accurately correspond to the article
fragments from Text Chunking. It also ensures
the full-text summary is included in the training
data.

3.4 Prompt Engineering for Data Segregation
For the Hard Truncation approach, a uniform
prompt is used for all data entries. However, the
Text Chunking method requires different prompts
for three data types:

Unmodified Data: Articles not exceeding 15k
tokens are retained directly and form the main por-
tion of the training data. The prompt used for this
data type is consistent with the one used during
inference.

Augmented Data from Chunking: For articles
split into chunks, the input text consists of the arti-
cle chunk, while the output text is generated using
Mixtral. A different prompt is employed during
training to differentiate it from unmodified data.

Aggregated Summary Data: The outputs from
augmented data from chunking are concatenated in
the article’s narrative order. This concatenated text
serves as the input, and the original lay summary is
used as the output. The prompt instructs the model
to generate a concise lay summary from the overly
long and redundant input.

The specific prompts used for each data type are
presented in Table 6 of the Appendix.

4 Metrics

To thoroughly evaluate the quality of the generated
lay summaries, we use a diverse set of metrics that
capture various aspects of the summarization task:

Relevance: We use ROUGE (1, 2, and L) (Lin,
2004) and BERTScore (Zhang et al., 2019) to eval-
uate the relevance of the generated summaries to
the original articles. Higher scores indicate better
performance for these metrics.

Readability: To assess the readability of the gen-
erated summaries, we utilize several widely-used
metrics: Flesch-Kincaid Grade Level (FKGL) (Kin-
caid et al., 1975), Dale-Chall Readability Score
(DCRS) (Chall and Dale, 1995), Coleman-Liau In-
dex (CLI) (Coleman and Liau, 1975), and LENS
(Maddela et al., 2022). For FKGL, DCRS, and CLI,
lower scores indicate better readability, while for
LENS, higher scores are preferable.

Factuality: Ensuring the factual correctness of
the generated summaries is crucial in the biomed-
ical domain. We employ AlignScore (Zha et al.,
2023) and SummaC (Laban et al., 2022) to mea-
sure the factual consistency between the generated
summaries and the source articles. Higher scores
on these metrics indicate better factual alignment.

5 Experiments

We conduct a series of experiments to investigate
the impact of various factors on our lay summa-
rization model’s performance. Due to the PLOS
validation set’s size, we use the first 142 entries as
our validation subset.

5.1 Impact of the Pretrained Model

We compare the performance of three pretrained
language models: Qwen1.5-14B-Chat, Mistral-
7B-Instruct-v0.2, and Meta-Llama-3-8B-Instruct.
Each model is fine-tuned on the Hard Truncation
dataset for one epoch with a learning rate of 1e-5
and a global batch size of 64. We use a complex
prompt during inference, described in Section 5.2.

Table 2 shows the results. Meta-Llama-3-8B-
Instruct achieves the highest LENS score but per-
forms worse on other metrics. Qwen1.5-14B-Chat
and Mistral-7B-Instruct-v0.2 exhibit comparable
performance, with the latter having fewer param-
eters. Based on these findings, we select Mistral-
7B-Instruct-v0.2 as our base model for subsequent
experiments.
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Model ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC
Qwen1.5-14B-Chat 0.4842 0.156 0.454 0.8677 11.537 9.559 13.445 54.865 0.7804 0.6876
Mistral-7B-Instruct-v0.2 0.4959 0.1640 0.4654 0.8672 12.054 9.4289 13.5558 52.0932 0.7954 0.7070
Meta-Llama-3-8B-Instruct 0.473 0.1464 0.4391 0.8581 12.0817 9.8036 13.5764 66.8112 0.739 0.6816

Table 2: Experiment results of different pretrained models. For FKGL, DCRS, and CLI, lower scores are better; for
all other metrics, higher scores are better.

Prompt ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC
Simple Prompt 0.4804 0.1521 0.4514 0.8661 11.936 9.3647 13.407 54.716 0.7783 0.6716
Complex Prompt 0.4959 0.1640 0.4654 0.8672 12.054 9.4289 13.5558 52.0932 0.7954 0.7070
One-shot Prompt 0.4755 0.1496 0.4462 0.8652 12.104 9.4766 13.5491 54.232 0.7799 0.6694

Table 3: Experiment results of different inference prompts.

5.2 Impact of Inference Prompts

We investigate the impact of three distinct inference
prompts on model performance: a simple prompt,
a complex prompt, and a one-shot prompt. The
specific prompts are detailed in Table 7.

Experiments using the Mistral-7B-Instruct-v0.2
model (Table 3) show that the complex prompt
yields superior results compared to the simple
prompt. The complex prompt improves relevance
and factuality but slightly decreases readability.
Surprisingly, the one-shot prompt underperforms
the other prompts, possibly due to the lengthy ex-
ample reducing content retention for the predicted
sample. We use the complex prompt for subsequent
experiments.

5.3 Impact of Hyperparameters

In the process of hyperparameter optimization, we
drew inspiration from the experimental configura-
tions employed in the Llama2 study. Our inves-
tigation focused on two critical hyperparameters:
the number of training epochs and the learning
rate. Specifically, we conducted a series of fine-
tuning experiments using the Mistral-7B-Instruct-
v0.2 model. The experimental design was as fol-
lows:

1. Single-epoch training with learning rates of
1e-5 and 2e-5.

2. Comparative analysis of single-epoch and
dual-epoch training, both utilizing a learning rate
of 1e-5.

This systematic approach allowed us to assess
the individual and combined effects of epoch count
and learning rate on model performance. By bench-
marking against the Llama2 configurations, we
aimed to leverage established best practices while
adapting them to our specific task requirements.
The results of these experiments provided valuable
insights into the optimal hyperparameter settings

for our fine-tuning process, enabling us to strike a
balance between model performance and computa-
tional efficiency.

5.4 Impact of Data Augmentation

To address the challenge of articles exceeding 15k
tokens, we developed and evaluated two distinct
methods: Hard Truncation and Text Chunking.
Hard Truncation preserves the original lay sum-
mary style but risks omitting content from the latter
portions of the article. Conversely, Text Chunking
ensures comprehensive inclusion of the entire ar-
ticle in the training set, albeit with the potential
introduction of noise during data augmentation.

The application of these methods is contingent
upon various factors. Hard Truncation may be
more appropriate when less critical information
is concentrated at the article’s end or when sophis-
ticated models for data transformation are unavail-
able. However, Text Chunking could potentially
yield superior results when crucial content is dis-
tributed throughout the article.

To empirically assess the impact of these data
processing methods, we fine-tuned separate mod-
els using datasets prepared with Hard Truncation
and Text Chunking. The results, presented in Table
5, reveal that the Hard Truncation-trained model
exhibits superior performance on the eLife dataset,
while the Text Chunking-trained model demon-
strates enhanced efficacy on the PLOS dataset.
Leveraging these findings, we implemented an en-
semble approach combining both models for our
final submission. This strategy proved effective,
securing 3rd place in relevance and 2nd place in
the overall ranking of the competition.

6 Discussion

This paper introduces two methods for handling
long input sequences in the BioLaySumm task and
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Epoch Learning Rate ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC
1 1e-5 0.4959 0.1640 0.4654 0.8672 12.054 9.4289 13.5558 52.0932 0.7954 0.7070
2 1e-5 0.4914 0.1549 0.4596 0.8675 12.217 9.576 13.58 55.166 0.76 0.6398
1 2e-5 0.4866 0.154 0.4544 0.866 12.551 9.7017 13.8178 52.575 0.7906 0.6587

Table 4: Experiment results of different hyperparameters.

Dataset DataType ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC

eLife
Hard Truncation 0.5153 0.1560 0.4904 0.8677 9.9021 8.2115 11.6322 62.9878 0.6746 0.5714
Text Chunking 0.4806 0.1451 0.4589 0.8642 9.3846 7.9235 11.0592 61.2874 0.6961 0.5831

PLOS
Hard Truncation 0.4763 0.1720 0.4404 0.8666 14.2059 10.6464 15.4795 41.1988 0.9162 0.8426
Text Chunking 0.4748 0.177 0.4400 0.8680 14.644 10.77 15.864 40.742 0.9558 0.8747

Table 5: Experiment results of different data augmentation methods on eLife and PLOS dataset.

investigates the impact of various factors on gener-
ating lay summaries. Fine-tuning the Mistral-7B-
Instruct-v0.2 model with specific settings yields
strong performance.

Hard Truncation and Text Chunking’s effective-
ness varies depending on the target dataset. Hard
Truncation may lose crucial information from later
parts of long articles, potentially affecting summary
completeness. Text Chunking, while preserving all
content, introduces artificial boundaries that could
disrupt context and lead to inconsistencies in gen-
erated summaries. Additionally, Text Chunking
may result in longer articles having disproportion-
ate influence on the training process. We use data
augmentation with Mixtral, which generates sum-
maries for text chunks. However, this approach
may bias the model towards Mixtral’s summariza-
tion style and introduce inconsistencies between
fragment summaries and full-text summaries.

Future research could explore larger pretrained
models and more sophisticated strategies for han-
dling lengthy inputs. Section-specific summariza-
tion techniques could also improve performance.

Carefully designing inference prompts and se-
lecting appropriate hyperparameters are crucial
when fine-tuning pretrained language models for
specific tasks. We hope our work inspires further re-
search and contributes to developing effective tools
for making scientific knowledge more accessible.

7 Limitation

In this study, we conducted a comprehensive anal-
ysis of various factors influencing model perfor-
mance, including pre-trained models, hyperparam-
eters, and data processing techniques. Our investi-
gation, however, did not extend to examining the
differential impact of distinct article sections on
summary generation. This aspect warrants further
exploration, as the introduction and conclusion sec-
tions often encapsulate the core content of an article

and may hold greater significance for summariza-
tion, while body sections typically provide more
granular details.

Additionally, to enhance the model’s proficiency
in specialized biological domains, future work
could investigate the efficacy of incremental pre-
training. This approach may potentially improve
the model’s ability to elucidate technical terminol-
ogy in more accessible language, thereby enhanc-
ing the overall quality and comprehensibility of
generated summaries.

These unexplored avenues present promising di-
rections for future research, aimed at refining and
advancing the performance of summarization mod-
els in specialized scientific domains, particularly in
the field of biology.
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Data Type Prompt
Unmodified Data Generate a 300-400 word abstract for the given biology research

article. Include research question, methods, main findings, impli-
cations, and conclusions. Use precise scientific terminology, log-
ical structure, and active voice. Ensure clarity and accuracy.Here
is the article:{input}. Please give me the clear abstract.

Augmented Data from Chunking You will be given a section of a scientific article in the field
of biology. Your task is to generate a concise and accurate
summary of the key points and findings presented in this section.
The summary should capture the main ideas, methods, results,
and conclusions, while maintaining the scientific context and
terminology used in the original text.Here is the article:{input}

Aggregated Summary Data You will receive a summary of a biology research article gen-
erated by an AI model. However, the summary is too long and
needs further refinement. Your task is to create a more concise
version, focusing on the most critical information. The refined
summary should:1. Maintain key findings, conclusions, and sci-
entific context.2. Use precise, domain-specific terminology.3.
Follow a logical structure highlighting main points.4. Aiming
for 300-400 words.5. Omit unnecessary details while preserving
the core message.6. Use clear, concise language for better read-
ability.By adhering to these guidelines, create a highly refined
summary that effectively conveys the essence of the original
article.Here is the article:{input}

Table 6: Different prompts used for each data type in the experiments.

Prompt Type Prompt
Simple Prompt Please read the article given and write an easy-to-understand summary.Given

article:{input}
Complex Prompt Generate a 300-400 word abstract for the given biology research article. Include

research question, methods, main findings, implications, and conclusions. Use
precise scientific terminology, logical structure, and active voice. Ensure clarity
and accuracy.Here is the article:{input}. Please give me the clear abstract.

One-Shot Prompt Generate a 300-400 word abstract for the given biology research article. In-
clude the research question, methods, main findings, implications, and conclu-
sions. Use precise scientific terminology, a logical structure, and active voice.
Ensure clarity and accuracy. The abstract should be written in the following
format:{example}.Here is the full text of the research article to be summa-
rized:{input}. Please provide a clear and professional abstract based on the
article provided. Thank you!

Table 7: Prompt instructing the model to generate a concise lay summary from an overly long and redundant input
summary
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