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Biomedical natural language processing in 2024: The year of BioMedGen

Dina Demner-Fushman, Sophia Ananiadou, Makoto Miwa, Kirk Roberts and Jun-ichi Tsujii

The development of Large Language Models (LLMs) applied to complex Biomedical Language
Processing tasks keeps growing steadily. This growth instigated the anticipation of major breakthroughs
in language generation and downstream healthcare tasks, as well as concerns with respect to potential
harms and irresponsible use of AI applications. Both the medical informatics communities and regulatory
agencies are developing guidelines and checklists for conducting trustworthy LLM-based research and
reporting the results of this research 1 2 3.

The submissions to the BioNLP 2024 workshop and the Shared Tasks demonstrated once again
that the workshop sponsored by the ACL Special Interest Group on Biomedical Natural Language
Processing (SIGBIOMED) is the preferred venue for the groundbreaking research and applications
in Biomedical Language Processing. BioNLP remains the flagship and the generalist in biomedical
language processing, accepting all noteworthy work independently of the tasks and languages studied.
The quality of submissions continues to impress the program committee and the organizers.

BioNLP 2024 received 61 submissions, of which six were accepted for oral presentation and 37 as poster
presentations. The presentations cover a wide range of the foundational biomedical language processing
research and clinical applications, exploring generation of a variety of clinical reports, extraction of
information from the literature and social media, prediction of patients’ outcomes and generation of
datasets and benchmarks for question answering.

The Shared Tasks included generation of radiology reports (RRG24, 8 participating teams), generation
of hospital course summaries and discharge instructions (Discharge Me!, 12 participating teams), and
abstractive summarization of biomedical articles (BioLaySumm, 14 participating teams). The overviews
of the tasks and short presentations of the best performing approaches are included in the workshop
program. The participants in all Shared Tasks present their work in a dedicated poster session.

The keynote by Titipat Achakulvisut, Department of Biomedical Engineering, Mahidol University,
Thailand is titled Enhancing Neuroscience Conferences through Natural Language Processing

This talk presents the development and implementation of natural language processing (NLP) tools
at neuroscience conferences. Dr. Achakulvisut has successfully integrated these tools into various
conferences, including a recommendation engine at the Society for Neuroscience (SfN) meeting, one-
on-one matching at the Conference on Cognitive Computational Neuroscience (CCN), paper-reviewer
matching for the Computational and Systems Neuroscience (COSYNE) conference, and reviewer
recommendations for NBDT journal. His group employs a fine-tuning and contrastive learning approach
to adapt transformer-based models, such as MiREAD and SciBERT for neuroscience. The models were
evaluated using both distance metrics and recommendation arena assessments. The goal of exploring
NLP tools in non-computer science domains is to enhance the interactions of researchers and attendees.

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
elsewhere in this volume) who produced three thorough and thoughtful reviews for each paper in a
fairly short review period. The quality of submitted work continues to grow, and the organizers are
truly grateful to the members of our amazing Program Committee, who helped us to determine which
work was ready to be presented, and which would benefit from the additional experiments and analyses
suggested by the reviewers. As in years past, we are looking forward to a productive workshop and

1https://www.coalitionforhealthai.org/
2https://www.fda.gov/media/153486/download
3https://tripod-llm.vercel.app/
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hoping it will foster new collaborations and research. This will enable our community to continue making
valuable contributions to public health and well-being and clinical research.

The advent of Generative AI and LLMs has also transformed our workshop introducing new challenges
and opportunities. We are now in the era of BioMedGen.
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Abstract

Domain adaptation is crucial in the clinical
domain since the performance of a model
trained on one domain (source) degrades se-
riously when applied to another domain (tar-
get). However, conventional domain adaptation
methods often cannot be applied due to data
sharing restrictions on source data. Source-
Free Domain Adaptation (SFDA) addresses
this issue by only utilizing a source model
and unlabeled target data to adapt to the tar-
get domain. In SFDA, self-training is the most
widely applied method involving retraining
models with target data using predictions from
the source model as pseudo-labels. Neverthe-
less, this approach is prone to contain substan-
tial numbers of errors in pseudo-labeling and
might limit model performance in the target
domain. In this paper, we propose a Source-
Free Prototype-based Self-training (SFPS) aim-
ing to improve the performance of self-training.
SFPS generates prototypes without accessing
source data and utilizes them for prototypi-
cal learning, namely prototype-based pseudo-
labeling and contrastive learning. Also, we
compare entropy-based, centroid-based, and
class-weights-based prototype generation meth-
ods to identify the most effective formulation
of the proposed method. Experimental re-
sults across various datasets demonstrate the
effectiveness of the proposed method, consis-
tently outperforming vanilla self-training. The
comparison of various prototype-generation
methods identifies the most reliable genera-
tion method that improves the source model
persistently. Additionally, our analysis illus-
trates SFPS can successfully alleviate errors in
pseudo-labeling.

1 Introduction

Domain adaptation is crucial in Clinical Natural
Language Processing (Clinical NLP) since it is
known that the performance of the model trained on
one domain (source) degrades seriously on another

Figure 1: Illustration of SFPS. ⋆ denotes prototypes,
and dotted lines denote the model’s decision bound-
aries. First, we generate prototypes with either the
entropy-based (ENT), centroid-based (CEN), or class-
weights-based (WGT) method (a). CEN is chosen in
this example. Then, we utilize these prototypes for
prototypical learning (b), consisting of prototype-based
pseudo-labeling and contrastive learning to update the
source model and obtain distinct representations of tar-
get data.

domain (target) in the face of domain shifts such as
different specialty or institution’s formatting (Wu
et al., 2014; Bethard et al., 2017; Miller et al., 2017).
Despite the significant advancements in research on
domain adaptation, most existing methods assume
access to the labeled source data (Kouw and Loog,
2019; Ramponi and Plank, 2020). This assumption
is frequently violated in the clinical domain, where
data sharing is restricted due to patients’ privacy
concerns (Laparra et al., 2020). Source-Free Do-
main Adaptation (SFDA) addresses this issue by
only utilizing a source model and unlabeled target
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data to adapt to the target domain (Liang et al.,
2020; Chidlovskii et al., 2016).

Self-training (Kumar et al., 2010; Li and Zhang,
2019) has been shown to be a versatile and ef-
fective method for SFDA in computer vision (Yu
et al., 2023). In Clinical NLP, a shared task was
newly introduced in SemEval 2021 Task 10 (La-
parra et al., 2021), prompting the development of
SFDA methods on clinical text. Active learning
and self-training combined with data augmenta-
tion emerged as widely applied methods (Su et al.,
2021). The systematic comparison of the proposed
methods indicates that active learning can reliably
improve the source model’s performance, while
self-training is unreliable, failing to consistently
outperform the source model (Su et al., 2022).
However, active learning requires additional an-
notation on the target data, which can be difficult
due to the expertise required for the annotation (Su
et al., 2021). This necessitates improvement of
the existing self-training method that does not rely
on either additional annotation or source data for
adapting the source model in Clinical NLP.

Prototypical learning (Snell et al., 2017; Wang
et al., 2022) can potentially improve self-training,
yet existing methods are not applicable in the SFDA
setting. In general, self-training involves retrain-
ing the source model with target data by assigning
the predictions from the source model as pseudo-
labels. Nevertheless, pseudo-labels assigned in
this manner contain a substantial number of errors
and might limit the model’s performance. Proto-
typical learning, such as prototype-based pseudo-
labeling (Gu, 2020), and contrastive learning (Li
et al., 2021) are proven to be effective for improv-
ing self-training (Yang et al., 2023; Mou et al.,
2023; Zhou et al., 2023). However, existing meth-
ods assume access to labeled source data to gener-
ate reliable prototypes, making them inapplicable
in source-free settings. How to generate reliable
prototypes without accessing source data remains
unanswered.

In this paper, we aim to provide answers to the
following questions:

Q1: Can prototypical learning improve self-
training in SFDA?

Q2: Which method can generate reliable proto-
types in the absence of labeled source data?

Q3: Is prototypical learning effective for alleviat-
ing errors in pseudo-labeling?

To answer Q1, we introduce source-free prototype-
based self-training (SFPS). Unlike existing meth-
ods, we generate prototypes without accessing
source data (Fig. 1a) and leverage the generated
prototypes for prototypical learning (Fig. 1b) con-
sisting of prototype-based pseudo-labeling (Gu,
2020) and contrastive learning (Li et al., 2021) to
alleviate errors in pseudo-labeling. To answer Q2,
we explore three source-free prototype generation
methods, namely entropy-based, centroid-based,
and class-weights-based methods, inspired by the
works in computer vision (Kim et al., 2021; Liang
et al., 2020; Ding et al., 2024). To answer Q3,
we compare the pseudo-label quality of SFPS and
vanilla self-training.

We conduct experiments on negation detection
and time expression recognition tasks from Se-
mEval2021 Task10 with the source models trained
on clinical texts. Our experimental results show
the effectiveness of SFPS, outperforming vanilla
self-training methods in most datasets. A com-
parison of various prototype-generation methods
reveals that the centroid-based generation method
can reliably improve the source model performance
among other generation methods. We evaluate the
pseudo-label quality of the proposed method and
demonstrate the proposed method could success-
fully alleviate the errors in pseudo-labeling.

To summarize, we provide answers to the above
questions as follows:

A1: Prototypical learning can improve self-
training in SFDA and consistently outperform
vanilla self-training.

A2: Centroid-based prototype generation can re-
liably improve model performance without ac-
cessing the source data.

A3: Prototypical learning effectively alleviates the
errors in pseudo-labels.

2 Related Work

2.1 Source-Free Domain Adaptation
Source-free domain adaptation (SFDA) only uses a
source model and unlabeled target data to adapt the
model to the target domain. In recent years, SFDA
has gained significant traction in computer vision.
Various methods have been proposed, such as vir-
tual domain generation (Tian et al., 2022), image
style translation (Luan et al., 2017), and neighbor-
hood clustering (Yang et al., 2021). Among them,
self-training (Kumar et al., 2010; Li and Zhang,
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2019) has been proven to be versatile and effec-
tive (Yu et al., 2023).

In contrast, SFDA methods in NLP are compar-
atively limited. Yin et al. (2022) introduced the
SFDA method in question answering. They uti-
lized an additional masking module during source
model training and froze some weights of the mask-
ing module during self-training to maintain domain
invariant knowledge. Zhang et al. (2021) aligned
joint distributions between a trained source model
and target domain samples using joint maximum
mean discrepancy during knowledge distillation.
In Clinical NLP, SemEval-2021 Task10 (Laparra
et al., 2021) introduced a shared task for SFDA
consisting of negation detection and time expres-
sion recognition. Only source model and unlabeled
target data were provided to the participants. Self-
training, active learning, and data augmentation
methods were proposed. Although active learning
can reliably improve the source model (Su et al.,
2022), this method requires additional annotation
on target data, which can be difficult due to data
sharing restriction and expertise required for the
annotation (Su et al., 2021). Hence, we extend
the self-training method by developing the SFDA
method, which is feasible in a wider range of situa-
tions.

2.2 Prototypical Learning
Prototypical learning, which aims to summarize a
class by representative prototypes, has been widely
used in semi-supervised and unsupervised learn-
ing (Wang et al., 2022; Snell et al., 2017). In
self-training, pseudo-labeling based on the source
model predictions suffers from errors. To im-
prove self-training, prototype-based pseudo label-
ing (Gu, 2020) combined with contrastive learning
(Li et al., 2021) are employed in semi-supervised
learning (SSL) and unsupervised domain adapta-
tion. Prototype-based pseudo-labeling assigns la-
bels based on the similarities/distances between
prototypes and target data representations instead
of relying on model prediction. Contrastive learn-
ing enhances representations of target data by facil-
itating the formation of clusters of prototypes and
text representations.

Yang et al. (2023) applied prototype-based
pseudo-labeling and contrastive learning for text
classification in SSL setting. They defined a cen-
troid of the labeled data as a class-specific pro-
totype and assigned pseudo-labels to unlabeled
samples based on their distances from prototypes.

These prototypes were then utilized as anchors to
create high-density clusters of text representations
via contrastive learning. In zero-shot cross-lingual
named entity recognition, Zhou et al. (2023) de-
fined the moving average of labeled data as a class
prototype and used them for pseudo-labeling and
contrastive learning. Mou et al. (2023) introduced
prototype-based pseudo-labeling and contrastive
learning in out-of-distribution intent classification.
They defined randomly initialized embeddings as
prototypes and updated them using embedded text
representations of samples belonging to the same
class. While prototype-based pseudo-labeling and
contrastive learning have shown effectiveness in
sentence and token classification, existing meth-
ods assume access to source data, making them
inapplicable in the SFDA setting.

2.3 Source-free Prototype Generation

In the field of computer vision, various source-free
prototype-generation methods have been proposed.
Kim et al. (2021) defined samples with low en-
tropy as prototypes and leveraged them for unsu-
pervised learning by assigning pseudo-labels based
on the distance between target image representa-
tions and prototypes. Liang et al. (2020) obtained
the centroid of each class based on source model
outputs. Pseudo-labels are assigned to unlabeled
target data based on the distance between the class
centroid and target samples. They further employ
information maximization between target image
representation and classifier output to update the
model encoder. Ding et al. (2024) used the weights
of the source classifier as class prototypes, con-
structing a class-balanced proxy source domain.
The proxy source domain is then used for an inter-
domain mixup that aligns the proxy domain and the
target domain. While these works have indepen-
dently combined source-free prototype generation
with various SFDA techniques, we systematically
compare the effectiveness of different prototype
generation methods. Specifically, we combine vari-
ous prototype generation methods with prototype-
based pseudo-labeling and contrastive learning.

3 Problem Definition

Unlike conventional domain adaptation, we only
have access to the source model and unlabeled tar-
get data in SFDA. Let c ∈ C be a class from the set
of all classes of interest, M the source model, and
X = {x0, ..., xn} the target data where n is the
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number of target samples. In general, source-free
self-training aims to improve the performance of
M using pseudo-labels ŷi ∈ C assigned to xi. How
ŷi is assigned and leveraged for the improvement
depends on an individual method. However, only
M and X are available for the adaptation.

For the generalizability of our study, the only
assumption we make on the source model M is
that it can be decomposed into an encoder (denoted
by F ) and classifier (denoted by G), i.e., M :=
G(F (·)).

Strictly speaking, the definition of xi differs be-
tween sentence classification and token classifica-
tion. For sentence classification, one sample is
equivalent to one input, i.e., xi = seqi where seq
is a sentence. For token classification, one sample
contains a series of inputs, i.e., xi = [wi

0, ..., w
i
m]

where w is a token and m is a sentence length. For
convenience, we use xi to denote both a sentence
and a token input.

4 Methodology

This section presents the proposed source-free
prototype-based self-training (SFPS). The concep-
tual workflow is shown in Figure 2. First, we
generate class prototypes from unlabeled target
data with a source model (composed of F and G)
using prototype generation (Section 4.1). Then,
we utilize generated prototypes for prototypical
learning, consisting of prototype-based pseudo-
labeling and contrastive learning. Prototype-based
pseudo-labeling assigns pseudo-labels based on the
similarity between prototypes and text representa-
tions (Section 4.2). Contrastive learning improves
the representation of target data by increasing/de-
creasing similarity between prototypes and target
representations belonging to the same/a different
class(Section 4.3). We describe the overall algo-
rithm (Section 4.4) with the variants of SFPS.

4.1 Prototype generation

We generate a set of prototypes for a class c ∈ C
using only M and X . We experiment with three
different source-free prototype generation meth-
ods, namely entropy-based (ENT), centroid-based
(CEN), and class-weights-based (WGT) methods.
In each method, we construct a set of prototypes for
c, which is denoted by Φc = {ϕc

0, ..., ϕ
c
K} where

K is the number of prototypes.
ENT: The entropy-based method chooses the

representations of samples with high entropy as

prototypes. Following Kim et al. (2021), we first
calculate the lowest entropy for each class and set
the largest value among them as a threshold (de-
noted by η), which is calculated by:

η = max{min(Hc)|c ∈ C},
Hc = {H(xi)|xi ∈ Xc} (1)

where H(xi) denotes the entropy of xi given by
M , and Xc denotes the set of samples predicted as
c by M .

Then, a set of prototypes is generated by:

Φc = {F (xi)|xi ∈ X,H(xi) ≤ η} (2)

CEN: The centroid-based method chooses the
centroid for each class as a prototype generated by:

Φc =
1

|Xc|
∑

xi∈Xc

F (xi) (3)

WGT: The class-weights-based method chooses
the weights of G corresponding to c as a prototype.
Inspired by Ding et al. (2024), we also include the
top K − 1 most similar text representations F (xi)
(denoted by Xc) with the class-specific weights as
prototypes. A set of prototypes is generated by:

Φc = Xc ∪ {wc}
Xc = {F (xi)|xi ∈ max

xi;K−1
(sim(F (xi), wc))} (4)

where wc denotes the corresponding weights and
max

xi;K−1
(sim(·)) denotes choosing top K − 1 sam-

ples with maximum similarity for each class. In
this work, we use cosine similarity as a similarity
measure (denoted by sim).

4.2 Prototype-based Pseudo-labeling
For prototype-based pseudo labeling, we find the
most similar Φc to xi and assign c as a label. Since
relying on a single prototype can be unstable due to
the unsupervised nature of the prototype generation
method, we assign the label based on the prototype
set Φc. To do so, we first calculate the similarity
score sc between Φc and xi:

sc(xi) =
1

|Φc|
∑

k

sim(ϕc
k, F (xi)) (5)

and assign a pseudo-label by:

ŷi = argmax
c

sc(xi), ∀c ∈ C (6)
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Figure 2: The workflow of SFPS. Prototypes are generated based on unlabeled target data and the source model
(Section 4.1) and utilized for prototypical learning, consisting of prototype-based pseudo-labeling (Section 4.2)
and contrastive learning (Section 4.3). This flow is illustrated by orange arrows. Three learning objectives are used
for fine-tuning. Lp is an unsupervised loss between the pseudo-labels and the model predictions (Eq. 7). Lc is a
contrastive loss based on the distance between prototypes and text representations (Eq. 9). Ls is a regularization
loss based on an un-updated source model predictions (denoted by Ls) and the model predictions (Eq. 11).

Based on ŷi, the learning objective for fine-
tuning M is given by:

Lp = −
1

n

n∑

i

1(ŷi = c) log
exp(pci )∑
c∈C exp(pci )

(7)

where 1(·) is a indicator function and pci is the
predicted probability for the class c given by M
with respect to xi.

4.3 Contrastive Learning

Contrastive learning aims to obtain a distinct repre-
sentation of xi by increasing the similarity between
F (xi) and prototypes of the same class while de-
creasing the similarity for the prototypes of the
different classes. Inspired by Zhou et al. (2023),
we employ the moving average of Φc per batch to
update the representation of xi, which is calculated
by:

µc = α
1

|Φc|
∑

k

ϕc
k + (1− α)

1

|B|
∑

i

F (xi),

∀i ∈ {i|ŷi = c}, (8)

where α denotes the hyperparameter controlling
the degree of updates and |B| denotes the number
of inputs per batch. In this way, we can ensure
further stability of updates since µc is dynamically
changing in accordance with F (xi) throughout the
fine-tuning. Based on µc, we update F (xi) by the
contrastive learning objective given by:

Lc=−∑
i,c log 1(ŷi=c)

exp(sim(F (xi),µc)/β)∑
C exp(sim(F (xi),µc)/β)

(9)

where β is a temperature coefficient.

4.4 Overall Algorithm
Algorithm 1 describes the whole process of SFPS.
In line 14, we construct a set of pseudo-labels based
on confidence scores. For sentence classification,
we use the similarity score (Eq. 5) as a confidence
score, i.e., confidence = sc(xi). For token classifi-
cation, xi is a single token in a sentence. We take
the average similarity scores of tokens for each
sentence and use it as a confidence score. The
confidence score for token classification is given
by:

confidence =
1

m

m∑

i

sc(xi) (10)

Following Kim et al. (2021), we use pseudo-
labels ŷ0i given by the un-updated source model
M0(xi) as a regularizer so that the model does not
diverge too much from the original source model
(in line 15). The regularizer learning objective is
given by:

Ls = −
1

n

n∑

i

1(ŷ0i = c) log
exp(pci )∑
c∈C exp(pci )

(11)

The overall objective L is the sum of Eq. 7, 9
and 11, namely:

L = Lp + Ls + Lc (12)

Su et al. (2022) compared various formulations
of self-training by changing the maximum number
of iterations, the data construction strategy, and the
model training strategy as parameters. Following
this, we change the parameters of Algorithm 1 be-
low to investigate which combination of prototype
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generation, data construction strategy, and model
training strategy is most effective.

T the maximum number of iterations.

SD the data construction strategy: KD to keep the
training data from the previous iteration, or
RD to reset.

SM the model training strategy: KM to keep the
model from the previous iteration, or RM to
reset.

SG the prototype generation methods: ENT, CEN
or WGT to use entropy-based, centroid-based
or class-weights-based method.

Algorithm 1: SFPS
Input :
M : the source-domain model
X: the target domain data
T : the maximum number of iterations
Lp: the pseudo-labels assigned via Eq. 6
Ls: the pseudo-labels assigned by the un-updated
source model
SD: the data construction strategy
SM : the model training strategy
SP : the prototype generation strategy

1 M0 ← Copy(M)
2 X0 ← Copy(X)
3 Lp ← ∅
4 for t← 0 to T do
5 if X = ∅ then
6 Stop training
7 end
8 if SD = RD then
9 Lp = ∅

10 X = X0

11 end
12 Get Φc by Eq. 2, 3 or 4 based on SP

13 Get sc and ŷ by Eq. 5 and 6
14 Lp ← {(xi, ŷi) for xi ∈ X if confidence > τ}
15 Ls ← {(xi, ŷ

0
i ) for (xi, ŷi) ∈ Lp}

16 if Lpt = ∅ or Lpt = Lpt−1 then
17 Stop training
18 end
19 if SD = KD then
20 X ← X − {xi for (xi, ŷi) ∈ Lpt}
21 end
22 if SM = RM then
23 M ←M0

24 end
25 Fine-tune M given Φc, Lp, and Ls, using Eq. 12
26 end

5 Experiments

We conduct experiments with negation detection
and time expression recognition datasets and com-
pare a fully fine-tuned model (Oracle), an un-
adapted source model (Source), all vanilla self-
training variants in Su et al. (2022) (Vanilla), and

variants of SFPS. Vanilla and SFPS do not utilize
labeled target data because our target problem
setting is SFDA. However, datasets used in the
experiments are fully annotated and used to train
Oracle models.

We note that we do not expect SFPS to outper-
form Oracle. We consider Oracle as a upper bound
for the performance in each dataset.

5.1 Datasets
We use the target data and source models from Se-
mEval2021 Task10: negation detection and time
expression recognition (Laparra et al., 2021). The
provided source models were fine-tuned using En-
glish RoBERTa-base (Liu et al., 2019) as base mod-
els.

As described in Su et al. (2022), these two tasks
are suitable for SFDA because (1) source data is
difficult to share, (2) target data can not be easily
annotated due to the complexity of the annotation
task, and (3) models suffer a large performance loss
in the face of domain shift in these tasks.

The negation detection task involves the classifi-
cation of an event within a context span (indicated
by special tokens “<e>” and “</e>”) as in below.

She did not complain of <e> any fever </e>

This task aims to correctly predict whether “any
fever” is negated or not. The source model for
this task was trained using Mayo Clinic clinical
notes. Two target data for this task are clinical
notes from Partners HealthCare’s participation in
the i2b2 2010 Challenge (i2b2) and ICU progress
notes from Beth Israel in the MIMIC-III corpus
(MIMIC).

The time expression recognition task involves
sequence tagging, aiming to identify time entities in
a document and assign them SCATE types (Bethard
and Parker, 2016). An example sentence is given
below.

the patient underwent surgery for gallstones
on July 14, 2019

The goal of this task is to predict “July” as Month-
Of-Year, “14” as Day-Of-Month and “2019” as Year.
The source model for this task was trained using
clinical notes from Mayo Clinic as a part of Se-
mEval 2018 Task 6 (Laparra et al., 2018). Two tar-
get datasets for this task are news articles from Se-
mEval 2018 Task 6 (News) and reports from food
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security warning systems, including the UN World
Food Programme and the Famine Early Warning
Systems Network (Food).

We used the same development-test split as in
Su et al. (2022) for all datasets as shown in Table 1.
Note that the unit of numbers is a sentence for nega-
tion detection and a document for time expression
recognition. Each document is preprocessed into
sentences in time expression recognition.

MIMIC i2b2 News Food

Dev 1916 1109 20 4
Test 7664 4436 79 13

Table 1: The number of development and test data. The
unit is a sentence for negation detection (MIMIC and
i2b2) and a document for time expression recognition
(News and Food). Development sets are used for the
adaptation.

5.2 Implementation Details

We used PyTorch1 for the implementation of
SFPS. For the preprocessing and implementation of
vanilla self-training methods, we used the provided
scripts from Su et al. (2022)2. We set the hyperpa-
rameters for SFPS, K, α, β, and τ to be 10, 0.9
and 0.5 respectively. We set the maximum number
of iterations T to be 1 or 30. For a fair comparison,
all the hyperparameters for fine-tuning except for
learning rate are the same as in source model train-
ing and used for both SFPS and vanilla self-training.
Since the proposed method has more learning ob-
jectives, we set the learning rate to 1.0 × 10−5

for SFPS and kept the original learning rate of
5.0× 10−5 for vanilla self-training models. Other
hyperparameters used for both SFPS and vanilla
self-training are summarized in the Appendix A.1.

5.3 Results

We evaluated all models using the same evaluation
metrics (F1, precision, and recall) as in Su et al.
(2022). The results are the average of five differ-
ent seeds. Due to limited space, we only present
F1 scores (in percentage points) in Table 2. We
provide the full results in Appendix A.2.

Several formulations of SFPS are shown to
be effective. The best-performing SFPS formu-
lations outperformed the best-performing vanilla

1https://pytorch.org/
2https://github.com/xinsu626/

SourceFreeDomainAdaptation

Strategy MIMIC i2b2 News Food

Oracle 88.9 92.3 85.1 87.6
Source 63.5 84.6 79.1 78.5

Vanilla
Single 67.4 87.1 79.1 77.4

KD+KM 66.5 87.6 79.3 77.7
KD+RM 68.7 87.6 79.2 78.2
RD+KM 55.4 87.8⋆ 79.0 77.9
RD+RM 67.9 87.3 79.2 77.8

SFPSENT
Single 71.3 85.5 79.3 78.9

KD+KM 68.4 86.3 77.1 78.2
KD+RM 66.1 86.0 77.2 78.2
RD+KM 66.6 86.6 80.1⋆ 78.7
RD+RM 53.6 86.7 79.9 78.9

SFPSCEN
Single 70.3 84.8 79.4 79.2⋆

KD+KM 66.8 85.1 76.8 79.2⋆
KD+RM 67.8 85.8 79.0 78.8
RD+KM 63.6 86.8 79.9 77.2
RD+RM 67.6 87.5 79.8 78.5

SFPSWGT
Single 71.8⋆ 85.2 78.5 78.3

KD+KM 66.6 85.9 78.5 78.1
KD+RM 66.6 86.0 78.5 74.9
RD+KM 65.7 86.8 78.5 78.2
RD+RM 64.7 86.3 78.5 75.7

Table 2: The results of the experiment in F1 scores.
Oracle, Source, and Vanilla denote the fully fine-tuned
model, the un-updated source model, and vanilla self-
training variants, respectively. KD, RD, KM, and RM
are the variations due to the choice of the training strate-
gies (see Section 4.4). T = 1 for Single and T = 30
for the others. The strategies that outperformed the
source model are underlined. The scores above the best-
performing vanilla method are in bold. Scores with a
star are the best among all the self-training methods.

self-training methods in most datasets (3 out of
4). In MIMIC, the best-performing formulation
for SFPS was WGT with Single with 3.1 points
higher F1 score than the best vanilla self-training
method. In i2b2, no prototype-based method out-
performed the best-performing vanilla self-training
method. CEN with RD+RM has the highest F1
score among other SFPS formulations and scored
0.3 points below the best-performing vanilla self-
training method. Given that the F1 score achieved
by the best-performing vanilla self-training method
is already high and relatively close to the Oracle,
achieving further improvement may be challeng-
ing without the availability of labeled target data.
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In News, the best-performing SFPS formulation
was ENT with RD+KM improving 0.8 points in
F1 score from the best vanilla method. In Food,
the best combination was CEN with Single and
KD+KM, with an F1 score 1.0 point higher than
the best vanilla method.

6 Discussion

Experimental results indicate that CEN with Single
can reliably improve the source model compared
with vanilla self-training. While no vanilla self-
training method could outperform the un-updated
source models in all datasets, CEN with Sin-
gle outperformed the un-updated source model in
all datasets and the best-performing vanilla self-
training model in 3 out of 4 datasets. Since labeled
target data is not available (or difficult to obtain)
in SFDA, hyperparameter tuning is not realistic.
Hence, it is important for an SFDA method to con-
sistently outperform the source model regardless
of task and dataset.

In the following section, we show that SFPS
can properly alleviate the errors in pseudo-labeling
(Section 6.1). We also conducted an ablation study
to show both contrastive learning and regulariza-
tion are effective for improving model performance
(Section 6.2).

6.1 Pseudo-label Quality

Although we did not use any labeled data for adap-
tation, labels of the target data are available for all
the datasets. In order to compare the pseudo-label
qualities of the un-updated source model, vanilla
self-training, and SFPS, we calculate the accuracy
and macro F1 score of the pseudo-labeling by best-
performing models of each method. The results
are shown in Table 3. SFPS have the highest ac-
curacy in all datasets and F1 score in 3 out of 4
datasets, indicating that prototype-based pseudo-
labeling combined with contrastive learning could
successfully alleviate the errors in pseudo-labeling.

6.2 Ablation study

In order to investigate the effectiveness of the con-
trastive learning objective (Lc) and the regular-
ization term (Ls) in Eq.12, we conduct an abla-
tion study. We compared the performance of the
model with (1) all objectives (Full), (2) without
contrastive learning (−Lc), (3) without regulariza-
tion (−Ls), and (4) only unsupervised learning
objective (−Lc−Ls). Table 4 shows the results on

MIMIC i2b2

ACC F1 ACC F1
Source 93.5 77.2 93.2 88.9
Vanilla 93.7 77.9 94.0 90.2
SFPS 94.5 81.9 94.0 90.4

News Food

ACC F1 ACC F1
Source 98.4 50.7 95.9 56.2
Vanilla 98.3 50.0 95.8 56.4
SFPS 98.5 52.1 95.9 56.3

Table 3: Pseudo-labeling accuracy and F1 score on
development data. Source and Vanilla denotes the un-
updated source model and the best-performing vanilla
self-training model. SFPS successfully alleviates the
errors in pseudo-labeling compared with vanilla self-
training.

four datasets in F1 score. In most datasets, the con-
trastive learning objective or regularization term
alone improves the performance compared with
only using unsupervised learning with pseudo la-
bels. With the exception of MIMIC, Full models
have the highest F1 scores, indicating that the con-
trastive learning objective combined with the reg-
ularization term is effective for improving model
performance.

Objectives MIMIC i2b2 News Food

Full 71.8 87.5 80.1 79.2
−Lc 72.3 86.1 79.4 78.2
−Ls 70.8 77.8 78.4 77.7
−Lc − Ls 71.5 46.8 78.4 77.7

Table 4: Results of ablation study in F1 score. Using
both the contrastive-learning objective and the regular-
ization term is effective in most of the datasets.

7 Conclusion

In this paper, we proposed source-free prototype-
based self-training (SFPS) composed of prototype
generation, prototype-based pseudo labeling, and
contrastive learning. We compared entropy-based,
centroid-based, and class-weights-based methods
to identify the most reliable prototype generation
method. We conducted experiments with two nega-
tion detection datasets and two time expression
recognition datasets. Experimental results show
the effectiveness of SFPS, consistently outperform-
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ing vanilla self-training. The comparison of vari-
ous prototype generation methods reveals that the
centroid-based generation method combined with
a single iteration strategy is the most reliable for-
mulation, outperforming the source model in all
datasets and the best vanilla self-training model in
3 out of 4 datasets. Also, our analysis demonstrates
that the proposed method can successfully alleviate
errors in pseudo-labeling.

8 Limitations

We show that the proposed SFPS has an advan-
tage over vanilla self-training methods in negation
detection and time expression recognition tasks.
However, this work has several limitations:(1) Ex-
periments are only conducted on clinical/English
corpora, limiting the generalizability of the results
to other domains.; (2) The conclusions stated in
this paper are based only on empirical evidence.
Hence, they lack a theoretical analysis; (3) The gap
between fully fine-tuned models and the proposed
method is still large. This is expected, considering
that the proposed method does not utilize labeled
data at all for the adaptation. Yet, the model perfor-
mance can be improved via task-specific modules
such as class balancing for time expression recog-
nition; (4) Although we tackled both sentence and
token classification, the tasks employed in this ex-
periment are limited in number. It is desirable to
test the effectiveness of the proposed method in
other tasks in the clinical domain and other do-
mains as well.
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A Appendix

A.1 Hyperparameters
Except for the learning rate, we used the same
hyperparameters for both vanilla self-training and
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prototype-based self-training. For both negation
detection and time expression recognition tasks, we
set the hyperparameters to the same values as Su
et al. (2022), which are summarized in Table 5 and
6.

Hyperparameter Value

maximum sequence length 128
batch size 8
epochs 10
gradient accumulation steps 4
learning rate warm up steps 0
weight decay 0.0
adam epsilon 1.0× 10−8

maximum gradient norm 1.0

Table 5: Hyperparameters for negation detection

Hyperparameter Value

maximum sequence length 271
batch size 2
epochs 3
gradient accumulation steps 1
learning rate warm up steps 500
weight decay 0.01
adam epsilon 1.0× 10−8

maximum gradient norm 1.0

Table 6: Hyperparameters for time expression recogni-
tion

All models were trained on AdamW (Loshchilov
and Hutter, 2019) and a single NVIDIA Quadro
RTX 8000 GPU. A training process took about 30
minutes per fine-tuning.

A.2 Full Results
The full results (in percentage points) for negation
detection are presented in Table 7, and the results
for time expression recognition are presented in
Table 8.
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Strategy MIMIC i2b2
F1 P R F1 P R

Oracle 88.9 88.4 89.5 92.3 93.3 91.3
Source 63.5 93.8 48.0 84.6 92.6 77.9

Vanilla
Single 67.4 94.7 52.4 87.1 95.1 80.4

KD+KM 66.5 95.4 51.1 87.6 94.4 81.8
KD+RM 68.7 95.4 53.6 87.6 95.3 81.0
RD+KM 55.4 75.7 43.7 87.8⋆ 94.2 82.3
RD+RM 67.9 95.5 52.6 87.3 94.6 81.2

SFPSENT
Single 71.3 90.4 58.9 85.5 88.9 82.4

KD+KM 68.4 92.7 54.3 86.3 94.1 79.7
KD+RM 66.1 95.0 50.8 86.0 93.0 79.9
RD+KM 66.6 94.5 51.5 86.6 92.9 81.1
RD+RM 53.6 74.8 41.8 86.7 92.1 81.9

SFPSCEN
Single 70.3 89.0 58.3 84.8 89.5 80.7

KD+KM 66.8 95.1 51.6 85.1 91.6 79.6
KD+RM 67.8 92.9 53.5 85.8 93.2 79.5
RD+KM 63.6 96.2 47.7 86.8 93.4 81.1
RD+RM 67.6 92.7 53.5 87.5 94.1 81.8

SFPSWGT
Single 71.8⋆ 88.7 60.3 85.2 88.6 82.0

KD+KM 66.6 94.5 51.7 85.9 93.0 79.9
KD+RM 66.6 93.8 51.8 86.0 93.9 79.4
RD+KM 65.7 95.0 50.3 86.8 93.8 80.8
RD+RM 64.7 93.4 50.4 86.3 90.7 82.3

Table 7: The results in the negation detection task. Oracle, Source, and Vanilla denote the fully fine-tuned model, an
unadapted source model, and vanilla self-training variants, respectively. T = 1 for Single and T = 30 for the others.
The strategies outperformed the source model are underlined. The scores above the best-performing vanilla method
are in bold. Scores with a star are the best among all the self-training methods.
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Strategy News Food
F1 P R F1 P R

Oracle 85.1 85.4 84.8 87.6 85.7 89.7
Source 79.1 79.5 78.7 78.5 82.9 74.6

Vanilla
Single 79.1 79.8 78.5 77.4 80.7 74.5

KD+KM 79.3 78.4 80.2 77.7 79.9 75.7
KD+RM 79.2 78.4 80.0 78.2 80.8 75.7
RD+KM 79.0 78.1 79.9 77.9 80.0 75.8
RD+RM 79.2 78.3 80.1 77.8 80.0 75.8

SFPSENT
Single 79.3 80.9 77.7 78.9 84.8 73.9

KD+KM 77.1 82.4 72.5 78.2 87.5 70.8
KD+RM 77.2 81.7 73.2 78.2 87.3 70.9
RD+KM 80.1⋆ 80.8 79.3 78.7 83.2 74.7
RD+RM 79.9 81.2 78.7 78.9 83.7 74.6

SFPSCEN
Single 79.4 81.2 77.6 79.2⋆ 85.0 74.1

KD+KM 76.8 81.4 72.6 79.2⋆ 86.9 72.9
KD+RM 79.0 81.3 76.9 78.8 85.7 73.0
RD+KM 79.9 79.8 80.0 77.2 78.9 75.7
RD+RM 79.8 80.5 79.1 78.5 82.4 75.0

SFPSWGT
Single 78.5 80.8 76.3 78.3 84.2 73.2

KD+KM 78.5 80.8 76.3 78.1 84.4 72.7
KD+RM 78.5 80.8 76.3 74.9 88.3 65.2
RD+KM 78.5 80.8 76.3 78.2 84.1 73.0
RD+RM 78.5 80.8 76.3 75.7 88.3 66.6

Table 8: The results in time expression recognition task. Oracle, Source, and Vanilla denote the fully fine-tuned
model, an un-adapted source model, and vanilla self-training variants, respectively T = 1 for Single and T = 30 for
the others. The strategies that outperformed the source model are underlined. The scores above the best-performing
vanilla method are in bold. Scores with a star are the best among all the self-training methods.
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Abstract

The development of NLP models in the health-
care sector faces important challenges due to
the limited availability of patient data, mainly
driven by privacy concerns. This study pro-
poses the generation of synthetic free-text med-
ical reports, specifically focusing on the gas-
troenterology domain, to address the scarcity
of specialised datasets, while preserving pa-
tient privacy. We fine-tune BioGPT on over 90
000 endoscopy reports and integrate Differen-
tial Privacy (DP) into the training process. 10
000 DP-private synthetic reports are generated
by this model. The generated synthetic data is
evaluated across multiple dimensions: similar-
ity to real datasets, language quality, and utility
in both supervised and semi-supervised NLP
tasks. Results suggest that while DP integra-
tion impacts text quality, it offers a promising
balance between data utility and privacy, im-
proving the performance of a real-world down-
stream task. Our study underscores the poten-
tial of synthetic data to facilitate model devel-
opment in the healthcare domain without com-
promising patient privacy.

1 Introduction

The development of computer-aided tools in
medicine, including natural language processing
(NLP), requires real patient data for model train-
ing. However, this development has been signif-
icantly limited due to the lack of availability of
patient data due to privacy concerns, restricted ac-
cess to hospital data, a scarcity of labeled data,
barriers to sharing pretrained models, and a lack of
capable computational resources in many health-
care settings (Wu et al., 2022). The lack of spe-
cialised datasets when developing NLP models can
lead to biased or ungeneralizable models (Panch
et al., 2019; Daneshjou et al., 2021). Recent litera-
ture highlights that open-source, synthetic datasets
could mitigate data scarcity and lead to robust
AI model training, particularly in NLP (Ive et al.,

2020). However, very few studies tackle the gener-
ation of synthetic free text in the medical domain,
with no known studies focusing on gastroenterol-
ogy text reports.

While synthetic data presents a viable solution
to dataset scarcity, ensuring the privacy of patient
data in the original dataset used for training remains
essential. Recent findings suggest that simply de-
identifying the training set by removing names and
unique identifiers is insufficient to prevent patient
re-identification (Sarkar et al., 2024). Despite this,
it is not common practice to include a robust data
privacy framework when generating synthetic med-
ical data (Begoli et al., 2018; Guan et al., 2021).
To maintain stringent patient confidentiality, our
approach incorporates Differential Privacy (DP), a
framework that mathematically guarantees the level
of inability to identify an individual’s data within
a dataset (Dwork et al., 2006). Our approach is
motivated by the fact that only a limited number
of academic papers investigate the application of
differential privacy in the generation of synthetic
data within healthcare (Klymenko et al., 2022).

The quality and utility of these generated reports
must also be rigorously assessed to ensure their
practical application in clinical settings. Utility,
in our context, refers to the degree to which the
synthetic data can be used to perform real-world
tasks, such as text classification. It is crucial to
compare how differential privacy impacts the qual-
ity and utility of synthetic data and whether it can
be used to enhance performance on various tasks.
These tasks can be supervised, such as text classifi-
cation, unsupervised or semi-supervised, like Task
Adaptive Pre-Training Tasks (TAPT).

2 Aims

• We create free text endoscopy reports gener-
ated with differential privacy by fine-tuning a
medical domain GPT-based model.
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• We assess the similarity of DP-generated re-
ports to the original patient data (training
dataset), using a set of experiments that in-
cludes outliers re-generation.

• We aim to quantify the potential quality re-
duction induced by DP by assessing the text
quality of synthetic text reports with and with-
out DP.

• We assess and compare the utility of DP-
generated synthetic reports across supervised
and semi-supervised tasks.

3 Related Work

Generating Synthetic Medical Notes with
Differential Privacy. The generation of synthetic
text data with Differential Privacy (DP) is an
emerging field with limited research. While
(Yue et al., 2022) has provided a comprehensive
framework for generating synthetic text data with
DP, none of the investigated datasets include
medical data. Sarkar et al. (2024) also propose a
framework for synthetic data generation with DP.

Privacy Assessment of Synthetic Medical Notes
and Text Similarity. Numerous studies have
shown that Large Language Models (LLMs)
and Generative Models can efficiently produce
synthetic text reports (Melamud and Shivade, 2019;
Abdollahi et al., 2021; Li et al., 2021; Guan et al.,
2018; Tang et al., 2023). However, the privacy
aspect of the synthetic data is often overlooked or
relies on simple downstream analyses. A common
practice in studies involving synthetic patient
text data, especially in those not using DP, is to
employ metrics like the Hamming distance or the
Levenshtein distance to assess the privacy level
of generated reports. These methods measure
how closely synthetic data can be linked to their
original counterparts. A threshold is established,
and synthetic reports are considered vulnerable if
their distances fall below this threshold (Ghosheh
et al., 2024; Yan et al., 2021; Zhang et al., 2020).

Text Quality Assessment of Synthetic Medical
Notes. The text quality of synthetic reports is
often evaluated on a per-report basis, using metrics
(Zhou et al., 2023) such as BLEU, ROUGE,
or BERTScore (Zhang et al., 2019). However,
these measurements require a set of references
with which to compare the synthetic text for

report-level evaluation. For synthetic text that does
not have references, research tends to measure
the distribution similarity on a corpus level using
metrics such as generation perplexity (Fan et al.,
2018), self-BLEU (Zhu et al., 2018) or Mauve
(Pillutla et al., 2021). However, these methods
do not give a score for each single report. In
our recent work (in process of publication), we
trained a language quality model that scores any
generated report without the need for a reference
text. The model is trained on a dataset that is
corrupted by shuffling and inflection of real text.
The model learns the mapping from each corrupted
text, which can be seen as a proxy for model
output, to a quality score, which is calculated by
comparing the corrupted text with its original,
unaltered form. This approach has proven to
align well with human judgment and is effective
in distinguishing higher-quality real texts from
synthetic counterparts of lower language quality
based on the generated scores.

Synthetic Data Utility. Sarkar et al. (2024) as-
sess the utility of DP-generated synthetic reports
through downstream tasks. However, their down-
stream tasks focus on ICD-10 code classification
models trained on synthetic data, which differs sig-
nificantly from our study. We explore the utility of
DP-generated synthetic data both in a supervised
setting, using it for data augmentation, and in a
semi-supervised setting, employing it for further
pre-training of the classifiers, which has not previ-
ously been documented in the literature.

4 Methods

A summary of the overall pipeline is depicted in
Figure 1.

4.1 Data Access

Inclusion criteria Endoscopy reports were ex-
tracted from the electronic patient records (EPR)
of St Thomas’ Hospital in London. Data acquisi-
tion was authorised through an institutional board
review. The dataset includes the following unfil-
tered procedures: Colonoscopy, Gastroscopy, En-
doscopic ultrasound (EUS), Sigmodoiscopy and
Endoscopic retrograde cholangiopancreatography
(ERCP). The records spanned from January 2017
to October 2023.
Exclusion criteria To ensure patient privacy and
comply with UK health service national data
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Figure 1: Summary of the methodology of the study. (a), (b), (c), (d) correspond to the experiments described in
Section 4.8.

opt-out policy (nhs, 2023), all individuals who had
explicitly opted out of having their data used for
research purposes were excluded from the study.

A total of 93162 reports were included, represent-
ing a diverse range of gastrointestinal conditions
and providing a comprehensive dataset for the gen-
eration of synthetic endoscopy text reports.

4.2 Data Pre-processing and De-identification
Our dataset was anonymized, as required by NHS
England and the UK Information Commissioner’s
Office (ICO)’s anonymisation code of practice1.
Direct identifiers (such as names, addresses, and
contact numbers) and indirect identifiers (such as
clinician names and dates) were systematically
removed from the dataset without replacement
using regular expressions.

The remaining pre-processing was performed us-
ing the EndoMineR package2, a tool designed for
the analysis of free-text in endoscopy reports (Zeki,
2018). The package enabled the extraction of rele-
vant sections from endoscopy reports.

4.3 Differential Privacy
Differential Privacy ensures that the output of a
randomized function applied to a dataset is statisti-
cally indistinguishable, up to a specified degree of
error, regardless of whether any single individual’s
data is included in the dataset or not. The notion

1https://transform.england.nhs.uk/information-
governance/guidance/artificial-intelligence/

2https://docs.ropensci.org/EndoMineR/

of (ϵ, δ)-differential privacy, as defined by (Dwork
et al., 2006) and further elaborated in recent litera-
ture (Yue et al., 2022) is as follows:
A randomized function F provides (ϵ, δ)-
differential privacy if for all datasets D1 and
D2 differing on at most one element, and for all
subsets S of the possible outputs of F :

Pr[F (D1) ∈ S] ≤ eϵ × Pr[F (D2) ∈ S] + δ (1)

ϵ (epsilon), also called privacy budget, is a small
non-negative parameter that quantifies the strength
of the privacy guarantee. δ (delta), typically close
to zero, represents the small probability that the ϵ-
differential privacy guarantee may be exceeded. ϵ is
a key feature of differential privacy: a lower value
guarantees greater privacy but generally reduces
the utility of the generated data. In this study, we
set ϵ = 4, and δ to

δ =
1

N · logN (2)

with N being the number of training samples.
These values have proved to guarantee a robust
level of privacy in previous studies (Yue et al.,
2022).

4.4 Fine-tuning Bio-GPT with DP for Text
Generation

To generate the synthetic reports, we fine-tuned
BioGPT (generative pre-trained transformer for
biomedical text generation) (Luo et al., 2022)
on our dataset. BioGPTis a transformer-based
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sequence-to-sequence model that relies on the GPT-
2 architecture and comprises 345 million param-
eters. BioGPT has been pre-trained on over 15
million PubMed abstracts and has demonstrated
increased performance compared to its general do-
main counterparts for downstream tasks when fine-
tuned on biomedical data (Turbitt et al., 2023).
We conducted the fine-tuning using the Hugging-
Face Transformers library (Wolf et al., 2020) along
with the Meta AI Opacus library to implement Dif-
ferential Privacy (Yousefpour et al., 2021). Opa-
cus ensures privacy by applying Differentially Pri-
vate Stochastic Gradient Descent (DP-SGD), which
clips the gradients’ L2 norm and adds Gaussian
noise to maintain the privacy of the model parame-
ters during the training process.

All the experiments were executed on an
NVIDIA DGX server running GNU/Linux 5.4.0-
125-generic x86_64, with MLflow integrated into
the CSC MLOPs3 environment to ensure experi-
ment reproducibility, collaboration, and scalability.
The specific hyperparameters considered included
learning rate, batch size, number of epochs,
maximum sequence length, and temperature for
the generation process. Fine-tuning was performed
with causal language modeling (CLM) objective.
The hyperparameter values are described in Table
1.

Table 1: BioGPT fine-tuning hyperparameters

Hyperparameter Value
Batch size per GPU 16
Learning rate 1e-5
Number of training epochs 25
Epsilon ϵ 4

4.5 Generation of DP synthetic endoscopy text
reports

4.5.1 Generation process
Control codes were used to steer the generation of
specific report types (e.g. OGD, colonoscopy, EUS,
ERCP) by the fine-tuned BioGPT model. This tech-
nique facilitated the targeted generation of texts ac-
cording to the different kinds of endoscopic proce-
dures. The input format for this generation process
can be conceptualised as: Input = Control Code +
Separator + Initial Context.

3https://github.com/GSTT-CSC/MLOps

We built a text generation pipeline, refined
through iterative clinician feedback to optimise the
authenticity and relevance of the generated reports.
The key generation hyperparameters were set as
follows:

- Length Constraints: The generated reports’
maximum length was set to 400 words to reflect
the typical lengths of endoscopy reports.

- Temperature: This parameter controls the ran-
domness of the generated output by scaling the
logits before applying softmax, defined by the equa-
tion:

P (token) =
exp( log(oi)T )

∑
j exp(

log(oj)
T )

(3)

Here, T represents the temperature, oi the logits,
and P (token) the probability of selecting token
as the next token. The temperature was set to
T = 0.9 based on recommendations from domain
experts to balance creativity with accuracy.

- No Repeat Ngram Size: This parameter was
established at 4 to prevent the repetition of any four-
word sequence within the generated text, enhancing
the uniqueness and readability of the reports.

4.6 Assessment of the Similarity of
DP-generated reports

While DP theoretically offers a high level of pri-
vacy, its practical effectiveness in safeguarding pa-
tient data still requires empirical verification. Re-
cent work has indeed shown that misuses of DP in
Deep Learning have often led to limited actual pri-
vacy (Blanco-Justicia et al., 2022). As discussed in
Section 3, the Hamming and Levensthein distances
are often used to assess the privacy of generated
reports. However, considering the varying lengths
and content complexity of medical reports, these
methods may not fully capture the nuances of text
similarity, and therefore, may not appropriately as-
sess the privacy of generated reports.

ROUGE-L (Lin, 2004) is a metric which is
particularly valuable for evaluating text similarity
in generation tasks where structural coherence and
order of information are crucial. Unlike BLEU,
which focuses on precision by measuring how
many words in the generated text appear in the
reference texts, ROUGE-L relies on recall, assess-
ing how much of the original report is captured
in the generated text. Specifically, ROUGE-L
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relies on the longest common sub-sequence (LCS)
shared between the generated and reference texts,
providing a measure of the longest sequence of
words appearing in both texts in the same order.
ROUGE-L is a normalized metric, therefore
making it robust to length variations between the
original and generated reports. Our approach to
assess the similarity of DP-generated synthetic
reports is the following:

1. Distribution Analysis of ROUGE-L scores:
We compute the ROUGE-L score between each
synthetic report and each of the original patient
reports. We then keep the highest ROUGE-L score
for each of the synthetic reports and compute the
resulting distribution. This process is done both for
synthetic data generated with and without DP. We
then compare DP and non-DP distributions to as-
sess the impact of DP on text similarity and privacy
enhancement.

2. Inclusion of distinctive outliers: 34 outliers
with unique combinations of endoscopic findings
are included in the training set. These outliers are
text reports of typical length, containing phrasings
or combinations of medical conditions not typically
found in endoscopy reports. Developed in collabo-
ration with a gastroenterologist, they are distinctive
enough that reproducing them directly in synthetic
reports could result in patient re-identification.

4.7 Evaluating the Text Quality of
DP-generated reports

To evaluate the language quality of generated re-
ports with and without DP, we use the language
scoring model introduced in Section 3 (in process
of publication), this model takes an individual re-
port as input and assign a score to it based on its
language quality. The score ranges from 0 to 1,
with higher scores indicating better language qual-
ity of the text.

4.8 Evaluating the Utility of DP-generated
reports in Downstream Tasks

4.8.1 Baseline Description and Evaluation
Metrics

The utility of the generated synthetic reports was
evaluated by trying to improve a clinically relevant
4-class classification problem. This involves cate-
gorising endoscopy free-text reports based on the
length of an endoscopically detectable premalig-
nant lesion: Barrett’s Oesophagus (BO) (Fitzgerald

et al. (2014); Hameeteman et al. (1989)). The cate-
gories are: Long, Short, No Barrett’s, and Insuffi-
cient, relating to the detection of a long or short seg-
ment of BO, a definite lack of detection of BO, or
an insufficient description, respectively. The base-
line model, detailed in Table 3, is a BERT-based
transformer with a linear layer for classification,
currently used in clinical practice. It was trained
with optimized hyperparameters described in the
Appendix (4).

This baseline (Figure 1.a) will be compared
against three distinct approaches (Figure 1.b,c,d),
as detailed in the subsequent sections (4.8.2, 4.8.3).
Given the slightly imbalanced nature of the original
training set and the varying clinical relevance of
the classes, per-class metrics such as AUC-ROC
and F1-Score were recorded. The performance of
the baseline and subsequent models was assessed
on a test set, using an 80/20 stratified split for each
random seed. Results were averaged across three
random seeds to ensure robustness.

4.8.2 Synthetic Data Augmentation
The first approach to enhancing the baseline model
involved augmenting the training set with 735
DP synthetic gastroscopy reports specifically
related to Barrett’s Oesophagus. Each report
was manually annotated by a domain expert. An
overview of the class distributions before synthetic
data augmentation is presented in the Appendix
(5). The BERT-based classifier was then retrained
using the augmented dataset while maintaining
the same hyperparameters to allow for a direct
comparison of performance changes.

4.8.3 Task-Adaptive Pretraining with
Synthetic Data

In the current NLP landscape, LLMs are typically
pre-trained on general domain dataset using tasks
such as Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) (Devlin et al.,
2019; Liu et al., 2019). Although these models
exhibit strong performance across various down-
stream tasks, research has shown that continued
pre-training on domain-specific texts can further en-
hance their effectiveness (Gururangan et al., 2020;
Li et al., 2023; Shi et al., 2023; Margatina et al.,
2022). In this study, the target domain is gastroen-
terology text reports. Our second experiment in-
volves task-adaptive pre-training (TAPT) of the
baseline model using two separate datasets:
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1. Synthetic Data: 10,000 synthetic endoscopy
text reports generated with our Differential
Privacy pipeline.

2. Real Patient Data: 10,000 endoscopy text re-
ports extracted from the hospital’s Electronic
Patient Records (EPR) that were not part of
the training or evaluation sets of the baseline
model. These reports were selected to match
the variety and number found in the synthetic
dataset.

We used these datasets to conduct domain-adaptive
pre-training on the pre-trained BERT model
before fine-tuning it for classification tasks and
evaluation. Domain-adaptative pre-training was
performed using a Masked Language Modeling
(MLM) objective. The aim of this experiment is to
quantify the utility of synthetic data in comparison
to original patient data in terms of enhancing the
model’s performance on downstream tasks. In
both cases, TAPT experiments were conducted
using the hyperparameters listed in Table (2).

Table 2: Hyperparameters for TAPT Experiments

Hyperparameter Value
Number of Pretraining Epochs 100
Number of Fine-tuning Epochs 8
Pretraining Learning Rate 1e-4
Fine-tuning Learning Rate 6.85e-5
Warming Up Steps 1000

5 Results

5.1 Generation of DP Synthetic Reports
10,000 DP synthetic reports were generated using
the input defined in 4.5. We compare the output of
the model, before and after fine-tuning, as depicted
in Figure 2.

We observe that before fine-tuning, the output of
the model resembles a PubMed abstract that men-
tions the report type, gastroscopy in this case. How-
ever, it appears like a study rather than an individual
patient’s endoscopy report. After fine-tuning, the
model’s output presents as a well-formatted gas-
troscopy report, with findings related to Barrett’s
Oesophagus.

5.2 Text Similarity Analysis
The distributions of maximum ROUGE-L scores
between original and synthetic reports (both DP

Figure 2: Comparison of BioGPT output for the genera-
tion of synthetic reports, before (left) and after (right)
fine-tuning.

Figure 3: Distributions of maximum ROUGE-L scores
between original and synthetic reports, with (left) and
without (right) Differential Privacy.

and non DP) are depicted in Figure 3. We ob-
serve a significant shift in distribution between
the synthetic reports generated with Differential
Privacy compared to those generated without it.
The ROUGE-L scores for the DP-generated reports
span from 0.058 to 0.690, with an average of 0.226,
indicating that the DP-generated reports signifi-
cantly differ from the training set. In contrast, the
ROUGE-L scores for the non-DP-generated reports
span from 0.165 to 1.0, with an average of 0.660,
indicating that some generated reports are highly
similar to the training set.

After careful review of the synthetic reports gen-
erated with and without Differential Privacy (DP)
with a domain expert, we confirmed that no outlier
was directly regenerated in either the synthetic DP
or non-DP reports.
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Figure 4: Distributions of synthetic data language qual-
ity scores with (left) and without (right) Differential
Privacy.

5.3 Language Quality Evaluation
Figure 4 shows that synthetic reports generated
without DP exhibit language scores centred around
higher values. While synthetic reports generated
with DP have a similar tendency, their scores are
more distributed toward the lower end, resulting
in a broader, shorter-tailed distribution. Despite
this variation, the overall spread remains relatively
constrained, indicating a slight reduction in the text
quality of reports generated with DP.

5.4 Utility Evaluation
The results of the three utility evaluation experi-
ments are summarized in Table 3. The optimized
baseline model already achieves high performance
across all classes, with the ‘Long’ class showing
the highest average F1-score (0.958) and the ‘In-
sufficient’ class the lowest (0.822).

The most notable conclusion from these experi-
ments is that task-adaptive pretraining considerably
improves the baseline performance for all classes,
especially for the ‘Insufficient’ class, which sees
an F1-score increase of 0.089. The ‘Long’ class,
which already performed well, also shows an im-
provement of 0.022.

The primary goal of this paper is to assess the
utility of synthetic data generated with differential
privacy. As expected, the baseline improvement
using DP synthetic data is not as significant as
with real patient data, likely due to the set privacy
level (epsilon = 4). However, TAPT using synthetic

data with DP still enhances the F1 scores across all
classes, with the ‘Insufficient’ class showing the
most significant improvement of 0.034. The Long
class, despite its high performance, also showed
an improvement while performing TAPT with DP
synthetic data, with an F1 score improvement of
0.003.

Data augmentation with labelled synthetic DP
text reports also improved performance across most
classes, though results were more inconsistent.
This variability may be due to the limited number
of additional annotated reports, as the annotation
process is time-consuming and constrained by a
shortage of expert annotators.

6 Discussion and Conclusion

We have fine-tuned a pre-trained large language
model with Differential Privacy to generate privacy-
preserved synthetic endoscopy reports. We lever-
aged a highly specific in-house training set of over
90,000 endoscopy free-text reports. Using our
pipeline, we generated a set of 10,000 diverse syn-
thetic endoscopy reports, available for further re-
search on a per-query basis. The utility of the syn-
thetic reports was assessed by attempting to im-
prove a clinically useful high performing classifi-
cation baseline. The synthetic reports were used to
augment the training set of the baseline and to pre-
train the baseline classifier using a task-adaptive
pretraining framework. A pre-training experiment
with real patient data was also conducted for direct
comparison.

Table 3 demonstrates that DP-generated syn-
thetic data can significantly improve the perfor-
mance of a real-world downstream task. Specif-
ically, our study demonstrates the superiority of
TAPT methods. It is important to highlight that,
in comparison to supervised-learning approaches,
TAPT does not require additional labeled data
points, which significantly reduces the need for
data annotation resources, a primary bottleneck
in developing robust supervised learning models.
However, the best-performing model remains the
one pre-trained with real patient data.

The privacy preservation of DP-generated re-
ports is quantified by assessing their similarity to
the original data compared to that of synthetic data
generated without DP. We observed an important
difference in ROUGE-L scores between the DP and
non-DP generated synthetic reports. Therefore, we
can conclude that, in our study, DP effectively pre-
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Table 3: Comparison of model performance across different approaches, including the baseline BERT-based model
(a), synthetic data augmentation with 735 differentially private reports (b), task-adaptive pretraining with 10,000
real patient reports (c), and task-adaptive pretraining with 10,000 differentially private synthetic reports (d).

Approach Long No Barretts Short Insufficient
AUROC F1 AUROC F1 AUROC F1 AUROC F1

(a) Baseline 0.9880.008 0.9580.005 0.9920.005 0.9240.020 0.9840.012 0.9250.013 0.9790.013 0.8220.034
(b) Data augmentation 0.9970.001 0.9610.016 0.9820.005 0.9140.017 0.9870.004 0.9440.010 0.9670.031 0.7980.029
(c) TAPT with real data 0.9970.002 0.9800.003 0.9970.002 0.9610.014 0.9940.002 0.9670.010 0.9880.004 0.9110.022
(d) TAPT with DP synthetic 0.9910.005 0.9610.025 0.9890.006 0.9350.025 0.9870.007 0.9450.024 0.9800.005 0.8560.053

vents the replication of sensitive training samples.
A set of outliers was also introduced in the training
set, and we concluded that unique clinical findings
could not be regenerated by the models.

6.1 Limitations and Future Work

While this study aims to explore various methods
to assess the utility and privacy of DP-generated
endoscopy text reports, we acknowledge several
limitations. First, we used a fixed value of the
privacy parameter epsilon throughout this study.
Future work should assess the impact of epsilon on
the privacy-utility trade-off.

We have compared the performance of a clas-
sification baseline to several approaches leverag-
ing generated synthetic reports (Table 3), but we
have not compared the baseline to a classifier solely
trained on synthetic data due to the limited avail-
ability of high-quality annotation resources. More-
over, future work should also consider comparing
our approach with other existing methods of syn-
thetic data generation and privacy protection to
provide a more comprehensive evaluation.

It is also important to highlight that the gener-
ative models were fine-tuned on endoscopy data
from a London hospital, which might introduce
population bias or an over-representation of spe-
cific endoscopic conditions due to the local context.

In this study, we assessed the text quality of the
generated text; however, no evaluation of clinical
relevance was conducted. Clinical accuracy is es-
sential for specific downstream tasks as it ensures
the medical reliability of the generated reports and
prevents confusion. Users should remain mindful
of this aspect when using our synthetic reports.
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A Classification baseline details

Table 4: Classification Baseline Hyperparameters

Hyperparameter Search Space Baseline model value
Batch size {16, 32, 64} 32
Learning rate [1e-6, 1e-3] 6.85e-5
Number of training epochs [1, 10] 8
Warming steps fraction [0.1, 0.5] 0.4

Table 5: Class Distributions Before and After Data Aug-
mentation

Class Before Augmentation After Augmentation
Insufficient 279 475
Long 1,649 1,688
Short 1,901 1,901
No Barrett’s 288 788
Total Reports 4,117 4,852
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Abstract

An adverse drug effect (ADE) is any harm-
ful event resulting from medical drug treat-
ment. Despite their importance, ADEs are of-
ten under-reported in official channels. Some
research has therefore turned to detecting dis-
cussions of ADEs in social media. Impressive
results have been achieved in various attempts
to detect ADEs. In a high-stakes domain such
as medicine, however, an in-depth evaluation
of a model’s abilities is crucial. We address
the issue of thorough performance evaluation
in English-language ADE detection with hand-
crafted templates for four capabilities: Tempo-
ral order, negation, sentiment, and beneficial
effect. We find that models with similar perfor-
mance on held-out test sets have varying results
on these capabilities.

1 Introduction

When a trained model is applied to real-world
data, it may be confronted with phenomena that
are under-represented or non-existent in the train-
ing data (Belinkov and Bisk, 2019; Moradi and
Samwald, 2022). This raises the question of how to
evaluate a model’s performance and generalization
abilities. Reporting summary statistics and held-
out test set performance is a common practice in
model evaluation. While this can provide an indi-
cation of the model’s performance and ability to
generalize, there are some issues with this practice.
Firstly, held-out test sets often arise from the same
distribution as the training data and will, therefore,
exhibit the same patterns and biases to a high de-
gree. Real-world data, however, may have differ-
ent feature distribution or exhibit noise. Held-out
testing, therefore, often provides an unsatisfactory
estimation of a model’s performance and general-
ization abilities (Belinkov and Bisk, 2019; McCoy
et al., 2019; Ribeiro et al., 2018).

Secondly, a high model score does not necessar-
ily reveal what the model has learned during train-

ing. Research has shown that a model may not learn
relevant patterns but instead base its decisions on
shallow heuristics or proxies (McCoy et al., 2019).
Benchmark challenges have attempted to address
this issue by testing models on a wide range of
aspects of language (Wang et al., 2019). However,
not all aspects can be tested in a benchmark, and
the benchmark itself may exhibit unintended biases
(Kiela et al., 2021), so the question of what a model
has learned remains.

Inspired by the behavioral testing suite Check-
List (Ribeiro et al., 2020), we propose the use of
template-based test cases to test different capabil-
ities of adverse drug effect (ADE) classification
models. ADEs are any harmful consequence to
a patient due to medical drug intake. Due to the
potential detrimental outcomes of ADEs, the detec-
tion of ADEs is an important goal in health-related
NLP and has been a subject of research for a con-
siderable time. We test models in understanding
of temporal order, positive sentiment, beneficial
effects and negation (see Table 1).

In high-stakes domains such as medicine, an in-
depth evaluation of a model’s abilities is crucial.
Related work (Section 2), however, suggests that
shortcomings towards selected linguistic phenom-
ena and reliance on proxies for model decisions
may exist in models in the biomedical domain.

In this work1, two transformer-based models for
the detection of ADEs in user reports on social
media were fine-tuned and tested by conventional
held-out testing as well as additional template-
based tests. The results of held-out testing and
the template-based tests were compared in order to
better understand (i) the models’ shortcomings and
(ii) the potential gaps in knowledge that can occur
when a model’s abilities are only evaluated via test
set performance. We find that models underper-

1The templates and code can be found at https://github.
com/dfki-nlp/ade_templates
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Test Name Label Test Description Example Test Case

Temporal Order
standard

no ADE ADE occurs before drug intake Before taking cymbalta, I experienced Insomnia.

ADE ADE occurs after drug intake Before having acid reflux, I was put on zoloft.

Temporal Order
single time entity

no ADE ADE occurs before drug intake
expressed by a time entity

I was experiencing bad pain in my right arm
for 2 weeks, now I started being medicated
with Effexor XR.

ADE ADE occurs after drug intake
expressed by a time entity

3 months ago I started being treated with
zoloft, now I started encountering
excellerated heart rate.

Temporal Order
double time entities

no ADE
ADE occurs before drug intake
expressed by two related
time entities

3 weeks ago I started suffering from bad pain
in my right arm, I have been taking effexor
for 2 days.

ADE
ADE occurs after drug intake
expressed by two related
time entities

I was enduring Insomnia for 6 weeks,
8 weeks ago I started taking cymbalta.

Positive Sentiment ADE ADE occurrence is reported
with positive sentiment

I’m taking cymbalta and experiencing
cravings for sweets. Still, I am happy
my symptoms have reduced.

Beneficial Effect no ADE Secondary effect of a drug
that is beneficial to the patient

I’m taking Effexor XR and experiencing
weight loss. I’m happy because I was trying
to lose weight anyway.

ADE Secondary effect of a drug that
is an ADE as it is not beneficial

For me, weight loss is a side-effect of
effexor. It’s a problem because I am
already underweight.

Negation no ADE ADE is negated I am taking zoloft without suffering from
acid reflux.

ADE Statement contains negation,
ADE is not negated

That’s not true, I took zoloft and
encountered Insomnia.

Table 1: Overview of all four capabilities tested with example test cases. The temporal order capability has three
variations. All test cases have an assigned label, either ADE or no ADE. Filled-in entities are underlined in the example
test cases. All test cases are hand-crafted.

form on some capabilities and show differences in
some capabilities despite highly similar F1-scores
on the held-out test set. We therefore provide the
following contributions:

• A curated test bench of 99 templates with
1505 variations to investigate the robustness
of ADE classification models across four ca-
pabilities.

• A comparison of two popular transformer-
based models on long-tail linguistic phenom-
ena in the classification of ADEs.

2 Related Work

Studies on the detection of ADEs in user-generated
texts have been conducted since approximately
2010, when Leaman et al. published the first En-
glish dataset within this domain. The usual down-
stream tasks are those common in information ex-
traction: Document classification, to find relevant
documents containing mentions of adverse effects;

named entity recognition, to identify medication
and disease-related mentions; and relation classifi-
cation, to establish associations between the entity
mentions. Approaches for all of these tasks range
from rule- and lexicon-based systems (Leaman
et al., 2010; Nikfarjam and Gonzalez, 2011) to tra-
ditional machine learning pipelines (Gurulingappa
et al., 2012; Ginn et al., 2014; Segura-Bedmar et al.,
2014) and, recently, deep neural networks (Huynh
et al., 2016), specifically transformer-based setups
(Weissenbacher et al., 2019; Miftahutdinov et al.,
2020; Gusev et al., 2020; Magge et al., 2021b).

However, even advanced models struggle with
the supposedly simple task of classifying a docu-
ment into either “contains an ADE” (henceforth
ADE) or “does not contain an ADE” (no ADE), a
standard binary classification that is still neces-
sary to find relevant documents for further infor-
mation extraction. This is often due to a strong
class imbalance (in most cases, the documents con-
taining ADEs are in the minority), the usual noise

26



in social media data, ambiguities in health-related
statements of patients, and general weaknesses of
language models in coping with certain linguistic
phenomena not only with respect to ADEs.

For example, Scaboro et al. (2021) have studied
the extraction of ADEs from tweets using BERT,
SpanBERT (Joshi et al., 2020), and PubMedBERT
(Gu et al., 2021). They tested all three models’
ability to handle negation and detect shortcom-
ings in all three models. Moradi and Samwald
(2022) investigated the robustness of four trans-
former models specialized in the biomedical and
clinical domain over a variety of tasks such as sen-
tence classification, inference, and question answer-
ing. The models’ robustness is tested by adding
minor meaning-preserving changes to the input
with the goal of fooling the model. Their find-
ings highlight the vulnerability of state-of-the-art
transformer-based models to adversarial input.

Finally, there is CheckList (Ribeiro et al., 2020),
a model-agnostic framework aimed at testing a
trained model’s behavior and gaining an in-depth
understanding of its potential shortcomings. Check-
List guides the creation of test cases based on nat-
ural language capabilities, which are used as new
inputs to the trained model and subsequently eval-
uated. The idea is to determine which capabili-
ties (e.g., negation handling, robustness) are neces-
sary for the task the model is intended to perform.
Ribeiro et al. (2020) identify three possible test
types which can be used for testing the capabilities:
the Minimum Functionality Test (MFT), which tar-
gets a specific behavior similar to a unit test; the In-
variance Test (INV), where the model’s robustness
to irrelevant perturbations is tested; and the Direc-
tional Expectation Test (DIR), which consists of
adding perturbations that are expected to lead to a
specific outcome. Ribeiro et al. (2020) observe that
the CheckList-based evaluation approach could not
only uncover bugs in previously tested models but
also that CheckList can make the search for bugs
more systematic. Recently, updates to CheckList,
AdaTest (Ribeiro and Lundberg, 2022) and AdaT-
est++ (Rastogi et al., 2023), were proposed which
assist the user in finding bugs by suggesting topics
and test cases in a semi-automated process. While
these are valuable additions, we decided to use the
template-based approach for this project because
we had pre-selected capabilities that we wanted to
test with full control over the template design.

CheckList applications include the evaluation of
general capabilities of models (Xie et al., 2021) as

well as evaluating models in specialized tasks such
as offensive speech detection (Bhatt et al., 2021;
Manerba and Tonelli, 2021) and automatic text
simplification (Cumbicus-Pineda et al., 2021). For
the specialized tasks, the authors use CheckList
to guide their testing approach by defining new
capabilities specific to the task at hand.

In the biomedical and clinical domain, Ahsan
et al. (2021) use CheckList to test four linguistic
capabilities (negation, temporal order, misspellings,
and attributions) on their transformer-based model
with a dataset of clinical discharge notes. One of
their findings is that the model struggles to correctly
distinguish between past and present mentions of
substance use in the discharge notes. The detection
of ADEs, however, is not part of the research.

The exposure of potential weaknesses in
transformer-based models in the biomedical do-
main motivates an in-depth analysis of models used
for ADE detection. To our knowledge, a systematic
template-based approach to test model capabilities
has not yet been applied to ADE detection.

3 Methods

We use templates to test a selection of linguistic
capabilities of binary ADE classification models.
To this end, we first manually create templates (see
Section 3.1) and then sets of test cases, by using
entities to fill placeholders in the templates (see
Section 3.3). We then evaluate two fine-tuned clas-
sification models on these test cases and compare
their predictions with each other and with the mod-
els’ performance on the held-out test set.

Example 1: Template for Temporal Order (ADE)

I started taking {drug} before I experienced {ade}.

We test four capabilities: Temporal Order, Pos-
itive Sentiment, Beneficial Effect, and Negation
(see Section 3.2). 99 base templates are created
with 1505 variations (for details see Table 5 in Ap-
pendix A). Each template is also assigned a label
(ADE/no ADE) in accordance with published guide-
lines for the annotation of ADEs (see Section 4.1.1).
The template in Example 1 provides a test case for
the capability Temporal Order and has a positive
label (ADE). Filled-in template examples for every
capability we test are listed in Table 1. The filled-
in templates (test cases) serve as the input to the
fine-tuned model for inference. In the following,
we present more details about the template creation
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and the investigated capabilities.

3.1 Template Creation
Template-based evaluation is most effective with
a large number of test cases that cover a diverse
range of potential inputs. These test cases are based
on templates, which include placeholders. For ev-
ery placeholder, there is a list of potential entity
fill-ins as in Example 1, {drug} and {ade}, which
could be filled with, e.g., Effexor and nausea. The
abstraction of test cases to templates allows to sys-
tematically capture important linguistic scenarios
while creating a large number of different test cases.
The process is visualized in Figure 1.

generates fill in 
placeholders

extraction of
entities

creation of
templates creation of test

cases

manually created
templates

CheckList

AskAPatient.com

PsyTAR

ADEs and drugs

test cases

Figure 1: The process for creating test cases.

In the interest of linguistic diversity, variations
of base templates were introduced for all capabili-
ties except Beneficial Effect. For Temporal Order
and Negation templates, the vocabulary of the base
template was modified to increase diversity. Posi-
tive Sentiment templates underwent syntax varia-
tions by exchanging or removing the conjunction
between the two phrases.

The templates have a mean token count of 10.6
and 13.4 for the no ADE and ADE class respectively2.
After filling in the entities for the placeholders, the
average test case length in the experiments is 14.7
for the no ADE class and 16.6 for the ADE class.

3.2 Capabilities
The choice of capabilities for this work is inspired
by considerations on abilities a robust ADE classi-
fication model should possess and shortcomings
of biomedical models as reported in Section 2.
We based the phrasing of the templates on linguis-
tic properties of social media posts: First-person

2Tokens were split at whitespace.

usage, mostly single short sentences, and collo-
quial language. Contractions were used occasion-
ally. However, usernames, misspellings, and non-
standard grammar and punctuation were not ap-
plied in the templates as they manifest a separate
capability. All templates created can be viewed as
templates for a CheckList Minimum Functionality
Test (Ribeiro et al., 2020).

To verify the existence of the described phenom-
ena in the dataset, we randomly sampled 1,000
documents and let two annotators check each tweet
for the occurrence of these phenomena. The an-
notations showed that eight of the sampled tweets
contain expressions of temporal order, one positive
sentiment, one beneficial effect, and one negation.
This sample showed that, as expected, the phenom-
ena are rather rare but still exist in the long tail of
the data distribution. Nevertheless, an expert would
expect a good classification model to have these
capabilities.

Temporal Order The templates for testing Tem-
poral Order adapt the temporal structure test of
Ribeiro et al. (2020) and investigate the model’s
ability to correctly process information on past,
present, and future as expressed in text. In the con-
text of ADE detection, it is important for the model
to “understand” temporal order since an effect can-
not be an ADE if it occurred before the drug intake.
According to the annotation guidelines based on
which the data we use for fine-tuning was anno-
tated, an effect occurring after a drug intake was
labeled as ADE if the patient draws a connection
between the effect and drug intake. Therefore, the
templates assume an ADE when a harmful effect
occurs after the drug intake.

Positive Sentiment ADEs are often reported us-
ing negative sentiment (Alhuzali and Ananiadou,
2019). If many ADE reports contain negative senti-
ment, an ADE detection model might perform well
by using negative sentiment as a proxy. Neverthe-
less, a report might also be expressed favorably.
This could be the case when a patient experiences
relief from the original symptoms alongside a mild
ADE. Therefore, an ADE detection model should
recognize ADEs even when expressed in a positive
framing so as not to miss out on less severe ADEs.

Beneficial Effects The third capability is the cor-
rect distinction between ADEs and beneficial ef-
fects. The latter are secondary effects of a drug
that are not related to the reason for using the med-
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ication and which have, nevertheless, a positive
outcome for the patient. Note that an effect may
be regarded as positive or negative depending on
the patient, their general health, and the context.
Weight loss, for instance, may be considered a neg-
ative secondary drug effect or a beneficial effect
depending on the patient. The tests in this work as-
sume that a positive secondary effect is a beneficial
effect, not an ADE. The Beneficial Effect test that
expects a negative class label (no ADE) expresses
the occurrence of a beneficial effect. The positive
class (ADE) test consists of test cases that express an
ADE that could be classified as a beneficial effect,
but the context states that the user views the effect
as negative.

Negation Negation templates test the model’s
ability to process negation in text. Negation de-
tection is a general challenge in NLP and a com-
mon phenomenon in language (Hossain et al., 2022;
Truong et al., 2022). Thus, it is also an important
capability for ADE detection. The Negation test
that expects a negative class label (no ADE) con-
tains a negated ADE. The positive class (ADE) test
cases include an ADE mention as well as a negation
without negating the ADE.

3.3 Entity Placeholders

All templates have entity placeholders for a drug
name. Templates for Temporal Order, Positive Sen-
timent, and Negation also have a placeholder for
an ADE entity. Templates for Beneficial Effect con-
tain an effect that may be considered an ADE or a
beneficial effect depending on the context. A list
of the effects used in the Beneficial Effects tests is
provided in Appendix A.2. Template variations of
the Temporal Order capability that use time enti-
ties have placeholders for time expressions. The
placeholders are filled with the respective time ex-
pressions from a self-created list of entities.

4 Experiments

We frame ADE detection as a binary classifica-
tion task. We first describe the experiments on the
custom dataset and then the experiments on our
template-based test cases.

4.1 Fine-Tuning Experiments

The following describes data, training and evalua-
tion on the custom dataset.

Dataset #Tweets ADE Ratio (%)

SMM4H’21 Task 1a 17,426 7.39
SMM4H’17 Task 1 14,880 8.72
NADE 246 0.00

Merged Dataset 28,468 8.75

Table 2: The number of tweets per dataset and the re-
spective ADE ratio (number of positive samples) of the
merged dataset and its three components. 4084 dupli-
cates were removed after merging.

4.1.1 Data
The custom dataset for our experiments consists
of three social media corpora: The SMM4H-2021
Shared Task 1a training data (Magge et al., 2021a)
(61% of the custom dataset), the SMM4H-2017
Shared Task dataset (Sarker et al., 2018) (38%), and
artificially negated tweets from the NADE dataset
(Scaboro et al., 2021) (1%), resulting in 28,468
tweets. The data flow and their origin are shown in
Figure 2. Dataset statistics are covered in Table 2.
In the user-reported texts, each sample either de-
scribes an ADE (ADE) or does not contain an ADE
mention (no ADE).

manually negated

duplicates removed

custom dataset

Twitter
SMM4H-2017

 (en)

data used for fine-tuning

Twitter
(en)

Twitter new
(en)

Daily Strength
(en)

SMM4H-2019
(en)

SMM4H-2017 SMM4H-2021 NADE

Figure 2: The different data sources for creating the
custom dataset for fine-tuning the models.

The SMM4H-2021 Shared Task 1a training data
(Magge et al., 2021a) itself consists of posts from
Twitter and DailyStrength3 collected using a list
of 81 drugs widespread on the US market (Nik-
farjam et al., 2015). The data was annotated by
two expert annotators. The annotators did not in-
clude beneficial effects in the ADE definition. It
further includes some data previously used in the
SMM4H-2017 Shared Task (Sarker et al., 2018).

The SMM4H-2017 Shared Task data was col-
lected from Twitter using generic drug names with
a total of 250 keywords and subsequently annotated
by two annotators. Again, the annotators excluded

3www.dailystrength.org
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beneficial effects from the ADE definition. Over-
lapping texts between the SMM4H-2021 data and
the SMM4H-2017 data used for our merged custom
dataset were removed.

The last part of our custom dataset are artificially
negated tweets from the NADE dataset (Scaboro
et al., 2021). This dataset consists of tweets origi-
nating from the SMM4H-2019 Shared Task (Weis-
senbacher et al., 2019) and manually negated by
annotators. Each negated tweet contains a state-
ment that negates the presence of an ADE. The
three components are shown again in Table 2.

We use this merged version of multiple datasets
to give the fine-tuning models the best chance to
learn different capabilities from varied data. The
texts in the custom dataset are between 1 and 34 to-
kens long.4 Negative (no ADE) samples are slightly
shorter on average (16.2 tokens) than positive (ADE)
samples (18.4 tokens). These are slightly longer
than our test cases with an average length of 14.7
tokens and 16.6 tokens. Data splits for training, val-
idation, and testing were created with a 70-10-20
ratio and stratified sampling by class label.

4.1.2 Model Fine-Tuning
For the task of ADE classification, we fine-tune
BioRedditBERT (Basaldella et al., 2020) and XLM-
RoBERTa (Conneau et al., 2020) on the custom
dataset described in Section 4.1.1. BioRedditBERT
is a BERT-base uncased model related to BioBERT
(Lee et al., 2019), a model pre-trained on the orig-
inal BERT training corpus (English Wikipedia +
BookCorpus) as well as on medical texts sourced
from PubMed and PMC. It was then further fine-
tuned on a corpus of health-related Reddit posts.
XLM-RoBERTa is a popular multilingual model
with no specific medical pre-training data. We
chose these models to gain insights on robustness
of a language model with medical knowledge com-
pared with an general domain language model that
has no specific medical knowledge.

The inputs were sampled with replacement
weighted by class ratio due to the class imbalance.
This sampling strategy resulted in a better F1-score
on the validation dataset.

4.1.3 Held-Out Test Set Evaluation
We evaluate the fine-tuned models on the test set
using precision, recall, and F1-score for each class.
The main metric we focused on is F1 of the pos-
itive class due to the large class imbalance. This

4Tokens were split at white spaces.

Test Label #Test Cases

Temporal Order no ADE 1,050
standard ADE 900

Temporal Order no ADE 1,050
single time entity ADE 1,050

Temporal Order no ADE 1,575
double time entities ADE 1,575

Positive Sentiment ADE 2,700

Beneficial Effect no ADE 120
ADE 120

Negation no ADE 825
ADE 300

Total 11,265

Table 3: Number of test cases run per test. We have at
least 120 test cases for each capability, so that we can
expect our results to be representative.

metric was also used for hyperparameter tuning
on the validation set. We compare per-class recall
to the models’ performances on each capability of
the test cases. The goal of this comparison is to
determine whether the template-based evaluation
approach contradicts the overall impression of the
model performance measured by held-out test set
performance.

4.2 Test Case Experiments
We use all templates for each test and randomly se-
lect only one template variation per base template
for the capabilities Temporal Order, Positive Senti-
ment, and Negation to have a manageable number
of test cases. We created a total of 11,265 test
cases, of which 4,620 test cases belong to the nega-
tive class (no ADE) and 6,645 belong to the positive
class (ADE). Table 3 shows the number of test cases
run per test.

A random sample of 15 ADEs, 15 mild ADEs,
5 drug names, 7 single time entities, and 7 rela-
tional time entities was taken. A list of sampled
ADEs, mild ADEs, and drug names can be viewed
in Appendix B.

4.2.1 Drug and ADE Template Fill-Ins
We need expressions of ADEs and medical drugs to
fill in the placeholders in the templates. These are
automatically extracted from the PsyTAR dataset
(Zolnoori et al., 2019) of patient reports on psy-
chiatric medications. The dataset consists of 891
Ask-a-Patient5 patient forum posts on the topic
of four psychiatric medications: Zoloft, Lexapro,

5www.askapatient.com
30



Cymbalta, and Effexor XR. The corpus was anno-
tated for ADE mentions by four annotators with
a health-related background. A mention was con-
sidered an ADE “if there is an explicit report of
any sign/symptom that the patient explicitly as-
sociated them with the drug consumption” (Zol-
noori et al., 2019). All four drug names of Psy-
TAR were extracted as well as two spelling varia-
tions of “Effexor XR” and lowercase versions of
all drug names. Statistics on the occurrences of the
drug names in the custom training dataset can be
found in Table 7 in Appendix B. Extracting ADEs
and drug names from the same domain ensures
a high likelihood of compatibility between ADEs
and medications.

The ADE entities extracted from PsyTAR are
user-generated descriptions of ADEs that are of-
ten multi-word expressions and which use non-
standardized terms. We did not correct grammar
and spelling errors in the extracted ADEs.

We created the templates in a way that most short
noun phrases6 fit as ADE entities, therefore, short
noun phrases were filtered from the ADE mentions
in PsyTAR. A total of 1,227 unique ADEs were
extracted, amounting to 36.50% of unique ADE
entities in PsyTAR.7

For the Positive Sentiment test, the extracted
ADEs were manually filtered to collect 60 less se-
vere ADEs. This was a necessary step to avoid
creating unrealistic test cases such as “I always
have severe pain in my hands when I’m on Cym-
balta, but I am happy my symptoms have reduced”.

The time entities for the variations in Temporal
Order tests were not extracted but generated. Num-
bers between 1 and 25 inclusive were combined
with a noun (either “days”, “weeks”, or “months”).
A random selection of these combinations was used
as time entities.

5 Results

The following presents the results of both the base-
lines and the template-based test cases.

5.1 Model Baseline
The results of the baseline models can be found in
Table 4. All models were evaluated on the same
test split of the fine-tuning corpus.

The F1-score of BioRedditBERT on the posi-
tive class (ADE) is 0.698, whereas XLM-RoBERTa

6The longest extracted ADE has a length of 7 tokens.
7More details on the extraction can be found in Ap-

pendix A.1.

Model Class P R F1

BioRedditBERT ADE 0.720 0.676 0.698
no ADE 0.969 0.975 0.972

XLM-RoBERTa ADE 0.720 0.681 0.700
no ADE 0.970 0.975 0.972

Table 4: The results of the baseline models in precision
(P), recall (R), and F1-score on the test split. Positive
class F1 is highlighted as the most popular metric. All
scores are very close which would indicate that we can
expect similar task understanding of the models.

achieves a score of 0.700, which indicates very sim-
ilar general performance. Due to the large class im-
balance, the models reached a higher performance
on the majority class (no ADE) with F1-scores of
0.972. The high overlap in data allows for com-
parison of this model’s performance to the best
performing models proposed in the latest SMM4H
Shared Task on ADE classification (Weissenbacher
et al., 2022).

5.2 Template-Based Test Results

We compare model performance on the custom
dataset to each template-based capability test per-
formance separately. Due to the variations in model
performance over the two classes, we use per-class
recall as a measurement of comparison between the
model performance on the custom dataset and the
template-based test cases as shown in Figure 3. For
both models, all tests with no ADE labels fall short
of the baseline performances. The highest level
of performance is observed in the Negation tests
where BioRedditBERT and XLM-RoBERTa pass
92% and 94% of the test cases, respectively. On
the other hand, the Beneficial Effect tests perform
strikingly worse than the baselines with BioRed-
ditBERT and XLM-RoBERTa passing only 7.5%
and 5.8% of the test cases, respectively. All three
versions of the negative class Temporal Order tests
lie below the baselines but to a varying degree with
a range of 54%-78% for BioRedditBERT and a
range of 62%-74% for XLM-RoBERTa.

For ADE, the models perform below the baseline
(recall of 68% for both models) on the standard
Temporal Order and double time entities Tempo-
ral Order test (25%-48%), while the baseline is
exceeded on the single time entity Temporal Or-
der test with 90% for BioRedditBERT and 80%
for XLM-RoBERTa. Based on the varying model
performance on different types of Temporal Order
tests for both the negative and the positive class,
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Figure 3: Per-class performance of fine-tuned BioRedditBERT (left) and XLM-RoBERTa (right) on the test set
(grey box baseline) and the capability-based test cases. The three distinct types of Temporal Order tests refer to
variety of Temporal Order templates (standard, single and double time entity) highlighted in Table 1. Most test
cases are more difficult for the model to solve than the samples from the custom dataset. The biggest difference
between the models is the performance on the negation test cases with ADE label, where BioRedditBERT solves
20% more test cases than XLM-RoBERTa. Furthermore, both models have different performances for Temporal
Order test cases, especially standard cases with ADE label.

one can conclude that the model is not robust to
changes in expression of temporal structure: The
use of single time entities affects the model perfor-
mance positively compared to the use of preposi-
tions (standard Temporal Order) and double rela-
tional time entities. Furthermore, BioRedditBERT
(48%) performs much better on standard Temporal
Order tests than XLM-RoBERTa (25%).

Mild ADEs expressed in positive sentiment as in
the Positive Sentiment test do not pose a problem
to the model. The performance on the Positive
Sentiment test cases (72% for BioRedditBERT and
68% for XLM-RoBERTa) lies above the baseline
of the positive class for both models. Also, the
models’ performance on the positive class negation
test lies below the baseline, with BioRedditBERT
(60%) again performing much better than XLM-
RoBERTa (41%).

Unlike for the negative class test, almost all test
cases in the Beneficial Effect test on the positive
class are correctly classified as ADE. The poor per-
formance on the negative Beneficial Effect test and
the outstanding performance on the positive class
Beneficial Effect test leads to the conclusion that
the model has not learned to distinguish between
ADEs and beneficial effects. Both models classify
96% of Beneficial Effects test cases as ADE, even
though half of the tests have a no ADE mention.
Possible explanations for this behavior are that the
number of beneficial effect samples in the custom
dataset is low and/or that the model does not take

Figure 4: Performance of XLM-Roberta on test cases
by drug name and by capability. The number of test
cases per capability and drug name is 1440 (Temporal
Order), 540 (Positive Sentiment), 48 (Beneficial Effect),
225 (Negation).

the context into account that distinguishes an ADE
from a beneficial effect.

Each of the five selected drug name variants was
used in every template allowing for an analysis of
the impact of drug names in the test cases. Perfor-
mance variations on test cases with different drug
names indicate reduced robustness of the model.
We find slight variations in the model performance
over different drug names as shown in figure Fig-
ure 4 for XLM-Roberta. A potential explanation
of these variations may be deviations in the occur-
rence of the respective drug names in the custom
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fine-tuning dataset, see Table 7 in Appendix B.

6 Conclusion and Future Work

In this work, we present a template-based approach
for evaluating capabilities of models on the task of
ADE detection in social media texts. Four capabil-
ities, Temporal Order, Positive Sentiment, Benefi-
cial Effect, and Negation, were identified and corre-
sponding tests were created. Two high-performing
models for the task of ADE detection were evalu-
ated using the adapted approach.

Results show that the models’ performances vary
across capabilities. While both models perform
well on the Positive Sentiment tests, BioReddit-
BERT outperforms XLM-RoBERTa on Negation.
The models are not able to distinguish between
ADEs and beneficial effects and are not robust
to changes in the expression of temporal struc-
ture in text. In summary, the template-based ap-
proach adapted to ADE classification has provided
a better understanding of the shortcomings of high-
performing models and can highlight previously
undetected differences between models that per-
form almost identically on a held-out test set. We
publish the templates to enable researchers to eval-
uate their own ADE classification models.

Further research may expand on this work by
adding tests for more capabilities and evaluating
other models using this approach. For example, in
the phenomena annotation described in Section 3.2,
we found 1.6% questions and 1.1% speculative con-
tent in the tweets. The linguistic variety of the tem-
plates could be improved by using a large language
model to generate templates or test cases. A differ-
ent direction of research may focus on improving
the model’s faults detected during evaluation. One
method of improvement is to include a subset of
the test cases as new training data (McCoy et al.,
2019).

7 Limitations

While the approach of generating new inputs by
templates undoubtedly has benefits, it also intro-
duces some limitations. For instance, the combi-
nation of all entity fill-ins with all templates can
produce some unnatural phrases. An example of
this is the Temporal Order template "After taking
{drug}, I had {ade}.". The ADE entity "weight
gain" creates the unnatural sounding test case "Af-
ter taking cymbalta, I had weight gain." instead of
"After taking cymbalta, I gained weight." The un-

natural use of language may introduce a bias. This
should be kept in mind when using the templates.
However, not all entity fill-ins will introduce such a
bias and the model’s performance on the test cases
cannot be fully attributed to the effect of unnatural
language use.

A second potential bias when using templates is
that it may not be able to depict a large variety of
language when only few templates were used. An
example of this are the templates for the positive
class Beneficial Effect test where each test case
includes the word "problem". A model could use
this as a proxy for correctly classifying the test
cases.

Lastly, as described in Section 4, not all fea-
tures of social media tests were used when creating
templates. No anonymized usernames, hashtags,
non-standard punctuation, and colloquialisms other
than contractions were applied in the templates.
This may introduce a bias as there is a slight differ-
ence in language variety between the templates and
the training data. A researcher should keep in mind
that slight changes in the model performance may
also be attributed to this shift in language variety.
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A Templates

The number of templates with linguistic variations
for each capability can be seen in Table 5. Example
templates without filled-in entities are in Table 6.

capability #base templates #all templates

TempOrder 36 816
PosSent 36 504
BenEff 12 48
Negation 15 137

Total 99 1505

Table 5: Count of all created templates. Linguistic
variation was used to create all templates from base
templates.

A.1 Extraction of ADEs from PsyTAR
Sets of Parts of Speech combinations (tagsets) were
created to define which sets of POS tags consti-
tute a short noun phrase. An English POS tagger
(spaCy) was then used to tag every token in the Psy-
TAR ADEs and filter out the chosen noun phrases.

Examples of PsyTAR ADEs that were retrieved
using this method are “listlessness”, “recurrence
of ocular migraines”, and “bad pain in my right
arm”. The goal of this process was to retrieve as
many and diverse ADE descriptions as possible,
yet the tagsets are not extensive and not all rele-
vant ADEs were retrieved. Reasons for not pass-
ing the tagset filters were not being a noun phrase
(“gained 18 pound”), incorrect POS tag assigned
tagger (“heartburn”), incorrect POS tags assigned
due to typos or extra whitespace, long noun phrases
(“stomach cramping the first couple of days”), and
punctuation marks/symbols (“increase in alcohol
abuse/dependence”).

A.2 List of Beneficial Effects
List of (potential) beneficial effects used for the
Beneficial Effect tests: weight loss/weight gain,
sleepiness/decreased need for sleep, loss of ap-
petite/increased appetite.

B Experiment Details

List of entities used as fill-ins for ADE, milder
ADE for the Positive Sentiment test, and drug
names used in the experiments for this project.

• drug names: zoloft, effexor, cymbalta, Effexor
XR, effexorxr

• ADEs: Incredible sweet tooth, big appetite,
many dreams, Difficulty Orgasming, exceller-
ated heart rate, Insomnia, blackouts, bad pain
in my right arm, a little more lethargy, VERY
vivid dreams, stiff shoulders, EXTREME
DRY MOUTH, Dialated pupils, increase in
Libido, acid reflux

• milder ADEs: sugar craving, carbohydrate
cravings, bouts of sleeplessness, gum pain,
secretion under my toungue, weird dreams,
stiff muscles, mild constipation, arm tingling,
increased heat sensitivity, strange dreams,
poorer concentration, cravings for sweets,
hard time falling asleep, neck pain

The counts of the occurrences of the drug names
can be found in Table 7.

C Model Details

BioRedditBERT (Basaldella et al., 2020) is a
BERT-base uncased model related to BioBERT
(Lee et al., 2019), a model pre-trained on the orig-
inal BERT training corpus (English Wikipedia +
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Test Name Label Test Description Example Template
Temporal order
standard

no ADE ADE occurs before drug intake Before taking {drug}, I experienced {ade}.

ADE ADE occurs after drug intake Before having {ade}, I was put on {drug}.

Temporal order
single time entity

no ADE ADE occurs before drug intake
expressed by a time entity

I was experiencing {ade} for {time_entity},
now I started being medicated with {drug}.

ADE ADE occurs after drug intake
expressed by a time entity

{time_entity} ago I started being treated with
{drug}, now I started encountering {ade}.

Temporal order
double time entities

no ADE
ADE occurs before drug intake
expressed by two related
time entities

{time_entity_large} ago I started suffering from
{ade}, I have been taking {drug}
for {time_entity_small}.

ADE
ADE occurs after drug intake
expressed by two related
time entities

I was enduring {ade} for {time_entity_small},
{time_entity_large} ago I started taking {drug}.

Positive Sentiment ADE ADE occurrence is reported
with positive sentiment

I’m taking {drug} and experiencing {ade}.
Still, I am happy my symptoms have reduced.

Beneficial Effect no ADE Secondary effect of a drug
that is beneficial to the patient

I’m taking {drug} and experiencing weight loss.
I’m happy because I was trying to
lose weight anyway.

ADE Secondary effect of a drug that
is an ADE as it is not beneficial

For me, weight loss is a side-effect of {drug}.
It’s a problem because I am already underweight.

Negation no ADE ADE is negated I am taking {drug} without suffering from {ade}.

ADE Statement contains negation,
ADE is not negated

That’s not true, I took {drug}
and encountered {ade}.

Table 6: Overview of all CheckList tests conducted for this project with example templates. Curly brackets in the
example templates indicate entity placeholders.

exact matches all matches

cymbalta 451 742
effexor 172 312
effexorxr 0 0
Effexor XR 13 23
zoloft 50 100

Table 7: Occurrence of drug names in the fine-tuning
training data. Exact matches are case-sensitive. A sam-
ple can contain multiple drug name occurrences. ”ef-
fexorxr“ was used in the templates without appearing in
the training data.

BookCorpus) as well as on medical texts sourced
from PubMed and PMC. BioRedditBERT, in turn,
was initialized from BioBERT and continued to
pre-train on a corpus of health-related Reddit posts.
The Reddit dataset contains 800.000 posts from
68 health-related subreddits collected between
2015 and 2018. The specific set of training data
of BioRedditBERT was the pivotal argument for
choosing this model for the task of ADE classifica-
tion on the Twitter dataset.

XLM-RoBERTa (Conneau et al., 2020) XLM-
RoBERTa is a popular multilingual classification
model without a focus on the biomedical domain.

We conducted hyperparameter search for both
models and tried batch sizes of 8, 16 and 32 and
learning rates of 3 · 10−6, 10−5 and 3 · 10−5. Both
models achieved the best performance on the de-
velopment set at 16, 10−5 and trained with the
AdamW (Loshchilov and Hutter, 2017) optimizer.
No truncation of inputs was applied and the model
was evaluated on the validation set after every
epoch. The inputs were sampled (batch sampling)
with replacement weighted by class ratio due to the
class imbalance (see Section 4.1.1).

D Per-Template Performance

The performance of the models on the template-
based tests also varies within each test. For all
tests except the Beneficial Effect tests, the models’
performance varies for each template, see Figures
5 and 6. The dependence of the model performance
on the template demonstrates that the wording of
a template influences the models’ ability to handle
a capability. In turn, this stresses the importance
of creating a wide range of variations in templates
when using template-based evaluation.
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Figure 5: Results of the CheckList tests on the fine-tuned BioRedditBERT by template. The ratio of correctly
classified test cases per template is shown on the horizontal axis. Each plot is a histogram showing the count of
templates that produced more or less successfully classified test cases.

Figure 6: Results of the CheckList tests on the fine-tuned XLM-RoBERTa by template. The ratio of correctly
classified test cases per template is shown on the horizontal axis. Each plot is a histogram showing the count of
templates that produced more or less successfully classified test cases.
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Abstract

Prior Authorization delivers safe, appropriate,
and cost-effective care that is medically jus-
tified with evidence-based guidelines. How-
ever, the process often requires labor-intensive
manual comparisons between patient medical
records and clinical guidelines, that is both
repetitive and time-consuming. Recent devel-
opments in Large Language Models (LLMs)
have shown potential in addressing complex
medical NLP tasks with minimal supervision.
This paper explores the application of Multi-
Agent System (MAS) that utilize specialized
LLM agents to automate Prior Authorization
task by breaking them down into simpler and
manageable sub-tasks. Our study systemati-
cally investigates the effects of various prompt-
ing strategies on these agents and benchmarks
the performance of different LLMs. We demon-
strate that GPT-4 achieves an accuracy of
86.2% in predicting checklist item-level judg-
ments with evidence, and 95.6% in determin-
ing overall checklist judgment. Additionally,
we explore how these agents can contribute
to explainability of steps taken in the process,
thereby enhancing trust and transparency in the
system.

1 Introduction

In US healthcare, management of administrative
workflows represents a pivotal yet formidable chal-
lenge. Physicians, nurses, and administrative per-
sonnel frequently allocate a substantial portion of
their working hours to these procedural tasks, dis-
tracting from their primary focus on patient care.
One such workflow, Prior authorization (PA) is
a healthcare management process used by insur-
ance entities to determine whether a proposed treat-
ment or service is covered under a patient’s plan
before it is approved to be carried out. This pro-
cess applies to various treatments and services,
including medications, imaging, and procedures
(Madhusoodanan et al., 2023). Evaluating a PA

application involves assessing medical necessity of
patient-specific health records against prevailing
coverage guidelines. A major part of these cov-
erage guidelines are clinical guidelines which are
systematically developed statements designed to
help practitioners make decisions about appropri-
ate health care for specific clinical circumstances.
Insurance companies review these clinical guide-
lines to to justify medical necessity of a procedure
or treatment (Chambers et al., 2016).

While Prior Authorization ensures safe, appro-
priate, cost-effective and evidence based care to
all members (Jones et al., 2021), it is a major
source of physician and staff burnout as well as
job dissatisfaction.There are several ongoing ef-
forts to improve the prior authorization process.
High-profile innovations include (1) “gold carding”
providers, exempting those who have very high
historical approval rates; and (2) automating the
process through e-prior auth (e-PA) (Lenert et al.,
2023). e-PA proposes a set of transactions convey-
ing the rules for approval in a standardized query
representation in CQL. While such rule based meth-
ods are adequate for simple authorization decisions,
complex cases with temporal data, evidence of re-
sponses and trends in clinical data items can be
difficult to represent in CQL’s rule based format
(Lenert et al., 2023). Also, a nationwide survey
(Salzbrenner et al., 2022) identified that the use of
e-PA was not associated with less provider time
or fewer challenges in preparing and submitting
PA requests. However, the use of e-PA reported a
shorter PA decision time. Additionally, there is an
understanding that AI can potentially improve the
current state of PA filing (Lenert et al., 2023).

The introduction of Large Language Models
(LLMs) (OpenAI, 2024; Touvron et al., 2023) has
catalyzed a transformative shift in the capabilities
of artificial intelligence, enabling the resolution
of complex challenges previously inaccessible to
conventional AI methods. LLMs excel in interpret-
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ing and synthesizing large volumes of unstructured
data, enhancing tasks such as natural language un-
derstanding (Yang et al., 2024), sentiment analysis,
and automated content creation (Zhou et al., 2024).
Building on this foundation, Multi-Agent Systems,
which employs a collective of AI-powered agents,
represents an even further advancement (Guo et al.,
2024). This approach decomposes a singular com-
plex task into multiple, manageable sub-tasks and
distributes them across multiple agents, each spe-
cialized through training for a sub-task. Following
this methodology essentially infuses a microser-
vice architecture into the traditional monolithic AI
framework, enabling more modular, scalable, and
robust AI systems. By integrating the depth and
adaptability of LLMs with the collaborative and dy-
namic nature of Multi-Agent Systems, AI systems
can achieve unprecedented levels of performance
and versatility across various complex problems
(Guo et al., 2024; He et al., 2024).

In this paper, we investigate the application of
multi-agent systems for determining medical ne-
cessity for a medical procedure. Our contributions
are as follows:

• We propose a novel challenge of establish-
ing medical necessity for prior authorizations
(PAs) by reasoning on clinical guidelines
against patient medical records.

• We decompose the problem statement of PA
filing into intermediate sub-tasks, which can
then be effectively solved by LLM Agents.

• We demonstrate through extensive experimen-
tations the effect of LLM choice and prompt-
ing strategies. Specifically, GPT-4 achieves
an accuracy of 86.2% in predicting checklist
item-level judgments and 95.6% in determin-
ing overall checklist judgment.

2 Related Work

Large Language Models (LLMs) have completely
changed the landscape of Natural Language Pro-
cessing (NLP) in the recent years. LLMs have
shown emergent abilities (Wei et al., 2022a) in set-
tings like few-shot prompting (Brown et al., 2020)
and augmented prompting strategies. Augmented
prompting like Chain of Thought (CoT) (Wei et al.,
2022b) and Automatic Chain of Thought (Zhang
et al., 2022) prompting enables LLMs to solve rea-
soning tasks using step by step approach. Addi-
tionally, instruction fine-tuning with human feed-

back has made LLMs able to respond to instruc-
tions describing unseen tasks (Ouyang et al., 2022).
Other advancements include techniques like self-
consistency (Wang et al., 2023) which helps LLMs
solve complex tasks using multiple different ways
of thinking and prompt gradient descent (Pryzant
et al., 2023) which edits prompt in the opposite se-
mantic direction of the gradient to boost prompt’s
performance. Building on this, more dynamic
and complex tasks can be tackled by LLM pow-
ered Multi Agent Systems (LLM-MAS). These
LLM-MAS have collaborative autonomous agents
equipped with unique strategies and behaviour
(Guo et al., 2024). This agentic behaviour is based
on the idea that LLMs can improve in game-play
scenario by using previous experiences and feed-
back (Fu et al., 2023; Madaan et al., 2023).

LLMs have the potential to disrupt medicine.
Models like Med-PaLM (Singhal et al., 2022) out-
performed state of the art on all MultiMedBench
tasks (Tu et al., 2024). GPT-4 has consistently
outperformed task-specific fine-tuned models and
is comparable to human experts on QA datasets
(Zhou et al., 2024). GPT-4 scored 86.65% in United
States Medical Licensing Examination (USMLE)
where passing percentage was 60% (Nori et al.,
2023). It also demonstrates GPT-4’s capacity for
reasoning about concepts tested in USMLE chal-
lenge problems, including explanation, counterfac-
tual reasoning, differential diagnosis, and testing
strategies. Some recent researches have started
to explore the impact of LLMs in discharge sum-
mary generation (Ellershaw et al., 2024; Williams
et al., 2024), care planning (Nashwan and Hani,
2023; Jung et al., 2024), Electronic Health Records
(EHRs) (Cui et al., 2024; Ahsan et al., 2023). Text-
to-SQL parsing has attracted significant interest
(Li et al., 2024). Building on this idea, numer-
ous research efforts, such as EHRSQL (Lee et al.,
2022), are focused on extracting data from EHRs.
Additionally, there are ongoing efforts to develop
solutions for EHR-based question-answering tasks
(Shi et al., 2024).

However, the domain of PA filing is largely un-
touched by LLMs mainly because of lack of pub-
licly available data despite the understanding that
AI can potentially improve its current state (Lenert
et al., 2023). While some efforts have been made to
automate PA filing, for example (Diane et al., 2023)
where ChatGPT is utilised to generate PA letters
for Orthopedic Surgery Practice, but the process
lacks the important step of establishing medical ne-
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Figure 1: Leaf-Level Judgement Prediction where the first agent classifies the documents into supporting and
contradictory sets and then the jury agent determines if the checklist item is satisfied.

cessity using AI. Another study aims to determine
PA Approval for Lumbar Stenosis Surgery with
Machine Learning (De Barros et al., 2023) but it
uses surgery specific symptoms as input variables
which would be difficult to generalize.

3 Problem Statement

As mentioned above, the evaluation of medical
necessity is conducted through a meticulous com-
parison between patient medical records and estab-
lished clinical guidelines. These medical records
are systematically structured in a json-like for-
mat, usually in FHIR 1, within Electronic Health
Records (EHRs) systems. Each object (resource)
can be of type Patient (Patient Demographics), Ob-
servation (Laboratory Results), Procedure (Treat-
ment History), Medication Request, Diagnostic
Report etc. We define a set of EHR documents
(resources) as D = {d}ND

i=1 of size ND

Further, clinical guidelines are formatted in a hi-
erarchical, tree-like structure (referred as checklist
in this paper), where each guideline statement (par-
ent node) can encompass an arbitrary number of
subordinate child statements (sub-checklist or leaf
node) nested within it as shown in Figure 2 and 3.
Thus, we define a coverage guideline or checklist
as C = {c}NC

j=1, where c is a checklist item.
Eventually, the task is to automatically deter-

1https://www.hl7.org/fhir/

mine the medical necessity Y ∈ {−1, 0, 1} where
-1 means the medical necessity is not justified, 1
means it is justified and 0 means there is a lack of
sufficient evidence to justify the medical necessity
criteria.

Recognizing the importance of transparency in
the task, we also aim to provide evidence Ec =
{eck}Nc

k=1. These evidences can be used down-
stream to cross-reference medical documents used
to establish medical necessity for the procedure.

We aim to construct a machine learning model
M such that:

M(D, C) = {Y, {Ec}} ∀c ∈ C (1)

4 Methodology

Recently Large Language Models have shown great
performance improvements by breaking down com-
plex tasks into simpler sub-problems (Khot et al.,
2022). Motivated by this observation, we propose
a two step solution for our problem statement. First
we determine the judgement of each of the leaf
node checklist item. Subsequently, we propagate
the solution for parent nodes bottom-up based on
its child nodes’ judgements.

4.1 Leaf-Node Judgement Prediction
Considering the immense volume of documents
in Electronic Health Records (EHRs), we propose
a Retrieval-Augmented Setup (Gao et al., 2024).
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Figure 2: Bottom-Up Judgement Propagation where the agent uses the logical operators contained in a checklist
item to determine how the aggregation should take place.

This approach first filters the document pool to
identify a set of likely evidences (top-k evidences).
A Classification Agent is then utilized to select the
relevant evidences for the specific checklist item,
enabling precise and efficient data extraction.

Top-k Evidence Selection: Given the EHR data
D, we first decompose it into its constituent re-
sources (documents) where each document is an
individual entry (individual lab-report data, pro-
cedure etc.) . In order to filter-down documents
that are redundant towards the judgment, we first
obtain top k candidate matches for the checklist
item c from D. To achieve this, we propose to use
a text encoder S to derive semantic representations
for each checklist item c and for each document d
in the EHR data. This method allows us to map
both the checklist items and the documents into a
shared semantic space, facilitating more effective
matching based on relevance. Subsequently, we
employ a semantic similarity metric to calculate
the similarity score between each document d and
the checklist item c. Based on the similarity metric,
we obtain top-k closest matched documents with
the checklist item c. Note that due to cost involved
in using LLMs for this task, we keep2 k < 50.

S({di}|ND
i=1, c) = {di′}|ki′=1 ∀c ∈ C (2)

2In our experiments section, we show how the performance
of our approach varies with k

Evidence Retrieval and Prediction: Our pro-
posed Evidence Classification Agent Me, first
looks at each document di in top-k evidences re-
trieved along with the checklist item c and gives a
verdict vi, whether the document di is a support-
ing evidence, a contradictory evidence or it does
not affect the judgment yc. Note that this agent is
executed k times since there are k retrieved docu-
ments.

Me({di, c}|ki=1) = {vi}|ki=1 ∀c ∈ C (3)

Then our Jury AgentMj picks up the complete
set of evidences di|ki=1 along with their verdicts
vi|ki=1 and predicts the leaf-level checklist item
judgment yc along with evidences Ec ⊂ si|ki=1 that
acted in favour of the judgement yc. We run this
leaf-node pipeline multiple times (n = 10) and
take vote of all predictions to determine the final
judgement yc. Confidence score fc is calculated
as the percentage of times the majority answer is
predicted by the agent.

Mj({di, vi}|ki=1, c) = {yc, fc, {Ec}} ∀c ∈ C
(4)

4.2 Parent-Node Judgement Prediction
The value of a parent node is contingent upon the
values of its nested child nodes. Hence, we deter-
mine parent node’s value by aggregating children
nodes’ values which are connected through logical
operators (AND, OR, NOT).
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Bottom-Up Judgement Propagation: In order
to obtain the decision over the complete checklist
C, we propose to use an iterative bottom-up ap-
proach. In another words, we start from the leaf
nodes and keep obtaining the judgment of their par-
ent nodes. The iterations are terminated when we
obtain the judgment and scores of the root node in
the checklist C.

Mathematically, at every iteration i, we choose
a set of leaf node checklist items cj |Npar

j=1 having a
common parent checklist item cpar, having judge-
ments yj |Npar

j=1 and confidence scores fj |Npar

j=1 . We
then calculate the judgement ypar and confidence
score fpar of parent node as:

Mp(cpar, {cj , yj , fj}|Npar

j=1 ) = {ypar, fpar} (5)

whereMp is our Propagator Agent.

5 Data Collection and Annotation

Getting live EHR data for the purpose of this eval-
uation is difficult, costly and full of regulatory re-
quirements. We therefore used de-identified dis-
charge summaries from MIMIC-IV-Note (Johnson
et al., 2023a) as a proxy for this data. All dis-
charge summaries therein have sections like chief
complaint, history of present illness, past medical
history, social history, physical and lab examina-
tions, medications etc. which serves as the ideal
data for this experiment. An average discharge
summary has approximately 300 sentences divided
into different categories. Joining this data with
MIMIC-IV (Johnson et al., 2023b), we can get the
CPT/ICD-10 codes associated with each note. We
also collected a set of publicly available clinical
guidelines (from CMS etc.) pertaining to Cardiol-
ogy and Oncology and cross referenced the CPT
codes in these guidelines to our notes data, thus
creating a dataset of (note, guideline) pairs.

An example checklist 3 is shown in Figure 3. The
checklist shows the clinical guideline for Therapeu-
tic Footwear which consists of two items associated
by AND operator. Item 2 in itself is a sub-checklist
and will be true if any of the sub-checklist item is
True as all of them are connected by OR operator.

5.1 Leaf Node Data Annotation

We hired 10 individuals with experience between
6-10 years in PA filing/reviewing both on payer

3Taken from CMS: https://www.cms.gov/medicare-
coverage-database/search.aspx

Example Checklist

Eligibility Checklist for Therapeutic Footwear

1. The beneficiary has diabetes mellitus; and

2. The certifying physician has documented in
the beneficiary’s medical record one or
more of the following conditions:

(a) Previous amputation of the other foot,
or part of either foot;

(b) History of previous foot ulceration of
either foot;

(c) History of pre-ulcerative calluses of
either foot;

(d) Peripheral neuropathy with evidence of
callus formation of either foot;

(e) Foot deformity of either foot;

(f) Poor circulation in either foot;

Figure 3: An example checklist formatted as a decision
tree

and provider side. They were assigned the task of
annotating leaf nodes of a checklist as either True,
False or No Information. In case of True and False,
the annotator has to also highlight statements in
the data section as the evidences for that checklist
item as shown in Figure 4. Additionally, each (note,
guideline) pair was annotated by 3 different annota-
tors and the final verdict was determined by taking
the majority vote of all annotators for that check-
list item. Following this, we created a dataset of
281 annotated checklists having 4577 leaf checklist
items.

Figure 4: Annotation Dashboard where each annotator
has to mark if the checklist item is True, False or No
Information (can’t be concluded) and mark evidences
for their selection.

5.2 Synthetic Data for Parent Judgement
To test parent-node judgment propagation, we cre-
ated synthetic data. This was needed because the
logical operations required were not within the ex-
pertise of our medical domain annotators. To cre-
ate synthetic data, we first extracted out all sub-
checklists from the unique set of guidelines we had,
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and then manually labelled each sub-checklist with
the operator (AND, OR and NOT) used for the
aggregation of result for that sub-checklist. Then
we randomly assigned each leaf node in all sub-
checklist their judgements and confidence score
and calculated the judgement and confidence score
of the parent node programmatically. With dif-
ferent permutations of True, False and No Infor-
mation used for each sub-checklist, we created a
dataset of 4500 sub-checklists used for the evalu-
ation of parent node judgement propagation. This
method of synthetic assignment is advantageous as
it introduces a range of less likely or extraordinary
judgment combinations, thereby challenging our
Propagator Agent to maximize its robustness.

6 Experiments and Results

Our experiments were categorized into two distinct
segments: assessment of leaf-node judgment and
evaluation of parent-node judgment. To facilitate
this, we established two separate test environments.
Each test-bed was equipped to integrate various
Large Language Models (LLMs) to ascertain the
optimal model for our needs.

6.1 Leaf-node Judgement

Leaf-node judgment encompassed three sequential
tasks. We start by splitting the entire document
into sentences. Note that, with MIMIC data it is
an easy way to chunk EHR data, but in real case
scenario the chunking would happen at FHIR re-
source 4 level i.e. each Observation, Encounter,
Lab Data etc. will act as the smallest chunk that
goes into the pipeline. These chunks (or sentences
here for simplicity) is first passed through the an
encoder module which sorts the sentences accord-
ing to the cosine similarity. The first 20 sentences
are chosen for the experimentation. This simplifies
the task of Classification Agent and also saves on
LLM cost. The classification agent then segregates
these filtered sentences in group of supporting and
contradictory evidences which helps predicting the
final judgement yc by the Jury Agent.

Note that the evidences given by the model for
each checklist item is not generated but classified.
So each evidence will be an exact string match of a
sentence from the input document. We have also
ensured while annotation that the annotators also
selects the evidence from the document as shown
in Figure 4. This will help us measure the recall of

4Refer: https://www.hl7.org/fhir/

encoder and classification agent against annotated
data. The recall metric is defined as:

Recall =
|thuman ∩ tagent|
|thuman|

(6)

where |thuman∩tagent| represents the number of
tokens that intersect between the human annotator
and the agent, and |thuman| is the total number of
tokens identified as evidence by the human anno-
tator. This measures if the Jury Agent had enough
information to conclude the judgement.

Figure 5: Recall of Encoder (MiniLM-L6-v2) model for
various k-values

For encoder model, we used MiniLM-L6 5. We
took the top similarity sentences given by encoder
model for various k-values and calculated recall
against the human evidences and computed the av-
erage recall for all checklist items. The results are
plotted in Figure 5. For k = 40, we get recall as
0.8689, which concludes that using encoder pre-
serves useful information while discarding around
85% of irrelevant data (average MIMIC data has
300 sentences) towards the judgement.

Table 1: Recall metric for Classification Agent with
different k values

Model k = 10 k = 20

GPT-4 0.5792 0.6741
GPT-3.5 0.4844 0.5554
Claude-Opus 0.5254 0.5845
Calude-Sonnet 0.5042 0.5430

On similar lines, we calculated the recall of the
Classification Agent by comparing segregated evi-
dences: if humans marked a checklist item as true,
we compared the supporting evidences from the

5Refer: https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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agent to those identified by humans, and similarly,
if marked as false, we compared the contradictory
evidences. Table 1 shows the recall of Classifica-
tion Agent for various LLMs. Clearly for k = 20
we have significantly higher recall as more evi-
dences were present for the classifier to act upon.
GPT-4 outperfomed other models with a maximum
recall of 0.67 while other models showed slightly
lower values.

Figure 6: Accuracy of various LLMs for Jury Agent

We conducted a comprehensive evaluation of the
Jury Agent (Mj) employing various Large Lan-
guage Models (LLMs), with a primary focus on
accuracy and how it is affected with the number of
retrieved evidences (k). GPT-4 and Opus demon-
strated robust performance, achieving accuracies
of 86% and 72% (Figure 6), respectively. Notably,
while Sonnet exhibited a slightly lower accuracy
of 69% compared to Opus, it provided a consider-
able advantage in terms of latency, reducing it by
approximately 32% (Figure 7).

Figure 7: Latency of various LLM model for the leaf-
node pipeline

Effect of Number of Retrieved Evidences (k):
To better understand the effect of k on our pipeline
and choose the best value we tweaked the value
of k and ran the pipeline on a smaller sample of

our dataset consisting of 20 checklists ( having 680
checklist items). We observed that as we increase
the value of k, the model performance increases till
a value of k = 20, after which the accuracy gets
saturated as shown in Figure 8.

Figure 8: Effect of various k-values on Jury Agent

6.2 Parent-node Judgement

Our Propagator Agent is an LLM-powered Agent,
which takes up a parent node and its correspond-
ing leaf nodes (along with their judgments and
confidence scores) to obtain the judgment and con-
fidence score of the parent node. This was done in
two ways. In the first experiment, the LLM agent is
asked directly to determine the response and score
given parent statement and its child statements, re-
sponses and scores. The agent has to understand
the logical operators (AND, OR, NOT) and then
combine the child responses (True, False, No Infor-
mation) to conclude parent judgement. The logical
rules for No Information items is given in Figure 9
and rules for calculating confidence score is given
in Figure 10. In the second experiment, the LLM
agent was asked to compute the logical operator
between each child item and then the calculation of
response and confidence score was done program-
matically.

We evaluate the performance of the Propagator
Agent across various dimensions. The outcomes of
this analysis are presented in Table 2. The score
accuracy refers to the accuracy of both the response
and confidence score propagated correctly while
the response accuracy is accuracy of only response
being propagated correctly to the parent node re-
sulting from the first experiment. The operator
accuracy refers to the accuracy of the model to cor-
rectly identify the operators as done in the second
experiment.

From the table we can conclude that the Agent
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Table 2: Model performance for Propagator Agent using Chain of Thought (CoT) & In-Context Learning (ICL)

GPT-4 GPT-3.5 Claude-Sonnet Claude-Opus

CoT + ICL ICL CoT + ICL ICL CoT + ICL ICL CoT + ICL ICL CoT + ICL

Response Accuracy (%) 87.17 95.60 78.75 91.20 82.05 85.71 85.34 95.24
Score Accuracy (%) 78.35 93.04 48.35 85.34 53.66 81.31 79.12 94.50
Operator Accuracy (%) 89.27 95.01 81.04 92.82 82.05 87.54 84.78 94.04

is able to propagate response more accurately than
confidence scores, as propagating confidence score
is a more complex task than determining the re-
sponse which involves only logical operations. Sec-
ond experiment shows that the accuracy of operator
determination task is comparable to the response
accuracy determined using first approach. Once
the operators are determined, response and confi-
dence score are calculated programatically. Since
determining operator would be a one time task (to
be done while creating guidelines) taking second
approach would get us similar accuracy but at sig-
nificantly lower cost.

Rule Set for No Information Items

Case I: AND Operator

1. True AND No Information = No Information

2. False AND No Information = False

Case II: OR Operator

1. True OR No Information = True

2. False OR No Information = No Information

Case III: NOT Operator

1. NOT No Information = No Information

Figure 9: Rule Set for No Information Items followed
by Propagator Agent for parent node judgement

Effect of Prompting Strategy: We performed
two sets of experiments. The first involved provid-
ing In-Context Learning (ICL) examples (Min et al.,
2022) and measuring accuracy. Larger models such
as GPT-4 and Opus yielded strong results, whereas
smaller models like Sonnet and GPT-3.5 exhibited
suboptimal performance when relying solely on
ICL prompts. However, in the second experiment,
when supplemented with Chain of Thought (CoT)
prompting (Wei et al., 2022b), the performance of
these smaller models markedly improved, demon-
strating how the step-by-step reasoning process
aids in decomposing the complex task of propa-
gation into manageable segments. However, the

use of Chain of Thought (CoT) prompting substan-
tially increases response times for larger models
due to its generation of an increased number of to-
kens compared to ICL-only prompting. In contrast,
the enhancements in performance observed with
GPT-3.5 are achieved without a marked increase
in latency, particularly when compared to larger
models such as Opus and GPT-4 under similar con-
ditions.

Confidence Score (f ) Calculation

Case I: AND Operator

1. If final response is True:

fpar = min(f of all True child responses)

2. If final response is False:

fpar = max(f of all False child responses)

3. If final response is No Information:

fpar = min(f of all No Information child
responses)

Case II: OR Operator

1. If final response is True:

fpar = max(f of all True child responses)

2. If final response is False:

fpar = min(f of all False child responses)

3. If final response is No Information:

fpar = min(f of all No Information child
responses)

Figure 10: Confidence Score calculation rules followed
by Propagator Agent for parent node judgement

Effect of LLM Choice: We conducted an eval-
uation of the Propagator Agent utilizing various
LLMs, with a particular emphasis on metrics such
as accuracy and latency. Opus and GPT-4 emerged
as the top performers, achieving approximately 94-
95% accuracy when CoT prompting was combined
with ICL examples.

GPT-3.5 is ranked second in terms of accuracy
but presents significant benefits in reduced latency
compared to GPT-4 and Opus, as depicted in Figure
11. Additionally, the operational costs associated
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with GPT-3.5 are substantially lower. Although
selecting the optimal model involves a trade-off,
GPT-3.5 stands out as the preferred option when
considering a balance among cost, latency, and
accuracy. Nonetheless, for scenarios where maxi-
mum accuracy is crucial, the larger models such as
GPT-4 and Opus are more appropriate.

Figure 11: Latency Analysis of LLMs Under ICL and
CoT for Propagator Agent when computing score accu-
racy

7 Conclusion

Our experiments utilized MIMIC-Note data, a set
of string-based data. However, real-world applica-
tions typically involve obtaining resources (FHIR
data) from EHR systems. Converting these re-
sources into stringified data poses a unique engi-
neering challenge. Although manageable, it is cru-
cial to determine whether this data format could
impact the effectiveness of our system.

In our approach, we integrated the use of con-
fidence scores. Agents at the leaf nodes compute
a confidence score for their predictions, which is
then propagated up to the root node alongside the
response. The confidence score at the root node is
vital as it reflects the system’s certainty about the
prediction quality. Checklists with low confidence
scores are directed to a service layer where experi-
enced professionals can review or adjust the model
responses. This feedback loop can be leveraged to
refine and enhance future models.

Given our focus on the healthcare sector, ensur-
ing the explainability of outputs from these LLM
agents was paramount. The decision-making pro-
cess was elucidated through Chain of Thought
(CoT) prompting and evidence collected by the
Classification Agent, enhanced the transparency
needed when AI models are employed in health-
care workflows.

While initially designed to automate prior au-
thorization (PA) filing, this solution could also im-
prove clinical decision support (CDS) systems by
providing real-time alerts to physicians during con-
sultations. For instance, it could alert physicians
to incomplete medical records when prescribing
treatments requiring PA, ensuring necessary doc-
umentation is promptly addressed. Thus, system
responsiveness or latency becomes a critical metric
for assessing its performance.

We have shown that breaking down a large, com-
plex problem into smaller, specialized tasks han-
dled by distinct agents can significantly enhance
our ability to automate sophisticated tasks that were
previously very challenging. This strategy also fa-
cilitates the shift from a monolithic AI solution
(M) to a micro-service architecture-driven solu-
tion (Me,Mj , andMp). Currently, our method
involves a constrained workflow, but it holds poten-
tial for evolving into a system with loosely coupled
agents that are more dynamic and capable of im-
proved problem-solving.

The ideal implementation of this methodology
would adopt a structure akin to an organization,
where the architecture consists of several pods.
Each pod contains worker agents specialized in
different aspects of the problem, complemented
by checker agents that reassess and validate the
outputs, triggering reruns when necessary. A super-
orchestrator agent would oversee and coordinate
the activities across the architecture. This setup
aims to mitigate common issues like hallucination
often seen in existing LLMs.
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Abstract
Instruction-tuned Large Language Models
(LLMs) can perform a wide range of tasks
given natural language instructions to do so,
but they are sensitive to how such instructions
are phrased. This issue is especially concern-
ing in healthcare, as clinicians are unlikely to
be experienced prompt engineers and the po-
tential consequences of inaccurate outputs are
heightened in this domain.

This raises a practical question: How robust are
instruction-tuned LLMs to natural variations
in the instructions provided for clinical NLP
tasks? We collect prompts from medical doc-
tors across a range of tasks and quantify the sen-
sitivity of seven LLMs—some general, others
specialized—to natural (i.e., non-adversarial)
instruction phrasings. We find that performance
varies substantially across all models, and that—
perhaps surprisingly—domain-specific models
explicitly trained on clinical data are especially
brittle, compared to their general domain coun-
terparts. Further, arbitrary phrasing differences
can affect fairness, e.g., valid but distinct in-
structions for mortality prediction yield a range
both in overall performance, and in terms of
differences between demographic groups.

1 Introduction

Modern LLMs—e.g. GPT-3.5+ (Radford et al.,
2019; Ouyang et al., 2022), the FLAN series
(Chung et al., 2022), Alpaca (Taori et al., 2023),
Mistral (Jiang et al., 2023)—can execute arbitrary
tasks zero-shot, i.e., provided with only instruc-
tions rather than explicit training examples. LLMs
have also shown promising improvements in per-
formance on classification and information extrac-
tion (IE) tasks, such as named entity recognition
(Brown et al., 2020; Munnangi et al., 2024) and
relation extraction (Wadhwa et al., 2023a; Ashok
and Lipton, 2023; Jiang et al., 2024) in both gen-
eral and specialized domains like biomedical and

*Equal contribution

Figure 1: How much does LLM performance on clinical
tasks depend on the arbitrary phrasings of instructions?
Here we show an illustrative example: Discrepancy in
AUROC score for CLINICAL CAMEL on the cohort
selection-alcohol abuse classification task, when given
the worst (A) and the best (B) performing prompts for
ALCOHOL-ABUSE classification task.

scientific literature (Agrawal et al., 2022; Wadhwa
et al., 2023b; Asada and Fukuda, 2024).

However, prior work has shown that LLMs do
not “understand” prompts (Webson and Pavlick,
2022) and are sensitive to the particular phrasings
of instructions (Lu et al., 2022; Sun et al., 2023).
Domain experts in specialized domains such as
medicine are especially likely to interact with mod-
els by providing instructions (i.e., in zero-shot set-
tings), and are unlikely to be talented prompt engi-
neers. For instance, a clinician might task a model
to “Extract and summarize the findings of the pa-
tient’s last X-ray”, or ask “When did the patient
last receive a painkiller?”. It is unrealistic to fine-
tune models for every possible such task; hence the
appeal of models responsive to arbitrary prompts.
A downside, however, is that a clinician’s partic-
ular phrasing may dramatically affect model per-
formance (Figure 1). Such unpredictability is espe-
cially troublesome in healthcare, where poor per-
formance might ultimately impact patient health.

In this work we ask: How sensitive are LLMs—
general and domain-specific—to plausible in-
struction phrasing variations for clinical tasks?
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Figure 2: Variance in performance for clinical classification and information extraction tasks for each model. We
show the distribution of deltas between the best and worst performing prompt for each task.

Our analysis deepens prior work on robustness by
focusing on the clinical domain; this is important
both due to the higher stakes and because clinical
notes differ qualitatively from general domain text.
For example, notes in EHR often contain grammat-
ical errors (“Pt complains of headache, and feel
dizzy.”); abbreviations not defined in context (“Pt”
could be “patient” or “Prothrombin time”), and;
domain-specific jargon (“edema”, “Diuretic”).

Therefore, one of the key aspects we consider
is the domain-specificity of models. Are clinical
LLMs more (or less) robust to different valid in-
struction phrasings written by doctors, compared
to their general domain counterparts? To assess
this, we evaluate recently released LLM variants
trained on synthetic datasets comprising automati-
cally generated clinical notes (Kweon et al., 2023),
and medical dialogue from case reports found in
biomedical literature (Toma et al., 2023). We find
that performance varies substantially given alter-
native instruction phrasings for both general and
clinical LLMs. Figure 2 shows the distribution
of deltas between the best and worst performing
prompts across a set of clinical classification and
information extraction tasks.

Finally, we investigate how instruction phras-
ings impact the fairness of predictions, by which
here we mean observed differences in performance
between demographic subgroups. The degree to
which LLMs might perpetuate and exaggerate such
disparities in clinical use is a topic of active re-
search (Omiye et al., 2023; Pal et al., 2023; Zack
et al., 2024). Here we contribute to this by inves-
tigating the interaction between prompt phrasings
and fairness. We find significant performance dif-
ferences (up to 0.35 absolute difference in AUROC)
in a mortality prediction task from MIMIC-III be-
tween White and Non-White subgroups and also

a significant disparity between Male and Female
patients (up to 0.19 absolute difference in AUROC).
To facilitate future research in this direction, we
release our code and prompts1.

2 Experimental Framework

Our experimental setup is intended to quantify the
robustness of LLMs to natural variations in instruc-
tional phrasings for clinical tasks. We considered a
set of ten clinical classification tasks and six in-
formation extraction tasks drawn from MIMIC-
III (Johnson et al., 2016) and prior i2b2 and n2c2
challenges,2 summarized in Table 1 (§2.1). We
recruited a diverse group of medical professionals
to write prompts for each task (§2.2). We then
evaluated the performance, variance, and fairness
of seven LLMs (four general-domain and three
domain-specific) across prompts (§2.3).

2.1 Tasks and Datasets
MIMIC-III (Johnson et al., 2016) is a database
of de-identified EHR comprising over 40k patients
admitted to the intensive care unit of the Beth Is-
rael Deaconess Medical Center between 2001 and
2012. It comprises structured variables and clinical
notes (e.g., doctor and nursing notes, radiology re-
ports, discharge summaries); we focus on the latter.
MIMIC-III also contains demographic information,
including ethnicity/race, sex, spoken language, re-
ligion, and insurance status (Chen et al., 2019).
As an illustrative predictive task, we consider in-
hospital mortality prediction, which has been the
subject of prior work (Harutyunyan et al., 2017).
Owing to compute constraints, we sub-sampled the
test-split to 10% of the data (preserving class ratio),
yielding 160 records for evaluation.

1https://github.com/alceballosa/clin-robust
2https://n2c2.dbmi.hms.harvard.edu/
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Dataset TASK TEST SET TASK TYPE

MIMIC-III In-hospital Mortality 160 Binary Classification

Obesity co-morbidity

Asthma 507 Binary Classification
CAD 507 Binary Classification

Diabetes 507 Binary Classification
Obesity 507 Binary Classification

Cohort Selection
Abdominal 86 Binary Classification

Alcohol-Abuse 86 Binary Classification
Drug-Abuse 86 Binary Classification

English 86 Binary Classification
Decisions 86 Binary Classification

Medical Challenge Medication 251 Extraction

Relation Challenge

Concept Problem 256 Extraction
Concept Test 256 Extraction

Concept Treatment 256 Extraction

Adverse Drug Effects Drug 202 Extraction

Risk Assessment Risk Factor CAD 514 Extraction

Table 1: Tasks and datasets used for evaluation.

n2c2 2018 Cohort Selection Challenge (Stubbs
and Uzuner, 2019) aims to identify whether a
patient meets the criteria for inclusion in a clini-
cal trial based on their longitudinal records. The
dataset contains 288 patients, their associated clin-
ical notes and a set of binary labels indicating
whether they meet the criteria for each of 13 possi-
ble cohorts (e.g., drug abuse, alcohol abuse, ability
to make decisions, among others). In this study, we
focus on the 5 cohorts shown in Table 1 and treat
each as an independent binary classification task
aiming to predict whether the criteria is “met” or
“not met”.

i2b2 2008 Obesity Challenge (Uzuner, 2009)
entails identifying patients suffering from obesity
and its co-morbidities from their discharge sum-
mary notes. The dataset comprises 1027 pairs of
de-identified discharge summaries and 16 disease
labels from intuitive judgements which are based
on the entire discharge summary. We report the
performance for obesity and three co-morbidities
(i.e., asthma, atherosclerotic cardiovascular disease
(CAD), and diabetes mellitus (DM)), each framed
as a binary classification task aiming to predict
whether the condition is “present” or “absent”.

n2c2 2018 Adverse Drug Events and Medica-
tion Extraction in EHRs (Henry et al., 2020)
consists of a relation extraction task focused on
identifying drugs/medications and their relations to

adverse events for the patient. The dataset contains
202 patients and we focus only on the named entity
recognition portion of the task (i.e. recognizing
spans referring to drugs/medications).

i2b2 2014 Identifying Risk Factors for Heart
Disease over Time (Stubbs et al., 2015): entails
identifying medical risk factors linked to Coronary
Artery Disease (CAD) in the EHR of patients with
diabetes. The target factors include hypertension,
obesity, smoking status, diabetes, hyperlipidemia,
family history, and CAD itself. Here we consider
only the latter.

i2b2 2010 Relations Challenge (Uzuner et al.,
2011) consists of three related tasks: (1) identifi-
cation of medical problems, tests, and treatments;
(2) classification of assertions made on medical
problems; and (3) relation extraction concerning
medical problems, tests, and treatments. The data
for this challenge includes discharge summaries
from Partners HealthCare, and the Beth Israel Dea-
coness Medical Center (Lee et al., 2011), as well
as discharge summaries and progress notes from
the University of Pittsburgh Medical Center. We
conduct evaluation on the first task (i.e. extraction
of problems, tests, and treatments) over the notes
of 256 patients.

i2b2 2009 Medication Extraction Challenge
(Patrick and Li, 2010) focuses on the extrac-
tion of medications from clinical notes in the EHR,
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as well as their modes, reasons and frequency of
administration. We center our analysis on medi-
cation extraction only, which encompasses around
1250 unique medications over 251 notes.

2.2 Instruction Collection
We hired twenty medical professionals from dif-
ferent professional and demographic backgrounds,
with varying medical specialties and years of expe-
rience. These included medical doctors (physicians,
surgeons), medical writers/editors, nurses, and
medical consultants from various countries, such as
the United States, Nigeria, Kenya, Canada, Zambia,
Egypt, Malawi, Pakistan, Philippines, and Ethiopia.
All participants were either native-speakers or pro-
ficient in English. It should also be noted that par-
ticipants were not required to have experience with
LLMs but the majority of them reported having
used these models in the past.

We provided participants with a description of
the tasks including the goal, the expected outputs
and a (fictitious) example of a clinical note. We
then asked them to write instructions (in English)
for each task with the only constraint being that
they had to ensure the model outputs a valid label
(for classification tasks) or a list of items (for ex-
traction tasks). Figure 9 (Appendix A.1) shows an
example of the instructions given for a classifica-
tion task.

Initially, we ran a smaller scale pilot study con-
sisting of one classification and one extraction task,
and recruited participants who successfully com-
pleted the tasks. The process took around 5 hours
on average and we compensated each participant
at a rate of $25/hour. We manually reviewed all
written instructions and found that some were of
poor quality (e.g., did not adhere to the goals of
the task, or did not ensure that the model outputs
valid responses). In such cases, we removed the
author from the study and discarded all of their
instructions. We also removed everyone that did
not complete all the tasks, resulting in a final col-
lection of instructions from 12 participants. See
Appendix A.1 for illustrative examples of the col-
lected instructions3.

2.3 Models
We measured the performance, variance and fair-
ness of seven general and domain-specific LLMs
on each task, using the instructions written by

3The full set of instructions is available in our code reposi-
tory

medical professionals. To assess the impact of
clinical instruction tuning, we paired all clinical
models with their general domain counterparts.
We considered three clinical models: ASCLEPIUS

(7B) (Kweon et al., 2023), CLINICAL CAMEL

(13B) (Toma et al., 2023), and MEDALPACA

(7B) (Han et al., 2023); and their corresponding
base models, i.e., LLAMA 2 CHAT (7B), LLAMA 2
CHAT (13B) (Touvron et al., 2023), and ALPACA

(7B) (Taori et al., 2023), respectively. We also in-
cluded MISTRAL IT 0.2 (7B) (Jiang et al., 2023)
in our experiments due to its high performance in
standard benchmarks.

For all models and datasets, we performed zero-
shot inference via prompts with a maximum se-
quence length of 2048 tokens which included the
instruction, the input note, and the output tokens
(64 for classification, 256 for extraction). Since
most clinical notes were too long to process in a
single pass, we followed Huang et al. 2020 and
split each note into chunks to be processed inde-
pendently. For binary classification and prediction
tasks, we treated the output for a given input note
as positive if at least one of the chunks was pre-
dicted to be positive, and negative otherwise. For
extraction tasks, we combined the outputs from
each chunk into a single set of extractions.

Evaluation: Evaluation with generative models
is challenging: Models may not respect the de-
sired output format, or may generate responses that
are semantically equivalent but lexically different
from references (Wadhwa et al., 2023b; Agrawal
et al., 2022). We therefore took predictions from
the output distribution of the first generated token
by selecting the largest magnitude logit from the
set of target class tokens. For extraction tasks,
we parsed generated outputs and performed ex-
act match comparison with target spans. We re-
port AUROC scores for classification tasks and F1
scores for extraction tasks.

3 Results

We present our main results for Mortality Predic-
tion and Drug Extraction in Figure 3 — results for
the other classification and information extraction
tasks can be found in Appendix A.2, Figures 12
and 13, respectively. Most models show signifi-
cant variability in performance for alternative but
semantically equivalent instructions in both classi-
fication and extraction tasks. To further examine
these observed disparities, we plotted the distri-
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Figure 3: Variability in performance across prompts for the mortality prediction and drug extraction tasks. For most
models, different but semantically equivalent prompts yield quite a range of performance.

bution of deltas between the best and worst per-
forming prompts for each task in Figure 2. We see
that performance deltas can go up to 0.6 absolute
AUROC points for classification tasks and up to
0.4 absolute F1 points for extraction tasks.

In the Mortality Prediction task, we find that
LLAMA 2 (13B) outperforms all other models, in-
cluding the domain-specific ones (Figure 3). How-
ever, for the other classification tasks, MISTRAL

yields the best results often outperforming the
larger models whilst exhibiting less variance (Fig-
ure 12). Regarding the clinical models, we observe
that ASCLEPIUS consistently attains the best per-
formance in classification tasks albeit with compa-
rable variance.

In the Drug Extraction task, LLAMA 2 (7B) at-
tains the best results on average but with compa-
rable variance to other general LLMs. However,
the results for clinical models are mixed: while
CLINICAL CAMEL can achieve the highest perfor-
mance given the best prompt, it also has the highest
variance and lowest median performance. MEDAL-
PACA comes close to CLINICAL CAMEL in the
best case scenario but with less variance and better
median performance. ASCLEPIUS has a median
performance similar to that of MEDALPACA but
with a much lower variance. We observe similar
trends for the other information extraction tasks:
LLAMA 2 (7B) consistently outperforms other gen-
eral LLMs with similar variance, whereas none of
the clinical models is clearly superior across tasks
— however, ASCLEPIUS seems to have the least
variance overall.

To better understand the differences between the
general domain and clinical LLMs, we compared
their average performance given the best, median
and worst prompts. Figures 4 and 5 show the re-
sults per model averaged across all classification

and extraction tasks, respectively. Surprisingly, we
find that general domain models outperform their
domain-specific counterparts — with the excep-
tion of ALPACA which performs poorly across all
tasks. Again we observe that even though CLIN-
ICAL CAMEL can outperform its general domain
analog in extraction tasks given the best prompt, it
also shows more variance and much lower perfor-
mance in the worst case.

Finally, we investigated whether the observed
performance variability can be explained by indi-
vidual differences between experts in prior expe-
rience with LLMs or aptitude in writing effective
instructions. To assess this, we measured the perfor-
mance deltas between each prompt and the median
prompt for each classification and extraction task.
Figure 6 shows the results for LLAMA 2 (7B) and
results for other models can be found in Appendix
A.2, figures 14 and 15. We find that there are in-
deed significant differences at the individual level,
both in terms of variance and overall performance,
particularly for classification tasks. Only roughly
half the users can (somewhat) consistently beat the
median performance across tasks. We also note
these differences can not be solely explained by
prior experience with LLMs — some novice users
are able to consistently write more effective in-
structions as compared to other experienced users.
However, one caveat is that this prior experience is
most likely with larger commercial models which
may be more robust to instruction variations.

3.1 Fairness

How do variations in prompt phrasings impact
model fairness (here measured as disparities in
predictive performance for specific demographic
subgroups)? To answer this question, we stratified
the patients in the mortality prediction task with
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Figure 4: Average AUROC across classification tasks given the best, median, and worst-performing prompts for
each model.
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Figure 5: Average F1 across extraction tasks given the best, median, and worst-performing prompts for each model.

Gender Total
Female Male

Race White 52 59 111
Non-White 24 25 49

Total 76 84 160

Table 2: Distribution of gender and race in the sample
used examine model fairness (§3.1)

respect to race and sex. To avoid issues with reli-
ability of performance metrics arising from small
sub-samples (Amir et al., 2021) we only consider
two broad groups (i.e., White and Non-White). We
sorted the instructions according to their overall
performance and plot individual subgroup perfor-
mance (Figure 7). We repeated the analysis for
sex (as indicated in EHR) and present individual
subgroup performance in Figure 8.

In line with prior work (Amir et al., 2021; Adam
et al., 2022), we observe that models have disparate
performance for different subgroups. Both LLAMA

2 (7B) and ASCLEPIUS (7B) tend to under-perform

for non-White patients compared to White counter-
parts with absolute differences of up to 0.21 and
0.35 AUROC points, respectively. A possible ex-
planation is that the way in which medical staff
write clinical notes differ for White vs Black pa-
tients (Adam et al., 2022). However, here non-
Whites are an heterogeneous group so there may
be other confounding factors.

In regards to sex, we again observe noticeable
(albeit smaller) differences in performance with
LLAMA 2 (7B) performing worse for Female pa-
tients across all the prompts with relative differ-
ences of up to 0.16 absolute AUROC points, and
ASCLEPIUS (7B) yielding differences of up to 0.19
points. Overall, these results indicate that natural
variations in prompts may translate to wide differ-
ences in fairness. Troublingly, a clinician using
such models would likely be unaware that appar-
ently benign phrasing changes may disproportion-
ately affect particular demographic groups.
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Figure 6: Distribution of performance deltas between each expert’s prompt and the median prompt across all tasks.
Each violin plot represents an expert color coded according to their familiarity with LLMs.
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Figure 7: Race subgroup performance on the Mortality
Prediction task with a general (top) and clinical model
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3.2 Discussion

Our experiments show that instruction-tuned LLMs
are not robust to plausible variations in instruction
phrasings — equivalent but distinct instructions
result in significant differences in both task perfor-
mance and fairness with respect to demographic
subgroups. Moreover, we find that no single model
yields optimal performance across tasks, e.g. Mis-
tral 7b is the best model for classification but has
middling performance in extraction tasks. We also
find that general domain models tend to outperform
clinical models — although surprising, these find-
ings corroborate prior work on clinical text sum-
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Figure 8: Gender subgroup performance on the Mor-
tality Prediction task with a general (top) and clinical
model (bottom)

marization (Veen et al., 2023). This may be due
to the fact that clinical models are fine-tuned with
synthetic or proxy data that does not adequately
capture the idiosyncrasies of clinical notes from
EHR.

4 Related Work

Instruction-following LLMs Scaling up
decoder-only language models imbues them
with the ability to solve various tasks given only
instructions or a small set of examples at inference
time (Brown et al., 2020; Chowdhery et al.,
2022). Follow-up work sought to improve this by
explicitly training GPT-3 to follow instructions
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and provide helpful and harmless responses via
Reinforcement Learning from Human Feed-
back (Ouyang et al., 2022; OpenAI, 2022). Others
showed that fine-tuning with a causal language
modeling objective over labeled data formatted
as instruction/response pairs is sufficient to
endow even (comparatively) smaller models with
instruction-following abilities (Sanh et al., 2021;
Wei et al., 2021). This motivated extensive work
on compiling large instruction-tuning datasets,
such as the Flan 2021 (Chung et al., 2022) and
Super-NaturalInstructions collections (Wang et al.,
2022), each encompassing over 1600 NLP tasks,
and OPT-IML collection with 2000 tasks (Iyer
et al., 2022).

LLM Prompt Sensitivity However, LLMs are
sensitive to how prompts are constructed (Tju-
atja et al., 2023; Raj et al., 2023). In few-shot
learning, factors such as the prompt format (Sclar
et al., 2023; Chakraborty et al., 2023), as well
as the choice (Gutiérrez et al., 2022) and order-
ing (Lu et al., 2022; Pezeshkpour and Hruschka,
2023) of exemplars have a significant impact on
task performance. In zero-shot settings, Webson
and Pavlick (2022) found that models often realize
similar performance with misleading or irrelevant
prompts as with correct ones. Elsewhere, Sun et al.
(2023) showed that general domain instruction-
tuned LLMs are not robust to variations in instruc-
tions — specifically, they found that models un-
derperform when given novel instructions unseen
in training. Our work contributes to this line of
research by focusing on the clinical domain.

LLMs for Clinical Tasks General domain LLMs
encode a surprising amount of clinical and biomed-
ical knowledge allowing them to solve various pre-
diction and information extraction tasks via nat-
ural language instructions (Singhal et al., 2023;
Agrawal et al., 2022; Munnangi et al., 2024). How-
ever, smaller models fine-tuned on task-specific
data can outperform generalist LLMs in clinical
tasks (Lehman et al., 2023). At the same time,
there is a dearth of large high-quality clinical text
datasets to train LLMs due to privacy considera-
tions. Researchers have tried to overcome this by
exploiting synthetic data generated from biomedi-
cal and clinical literature and question answering
datasets to train domain-specific models (Toma
et al., 2023; Kweon et al., 2023; Han et al., 2023).
However, the resulting models are often outper-
formed by general domain variants (Veen et al.,

2023; Excoffier et al., 2024) — our experimental
results confirm these observations.

In a contemporaneous study Chang et al. (2024)
convened a panel of 80 multidisciplinary experts
to red team ChatGPT models for the appropriate-
ness of the responses in medical use cases. Experts
were asked to write (non-adversarial) prompts for
clinically relevant scenarios and the responses were
judged by medical doctors with respect to safety,
privacy, hallucinations, and bias. This work is com-
plementary to ours in that it aims to stress test
models for the appropriateness of their responses
to healthcare related prompts whereas we focus on
their sensitivity to prompt variations.

5 Conclusions

This paper presents a large-scale evaluation of
instruction-tuned open-source LLMs for clinical
classification and information extraction tasks on
clinical notes (from EHR). We specifically focus on
model robustness to natural differences in prompts
written by medical professionals. We recruited
12 practitioners with different professional and de-
mographic backgrounds, medical specialties, and
years of experience to write prompts for 16 clini-
cal tasks spanning binary classification, outcome
prediction, and information extraction.

There are a few main generalizable takeaways
relevant to machine learning in healthcare in this
work. First, the performance LLMs realize on
the same clinical task varies substantially across
prompts written by different domain experts, and
this holds across all models. Second, the domain-
specific (clinical) models we evaluated perform, in
general, worse than their general domain counter-
parts. Third, prompt variations have concerning
implications for fairness — we find that alternative
prompts yield different levels of fairness. Based on
these findings, we recommend that practitioners ex-
ercise caution when using instruction-tuned LLMs
for high stakes clinical tasks which may ultimately
impact patient health. Crucially, clinicians using
LLMs should be made aware that subtle, plausible
variations in phrasings may yield quite different
outputs. Beyond healthcare, this work enriches
our understanding of (the lack of) LLM robustness
and—we hope—will motivate research into new
methods to improve models in this respect.

57



6 Limitations

Our study reveals that open-source instruction-
tuned LLMs are sensitive to instruction phrasings
and suggests caution in adopting these models for
applications that may impact personal health and
well-being. However, this work has several limita-
tions. First, we acknowledge that our findings may
not generalize to larger commercial models but
cost and privacy considerations may preclude the
deployment of proprietary models for real-world
healthcare applications. Second, we endeavored
to recruit a diverse group of medical profession-
als but our final pool of participants may not be
a representative sample of the potential users of
these technologies. Moreover, participants were
not allowed to see the results of their instructions
but in the real world users would have the opportu-
nity to experiment with different prompts and learn
how to best use these models. Third, our evalua-
tion protocol for classification tasks may not reflect
real world usage — we induced model predictions
from the logit distribution of the first generated
token. However, in practice users can only see
the final generated outputs and must be able to
parse and interpret these in the context of the task
at hand. Finally, our analysis showed that varia-
tions in instructions have implications for fairness
with respect to race and gender. However, we did
not examine the impact of these disparities on in-
tersectional identities which are often affected by
compounded biases.
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A Appendix

A.1 Instruction Collection
To collect instructions from experts, we provided
them with a description of the tasks including the
goal, the expected outputs and a (fictitious) exam-
ple of a clinical note. Figure 9 is an example of
the instructions given for a classification task; and
Figures 10 and 11 show examples of collected in-
structions. We released the full set of collected
instructions along with code.

A.2 Results
In this section we present additional results from
our experiments. We show detailed results in terms
of the mean performance and standard deviation
for all the classification and information extraction
tasks in tables 3 and 4, respectively.

Figures 12 and 13 plot the variability in perfor-
mance across classification and extraction tasks,
respectively. Figures 14 and 15 plot the deltas in
performance between individual expert’s prompts
and the median prompt per task, for general domain
and clinical models, respectively.

Figure 16 show race subgroup performance for
the Mortality Prediction task for all the models, and
Figure 17 shows a similar analysis for sex.

Our overall results show that, in general, differ-
ent prompt phrasings yield different performance.
Are there prompts that are consistently effective
across models? To investigate this, we ranked each
prompt with respect to the performance and calcu-
lated the median across models. Figures 18 and 19
depict the median performance ranking (among all
12 prompts) achieved by the instructions written by
each expert. For classification tasks such as Cohort
Abdominal and Cohort Make Decisions, Expert
7 wrote prompts that are consistently among the
best performing ones for most models, which is
also the case for the prompts written by Expert 11
across five classification tasks. On the other hand,
prompts from Expert 2 were consistently among
the lower performing ones. A similar pattern can
be seen in the extraction tasks, where Experts 6
and 8 wrote some of the best-performing prompts
for most of these tasks. This suggests that, to an
extent, the performance of prompts is consistent
even when tested on different models.
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Your Job

Write down an instruction you would use to prompt the LLMs to do the following task.

Task Description

Given some notes from a patient encounter, classify whether or not the patient will die during the course of a stay 
in the hospital given notes from the first 48 hours.

...
ADMISSION DATE:
5-29-94
DISCHARGE DATE:
7-3-94
HISTORY OF PRESENT ILLNESS:
The patient is a 58-year-old right-hand dominant white female with a long history of hypertension; changed her 
medications from Clonidine to Aldomet six weeks ago...
MEDICATIONS ON ADMISSION:
Vasotec 40 mg q.day, Soma 1 tablet q.day, Demerolprn, Clonidine.
SOCIAL HISTORY:
The patient lives with two people in Cinglendda.
PHYSICAL EXAMINATION:
On physical examination, the patient is in no acute distress, afebrile, blood pressure 135/82, heart rate 82 and 
regular, and no bruits ...
TR :
[ report_end ]

Your Prompt

Figure 9: Example of instructions for annotators for a classification task; we provided participants with a description
of the tasks including the goal, the expected outputs and a (fictitious) example of a clinical note.

TASK: Cohort Drug Abuse

CLINICAL NOTE: <note>

INSTRUCTION:

Based on the medical records provided, answer the question. Does this patient meet the definition of drug abuse? 
Respond "Yes" if the patient meets the definition of drug abuse, or respond "No" if the patient does not meet the 
definition of drug abuse.

Figure 10: Example of instructions for ‘Cohort drug abuse’ classification task.
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TASK: Mortality Prediction

CLINICAL NOTE: <note>

INSTRUCTION:

Based on the medical notes provided from the first 48 hours of the patient\'s hospital stay, please classify whether 
the patient will die during their hospital stay. Respond with either "Yes" if the patient will die during their stay 
in the hospital or "No" if the patient will not die during their stay in the hospital.

Figure 11: Example of instructions for ‘Mortality Prediction’ classification task.

Model / MISTRAL LLAMA 2 LLAMA 2 ALPACA CLINICAL ASCLEPIUS MEDALPACA

Dataset IT 0.2 (7B) CHAT (13B) CHAT (7B) (7B) CAMEL (13B) (7B) (7B)

Obesity Co- 0.974 0.908 0.696 0.479 0.594 0.732 0.557
Morbidity (Asthma) ±(0.014) ±(0.111) ±(0.145) ±(0.017) ±(0.059) ±(0.086) ±(0.078)

Cohort Alcohol 0.980 0.898 0.836 0.549 0.517 0.894 0.715
Abuse ±(0.028) ±(0.142) ±(0.148) ±(0.126) ±(0.177) ±(0.084) ±(0.146)

Obesity Co- 0.963 0.933 0.796 0.512 0.649 0.702 0.679
Morbidity CAD ±(0.017) ±(0.067) ±(0.096) ±(0.033) ±(0.107) ±(0.154) ±(0.071)

Cohort Drug 0.941 0.923 0.934 0.570 0.698 0.938 0.756
Abuse ±(0.039) ±(0.04) ±(0.048) ±(0.132) ±(0.138) ±(0.042) ±(0.119)

Cohort English 0.974 0.824 0.790 0.460 0.586 0.737 0.552
±(0.055) ±(0.123) ±(0.165) ±(0.071) ±(0.076) ±(0.078) ±(0.058)

Cohort Make 0.709 0.623 0.710 0.644 0.597 0.817 0.513
Decision ±(0.178) ±(0.238) ±(0.171) ±(0.047) ±(0.174) ±(0.074) ±(0.098)

Cohort 0.750 0.707 0.644 0.483 0.506 0.637 0.648
Abdominal ±(0.034) ±(0.076) ±(0.034) ±(0.029) ±(0.069) ±(0.052) ±(0.059)

Obesity Co- 0.987 0.958 0.775 0.560 0.637 0.762 0.686
Morbidity (Diabetes) ±(0.011) ±(0.063) ±(0.114) ±(0.041) ±(0.109) ±(0.124) ±(0.05)

Obesity 0.943 0.9 0.639 0.534 0.612 0.453 0.64
Classification ±(0.05) ±(0.087) ±(0.113) ±(0.03) ±(0.074) ±(0.177) ±(0.084)

Mortality 0.777 0.794 0.742 0.466 0.506 0.757 0.658
Prediction ±(0.034) ±(0.036) ±(0.083) ±(0.051) ±(0.052) ±(0.037) ±(0.08)

Table 3: Mean and Standard Deviation for instructions on classification tasks across all models and all tasks
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Model / MISTRAL LLAMA 2 LLAMA 2 ALPACA CLINICAL ASCLEPIUS MEDALPACA

Dataset IT 0.2 (7B) CHAT (13B) CHAT (7B) (7B) CAMEL (13B) (7B) (7B)

Medication 0.351 0.559 0.608 0.231 0.509 0.562 0.529
Extraction ±(0.111) ±(0.072) ±(0.084) ±(0.069) ±(0.15) ±(0.027) ±(0.047)

Concept Problem 0.265 0.325 0.329 0.131 0.3 0.256 0.229
Extraction ±(0.051) ±(0.035) ±(0.027) ±(0.029) ±(0.035) ±(0.019) ±(0.021)

Concept Test 0.154 0.197 0.236 0.097 0.117 0.194 0.109
Extraction ±(0.076) ±(0.066) ±(0.05) ±(0.025) ±(0.078) ±(0.025) ±(0.049)

Concept Treatment 0.165 0.244 0.367 0.086 0.198 0.308 0.193
Extraction ±(0.084) ±(0.086) ±(0.093) ±(0.031) ±(0.129) ±(0.039) ±(0.072)

Drug 0.394 0.373 0.495 0.192 0.372 0.432 0.429
Extraction ±(0.101) ±(0.047) ±(0.072) ±(0.074) ±(0.128) ±(0.042) ±(0.086)

Risk Factor CAD 0.057 0.081 0.079 0.067 0.122 0.063 0.103
Extraction ±(0.009) ±(0.018) ±(0.024) ±(0.056) ±(0.046) ±(0.012) ±(0.029)

Table 4: Mean and Standard Deviation for instructions on extraction tasks across all models and all tasks
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Llama-2 (13b)

Llama-2 (7b)
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Figure 12: Variability in performance across prompts for binary classification tasks. Again we observe that different
(equivalent) instructions yield wide variances in performance, suggesting an undue sensitivity to phrasings.
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Figure 13: Variability in performance across prompts for the remaining 5 extraction tasks. As mentioned, for most
models, different but semantically equivalent prompts yield quite a range of performance.
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Figure 14: Distribution of performance deltas between each expert’s prompt and the median prompt across all tasks
for each general model. Each violin plot represents an expert color-coded according to their familiarity with LLM.
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Figure 15: Distribution of performance deltas between each expert’s prompt and the median prompt across all tasks
for each clinical model. Each violin plot represents an expert color-coded according to their familiarity with LLM.
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Figure 16: Race subgroup performance on the Mortality Prediction task with a general (left) and clinical model
(right). Mistral has no clinical counterpart in our study.
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Figure 17: Sex subgroup performance on the Mortality Prediction task with a general (left) and clinical model
(right). Mistral has no clinical counterpart in our study.
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Figure 18: Median ranking of prompts written by experts for classification tasks across models.
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Abstract

This paper presents the first study for temporal
relation extraction in a zero-shot setting focus-
ing on biomedical text. We employ two types
of prompts and five Large Language Models
(LLMs; GPT-3.5, Mixtral, Llama 2, Gemma,
and PMC-LLaMA) to obtain responses about
the temporal relations between two events. Our
experiments demonstrate that LLMs struggle
in the zero-shot setting, performing worse than
fine-tuned specialized models in terms of F1
score. This highlights the challenging nature
of this task and underscores the need for fur-
ther research to enhance the performance of
LLMs in this context. We further contribute
a novel comprehensive temporal analysis by
calculating consistency scores for each LLM.
Our findings reveal that LLMs face challenges
in providing responses consistent with the tem-
poral properties of uniqueness and transitivity.
Moreover, we study the relation between the
temporal consistency of an LLM and its accu-
racy, and whether the latter can be improved by
solving temporal inconsistencies. Our analysis
shows that even when temporal consistency is
achieved, the predictions can remain inaccu-
rate.

1 Introduction

Reasoning regarding the temporality of events de-
tected in a text (e.g., understanding their duration,
frequency, and order) is an essential part of natural
language understanding (Allen, 1983; Wenzel and
Jatowt, 2023). Event ordering can be approached as
identifying temporal relations between two events,
a task often referred to as temporal relation ex-
traction (TempRE). This task can also be applied
to medical text (BioTempRE), e.g., clinical notes
written by clinicians regarding a patient’s visit, and
various medical events such as symptoms, treat-
ments, tests, and other medical terms (see Figure 1).
BioTempRE has numerous useful applications in

Figure 1: An example of three event pairs annotated
with temporal relations. In the right part, the order of
the events with respect to time (t) is shown and the
consistency of uniqueness and transitivity.

healthcare and can assist in medical diagnosis, in-
cluding adverse drug event detection and medical
history construction (Sun et al., 2013; Gumiel et al.,
2021; Haq et al., 2021; Tu et al., 2023). Current
state-of-the-art methods perform supervised learn-
ing, which requires annotated datasets (Wang et al.,
2022; Yao et al., 2022; Knez and Žitnik, 2024).
However, acquiring high-quality annotated data for
TempRE poses significant challenges causing prob-
lems to existing datasets like missing relations and
low inter-annotator agreement (Ning et al., 2017).
In the biomedical domain, this challenge is aggra-
vated by the need for expert knowledge and the
sensitive nature of medical data.

In TempRE, there are important properties that
emerge from the temporal nature of this task and de-
termine the relations between events (see Figure 1).
Such properties are symmetry (e.g., A BEFORE B
⇒ B AFTER A) and transitivity (e.g., A BEFORE
B and B BEFORE C⇒ A BEFORE C). Addition-
ally, we identify the property of uniqueness: each
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pair of events can have only one temporal relation
since they are mutually exclusive. These properties
can be utilized to enforce global temporal consis-
tency on a model’s predictions: for example, on
a unified output of different classifiers (Chambers
et al., 2014; Tang et al., 2013), on a model that op-
erates locally (i.e., with one pair of events as input,
Ning et al. (2017)), or on predicted relations be-
tween different types of events (Wang et al., 2022).

Recently, Large Language Models (LLMs) have
shown remarkable performance in several tasks
even in a zero-shot setting, which helps to tackle
the need for training data (Bubeck et al., 2023; Wei
et al., 2022a). Numerous works experiment with
predictions of LLMs and study their reasoning abil-
ities and the impact of various prompts in different
tasks (Wu et al., 2023b; Jain et al., 2023; Tan et al.,
2023). Despite the success of LLMs, studies show
that these models continue to face challenges in
temporal reasoning, especially in TempRE (Tan
et al., 2023; Jain et al., 2023; Yuan et al., 2023), as
well as in biomedical tasks (Wu et al., 2023b). In
zero-shot TempRE, Yuan et al. (2023) employed
different prompts for ChatGPT and found that it
has a considerably lower performance compared
to standard supervised methods. They also report
ChatGPT’s tendency to provide temporally incon-
sistent responses, but only in terms of symmetry
and did not perform an evaluation of temporal con-
sistency specifically. Furthermore, to the best of
our knowledge, we are the first ones to investigate
the temporal reasoning capabilities of LLMs on
medical data.

In this paper, we perform zero-shot BioTempRE
on clinical notes (i.e., medical texts documenting
patients visits) by using prompts consisting of a
clinical note and questions regarding which tem-
poral relation exists between a pair of events.1 We
experiment with two different prompting strategies
(BatchQA and CoT) and five widely-used LLMs
(GPT-3.5, Mixtral 8x7B, Llama2 70B, Gemma 7B,
and PMC-LLaMA 13B). Our findings reveal that
LLMs perform poorly in this task, with a differ-
ence of approximately 0.2 in F1 score compared
to supervised models. Furthermore, we calculate
consistency scores for uniqueness and transitivity
for each LLM in order to assess their temporal con-
sistency and its impact on accuracy. Consistency
is later enforced on the predictions with an Integer

1We do not perform event detection and instead consider
the events in each text already known.

Linear Programming (ILP) method, revealing that
solving the inconsistencies does not improve the
F1 score.

Overall, our contributions are:

• To the best of our knowledge, this is the first
study of zero-shot BioTempRE.

• We provide extensive quantitative results of
two types of prompts and five different LLMs.

• We perform a novel temporal consistency anal-
ysis by calculating consistency scores for tem-
poral properties.

• We study how temporal consistency relates to
accuracy and enforce it using an ILP method.

• The code and data containing the prompts,
the raw and the processed responses by the
LLMs for around 600,000 pair instances, will
be publicly shared for further analysis.2

2 Related Work

2.1 Temporal Relation Extraction

Multiple studies on addressing TempRE have ap-
plied temporal properties to classifiers’ predictions,
either during training or at inference time, aiming
to improve their performance (Tang et al., 2013;
Chambers et al., 2014; Ning et al., 2017, 2018;
Wang et al., 2022). Other works have also em-
ployed linguistic properties or properties based
on causality (Chambers et al., 2014; Ning et al.,
2018). Ning et al. (2018) formulated temporal,
causal, and linguistic properties as constraints for
an ILP method. Later, Liu et al. (2021) showed
that ILP constraints can improve temporal consis-
tency, although in certain cases, the F1 score may
decrease.

Temporal Relation Extraction in the Medical
Domain. The 2012 Informatics for Integrating
Biology and the Bedside (i2b2) challenge was the
first to address the BioTempRE task (Sun et al.,
2013). The best-performing method involved merg-
ing predictions from different SVM and CRF clas-
sifiers with regard to temporal consistency (Tang
et al., 2013). Following challenges at SemEval,
called Clinical TempEval, were organized from
2015 to 2017 (Bethard et al., 2015, 2016, 2017)
and utilized the THYME corpus (Styler IV et al.,

2https://github.com/vasilikikou/consistent_
bioTempRE
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2014).3 In 2015 and 2016, the best-performing
methods were CRF- and SVM- based (Velupil-
lai et al., 2015; Lee et al., 2016; Khalifa et al.,
2016), while in 2017 the winning approach em-
ployed an LSTM (Tourille et al., 2017). Following
approaches have utilized BERT (Lin et al., 2019;
Haq et al., 2021; Tu et al., 2023) for relation clas-
sification given a text and an event pair. Recently,
Knez and Žitnik (2024) introduced a multimodal
method in which, they constructed a graph with
medical information and then, they combined tex-
tual representations (extracted by BERT) and graph
representations (extracted by a GNN). However,
even though temporal consistency has been used
in existing TempRE works, it has not been utilized
for analyzing the performance of a model by calcu-
lating consistency scores.

2.2 Zero-Shot Temporal Relation Extraction

Zero-shot learning (Xian et al., 2019) enables mod-
els to execute tasks without explicit training, a capa-
bility demonstrated by scaling models since GPT-3
(Brown et al., 2020; Wei et al., 2022a). Instruction
tuning techniques (Wei et al., 2022a) further en-
hance zero-shot learning in LLMs. Recent openly
available LLMs like LLama (Touvron et al., 2023)
and Mixtral (Jiang et al., 2024) narrow the gap
with closed-source models, while chain-of-thought
(CoT) prompting (Wei et al., 2022b) has enhanced
their ability to handle complex tasks. Research
studies have shown that the temporal reasoning
tasks remain challenging for LLMs (Jain et al.,
2023), and specifically for TempRE, where Yuan
et al. (2023) explored zero-shot TempRE with Chat-
GPT and found that it yields a large performance
gap compared to supervised methods. However,
previous research has not analyzed zero-shot Tem-
pRE in the medical domain or the temporal consis-
tency and its impact on the performance of zero-
shot TempRE - both gaps we aim to fill in our work.
In this paper, we calculate consistency scores and
study their connection to the F1 scores.

3 Methodology

3.1 Problem Formulation

Given a text document D and a set of events
E = {e1, .., e|E|} mentioned in the text, we cre-
ate pairs of events, which are represented by the

3The i2b2 dataset is publicly available. The THYME cor-
pus is provided upon request, however our requests were not
answered.

set P = {p1, .., pi, .., p|P |}, where pi indicates the
ith pair, 1 ≤ i ≤ |P |. BioTempRE aims at as-
signing the appropriate temporal relation r to the
corresponding pair of events. Each pi ∈ P is
described by two distinct events {ej , ek}, where
1 ≤ j, k ≤ |E|. Furthermore, each event e ∈ E
is characterized by the points in time at which it
began and finished. These temporal points are de-
noted as b and f , respectively.

Following the work of Ning et al. (2018), we em-
ploy the same relation scheme, which consists of 5
different types of temporal relations r: before, after,
includes, is included, and simultaneously, repre-
sented by the label set RT = {rB, rA, rI , rII , rS}.
We choose this set of relations based on the fact
that they are fine-grained and well-defined, and
hence, suitable for creating temporal rules for our
analysis. An rB temporal relation indicates that
b(ej) < b(ek) and f(ej) < f(ek) , while an rA
temporal relation signifies that b(ej) > b(ek) and
f(ej) > f(ek). Furthermore, rI indicates that
b(ej) ≤ b(ek) and that f(ej) ≥ f(ek), and rII
signifies that b(ej) ≥ b(ek) and that f(ej) ≤
f(ek). Finally, rS signifies that b(ej) = b(ek) and
f(ej) = f(ek).

3.2 Zero-shot BioTempRE

We experiment with two different types of prompt-
ing: Batch-of-Questions (BatchQA) and Chain-of-
Thought (CoT) (Wei et al., 2022b; Yuan et al., 2023)
(see Figure 4 in Appendix A). In both, we start with
a preamble consisting of the document text (D)
and an instruction. Then, we introduce questions
regarding the temporal relations for a pair of events
pi consisting of events ej and ek.4 We formulate
the question for each relation based on its temporal
definition, as follows:

• BEFORE: Did ej start before ek started and
end before ek ended?

• AFTER: Did ej start after ek started and end
after ek ended?

• INCLUDES: Did ek start and end while ej
was happening?

• IS INCLUDED: Did ej start and end while ek
was happening?

• SIMULTANEOUS: Did ej and ek start and end
at the same time?

4The questions were ordered randomly.
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We also specify the desired output format by adding
“Answer with Yes or No.” to the end of each ques-
tion. For each event pair there is an independent
interaction with the LLM, and depending on the
type of prompt the questions mentioned above are
sent to the LLM in one or multiple prompts.

Batch-of-Questions (BatchQA). In BatchQA, a
single prompt is sent to the LLM. In the pream-
ble, after the document D, this instruction follows:

“Given document D, answer the following questions
ONLY with Yes or No.”. Next, all the questions
regarding the temporal relations are added in the
same prompt. The expected model response in-
cludes five Yes/No answers for each of the ques-
tions.

Chain-of-Thought (CoT). We use the same for-
mat of temporal prompts as in Yuan et al. (2023)
(based on their examples in the paper), and we
formulate the questions for the set of the 5 tempo-
ral relations used in Ning et al. (2018). The first
prompt is the preamble composed of the document
D and the question “Given the document D, are ej
and ek referring to the same event? Answer ONLY
with Yes or No.”. If the response is No, then the
questions are sent, each one after another, as they
are defined above. If the response is Yes, the phrase

“In that event,” is appended at the beginning of each
question.

4 Experimental Setup

4.1 Data

In our experiments, we use the dataset created for
the 2012 i2b2 challenge, which consists of 310
discharge summaries, 190 for training and 120 for
testing. The texts were initially annotated with 8
fine-grained relations but due to low inter-annotator
agreement these relations were merged to the fol-
lowing three: before, after and overlap. Each
discharge text contains 30.8 sentences on average,
with each sentence having an average number of
17.7 tokens. The average number of tokens per
discharge text is 514.

The i2b2 dataset contains three types of events:
1) medical events, 2) time expressions, and 3) the
dates of admission and discharge. The average
number of medical events per discharge summary is
86.7, while the average number of time expressions
is 10.5. The admission and discharge dates are
included in each text; however, in a few cases, one
of them might be missing. The annotators of i2b2

have assigned temporal relations to 27,540 pairs of
events (gold pairs).

An important step in TempRE is to identify
the pairs of events for which the models will de-
cide if there is a relation expressed or not since
it would not be feasible to check for every pair
of events mentioned in a document. In order to
generate candidate event pairs, we follow the ap-
proach of the best-performing method in the i2b2
challenge (Tang et al., 2013). This is a rule-based
approach, which creates pairs consisting of every
event and the admission and discharge dates, every
two consecutive events within the same sentence,
and events in the same as well as in different sen-
tences based on linguistic rules. The generated
candidate pairs are 60,840 in total, from which
28.16% appears also in the gold pairs.

The five relations we use in our experiments (see
Section 3) are different from the gold ones existing
in the dataset. In order to evaluate the prediction of
our methods, we map the five relations to the three
gold ones as follows: before → before, after →
after, includes→ overlap, is included→ overlap
and simultaneously→ overlap.

4.2 Methods
LLMs We employ the following five (one closed-
source and four open-weight) models of various
sizes: GPT-3.5 (“ChatGPT”),5 Gemma 7B (Team
et al., 2024),6 Mixtral 8x7B (Jiang et al., 2024),7

Llama2 70B (Touvron et al., 2023),8 and PMC-
LLaMA 13B, which is pre-trained on medical
text (Wu et al., 2023a).9 PMC-LLaMA is only
instruction-tuned on QA data (respond to one ques-
tion at a time) and thus does not follow the format
of BatchQA prompts, which expect multiple out-
puts. Therefore, we use it only for CoT. The exper-
iments were costly in terms of time (and money for
GPT-3.5), especially for CoT, where each question
is sent separately. The running times ranged from
three hours (Gemma BatchQA) to 7 days (Llama
CoT) (see more details in Appendix A).

Baselines We implement a rule-based baseline,
called W-order, where only the before and after

5https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

6https://huggingface.co/google/gemma-1.
1-7b-it

7https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

8https://huggingface.co/meta-llama/
Llama-2-70b-chat-hf

9https://huggingface.co/axiong/PMC_LLaMA_13B
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relations are predicted for each event pair based
on the order in which the events are mentioned
in the text. A combination of the predictions of
each LLM with the W-order predictions is also
implemented. In cases where the LLM gives a
negative or uncertain prediction for all the relations,
the prediction of W-order is used instead.

5 Zero-shot TempRE results

To evaluate the correctness of the predicted rela-
tions, we calculate the precision, recall and F1
scores. For each pair of events pi = (ej , ek), we
check if the predicted relation ri matches the gold
relation. Hence, we calculate the triple (ej , ek, ri)
match between the predictions and the ground truth.
In Table 1, the results for the gold and candidate
pairs are presented. In order to perform a fair com-
parison, considering that not every candidate pair
of events has a gold annotation (and therefore it is
unknown whether a prediction is correct or wrong),
we only evaluate those generated candidate pairs
that are also contained in the gold pairs. If a gold
pair does not exist in the generated candidate pairs,
there is no prediction for it, and that would affect
the recall score negatively. In the Supervised set-
ting, we show scores reported by the corresponding
papers. Knez and Žitnik (2024) do not mention
event detection or candidate pair generation, hence
we assume they used the gold pairs. On the other
hand, we show the results from Haq et al. (2021)
and Tu et al. (2023) in the Candidate column since
they operate on events they have detected in the
text.

Our experiments demonstrate that the best per-
forming methods are the same for the gold and
the candidate pairs. As expected, the F1 score of
the methods when the candidate pairs are used is
lower, mostly due to the decrease in recall. The
best performing method is Llama CoT + W-order
in terms of F1 score. On the other hand, Mixtral
CoT achieves the best precision score and Gemma
BatchQA + W-order the best recall. Overall, the su-
pervised methods consistently outperform the meth-
ods in the zero-shot setting, with an average differ-
ence of approximately 20% F1 score. In general,
most LLMs (except for Gemma) exhibit improved
performance when the CoT prompting approach is
used. However, in an LLM-based comparison, we
observe that the performance varies depending on
the type of prompt used. For example, Llama with
CoT has the highest F1 score, but when BatchQA

is used, the score drops almost in half. Moreover,
the combination of W-order predictions with the
zero-shot methods yields improvements in recall
and F1 score, but in most cases, it harms preci-
sion. Notably, PMC-LLaMA, the medical LLM
we employed, has low results and is often outper-
formed by the general domain LLMs, showing no
advantage from pre-training on biomedical text.

6 Temporal consistency analysis

Considering the temporal nature of the TempRE
task, we investigate the impact of incorporating the
following two temporal properties in the zero-shot
setting: 1. uniqueness, requiring that each event
pair has exactly one relation, and 2. transitivity
(see transitivity rules in Table 4 in the Appendix).
First, we evaluate the zero-shot methods based on
their consistency, i.e., if their predictions follow
the temporal properties or not. Then, we use ILP
to enforce temporal consistency on the predictions.
Specifically, we examine the following three ques-
tions:

• How consistent are different zero-shot meth-
ods?

• How is the temporal consistency of the predic-
tions connected to their correctness?

• Can the predictions be improved by a tempo-
ral constraint-based ILP method?

How consistent are different zero-shot meth-
ods? We calculate two consistency scores: one
for uniqueness cU and one for transitivity cT , which
show the percentage of cases where the correspond-
ing temporal property was not violated. The con-
sistency score for uniqueness is calculated based
on the number of pairs as follows:

cU =

∑P
i=1 pi,|ri|=1

|P | , (1)

where only the pairs pi with a singular predicted re-
lation ri are considered. In Table 2, the consistency
scores for uniqueness are reported. Furthermore,
we present the number of pairs for which no rela-
tion was predicted (# 0) and the number of pairs
with more than one predicted relation (# >1). We
observe that all the models struggle to keep consis-
tency, especially because of assigning more than
one relation to a pair. For the majority of the evalu-
ated LLMs, this occurs for at least 50% of the pairs
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Setting Method Gold Candidate
P R F1 P R F1

Rule-based W-order 0.348 0.348 0.348 0.382 0.305 0.339

Supervised
Haq et al. (2021)† - - - - - 0.736
Tu et al. (2023)† - - - 0.645 0.672 0.650
Knez and Žitnik (2024) - - 0.820 - - -
Tang et al. (2013) - - - 0.714 0.673 0.693

Zero-shot

GPT-3.5 BatchQA 0.588 0.083 0.132 0.607 0.060 0.101
GPT-3.5 BatchQA + W-order 0.395 0.397 0.396 0.424 0.340 0.377
GPT-3.5 CoT 0.400 0.641 0.491 0.387 0.494 0.432
GPT-3.5 CoT + W-order 0.400 0.677 0.502 0.390 0.528 0.447
Mixtral BatchQA 0.458 0.534 0.491 0.420 0.392 0.404
Mixtral BatchQA + W-order 0.452 0.572 0.504 0.422 0.428 0.424
Mixtral CoT 0.681 0.504 0.576 0.694 0.422 0.520
Mixtral CoT + W-order 0.545 0.596 0.569 0.561 0.494 0.524
Llama BatchQA 0.366 0.371 0.367 0.316 0.254 0.281
Llama BatchQA + W-order 0.367 0.411 0.387 0.327 0.292 0.308
Llama CoT 0.549 0.710 0.615 0.551 0.567 0.555
Llama CoT + W-order 0.534 0.742 0.620 0.538 0.595 0.564
Gemma BatchQA 0.426 0.837 0.564 0.425 0.667 0.519
Gemma BatchQA + W-order 0.426 0.838 0.565 0.425 0.668 0.519
Gemma CoT 0.429 0.398 0.401 0.449 0.318 0.358
Gemma CoT + W-order 0.385 0.552 0.452 0.407 0.458 0.429
PMC-LLaMA CoT 0.395 0.516 0.439 0.406 0.425 0.408
PMC-LLaMA CoT + W-order 0.390 0.574 0.463 0.403 0.476 0.435

Table 1: Precision (P), recall (R) and F1 scores of TempRE methods on the gold and candidate pairs. Methods with
† use a different candidate pair generation than ours, so their results are not directly comparable to ours.

Method Gold Candidate
cU (%) # 0 # >1 cT (%) cU (%) # 0 # >1 cT (%)

GPT-3.5 BatchQA 8.03 24,476 860 70.34 5.06 56,457 1,306 68.78
GPT-3.5 CoT 13.07 2,657 21,284 46.58 14.91 6,194 45,573 47.29
Mixtral BatchQA 59.94 3,102 7,931 71.20 60.13 7,192 17,063 71.87
Mixtral CoT 37.60 10,315 6,868 68.99 35.22 27,434 11,980 67.44
Llama BatchQA 71.67 2,858 4,945 82.35 70.58 6,451 11,446 80.05
Llama CoT 30.55 2,916 16,211 60.39 33.64 6,864 33,507 59.45
Gemma BatchQA 2.67 57 26,747 63.04 2.26 115 59,347 62.59
Gemma CoT 3.82 14,159 12,335 60.00 3.00 32,605 26,411 60.56
PMC-LLaMA CoT 33.18 7,469 10,933 60.45 31.88 17,977 23,465 59.85
W/ ILP reasoning 100 0 0 100 100 0 0 100

Table 2: Temporal consistency scores for uniqueness (cU ) and transitivity (cT ) for each model. The consistency
scores show the percentage of pairs which are consistent for the corresponding property. # 0 and # >1 shows the
number of pairs with none and more than one predictions respectively.

and can go up to 97% (Gemma BatchQA). In this
evaluation, we also find that there is no clear win-
ner among the LLMs or the prompt types, since the
same LLM shows different levels of consistency
with different prompt types. The combination with
the highest consistency for uniqueness is Llama

with BatchQA.
The consistency score for transitivity is calcu-

lated based on triples of event pairs in the follow-
ing form: ((ei, ej), (ej , ek), (ei, ek)). We first find
these triples in the dataset and then obtain the rela-
tions predicted for them. If r1, r2 and r3 are the pre-

77



dictions for each respective pair in the triple, then
for r3, it should hold that r3 ∈ trans(r1, r2).10 If
it does not hold, then we have a transitivity viola-
tion. Therefore cT is calculated as:

cT =

∑|Tr|
i=1 ti,r3∈trans(r1,r2)

|Tr| , (2)

where Tr is the set of transitivity triples and, for
each triple ti, the transitivity for the predicted rela-
tions holds.11 Table 2 showcases the cT scores for
each of the evaluated methods. Similar to unique-
ness, Llama BatchQA demonstrates the highest
consistency for transitivity. In general, for all
LLMs, we observe that the BatchQA approach
yields higher transitivity consistency scores than
CoT.

How is the temporal consistency of the predic-
tions connected to their correctness? When
comparing the consistency scores with F1, we ob-
serve a contradiction. Models that have high con-
sistency have a lower F1 score. In particular, Llama
BatchQA is the most consistent in terms of unique-
ness and transitivity, but has one of the lowest F1
scores. Especially for the candidate pairs, the F1
score is even lower than the rule-based baseline, yet
cU is 70.58% and cT is 80.05%. Moreover, Llama
CoT, which is the best in terms of F1 score, has low
consistency with around only 30% of predictions
being unique and 60% correct transitivity triples.
These insights suggest that temporal consistency
does not always mean correctness.

Can the predictions be improved by a tempo-
ral constraint-based ILP approach? Follow-
ing the approach proposed by Ning et al. (2017,
2018), we implemented an ILP step that uses the
temporal properties as constraints and changes in-
consistent predictions so that the constraints are not
violated.12 This study aims to investigate whether
enforcing consistency can improve the accuracy of
the predictions. First, we assign a confidence score
sc to each triple (ei, ej , rk),∀rk ∈ RT . The score
sc for a pair of events p = (ei, ej) equals 1, if the
relation was predicted from the model, and 0.2 oth-
erwise. Next, we create a binary vector, which is

10The transitive relations for the relation set we used can be
found in Table 4 in Appendix A.

11Triples where at least one pair was not assigned a relation
are excluded from this calculation.

12For the ILP implementation we used the Gurobi
optimizer (https://www.gurobi.com/solutions/
gurobi-optimizer/).

optimized with ILP. We refer to it as the indicator
I(pi, ri) ∈ [0, 1], ∀p ∈ P, r ∈ RT . We formulate
the constraints as follows:

• Uniqueness:
∑

p∈P,r∈RT

I(p, r) = 1 (3)

• Symmetry:

I(pi, ri) = I(psi , r̄i) (4)

where pi = (ei, ej) and psi = (ej , ei), and r̄i
is the reverse relation of ri.13

• Transitivity:

I((ei, ej), r1)+I((ej , ek), r2)−
∑

r3∈tr(r1,r2)
≤ 1

(5)

where r1, r2, r3 ∈ RT and trans(r1, r2) is
the set of relations that are the transitive of
relations r1 and r2.

The objective of the ILP method is to maximize
the confidence score sc based on the indicator I:

∧
I = argmax

∑

p∈P

∑

r∈RT

sc(p, r)I(p, r) (6)

As shown in Table 2, when the ILP reasoning
step is applied, the consistency scores for both
uniqueness and transitivity reach 100%. We ap-
plied this step to the predictions of Llama BatchQA
and Llama CoT, which are the models with the
highest contradiction between F1 and consistency.
In Table 3, we show the results before and after
applying the temporal constraints. Even though
the consistency of the predictions after reasoning is
100%, the F1 score decreases slightly for BatchQA
and by 0.066 for CoT. This means that the pre-
dictions are temporally consistent, but they are not
accurate. To get a better understanding of this issue,
Figure 2 demonstrates two examples of transitivity
triples for which the predictions violate the tran-
sitivity constraint. This indicates that at least one
of the three predictions is incorrect and needs to
change. In the top example, the first two relations
were correct, but these relations were changed by
the ILP step, resulting in only one relation being

13The reverse of each relation can be found in Table 5 in
Appendix A.
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Method W/o ILP reasoning W/ ILP reasoning
P R F1 P R F1

Llama BatchQA 0.366 0.371 0.367 0.366 0.366 0.366
Llama CoT 0.549 0.710 0.615 0.549 0.549 0.549

Table 3: Precision (P), recall (R) and F1 scores before and after the ILP temporal reasoning step on the gold pairs.

Transitive triples Inconsistent predictions Consistent predictions

(E2, E0), (E0, T0), (E2, T0)

before, is included, includes includes, simultaneous, includes

ILP

(E103, E102), (E102, T1), (E103, T1)

before, before, includes before, before, before

overlap, overlap, overlap

Gold relations

before, overlap, beforeMerge to 3 relations

before, before, before

Merge to 3 relations overlap, before, before

ILP

before, overlap, overlap

Merge to 3 relations

before, before, overlap

Merge to 3 relations

Figure 2: Examples of two transitive triples with inconsistent predictions. After the ILP the predictions are consistent
but still different from the gold relations.
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Figure 3: Barplot where each bar represents a range of
distances between events in the gold pairs. The y axis
shows the F1 score of the predictions for the pairs in
each bar.

correct in the consistent predictions. In the bot-
tom example, only one relation was changed to
enforce consistency. This resulted in two correctly
predicted relations after the ILP, but still the first re-
lation remained incorrect. This analysis highlights
our previous observation regarding the relation be-
tween consistency and accuracy, and points out to
the need of aligning these two aspects more effec-
tively in order for models to achieve an improved
performance in temporal reasoning.

7 Pairs distance-based analysis

Since clinical notes contain long texts (see Sec-
tion 4.1), we perform an analysis based on the dis-

tance of event pairs for the best-performing LLM
(Llama CoT). First, we calculate the distance in
terms of characters between the events for all the
gold pairs. Then, we sort the pairs by their dis-
tances and split them to 10 bins, so that each bin
contains roughly the same amount of pairs. Finally,
the F1 score is calculated for the prediction of the
pairs contained in each bin. Figure 3 depicts the
barplot with the bars representing the pairs in the
specific distance range and the corresponding F1
scores. We observe that 37.5% of the pairs have a
distance of 0 to 100 characters. Larger distances
appear less frequently and hence the range of dis-
tance is smaller in the first bars, while the last bars
have larger ranges. There is no consistent decrease
in F1 score as the distance increases, meaning that
the model is not affected by the distance of events
in the text.

8 Conclusion

In this paper, we performed BioTempRE on clinical
notes in a zero-shot setting employing five different
LLMs. Two types of prompts were used, namely
BatchQA and CoT, in order to obtain LLMs’ re-
sponses. The zero-shot performance of all LLMs
is lower compared to supervised learning methods.
Moreover, we perform a temporal evaluation by
calculating the consistency score of each LLM for
the temporal properties of uniqueness and transiv-
ity. We find that, in general, LLMs’ predictions
are temporally inconsistent and, interestingly, the
model with the higher consistency scores (Llama
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BatchQA) has one of the lowest F1 scores. An
ILP method utilized to enforce consistency on the
models’ predictions fails to improve their accuracy.
These findings indicate the importance of the rela-
tion between temporal consistency and correctness,
emphasizing the need for further study in order to
assist temporal reasoning.
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Limitations

The gold relations annotated in the dataset are only
three, coarse-grained and not well-defined with re-
spect to when they start and end. The consistency
analysis we performed is based on rules, which are
connected to the definition of relations and their
starting and end points. So in order to make sure
that the consistency is calculated accurately, we
used a set of 5 well-defined fine-grained relations.
However, for evaluating the results we need to map
the 5 relations to the original set of 3. This, in
some cases, could lead to an inaccurate compari-
son between the gold and the predicted relations.
Also, for the prompts, we used only the set of ques-
tions mentioned in Section 3.2 and did not perform
any prompt tuning. Experimenting with different
ways of formulating the questions could help in
finding prompts that yield better results. Another
research direction could be to add instructions to
the prompts for uniqueness and transitivity towards
obtaining consistent predictions.
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A Appendix

Technical details Getting responses from GPT-
3.5 for all the pairs for both types of prompts costed
around 800$ and lasted 27 hours. For the open-
source models we used a single H100 GPU, and
for the rest two H100 GPUs. The running time for
each model was:

• Mixtral 8x7B BatchQA: 6 hours

• Mixtral 8x7B CoT: 48 hours

• Llama2 70B BatchQA: 24 hours

• Llama2 70B CoT: 7 days

• Gemma 7B BatchQA: 3 hours

• Gemma 7B CoT: 25 hours

• PMC-Llama 13B CoT: 2.5 days
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Figure 4: Examples of an interaction with the LLM using two different prompting strategies: BatchQA and
Chain-of-Thought.

r1 r2 trans(r1, r2)

before before before
after after after

includes includes includes
is included is included is included

simultaneous simultaneous simultaneous
before simultaneous before
after simultaneous after

includes simultaneous includes
is included simultaneous is included

before after [before, after, includes, is included, simultaneous]
before includes [before, includes]
before is included [before, is included]
after before [before, after, includes, is included, simultaneous]
after includes [after, includes]
after is included [after, is included]

includes before [before, includes]
includes after [after, includes]
includes is included [before, after, includes, is included, simultaneous]

is included before [before, is included]
is included after [after, is included]
is included includes [before, after, includes, is included, simultaneous]

simultaneous before before
simultaneous after after
simultaneous includes includes
simultaneous is included is included

Table 4: Transitivity rules for the five temporal relations used in this study.
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r r̄

before after
after before

includes is included
is included includes

simultaneous simultaneous

Table 5: Symmetry rules for the five temporal relations used in this study.
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Abstract

Recent developments in natural language gener-
ation have tremendous implications for health-
care. For instance, state-of-the-art systems
could automate the generation of sections in
clinical reports to alleviate physician work-
load and streamline hospital documentation.
To explore these applications, we present a
shared task consisting of two subtasks: (1) Ra-
diology Report Generation (RRG24) and (2)
Discharge Summary Generation (“Discharge
Me!”). RRG24 involves generating the ‘Find-
ings’ and ‘Impression’ sections of radiology
reports given chest X-rays. “Discharge Me!”
involves generating the ‘Brief Hospital Course’
and ‘Discharge Instructions’ sections of dis-
charge summaries for patients admitted through
the emergency department. “Discharge Me!”
submissions were subsequently reviewed by a
team of clinicians. Both tasks emphasize the
goal of reducing clinician burnout and repeti-
tive workloads by generating documentation.
We received 201 submissions from across 8
teams for RRG24, and 211 submissions from
across 16 teams for “Discharge Me!”.

1 Introduction

An important application of natural language generation
(NLG) in medical artificial intelligence (AI) is radi-
ology report generation (RRG). Specifically, an RRG
system can be designed to accept radiology images (e.g.,

*Equal contribution

chest X-rays) of a patient and generate a textual re-
port describing the clinical observations in the images.
This is a clinically important task, and offers the po-
tential to reduce the repetitive work of radiologists and
generally improve clinical communication (Pang et al.,
2023). Existing studies have been conducted using a
single dataset, which limits the scale and diversity of
the data and results. Therefore, we introduce our first
subtask, RRG24, where we curate Interpret-CXR, a
large-scale collection of RRG datasets from a variety
of different sources (i.e., MIMIC-CXR (Johnson et al.,
2019), CheXpert (Irvin et al., 2019), PadChest (Bustos
et al., 2020), BIMCV-COVID19 (Vayá et al., 2020), and
OpenI (Demner-Fushman et al., 2016)). In RRG24, par-
ticipants generate the Findings and Impression sections
from chest X-rays. We then evaluate the generations on
common leaderboards with standard and recently pro-
posed metrics. Ultimately, this task aims to benchmark
recent progress using common data splits and evaluation
implementations.

NLG can also impact discharge documentation
by playing a role in generating discharge summaries.
Hence, we introduce our second subtask, “Discharge
Me!”, with the primary objective of encouraging NLG
systems that alleviate clinician burden when writing
detailed discharge summaries. Clinicians play a cru-
cial role in documenting patient progress after a hospi-
tal stay, but the creation of concise yet comprehensive
Brief Hospital Course (BHC) sections and Discharge
Instructions often demands a significant investment of
time (Do et al., 2020; Alissa et al., 2021). These two
sections in particular cannot be readily copied from
prior notes, and thus must be written from scratch by
clinicians who synthesize information from across the
patient record (Weetman et al., 2021). This process
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contributes to clinician burnout and poses operational
inefficiencies within hospital workflows (Haycock et al.,
2014). We hypothesize that computer-generated clinical
documentation has the potential to more accurately and
completely capture a patient’s hospital course while re-
ducing the administrative burden on clinicians, which,
in turn, mitigates burnout, streamlines hospital opera-
tions, and ultimately improves the quality of care. Thus,
in “Discharge Me!”, participants submit generations of
both target sections (BHC & Discharge Instructions).
We evaluate submissions on a common leaderboard and
conduct a subsequent manual clinician review to mea-
sure clinical alignment of the outputs.

2 Related Work

2.1 Radiology Report Generation

Recent advances in computer vision (CV) and NLG
have shown great potential for the automatic generation
of radiology reports. This progress can be summarized
from three perspectives:

• (1) Data: Most relevant studies focus on chest X-
rays, mainly owing to the current number of pub-
licly available image-report datasets for this modal-
ity (e.g., MIMIC-CXR, PadChest, and OpenI,
etc.). Recently, there have also been studies ex-
panding the scope of radiology report generation
to other modalities (e.g., computed tomography
(CT) (Loveymi et al., 2021; Hamamci et al., 2024)
and ultrasound (Zeng et al., 2020; Yang et al.,
2021; Huh et al., 2023)).

• (2) Methodology: The methods for radiology re-
port generation have evolved from task-specific
modeling to pre-training-based approaches. For
the former, researchers have incorporated the task
priors into the designs of the model architec-
tures (Shin et al., 2016; Zhang et al., 2017; Jing
et al., 2018; Chen et al., 2020; Zhang et al., 2020;
Liu et al., 2021; Delbrouck et al., 2022a; Hou et al.,
2023), whereas for the latter, researchers have per-
formed domain-specific representation learning
using vision encoders or have adopted large pre-
trained language decoders (Thawkar et al., 2023;
Hyland et al., 2023; Tu et al., 2024).

• (3) Evaluation: One of the largest factors ham-
pering radiology report generation progress is the
selection of evaluation metrics. Due to its domain-
specific characteristics, simple n-gram match-
ing metrics (e.g., BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015))
are sub-optimal choices for this task. However,
researchers have proposed various model-based
metrics for evaluating the quality of generated re-
ports, such as BERTScore (Zhang et al., 2019), F1-
CheXbert (Smit et al., 2020), F1-RadGraph (Del-
brouck et al., 2022a), and GREEN (Ostmeier et al.,
2024).

2.2 Discharge Summary Generation
Previous research has also examined AI technologies for
the generation of discharge summaries to alleviate cleri-
cal burden for clinicians. For instance, several studies in-
vestigated GPT-3.5’s and GPT-4’s capability to generate
discharge notes in tandem with various prompting strate-
gies. In a UK pilot feasibility study, it was observed that
a set of 25 AI-generated summaries were all deemed
acceptable by general practitioners, compared to 23/25
(92%) of summaries written by junior doctors (Clough
et al., 2024). Other studies similarly concluded that
these proprietary models exhibit great potential and are
able to generate acceptable discharge summaries with
minimal misinformation (Kim et al., 2024; Waisberg
et al., 2023). However, despite being able to increase ef-
ficiency and reduce the time required for documentation
as compared to writing or dictating notes, instances of
hallucination or omission of clinically significant facts
were observed for certain discharge summaries involv-
ing complex surgeries. As such, the factual correctness
of these large language models (LLMs) for specific gen-
eration tasks could be improved (Williams et al., 2024;
Dubinski et al., 2024).

Based on this, some studies have focused on generat-
ing a particular section common to most discharge sum-
maries – BHC – optimizing for correctness and faith-
fulness. The BHC is a succinct summary of a patient’s
entire journey through the hospital and are embedded
within complex discharge summaries. Efforts in compil-
ing large-scale datasets for the generation of these BHC
sections (Adams et al., 2021), including those with syn-
thetic data (Adams et al., 2022), have led to subsequent
contrastive learning methods for aligning generation
models (Adams et al., 2023). Finally, methods leverag-
ing heuristics to increase factuality (e.g., retrieval and
ontology referencing) have also been developed (Adams
et al., 2024; Hartman et al., 2023).

Some research has similarly centered on the Dis-
charge Instructions section, sometimes known as the Pa-
tient Instructions section. This section is patient-facing
and details instructions for the patient to continue their
care at home, such as information on diet, therapies, and
medications, as well as any details for follow-up appoint-
ments. Patient readability of this section is critical, and
LLMs could be used to reformulate them into a more
patient-friendly language (Zaretsky et al., 2024). Simi-
lar to the BHC, previous work also explored frameworks
for the generation of faithful Patient Instructions (Liu
et al., 2022).

3 RRG24: Radiology Report Generation
RRG24 was hosted on ViLMedic (Delbrouck et al.,
2022b), a modular framework for vision-language mul-
timodal research in medicine. The library contains
reference implementations for state-of-the-art vision-
language architectures for medicine and also hosts
shared challenges in AI. A total of 201 submissions
were received from across 8 teams.
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3.1 Data
We curated Interpret-CXR, a large-scale collection
of RRG datasets from the following five sources:
MIMIC-CXR (Johnson et al., 2019), CheXpert (Irvin
et al., 2019), PadChest (Bustos et al., 2020), BIMCV-
COVID19 (Vayá et al., 2020), and OpenI (Demner-
Fushman et al., 2016). The breakdown of Interpret-
CXR, including details of the four splits used in RRG24
(Training, Validation, Public Test, and Hidden Test) are
reported in Table 1.

3.2 Evaluation
We applied two types of metrics to evaluate differ-
ent systems: n-gram-based and model-based metrics.
For the former, we adopted BLEU-4 (Papineni et al.,
2002) and ROUGE-L (Lin, 2004), whereas for the lat-
ter, we adopted BERTScore (Zhang et al., 2019), F1-
CheXbert (Smit et al., 2020), and F1-RadGraph (Del-
brouck et al., 2022a). To standardize the evaluation
process, we used the same script from ViLMedic to
evaluate all systems. By doing so, we avoid different
teams using different versions or hyperparameters for a
given metric – for example, some existing studies use
differing versions of BERTScore, leading to inconsistent
score reporting.

3.3 Results
The automatic results for the Findings and Impression
sections are shown in Tables 2 and 3, respectively (Note:
iHealth-Chile-1 did not submit scores for Impression
generation, and thus is not included in Table 3). We
congratulate e-Health CSIRO, MAIRA, and AIRI for
their outstanding performance on both Findings and Im-
pression generation. It is also worth highlighting that
the other teams (Gla-AI4BioMed, SICAR, CID, iHealth-
Chile-3&2, and iHealth-Chile-1) designed novel solu-
tions as well, providing insights for future research in
this field beyond the competition. We also ran an evalu-
ation using GREEN for the top 2 best-scoring systems
(e-Health CSIRO and MAIRA) and recorded scores of
36.9 and 35.2, respectively, aligning with the leader-
board rankings1.

3.4 Descriptions of Systems
3.4.1 e-Health CSIRO
e-Health CSIRO (Nicolson et al., 2024) integrated en-
tropy regularization into self-critical sequence training
to help maintain a higher entropy in the token distri-
bution, preventing overfitting to common phrases and
ensuring a broader exploration of the vocabulary during
training. They applied this to a multimodal language
model with RadGraph as the reward. Additionally, their
model incorporated several other features: (i) the use
of type embeddings to differentiate between Findings
and Impression section tokens; and (ii) the use of a

1We adopted GREEN instead of the naive GPT-4 pairwise com-
parison since Ostmeier et al. (2024) found GPT-4 to have low
correlation with expert preference.

non-causal attention mask for image embeddings and a
causal mask for report token embeddings.

3.4.2 MAIRA
MAIRA (Srivastav et al., 2024) combined a CXR-
specific image encoder with a pre-trained LLM (Vicuna-
7B-v1.5) via a multi-layer perceptron (MLP) adapter of
4 layers. The image encoder is a ViT-B model that lever-
ages DINOv2, a state-of-the-art self-supervised learning
method. Both the LLM and the adapter are fine-tuned
in a single stage training setup for RRG. Their results
indicated that joint training for Findings and Impression
prediction improves the metrics for Findings genera-
tion. Additionally, incorporating lateral images along-
side frontal images further enhances all metrics. They
showed that scaling the model size from Vicuna-7B to
Vicuna-13B also improves metrics. To handle multiple
predictions for a study (as each study can have multiple
frontal and/or lateral images), they utilized GPT-4 to
select the best report.

3.4.3 AIRI
AIRI (Samokhin et al., 2024) utilized the LLaVA frame-
work, where the vision encoder is a DINOv2 trained on
medical data and the language decoder is a specialized
biomedical LLM. They used the same model to generate
both Impressions and Findings with different prompts:
“Write findings for this X-ray.” or “Write impression for
this X-ray.”. The system prompt from LLaVA-Med (Li
et al., 2024) was also used.

3.4.4 Gla-AI4BioMed
Gla-AI4BioMed (Zhang et al., 2024) leveraged the
Vicuna-7B architecture and integrated a CLIP image
encoder with a fine-tuned LLM. The model underwent
a two-stage training process, whereby chest X-ray fea-
tures are initially aligned with the language model, and
said model is subsequently fine-tuned for report gen-
eration. The model processed multiple images simul-
taneously by stitching them together, mimicking the
workflow of radiology professionals.

3.4.5 SICAR
SICAR (Udomlapsakul et al., 2024) incorporated the
SigLIP vision encoder and the Phi-2-2.7B language
model to train an efficient RRG model. They also im-
plemented a novel two-stage post-processing pipeline.
They first enhanced the readability and clarity of the
reports, then cross-verified the model outputs by in-
tegrating X-Raydar, an advanced X-ray classification
model, addressing false negatives.

3.4.6 CID
CID (Liao et al., 2024) proposed a novel paradigm for
incorporating graph structural data into the RRG model.
Their approach involved predicting graph labels based
on visual features and subsequently initiating the decod-
ing process through a template injection conditioned on
the predicted labels. These results provided preliminary
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Table 1: Dataset Breakdown of Interpret-CXR for RRG24

Dataset
Training Validation Public Test Hidden Test

Findings Impression Findings Impression Findings Impression Findings Impression

PadChest 101,752 - 1,112 4,589 - - - -
BIMCV-COVID19 45,525 - 1,202 - - - - -
CheXpert 45,491 181,619 2,641 - - - - -
OpenI 3,252 3,628 85 92 - - - -
MIMIC-CXR 148,374 181,166 3,799 4,650 - - - -

Total 344,394 366,413 8,839 9,331 2,692 2,967 1,063 1,428

Table 2: RRG24 Leaderboard for the Findings Section

Automatic Evaluation Metrics ↑
Rank Team Overall Score ↑

BLEU-4 ROUGE-L BERTScore F1-CheXbert F1-RadGraph

1 e-Health CSIRO 35.56 11.68 26.16 53.80 57.49 28.67
2 MAIRA 35.08 11.24 26.58 54.22 57.87 25.48
3 AIRI 33.55 9.97 25.82 52.42 54.25 25.29
4 Gla-AI4BioMed 31.01 7.65 24.35 52.69 46.21 24.13
5 SICAR 30.93 6.62 23.66 50.74 49.00 24.62
6 CID 30.71 7.46 23.30 50.89 50.47 21.45
7 iHealth-Chile-3&2 23.38 4.81 15.96 44.03 33.69 18.41
8 iHealth-Chile-1 20.83 6.46 20.51 49.23 9.35 18.59

evidence for the feasibility of this new approach, which
warrants further exploration in the future.

3.5 iHealth-Chile-3&2

iHealth-Chile-3&2 (Loch et al., 2024) focused on ex-
ploring various template-based strategies using predic-
tions from multi-label image classifiers as input, which
was inspired by prior work on template-based report gen-
eration. Two approaches were explored: (i) a straight-
forward implementation from Pino et al. (2021) directly;
and (ii) replacing the fully connected layer with an
attention-based pooling mechanism conditioned on a
fact embedding.

3.6 iHealth-Chile-1

iHealth-Chile-1 (Campanini et al., 2024) developed
a new strategy for in-context learning. Their system
is formed using a vision-encoder, a vision-language
connector or adapter, and a LLM able to process text
and visual embeddings. They also designed an enriched
prompt by combining a standard instruction (“Write the
finding section of a chest x-ray radiology report”) with
reports generated by a multi-label classifier and a group
of template sentences.

3.7 Limitations & Challenges

The evaluation for medical text generation is challeng-
ing due to its domain-specific characteristics, making
it difficult to measure performance as it relates to clin-
ical utility. This challenge leveraged common metrics
that are used by existing RRG studies. Unfortunately,
these evaluations may be limited when considering the
real-world clinical impact of the submitted systems.

4 “Discharge Me!”: Discharge Summary
Generation

“Discharge Me!” was hosted on Codabench (Xu et al.,
2022), an open source platform used to organize various
tasks and benchmarks. A total of 211 submissions was
received from across 16 teams.

4.1 Data

Participants were provided a dataset derived from the
MIMIC-IV-Note module (Johnson et al., 2023). The
modified and filtered dataset included 109,168 hospital
admissions from the Emergency Department (ED), split
into four sets (Training, Validation, Phase I Test, and
Phase II Test) (Xu, 2024). Each visit includes chief com-
plaints and diagnosis codes (either ICD-9 or ICD-10)
documented by the ED2, at least one radiology report,
and a discharge summary with both BHC and Discharge
Instructions sections.

The generation targets for the BHC were extracted
from the full discharge notes using a complex regular
expression strategy that searched for relevant section
headers and new-line formatting characters. A similar
strategy was used for Discharge Instructions; however,
given that this section is usually located at the end of
a discharge note as its very last section, extraction was
more trivial. Samples where the extracted length of
either section was shorter than 10 words were removed

2We assume ED diagnosis codes are available to the discharging
clinician as ED documentation is likely to be complete at the time
of discharge in most cases. However, we acknowledge that ICD
codes may not necessarily be finalized, so they will be removed in
future iterations of the shared task.

88



Table 3: RRG24 Leaderboard for the Impression Section

Automatic Evaluation Metrics ↑
Rank Team Overall Score ↑

BLEU-4 ROUGE-L BERTScore F1-CheXbert F1-RadGraph

1 e-Health CSIRO 35.28 12.33 28.32 50.94 56.97 27.83
2 MAIRA 34.06 11.66 28.48 51.62 53.27 25.26
3 AIRI 32.98 10.91 27.46 49.55 52.32 24.67
4 SICAR 30.73 8.03 24.29 47.15 52.73 21.46
5 Gla-AI4BioMed 30.46 9.60 25.27 48.60 46.74 22.10
6 CID 25.21 7.13 20.41 43.67 39.64 15.19
7 iHealth-Chile-3&2 17.30 1.66 10.21 37.21 25.82 11.58

and deemed invalid. The complete breakdown of the
dataset is available in Table 4.

Participants were allowed to incorporate external
datasets, either publicly available or proprietary, as well
as link additional patient data from other MIMIC-IV
modules. Additionally, with the exception of the test
dataset, participants were given the flexibility of using
all or part of the provided dataset in any combination as
they see fit.

4.2 Evaluation
4.2.1 Automatic Scoring
Automatic scoring took place on Codabench with a
Python 3.9 environment. A hidden subset of 250 sam-
ples from the test datasets of the respective phases was
used to evaluate the submissions. The metrics for this
task were based on a combination of textual similar-
ity (n-gram-based lexical metrics) and factual correct-
ness of the generated text. Specifically, we considered
the following metrics to automatically score submis-
sions: BLEU-4 (Papineni et al., 2002), ROUGE-1/-2/-
L (Lin, 2004), BERTScore (Zhang et al., 2019), ME-
TEOR (Banerjee and Lavie, 2005), AlignScore (Zha
et al., 2023), and MEDCON (Van Veen et al., 2024).

Initially, submissions were scored on both target
sections separately (BHC & Discharge Instructions).
The mean across all test samples were computed for
each metric, resulting in several performance scores
for each of the two target sections (not reported on the
leaderboard). Then, for each metric, we took the mean
of the scores for each of the two target sections (reported
under the metric name on the leaderboard). Finally, we
computed the mean once again over all the metrics to
arrive at a final overall system score (reported as Overall
Score on the leaderboard).

For instance, given N samples, suppose s is defined
as the score for a given sample for a given metric, then
the mean across all samples for a particular target sec-
tion, S, would be calculated by:

S =

N∑

1

(si)/N (1)

We then calculated β, the mean of a given metric over
both target sections, for each of the 8 metrics using:

β = (SBHC + SDischargeInstructions)/2 (2)

Finally, the overall system score was calculated by tak-
ing the mean of the 8 β values:

Overall =

8∑

1

(βi)/8 (3)

4.2.2 Clinician Scoring
At the end of the competition, the submissions from the
top 6 best-scoring teams were reviewed by a group of
six clinicians with diverse experiences in a broad range
of specialties (two adult hospitalists, two clinical infor-
matics fellows trained in pediatrics, a neurosurgeon, and
a radiologist). Generated sections were evaluated for
their completeness, correctness, and readability, as well
as in a holistic comparison against the reference target
sections (ground truth). In particular, completeness eval-
uates whether the generated text captures the clinically
important information available in the reference text. In
cases where there is inaccurate information, correctness
specifies whether and how likely this mistake would
lead to unintended impacts in future care. Readability
was only evaluated by the clinicians for the BHC section
as the intended audience of the Discharge Instructions
section is the patient. Finally, the holistic comparison
aimed to capture overall clinician preference.

Clinicians were presented with the reference target
sections and the generated target sections side-by-side
on a web-based survey dashboard hosted via Streamlit.
Additionally, the full discharge summary was available
in case reviewers required further context. They were
then presented with a series of multiple-choice questions
capturing each of the above criteria in a scale from 1 to
5, where 1 was the most negative option, and 5 was the
most positive option.

Each clinician was provided with generated samples
from three teams for evaluation. To minimize recall
bias, we presented the generated submissions from all
three teams consecutively in a randomized order for one
particular sample, before moving onto the next.

Each team’s submission was evaluated by three sep-
arate clinician reviewers. Scores were averaged and
several agreement and reliability scores were calculated,
including Cohen’s Kappa and Fleiss Kappa for inter-
observer agreement (McHugh, 2012; Landis and Koch,
1977), as well as the intraclass correlation coefficient
(ICC) (Liljequist et al., 2019).
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Table 4: Dataset Breakdown for “Discharge Me!”

Item Total Count Training Validation Phase I Test Phase II Test

Hospital Visits 109,168 68,785 14,719 14,702 10,962
Discharge Summaries 109,168 68,785 14,719 14,702 10,962
Radiology Reports 409,359 259,304 54,650 54,797 40,608
ED Stays & Chief Complaints 109,403 68,936 14,751 14,731 10,985
ED Diagnoses 218,376 138,112 29,086 29,414 21,764

4.3 Results
4.3.1 Automatic Evaluation
Automatic scoring of the submissions took place on
Codabench’s platform using queues connected to in-
dependent compute workers hosted on GCP. The final
leaderboard on the Phase II Test set is available in Ta-
ble 5.

A baseline performance was available for partici-
pants to benchmark their submissions. The baseline
outputs were generated by a LLaMA-2-7B model fine-
tuned on radiology reports from MIMIC-III (Johnson
et al., 2016). While the system exhibited some clinical
domain knowledge, it struggled due to the diverse for-
matting of discharge summaries, which greatly differed
from that of the radiology reports in the training set. All
submissions exceeded the baseline performance.

4.3.2 Clinician Evaluation
Overall clinician review scores are available in Table 6,
and the specific rankings for the BHC and Discharge
Instructions sections are shown in Tables 7 and 8, re-
spectively (mean clinician scores are provided, along
with their constituent scores in brackets). Interestingly,
the rankings for the overall clinician review exactly
reflected that of the automatic evaluation using the re-
ported metrics.

Figure 4.3.2 illustrates the interobserver agreement
between pairwise clinicians based on the Cohen’s Kappa
statistic calculated for common submissions reviewed.
As not all clinicians reviewed the same subset of submis-
sions, a statistic could not be calculated for all reviewers
(i.e., reviewer #5 and #6 did not have any submissions
in common). There was rather poor agreement between
most clinicians, likely due to subjective aspects of the
evaluation and varying clinician preference during the
holistic comparison.

However, the Fleiss Kappa value indicated that the
reviews for the top 6 best-scoring submissions, where
each submission was reviewed by 3 individual clini-
cians, exhibited substantial to almost perfect agreement
(Table 6). Moderate reliability was also observed for
the review methodology, as inferred from the presented
range of ICC values.

4.3.3 Readability of Discharge Instructions
As the Discharge Instructions section is intended for
patients who many not have medical training and knowl-
edge of clinical acronyms, we decided to skip the clin-
ician review and opted for an evaluation using com-

Figure 1: Correlation heatmap visualizing interob-
server agreement between clinician reviews. Cohen’s
Kappa scores were computed between pairwise clini-
cians based on the respective common submission(s)
reviewed.

mon readability scores: the Flesch Reading Ease score
and the Flesch–Kincaid Grade Level (Friedman and
Hoffman-Goetz, 2006).

The writing of patient-targeting notes at an appro-
priate readability level is crucial as it directly relates
to patient comprehension, engagement, and adherence
to treatment plans post-discharge. Several healthcare
institutes have placed recommendations on the readabil-
ity of patient-facing material. Specifically, the National
Institutes of Health (NIH) and American Medical Asso-
ciation (AMA) encourage a reading grade level of not
higher than sixth-grade, while the Centers for Disease
Control and Prevention (CDC) suggests a reading grade
level of lower than eighth-grade (Johnston et al., 2018;
Cotugna et al., 2005; McCray, 2005; Burns et al., 2022).

A summary of the average readability metrics for
the generated Discharge Instructions section is shown in
Table 8. The readability of most submissions hovered
around a reading grade level of seventh-grade, with the
exception of one team at around the ninth-grade. The
reference sections had a Flesch Reading Ease score of
61.81 (± 11.92) and a Flesch–Kincaid Grade Level of
8.16 (± 2.12). As such, all evaluated systems were able
to reasonably re-create the readability of the reference
sections, with several able to generate Discharge In-
structions that are more understandable and in-line with
established guidelines.
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Table 5: “Discharge Me!” Automatic Scoring Leaderboard

Rank Team Overall Score ↑
Automatic Evaluation Metrics ↑

BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore METEOR AlignScore MEDCON

1 WisPerMed 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411
2 HarmonAI Lab at Yale 0.300 0.106 0.423 0.180 0.284 0.412 0.381 0.265 0.353
3 aehrc 0.297 0.097 0.414 0.192 0.284 0.383 0.398 0.274 0.332
4 EPFL-MAKE 0.289 0.098 0.444 0.155 0.262 0.399 0.336 0.255 0.360
5 UF-HOBI 0.286 0.102 0.401 0.174 0.275 0.395 0.289 0.296 0.355
6 de ehren 0.284 0.097 0.404 0.166 0.265 0.389 0.376 0.231 0.339
7 DCT_PI 0.277 0.092 0.401 0.158 0.256 0.378 0.363 0.247 0.320
8 IgnitionInnovators 0.253 0.068 0.370 0.131 0.245 0.360 0.314 0.215 0.324
9 Shimo Lab 0.248 0.063 0.394 0.131 0.252 0.351 0.312 0.210 0.276
10 qub-cirdan 0.221 0.024 0.377 0.106 0.205 0.300 0.332 0.174 0.254
11 Roux-lette 0.206 0.030 0.319 0.084 0.182 0.289 0.287 0.195 0.265
12 UoG Siephers 0.191 0.017 0.341 0.109 0.209 0.268 0.247 0.143 0.193
13 mike-team 0.188 0.022 0.290 0.076 0.163 0.258 0.294 0.182 0.223
14 Ixa-UPV 0.183 0.016 0.259 0.057 0.144 0.282 0.284 0.210 0.215
15 MLBMIKABR 0.170 0.039 0.210 0.092 0.131 0.186 0.306 0.205 0.191
16 cyq 0.104 0.002 0.197 0.016 0.106 0.179 0.106 0.132 0.091

Table 6: “Discharge Me!” Clinician Scoring Leader-
board

Rank Team Average ↑ Fleiss Kappa Intraclass Corr.

1 WisPerMed 3.375 0.781 0.336
2 HarmonAI Lab at Yale 2.903 0.944 0.656
3 aehrc 2.785 0.904 0.685
4 EPFL-MAKE 2.720 0.896 0.563
5 UF-HOBI 2.579 0.923 0.574
6 de ehren 2.335 0.908 0.740

4.4 Descriptions of Top Systems
A total of 12 system papers were received (Damm et al.,
2024; Socrates et al., 2024; Wu et al., 2024; Lyu et al.,
2024; He et al., 2024; Koontz et al., 2024; Guo et al.,
2024; Liu et al., 2024; Frayling et al., 2024; Wendelken
et al., 2024; Tang et al., 2024; Naskar et al., 2024). The
top 6 best-scoring systems are detailed in this subsec-
tion.

4.4.1 WisPerMed
WisPerMed (Damm et al., 2024) investigated Dynamic
Expert Selection (DES) consisting of a collection of
LLMs fine-tuned and prompted for the task. They
demonstrated that a DES system that chooses texts
based on a specific length criteria performed the best on
the given dataset. Thus, their objective with this strategy
was to initially rank LLMs based on their archived over-
all scores. Subsequently, for each discharge summary,
the generated sections (BHC & Discharge Instructions)
from the best model that had a word count within the
range of 100 to 180 words was selected. If no model
generated a block of text with a word count within this
range, the text with the minimum word count greater
than 70 words was selected. In cases where no piece of
text met these criteria (i.e., shorter than 70 words), the
text from the highest-ranked model was chosen. This
approach emerged from the finding that longer pieces of
medical text often led to hallucinations or repetitiveness.

4.4.2 HarmonAI Lab at Yale
The pipeline for HarmonAI Lab at Yale (Socrates
et al., 2024) consisted of two BioBART-Large models.

The one generating BHC sections was trained on all the
preceding text prior to the BHC, while the Discharge
Instructions model was trained on the BHC. The BHC
model had an increased training dataset size due to shuf-
fling and recombining the provided datasets. Default
hyperparameter settings were largely used for training,
with the exception of a lower learning rate. Models
were trained for 2 epochs. For generation, a 4-beam
search and limited repeats with an n-gram size of 3 was
employed. The minimum output length was set to 200
tokens based on the word count summary statistics and,
and the maximum output token length was restricted to
1024 tokens due to the model specifications.

4.4.3 aehrc
aehrc (Liu et al., 2024) used the content in the dis-
charge summary note prior to the target sections as input
context for both training and inference. To better han-
dle the distinctions between the two sections, the team
trained two separate models to generate the BHC and
the Discharge Instructions. Their best model was based
on PRIMERA, which is an encoder-decoder language
model that is capable of handling extended input con-
texts and generating longer outputs. This model offered
a slight edge over fine-tuning popular decoder-based
LLMs at the 7/8B parameter-level with LoRA, and was
also significantly faster at inference. Beam search with
a size of 4 was used for decoding.

4.4.4 EPFL-MAKE
EPFL-MAKE (Wu et al., 2024) mainly focused on the
full-text available in the dataset as they believed that
most of the useful information is hidden within. The
text was used as an input into their system, which first
extracted all sections that contained clinically useful
information. The system then combined them into a
new input. Some sections may have been removed if the
new input was deemed too lengthy. The pre-processed
input was then put into the medical LLM Meditron-7B,
which is currently one of the top open-source medically
pre-trained LLMs at the 7B level, to generate the BHC
and Discharge Instructions sections.
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Table 7: “Discharge Me!” Rankings based on Clinician Scoring of the Brief Hospital Course Section

Rank Team Average ↑
Clinician Evaluation Criteria ↑

Completeness Correctness Readability Holistic Comparison

1 WisPerMed 3.29 3.67 (4.08 3.16 3.76) 3.67 (4.20 3.40 3.40) 3.37 (3.76 3.40 2.96) 2.44 (2.96 2.60 1.76)

2 EPFL-MAKE 2.58 3.29 (3.28 3.20 3.40) 2.83 (2.80 2.96 2.72) 2.53 (2.88 2.56 2.16) 1.65 (2.12 1.52 1.32)

3 UF-HOBI 2.49 2.48 (2.52 2.48 2.44) 3.36 (3.48 3.28 3.32) 2.71 (3.20 2.96 1.96) 1.41 (1.96 1.20 1.08)

4 HarmonAI Lab at Yale 2.44 3.52 (3.32 3.64 3.60) 2.59 (2.68 3.00 2.08) 2.11 (2.36 2.00 1.96) 1.53 (1.60 1.84 1.16)

5 de ehren 2.27 2.28 (2.36 2.32 2.16) 2.99 (3.12 3.24 2.60) 2.68 (2.72 2.84 2.48) 1.12 (1.16 1.20 1.00)

6 aehrc 2.10 2.31 (2.24 2.52 2.16) 3.05 (3.32 3.40 2.44) 1.96 (2.16 1.80 1.92) 1.09 (1.08 1.20 1.00)

Table 8: “Discharge Me!” Rankings based on Clinician Scoring of the Discharge Instructions Section

Rank Team Average ↑
Clinician Evaluation Criteria ↑ Flesch Flesch-Kincaid

Completeness Correctness Holistic Comparison Reading Ease Grade Level

1 aehrc 3.69 3.91 (3.80 4.40 3.52) 4.55 (4.52 4.48 4.64) 2.63 (2.48 3.24 2.16) 62.05 (± 10.04) 7.80 (± 1.76)

2 HarmonAI Lab at Yale 3.52 4.27 (3.88 4.40 4.52) 3.95 (3.84 3.88 4.12) 2.36 (2.36 2.40 2.32) 61.14 (± 14.52) 8.60 (± 4.19)

3 WisPerMed 3.49 3.95 (4.36 3.36 4.12) 4.00 (4.36 3.60 4.04) 2.53 (2.48 2.76 2.36) 63.35 (± 8.827) 7.48 (± 1.53)

4 EPFL-MAKE 2.91 3.45 (3.28 3.36 3.72) 3.41 (3.36 3.20 3.68) 1.87 (2.20 1.64 1.76) 58.72 (± 10.67) 9.04 (± 1.81)

5 UF-HOBI 2.70 3.01 (2.60 3.24 3.20) 3.29 (3.36 3.28 3.24) 1.79 (2.00 1.84 1.52) 66.73 (± 10.23) 6.96 (± 1.57)

6 de ehren 2.43 2.81 (2.84 3.12 2.48) 3.05 (3.36 3.12 2.68) 1.41 (1.44 1.60 1.20) 65.76 (± 8.706) 7.28 (± 1.84)

4.4.5 UF-HOBI
In their system, UF-HOBI (Lyu et al., 2024) employed
two clinical LLMs that they have developed in their
previous works, including an encoder-based model
GatorTron (Yang et al., 2022) and a decoder-based
model GatorTronGPT (Peng et al., 2023). The team
adopted GatorTron to extract clinical concepts from the
discharge summary notes, and utilized GatorTronGPT
to generate the BHC and Discharge Instructions sections.
GatorTron, which was fine-tuned on the 2010 i2b2 Chal-
lenge Named Entity Recognition (NER) dataset, was
used to extract three categories of concepts (“TEST”,
“PROBLEM”, and “TREATMENT”) from the discharge
summary and radiology reports for each visit. The ex-
tracted concepts were then used to form the generation
model input. Two GatorTronGPT models were then
trained using the P-tuning strategy for the generation
of the two respective target sections. The model inputs
were thus the concepts extracted from the various other
sections.

4.4.6 de ehren
de ehren utilized Meerkat-7B-v1.0, a compact,
instruction-tuned medical AI system renowned for its
advanced medical reasoning capabilities. Meerkat ex-
celled in various medical Question Answering (QA)
benchmarks, notably achieving a score of 74.3 on
MedQA. To further scrutinize its performance in long-
form text generation and summarization tasks within the
clinical domain, the team selectively extracted key sec-
tions from discharge summaries to fine-tune the model
with regards to the model’s attention window size.

4.5 Limitations & Challenges

A primary concern was the risk of data leakage due to
the release of the test sets with ground truth sections. To

mitigate this, two test sets were released in two phases
(one released at the start and one released much closer
to the submission deadline), and the final evaluation was
conducted on a hidden subset of 250 samples selected
from the test datasets of the respective phases. This
approach aimed to discourage participants from using
the ground truth for model inference, or from optimiz-
ing systems for the tasks metrics throughout the entire
duration of the competition. However, this method ul-
timately relies on the adherence of the participants to
task guidelines.

The task also faced the challenge of dealing with
inconsistently formatted free-text where ground truth
generation targets are embedded within. The nature of
clinical free-text can vary greatly, making it difficult to
standardize inputs.

Furthermore, certain sections of the discharge sum-
mary appearing after the generation targets may not be
reasonably available to the clinician at the time of dis-
charge and the writing of the discharge summary. This
presents a dilemma, as using such information would
not accurately reflect the clinician’s workflow. Although
teams were reminded to justify any decisions made re-
garding the use of discharge summary sections, it was
challenging to moderate this aspect.

Another limitation was the need to select discharge
summaries of a reasonable length to make clinician re-
view feasible. This selection process may introduce a
bias, as longer or more complex summaries that could
benefit from automated generation might be excluded.
There was also plausible comparison bias during clini-
cian review as clinicians were asked to review submis-
sions that could have varied greatly in quality. However,
we aimed to reduce this by randomizing the order in
which submissions were presented to the clinicians.
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5 Conclusion

As seen from the scores of the participating models for
both tasks, there is great complexity in generating co-
herent, accurate, and clinically relevant free-text reports.
Several factors contribute to this, including the inher-
ent variability and nuance of natural language used in
clinical settings.

It may be worthwhile to consider alternative ap-
proaches for fully automated report generation, such as
by pre-processing reports into structured formats prior to
AI generation. By breaking down the report generation
process into more manageable tasks, generation systems
may be able to achieve higher accuracy and coherence
in their outputs (Lederman et al., 2022). However, the
standardization of formatting for these reports poses
a significant challenge due to the diversity of writing
styles and training among clinicians.

A previous study also explored the feasibility of
generating hospital discharge summaries by tracing the
source origin of medical expressions that make up the
report (Ando et al., 2022). Interestingly, the analysis
found that a significant portion of the discharge sum-
mary originates from external sources rather than inpa-
tient records, such as past clinical records, referral notes,
and the expertise of the writing clinician. This suggests
that an end-to-end generation pipeline would depend
on advanced data retrieval and may ultimately require
some form of manual clinician oversight.

Ultimately, we hope that this challenge will bolster
the efforts of the biomedical natural language process-
ing community in developing effective solutions for
clinical text generation. We believe this task could form
a solid foundation for future work on generating entire
radiology reports or discharge summaries, which would
help significantly reduce the time clinicians spend on
administrative tasks and improve patient care quality.
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Abstract

The Shared Task on Large-Scale Radiology
Report Generation (RRG24) aims to expedite
the development of assistive systems for inter-
preting and reporting on chest X-ray (CXR)
images. This task challenges participants to
develop models that generate the findings and
impression sections of radiology reports from
CXRs from a patient’s study, using five differ-
ent datasets. This paper outlines the e-Health
CSIRO team’s approach, which achieved mul-
tiple first-place finishes in RRG24. The core
novelty of our approach lies in the addition of
entropy regularisation to self-critical sequence
training, to maintain a higher entropy in the
token distribution. This prevents overfitting
to common phrases and ensures a broader ex-
ploration of the vocabulary during training,
essential for handling the diversity of the ra-
diology reports in the RRG24 datasets. Our
model is available on Hugging Face (https://
huggingface.co/aehrc/cxrmate-rrg24).

1 Introduction

Machine learning holds the potential to signifi-
cantly enhance diagnostic processes and clinical
reporting, particularly within the field of radiology
— a discipline characterised by high volumes of
imaging data. Radiologists are often tasked with
interpreting and reporting on hundreds of imaging
studies daily, a repetitive process that is susceptible
to fatigue and error. Automated systems capable
of generating radiology reports from chest X-rays
(CXRs) could greatly alleviate this burden by ensur-
ing consistency and potentially reducing diagnostic
turnaround times.

The Shared Task on Large-Scale Radiology Re-
port Generation (RRG24) challenges participants
to develop automated systems for producing tex-
tual reports from CXR images, with a particular
focus on the findings and impression sections (Xu
et al., 2024; Delbrouck et al., 2022b). These sec-

tions are crucial as they convey the diagnostic in-
terpretation and clinical significance of a patient’s
study. The challenge provides a means to bench-
mark the various models under uniform conditions,
offering insights into which approaches are most
effective for CXR report generation. Participants
were to train and evaluate their submissions on a
dataset formed from five different sources, includ-
ing MIMIC-CXR (Johnson et al., 2019), CheXpert
(Chambon et al., 2024), PadChest (Bustos et al.,
2020), BIMCV COVID-19 (Vayá et al., 2020), and
Open-i IU X-ray (Demner-Fushman et al., 2016).
This dataset consisted of four subsets, including the
training, validation, public-test, and hidden-test,
where the radiology reports were available for all
except the hidden-test set. Finally, RRG24 presents
participants with unique challenges to overcome,
such as handling studies with missing sections and
deciding whether to use a single model or separate
models for each section.

This paper outlines the approach taken by team
e-Health CSIRO in the RRG24 challenge. For this,
we developed a multimodal language model that
conditions report generation not only on previously
generated words (or subwords), but also on the
image embeddings of all the CXRs of a patient’s
study. We utilised a single model to generate both
sections and incorporated special tokens to signify
the absence of a section during training. These
special tokens were also used to guide the model
to generate specific sections during testing.

A key factor to the performance of our sub-
missions was our modification to the self-critical
sequence training (SCST) reinforcement learning
(RL) algorithm (Rennie et al., 2017). A widely-
used technique to enhance RL is to add entropy
regularisation into the objective function. This ap-
proach boosts exploration and prevents the model
from prematurely settling on less optimal actions
(Mnih et al., 2016). Hence, we add entropy regular-
isation to SCST, forming Entropy-Augmented Self-
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T[SEP]
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Figure 1: e-Health CSIRO’s submission into RRG24, named CXRMate-RRG24. [BOS] denotes the beginning-of-
sentence special token, [SEP] denotes the separator special token, and [EOS] denotes the end-of-sentence special
token. Ek[i] is the ith output of the projected last hidden state of the encoder for the kth image of the study.

critical sequence Training (EAST). Using EAST,
we optimised our model with RadGraph as the re-
ward (Delbrouck et al., 2022a). RadGraph is the
primary metric for RRG24; it evaluates the accu-
racy of a generated report by assessing how well
the identified entities and their relationships align
with those in a radiologist report. By optimising
for this reward, we achieved multiple first-place
finishes in RRG24.

2 Methodology

2.1 EAST: Entropy-Augmented Self-critical
sequence Training

Entropy-Augmented Self-critical sequence Train-
ing (EAST) builds upon self-critical sequence train-
ing (SCST) by incorporating entropy regularisation.
This encourages the model to maintain a higher en-
tropy in its token distribution, thereby promoting di-
versity in token selection and preventing premature
convergence on a smaller, selective set of tokens.
The loss for SCST is as follows:

LSCST (θ) = −(r(wwws)−r(wwwb))·log(π(wwws | I; θ)),
(1)

where r(wwws) is the reward for the sampled report
(wwws = (ws

1, ..., w
s
M ) denotes the tokens of length

M of the sampled report), r(wwwb) is the reward
for the baseline report (wwwb = (wb

1, ..., w
b
N ) de-

notes the tokens of length N of the baseline re-
port, where the baseline is generated with greedy
search), I = [I1, I2, . . . , IK ] denotes the images of
a study (where K is the number of images in the
study), θ represents the parameters of the model,
and π(wwws | I; θ) denotes the policy under which
wwws is sampled from. As illustrated in Figure 1, we
utilise the RadGraph ER F1-score as the reward
(Delbrouck et al., 2022a), where the generated re-
port is either the sample or baseline report, both of
which are compared to the radiologist report.

EAST is formed by adding an entropy term to
LSCST (θ):

LEAST (θ) = LSCST (θ) + λ ·H(π) (2)

where λ is a coefficient that determines the weight
of the entropy term in the loss function. The en-
tropy is as follows:

H(π) = −
∑

v∈V
π(v | x; θ) log π(v | x; θ), (3)
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Table 1: Public test set scores for the findings and impression sections (presented as findings/impression). The
order of the leaderboard for RRG24 was determined by RadGraph-F1. The best scores are indicated in boldface.

Team/Method BLEU-4 ROUGE-L BERTScore CheXbert-F1 RadGraph-F1

e-Health CSIRO
EAST 12.00/9.43 26.51/26.58 54.64/47.81 59.18/57.73 29.46/27.01
SCST 10.70/8.51 26.54/26.30 54.79/48.25 56.42/55.00 27.66/25.04

TF 11.63/7.52 25.92/23.34 51.34/41.46 50.73/47.27 23.12/20.08

Top three teams besides ours
tartan 21.59/- 42.03/- 64.34/- 59.70/- 38.05/-
maira 12.26/8.68 28.00/28.40 55.76/50.48 59.71/56.46 26.33/25.89
airi 10.13/7.10 26.54/25.92 53.84/47.18 55.49/51.33 25.82/24.07

where x represents the current state (as determined
by the image embeddings and the previously gen-
erated tokens) and v represents a token from the
vocabulary V . This discourages the policy from
converging too quickly to deterministic actions,
thus encouraging the exploration of a wider set of
generated reports.

2.2 Special Tokens and Missing Sections

As illustrated in Figure 1, our model generates both
sections. To delineate these sections within the gen-
erated text, we utilise a separator token, following
CXRMate (Nicolson et al., 2024a).1 To accom-
modate reports during training that have a missing
section, we employ two special tokens: [NF] for
‘no findings’ section and [NI] for ‘no impression’
section. They are used in place of the missing sec-
tions. They also facilitate the generation of specific
sections as needed. For example, if only the impres-
sion section is to be generated, [BOS][NF][SEP]
can be fed to the decoder to signal that the findings
section is not to be generated. Furthermore, to en-
courage the generation of the impression section,
the probability of the [NI] token can be set to zero.

2.3 Model

Our model, CXRMate-RRG24, is an evolution of
our previous model, CXRMate, and is illustrated
in Figure 1. We utilised UniFormer as the encoder
(in particular, the 384 × 384 base model warm
started with its token labelling fine-tuned check-
point) (Li et al., 2023), which, in preliminary test-
ing, performed comparably to the convolutional
vision Transformer (CvT) (which we found to be
the best performing encoder for CXR report gener-
ation in our previous work (Nicolson et al., 2023))
but significantly reduced the training time. The
image embedding prompt is formed by processing

1https://huggingface.co/aehrc/cxrmate

each image in the study separately with the encoder
and then projecting the encoder’s last hidden state
to match the decoder’s hidden size using a learn-
able weight matrix. Each image was resized using
bilinear interpolation so that its smallest side had a
length of 384 and its largest side maintained the as-
pect ratio. Next, the resized image was cropped to a
size of R3×384×384. The crop location was random
during training and centred during testing. Follow-
ing (Elgendi et al., 2021), the image was rotated
around its centre during training, where the angle
of rotation was sampled from U [−5◦, 5◦]. Finally,
the image was standardised using the statistics pro-
vided with the UniFormer checkpoint. A maximum
of five images per study were used during training.
If more were available, five were randomly sam-
pled uniformly without replacement from the study.

For the decoder, we employed the Llama archi-
tecture, which is notable for features such as its ro-
tary positional encoding (RoPE), root mean square
normalisation (RMSNorm), and SwiGLU activa-
tion function (Touvron et al., 2023). The decoder
was initialised randomly and used the CXRMate vo-
cabulary, which was derived from the MIMIC-CXR
training set. The hyperparameters of the Llama de-
coder mirror that of the CXRMate decoder, with
six hidden layers, a hidden size of 768, 12 atten-
tion heads per layer, and an intermediate size of
3 072. Following CXRMate, we added source type
embeddings to the input of the decoder to differ-
entiate between findings and impression section
tokens, as well as image embeddings. The max
number of position embeddings was set to 2048 to
accommodate both the image embeddings and the
report token embeddings. The maximum number
of tokens that could be generated was set to 512,
which was also the limit for the radiologist reports
during training. During testing, a beam size of four
was utilised. Another factor that led to the use of
the Llama decoder was the ease of providing a cus-
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Table 2: Hidden test set scores for the findings and impression sections (presented as findings/impression). The
order of the leaderboard for RRG24 was determined by RadGraph-F1. The best scores are indicated in boldface.

Team/Method BLEU-4 ROUGE-L BERTScore CheXbert-F1 RadGraph-F1

e-Health CSIRO
EAST 11.68/12.33 26.16/28.32 53.80/50.94 57.49/56.97 28.67/27.83
SCST 10.25/10.95 26.10/27.34 53.88/50.07 55.78/54.79 27.29/24.97

TF 11.12/9.89 25.43/24.94 51.10/42.49 50.02/47.24 22.99/21.27

Top three teams besides ours
maira 11.24/11.66 26.58/28.48 54.22/51.62 57.87/53.27 25.48/25.26
airi 9.97/10.91 25.82/27.46 52.42/49.55 54.25/52.32 25.29/24.67

gla-ai4biomedic 7.65/9.60 24.35/25.27 52.69/48.60 46.21/46.74 24.13/22.10

tom attention mask to current implementations.2

This enabled non-causal masking to be utilised for
the prompt and causal masking for the report token
embeddings, as shown in Figure 1. This ensured
that the self-attention heads were able to attend to
all of the image embeddings at each position.

2.4 Training

Two stages of training were performed; teacher
forcing (TF) (Williams and Zipser, 1989),
followed by RL (either EAST or SCST).
AdamW (Loshchilov and Hutter, 2022) was used
for mini-batch gradient descent optimisation with
an initial learning rate of 5e-5 for TF and 5e-6 for
RL, a mini-batch size of 16 for TF and 8 for RL,
a maximum of 32 epochs for TF and 1 epoch for
RL, executed on a 94GB NVIDIA H100 GPU with
FP32. For RL, validation was performed every
1
50 of an epoch. The validation macro-averaged
CheXbert F1 was the monitored metric for check-
point selection. For RL, the sample report was
generated with top-k sampling (k = 50). During
RL, the encoder was frozen. For EAST, the entropy
weight (λ) was set to 0.05.

3 Results and Discussion

The results for our key submissions on the public
and hidden test sets are shown in Tables 1 and 2, re-
spectively. The metrics utilised for RRG24 include
BLEU-4 (Papineni et al., 2001), ROUGE-L (Lin
and Och, 2004), BERTScore (Zhang et al., 2020),
CheXbert-F1 (Smit et al., 2020), and RadGraph-F1
(Delbrouck et al., 2022a), the later of which is the
primary metric used to rank the teams. Here, we
compare TF, to SCST, and to our proposed method,
EAST. EAST attained a higher score than TF for
each metric, something SCST was not able to do
(TF attained a higher BLEU-4 score than SCST for

2https://huggingface.co/blog/poedator/4d-masks

the findings section of both test datasets).
Comparing EAST to SCST, SCST attained a

higher ROUGE-L score on the public-test findings
sections, and a higher BERTScore on the public-
test findings and impression sections, as well as the
hidden-test findings sections. For all other cases,
EAST demonstrated an improvement over SCST.
Policies trained with entropy regularisation often
have improved generalisation, as they have learnt
to consider a broader set of possible actions. This
may have led EAST to be more robust to the dif-
fering characteristics of each of the datasets used
in the public and hidden test sets. With EAST,
team e-Health CSIRO achieved a first-place finish
amongst participants for the public-test impression
sections and the hidden-test findings and impres-
sion sections. We also also achieved a second-place
finish for the public-test findings sections. For a
comparison of CXRMate-RRG24 to state-of-the-
art methods in the literature, please see Nicolson
et al. (2024b).

3.1 Conclusion

Our proposed approach, EAST, was able to gener-
ate reports that were quantitatively more aligned
with radiologist reports than those generated us-
ing SCST. By incorporating entropy regularisation,
EAST is able to maintain a higher diversity in to-
ken selection and mitigate overfitting to maintain
generalisability. This was likely crucial in han-
dling the varied characteristics of the datasets used
in RRG24. While EAST shows promise, a more
thorough investigation is required to validate its po-
tential, including the impact of varying the entropy
coefficient.
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Abstract

This study aims to leverage state of the art
language models to automate generating the
“Brief Hospital Course” and “Discharge In-
structions” sections of Discharge Summaries
from the MIMIC-IV dataset, reducing clini-
cians’ administrative workload. We investigate
how automation can improve documentation
accuracy, alleviate clinician burnout, and en-
hance operational efficacy in healthcare facil-
ities. This research was conducted within our
participation in the Shared Task Discharge Me!
at BioNLP @ ACL 2024. Various strategies
were employed, including Few-Shot learning,
instruction tuning, and Dynamic Expert Selec-
tion (DES), to develop models capable of gen-
erating the required text sections. Utilizing
an additional clinical domain-specific dataset
demonstrated substantial potential to enhance
clinical language processing. The DES method,
which optimizes the selection of text outputs
from multiple predictions, proved to be espe-
cially effective. It achieved the highest overall
score of 0.332 in the competition, surpassing
single-model outputs. This finding suggests
that advanced deep learning methods in com-
bination with DES can effectively automate
parts of electronic health record documentation.
These advancements could enhance patient care
by freeing clinician time for patient interactions.
The integration of text selection strategies rep-
resents a promising avenue for further research.

1 Introduction

Clinical notes in electronic health records (EHRs)
are used by clinicians to document patient progress

in free-text format. These notes typically include
the patient’s experiences, symptoms, findings, diag-
noses, and details of procedures and interventions
performed. They serve as the foundation for Dis-
charge Summaries (DS), which contain a section
with concise overviews of the entire hospital en-
counter known as Brief Hospital Course (BHC)
(Searle et al., 2023). They are embedded in the DS
and are written by senior physicians who are re-
sponsible for the patient’s overall care. In addition
to BHC, DS also includes Discharge Instructions
(DI), which are detailed guidelines provided to pa-
tients regarding their post-hospital care. These in-
structions cover the patient’s ongoing care, such as
medication instructions, follow-up appointments,
and any necessary lifestyle adjustments to ensure
proper recovery. Discharge Instructions are de-
signed to facilitate a smooth transition from hospi-
tal care to home care and to prevent readmissions.
Writing such summaries (BHC) and instructions
(DI) can be time-consuming and tedious. Conse-
quently, physicians often spend a big portion of
their clinical day dedicated to EHR documentation
and desk work (Sinsky et al., 2016).

This paper presents WisPerMed’s contribution to
the Shared Task Discharge Me! (Xu et al., 2024b),
which is part of BioNLP @ ACL 2024. This Shared
Task aims to ease the administrative burden on clin-
icians by developing automated methods to gener-
ate critical sections in DS, specifically the “Brief
Hospital Course” and “Discharge Instruction”. Au-
tomating the creation of these sections has the po-
tential to improve documentation accuracy, reduce
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clinician burnout, and ultimately optimize the pro-
cesses in healthcare facilities (Patel and Lam, 2023)
by allowing clinicians to allocate more time toward
direct patient care.

Our work focuses on designing and implement-
ing various innovative approaches to overcome this
challenge and contribute to the overall goals of the
Shared Task.

2 Dataset

The dataset (Xu, 2024) provided for this Shared
Task utilizes the MIMIC-IV (Medical Informa-
tion Mart for Intensive Care) database (Johnson
et al., 2023a,b). MIMIC-IV is a publicly available
database sourced from the EHR of the Beth Israel
Deaconess Medical Center and is accessible on
PhysioNet (Goldberger et al., 2000).

The task dataset is divided into four subsets: a
training set consisting of 68,785 samples, a val-
idation set containing 14,719 samples, a phase I
testing set with 14,702 samples, and a phase II test-
ing set comprising 10,962 samples. Each subset
includes DS that are organized into various sec-
tions. All records contain two mandatory sections:
“Brief Hospital Course” and “Discharge Instruc-
tions”. The BHC section typically provides an
overview of the patient’s treatment and progress
during their hospital stay and precedes the DI sec-
tion. These DI summarize post-hospitalization care
instructions and are positioned at the conclusion of
the summary.

The challenge organizers provided a regular ex-
pression (regex) query to extract these two sections
from the DS. The regex query ensures that the rele-
vant information is accurately identified and sepa-
rated from the rest of the DS content.

For the remainder of this paper, any reference to
the “Discharge Summary” (DS) will exclude the
target sections, BHC or DI.

3 Evaluation

The submissions to the Shared Task were evaluated
using eight metrics, which assess the relevance and
factuality of the generated target. These metrics
include Bilingual Evaluation Understudy (BLEU-
4) (Papineni et al., 2002), Recall-Oriented Under-
study for Gisting Evaluation (ROUGE-1, ROUGE-
2, ROUGE-L) (Lin, 2004), BERTScore (Zhang
et al., 2020), Metric for Evaluation of Translation
with Explicit Ordering (METEOR) (Banerjee and
Lavie, 2005), AlignScore (Zha et al., 2023), and

Medical Concept (MEDCON) (Yim et al., 2023).
The overall score was calculated by averaging the
scores across these eight metrics. In addition to
these evaluation metrics, readability scoring met-
rics were also investigated and utilized in some of
the developed approaches.

After the conclusion of the competition, sub-
missions from the highest-performing teams, de-
termined by the overall score, were evaluated by a
panel of clinicians 1. The generated sections were
assessed based on their completeness, correctness,
readability, and overall comparison to the reference
text. These criteria were evaluated on a scale rang-
ing from 1 to 5, where 1 signifies performance that
is considerably worse than the reference text, and
5 indicates performance that is considerably better
than the reference text. Three independent clini-
cians scored 25 DI and 25 BHC texts from each
team, using the same DS.

3.1 Relevance

Relevance was evaluated using BLEU-4, ROUGE-
1, ROUGE-2, ROUGE-L and BERTScore. BLEU-
4 measures the precision of 4-gram matches be-
tween the generated target and reference text, pro-
viding a quantitative measure of how closely the
generated target matches the reference in terms of
specific sequences of words. The ROUGE metrics
measure the overlap of n-grams between the target
and reference texts, providing a quantifiable mea-
sure of content overlap. Furthermore, BERTScore
leverages contextual embeddings to assess the se-
mantic similarity between texts by utilizing pre-
trained language models such as BERT (Devlin
et al., 2019). In this Shared Task, the distilBERT
model (Sanh et al., 2019), a lightweight and effi-
cient variant of BERT, was used for the BERTScore
evaluation.

3.2 Factuality

Factuality in text generation was assessed using
AlignScore and Summary Consistency (SummaC)
(Laban et al., 2022). AlignScore measures how
well the facts in a generated summary align with
those in the source text. SummaC extends the
AlignScore by considering both, the alignment and
consistency of the generated target, ensuring it not
only contains factual information but also main-
tains logical coherence with the source.

1https://stanford-aimi.github.io/discharge-me/
Accessed: 2024-05-17
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Furthermore, METEOR score evaluates transla-
tion quality by aligning machine-generated target
with reference translations, considering synonyms,
stemming, and ordering. It balances precision and
recall, and penalizes non-contiguous matches to
more closely reflect human judgments than sim-
pler metrics like BLEU-4. Lastly, the MEDCON
score is a medical concept-based evaluation met-
ric that uses the F1-score to measure the similarity
between the Unified Medical Language System
(UMLS) concept sets found in candidate and ref-
erence clinical notes, assessing their accuracy and
consistency.

3.3 Readability
Readability was assessed using the Flesch-Kincaid
Grade Level (FKGL) (Kincaid et al., 1975), Dale-
Chall Readability Score (DCRS) (Chall and Dale,
1995), and Coleman-Liau Index (CLI) (Coleman
and Liau, 1975). FKGL estimates the educational
grade level of a text based on sentence length and
syllable count per word. DCRS evaluates text com-
plexity by identifying words not recognized by typ-
ical fourth graders. CLI calculates the grade level
needed to understand the text based on character
counts and sentence structure. According to CLI,
higher scores indicate lower readability.

4 Methods

This section describes different approaches to the
Shared Task. Licenses for the used models, frame-
works, and additional datasets can be found in Ap-
pendix E.

4.1 Few-Shot learning
Few-shot learning (Wang et al., 2020) enables ma-
chine learning models to quickly adapt to new tasks
using only a handful of training examples, reducing
the need for extensive data collection. This method
has shown improved performance on new tasks
with minimal input. The Few-Shot approach uti-
lized the WizardLM-2-8x22B (WizardLM-2) (Xu
et al., 2024a) model, which was released by Mi-
crosoft and is an instruction-tuned version of the
Mixtral-8x22B2 model from Mistral AI. Refer to
Appendix A for prompting examples.

4.2 Instruction Tuning
The process of instruction tuning (Peng et al., 2023)
in natural language processing involves guiding a

2https://mistral.ai/news/mixtral-8x22b/
Accessed: 2024-05-14

pre-trained large language model to follow specific
instructions or prompts. Unlike traditional fine-
tuning, which focuses on adapting the model to a
specific task using a task-specific dataset, instruc-
tion tuning uses diverse instruction-based datasets
to train the model to generate more accurate and
relevant responses to a wide range of queries. This
enables the model to better generalize across dif-
ferent tasks by understanding and following the
instructions given.

For every experiment carried out, two models
were trained: One to generate DI and one to gen-
erate BHC. Between the different experiments, hy-
perparameters were changed only slightly to make
the experiments comparable (see Appendix C).
As input format, the chat template recommended
by the model publishers was used for training.
Chat templates3 are structured formats that guide
the interaction between the user and the model.
The input consisted of a System Message and the
DS taken from the MIMIC-IV dataset. Exam-
ple prompts are shown in the Appendix (see Ap-
pendix A). Most models were trained on a single
NVIDIA H100 80GB using the unsloth4 frame-
work. Only Phi-3-Mini-128K-Instruct (Abdin et al.,
2024) was trained on three NVIDIA H100 80GB.
It was necessary to choose Large Language Mod-
els that are capable of handling long sequences.
The average DS length is about 1,775 words or
4,243 tokens, using the Mistral-7B-Instruct-v0.2
(Jiang et al., 2023) tokenizer. All models were
trained with Low-Rank Adaptation (LoRA) (Hu
et al., 2022). The following models were evaluated:
Llama-3-8B-Instruct (AI@Meta, 2024), Llama-
3-70B-Instruct (AI@Meta, 2024), OpenBioLLM-
70B (Ankit Pal, 2024), Phi-3-Mini-128K-Instruct,
Mistral-7B-Instruct-v0.2. In the remainder of the
paper, “I” stands for Instruct in the model naming
convention. Please see Appendix C for the fine-
tuning setup.

Besides the classical approach of model fine-
tuning, an attempt was made to prime the models to
improve their understanding of “clinical language”.
For this, the models were instruction-tuned with
the Asclepius dataset before using the task-specific
MIMIC-IV dataset. For this approach, Llama-8B-I
and Mistral-7B-I-v0.2 were evaluated.

Asclepius is a dataset that was released by

3https://huggingface.co/docs/transformers/
chat_templating Accessed: 2024-05-17

4https://github.com/unslothai/unsloth
Accessed: 2024-05-14
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Kweon et al. 2023. This dataset contains 158,000
rows of synthetical clinical notes and instruction-
answer pairs. It was built on publicly available case
reports, extracted from biomedical lectures, and
then transformed into clinical notes. instruction-
answer pairs were built using ChatGPT-3.5-Turbo
(OpenAI, 2023).

4.3 MIMIC Section Identification

MIMIC Section Identification (MIMIC-SID) (Lan-
des et al., 2022, 2023) is a framework used for
automatically classifying sections within unstruc-
tured clinical texts, such as patient medical records.
It recognizes and defines different sections of text
based on their content and context. This is partic-
ularly useful in the medical domain. Documents
such as DS contain distinct sections (e.g., diagno-
sis, treatment, patient history) that need accurate
identification for effective information retrieval and
processing.

Utilizing MIMIC-SID (see Figure 1), the most
important sections for the target text were identi-
fied by calculating the average BERTScore (with
distilBERT) between the extracted section and the
target section. The text was then ordered based on
relevance, from highest to lowest BERTScore, and
truncated after 2,000 words. This method assumes
that relevant parts are already found at the begin-
ning of the text, and less relevant parts would be
cut out. To compare this approach to a more stan-
dardized setting, the unaltered input text was also
truncated to 2,000 words. This results in two train-
ing schemes: one with 2,000 words of reordered
text and one with 2,000 words of the original text.

4.4 Hyperparameters

The quality of the generated targets is strongly in-
fluenced by the inference parameters employed.
The Meta-Llama-3-8B-Instruct model was utilized
to establish decoding strategies for the Shared Task,
specifically adopting the proposed methods by (Mi-
naee et al., 2024). Three experimental runs were
conducted to examine their influence on text gener-
ation quality, each employing these decoding strate-
gies in different configurations. The configurations
and their respective parameters are detailed in Ta-
ble 1.

4.5 Dynamic Expert Selection

As final approaches, five different Dynamic Expert
Selections (DES) were constructed. For each DES,
a set of models was pre-selected to serve as ex-

MIMIC-
IV

Test
Sections

Discharge 
Summaries

test

Train
Discharge

Instructions

train

Train
Sections

MIMIC-SID

infusions

labs

history_of_present_illness

[...]

Sorted Sections

history_of_present_illness (0.736)

Apply Ranking
past_medical_history (0.693)

physical_examination (0.694)

[...]

Calculate BERT
Score

Inference

Train Model
LLama-3 8B Instruct

Generated
Discharge 
Instructions

Prompt

Combine 
and Truncate

to 2000 Words

Sort from highest
to lowest avg.
BERTScore

Ranked Train 
Sections

Figure 1: This workflow, exemplified by DI, is applied
to BHC in the same way. With MIMIC-SID the dataset
is divided into up to 50 sections. For each training
section, the average BERTScore is computed using the
target text as a reference. The sections are then ranked
from highest to lowest BERTScore, and this ranking is
applied to both the training and testing DS. The ranked
training dataset is used to train the Llama-3-8B-I model.
Subsequently, the ranked testing dataset is presented to
the model in the form of prompts to generate DI outputs.

Parameter Config 1 Config 2 Config 3

do_sample False False True
RP 1.2 1 1
NNS 3 ∞ ∞
ERP 1 1.2 1
temp 0 0 0.6
top_p 0 0 0.9

Table 1: Configuration Parameters for Inference
Runs. RP stands for repetition_penalty, NNS stands
for non_repeat_ngram_size, and ERP stands for en-
coder_repetition_penalty.

perts. Each model generates DI and BHC for a DS,
and then an expert model is selected whose text is
included in the submission.

Readability and factuality scores are calculated
to select the expert model. The readability scores

108



can be calculated without any reference text, and
the factuality scores use the entire DS as a refer-
ence. Because they do not use the target texts, these
scores are referred to as pre-calculated scores.

Additionally, the validation set was used to com-
pute the pre-calculated scores for the generated
targets of the Mistral-7B-I-v0.2 + Asclepius model.
Furthermore, the overall scores (all challenge eval-
uation scores) based on the target texts were deter-
mined on the validation set. Then, the correlations
between the pre-calculated scores and the overall
scores were examined. Figure 2 shows these cor-
relations as a heatmap. Taking into account these
correlations, DES 1-4 were constructed. For DES
5, the lengths of the generated targets were con-
sidered instead of scores as the selection criterion.
This decision was based on the observation that,
particularly in longer texts, models exhibit signs
of hallucination or the generation of repetitive con-
tent.

When compiling a DES, the pre-calculated
scores of all included models for a DS are sub-
jected to a min-max normalization. This means
normalization over all available models. These
normalized scores are then multiplied by selected
weights. The model with the highest average of all
normalized and weighted scores is selected as the
expert for that DS.

DES 1 This DES was optimized for MEDCON
and METEOR with a weight of 1

2 each, as these
two metrics exhibited the strongest correlation with
a higher overall score. The final submission file
included 6,407 texts from Mistral-7B-I-v0.2 + As-
clepius, 1,210 texts from Llama-3-8B-I with greedy
decoding (Minaee et al., 2024), 2,815 texts from
Llama-3-8B + Asclepius, 5,600 texts from Llama-
3-70B-I, 4,112 from OpenBioLLM-70B, and 1,780
from WizardLM-2.

DES 2 This DES was optimized for MEDCON
and METEOR as measures for factuality, and CLI
score for readability with the weights 2

5 for both
MEDCON and METEOR, and 1

5 for CLI. The fi-
nal submission file included a total of 3,471 texts
from the Mistral-7B-I-v0.2 + Asclepius model,
4,374 texts from Llama-3-8B-I + Asclepius, 5,108
texts from Llama-3-70B-I, and 5,971 texts from
OpenBioLLM-70B.

DES 3 This DES was optimized for all readabil-
ity metrics (FKGL, DCRS, and CLI) for DI, and ad-
ditionally MEDCON, METEOR, and AlignScore
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Figure 2: Heatmap of the Pearson correlations between
pre-calculated scores and the overall score on the vali-
dation dataset. The pre-calculated scores include factu-
ality scores (SummaC, AlignScore, MEDCON and ME-
TEOR), which are calculated for the generated targets
of the Mistralv2 + Asclepius model with the whole DS
as the reference, and readability scores (FKGL, DCRS
and CLI).

as factuality metrics for both text types. For the
DI, all readability metrics were assigned a weight
of −1

9 , and the factuality metrics were assigned
a weight of 2

9 . For the BHC, all factuality met-
rics were weighted with 1

3 . The final submission
file included 5,120 texts from Mistral-7B-I-v0.2 +
Asclepius, 4,211 texts from Llama-3-8B-I + Ascle-
pius, 5,435 texts from Llama-3-70B-I, and 7,158
texts from OpenBioLLM-70B.

DES 4 This DES used only Mistral-7B-I-v0.2
models and the values of correlation between the

Example given:

[...Non-repetitive text]

-Please check LFTs weekly for the next month.

-Please continue to monitor for signs of refeeding

hyperglycemiAsclepius

-Please continue to monitor for signs of refeeding

hypocalcemiAsclepius

[Continues Repetition...]

Figure 3: Example of repetitive and hallucinated DI
output generated by Llama-3-8B-I. The words hyper-
glycemia and hypocalcemia are very similar but only
one of them should be in the generated targets. The
other one was not mentioned in the DS.
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scores calculated on the generated targets against
the whole DS and the overall score on the valida-
tion dataset as weights. The final submission file
included 7,912 texts from Mistral-7B-I-v0.2 + As-
clepius, 6,485 texts from the Mistral-7B-I-v0.2 +
Asclepius model, which was further fine-tuned on
the validation dataset, and 7,527 texts from Mistral-
7B-I-v0.2.

DES 5 This DES considers lengths of texts in-
stead of weighted metrics. DI in the training dataset
has an average word count of approximately 196.3,
whereas BHCs have an average word count of ap-
proximately 327.6. Models trained on these texts,
therefore, tend to generate shorter texts for DI and
longer texts for BHC. To mitigate the impact of hal-
lucinations at the end of lengthy texts (e.g Figure
3), a strategy of preferably selecting shorter texts
with the DES was adopted. The objective of the
strategy was to initially rank the models based on
their overall scores. Subsequently, for each DS,
the text from the first model that has a word count
within the range of 100 to 180 words is selected. If
no model had generated a text with a word count
within this range, the text with the minimum word
count was selected. However, the text could not
be shorter than 70 words. In the case that no text
met these criteria, the text from the highest-ranked
model remained.

5 Results

This section describes results of the evaluation of
the developed models using the metrics described
in section 3. The evaluation done by clinicians can
be seen in Table 3.

5.1 Automatic Evaluation

The final scores for the Shared Task, provided
by the organizers, are shown in Table 2. The ta-
ble presents the approaches from the most gen-
eral to the most specific, beginning with the base-
line model, followed by the Few-Shot model, the
instruction-tuned models, the instruction-tuned
models primed with Asclepius, the MIMIC section-
based approaches, and the various DES variants.
The top competitors by overall score are high-
lighted for comparison. All inference runs for the
final results were conducted with an optimized de-
coding strategy (temp=0.6, top_p=0.9) as described
in section 4.4. Based on its high evaluation scores,
Configuration 3 was chosen as the standard param-
eter setting, which can be seen in Table 1.

WizardLM-2, despite not being fine-tuned on the
training data, surpassed the baseline with an overall
score of 0.195.

Among the fine-tuned models, Llama-3-70B-I
led with a score of 0.300, followed by Mistral-7B-
I-v0.2 at 0.289, which has way less parameters
yet outperformed several larger models, including
Llama3-8B-I. Even though the OpenBioLLM-70B
has been adapted for clinical use, it underperformed
when compared to other models. The Phi-3-mini-
128k-I (3.8 billion parameters) model matched the
performance of larger models, such as the Llama-
8B-I, demonstrating the efficiency of models with
less parameters.

Among the configurations, incorporating the
Asclepius dataset into Mistral-7B-I-v0.2 made it
clearly outperform Llama3-8B-I. Excluding the
DES approaches, this combination achieved the
highest performance of all models.

The MIMIC-SID approaches with a shorter con-
text length of 2,000 words displayed weak perfor-
mances.

Different parameters on the Llama-8B-I, in-
cluding greedy decoding and an ERP (en-
coder_repetition_penalty), yielded lower scores
compared to setups utilizing sampling and tem-
perature adjustments.

In the Dynamic Expert Selection category, DES
1 focused on MEDCON and METEOR scores but
did not surpass the individual fine-tuned models.
DES 2 achieved the highest BERTScore and Align-
Score, which represent relevance and factuality,
respectively. Reaching an overall score of 0.311,
this DES outperformed all individual fine-tuned
models. DES 3, aimed at lowering readability met-
rics, scored 0.296, performing better than DES 1
but lagging behind others. DES 4, using corre-
lation values for optimization, showed negligible
improvements. DES 5 achieved the highest overall
score of 0.332 and topped the leaderboard by limit-
ing text length. The approach achieved the highest
scores in all metrics, except for a slightly lower
BERTScore and AlignScore.

5.2 Clinical Evaluation
The ranking order of the first six teams did not
change when comparing the automatic with the
clinicians’ evaluation results (see Table 2 and Table
3). The evaluated BHC were ranked the best over
all aspects. The readability and holistic evaluation
of the BHC were notably superior to that of the
other teams. However, the DI scores were compa-
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Model Ovr. BLEU R-1 R-2 R-L BERT MET Align MED

Baseline

Challenge Baseline 0.102 0.015 0.126 0.051 0.113 0.138 0.098 0.167 0.121

Few-Shot learning

WizardLM-2 8x22B 0.195 0.017 0.257 0.074 0.158 0.331 0.310 0.193 0.218

Instruction-tuned

Llama-3-8B-I 0.253 0.053 0.331 0.107 0.241 0.392 0.235 0.320 0.348
Mistral-7B-I-v0.2 0.289 0.101 0.371 0.122 0.252 0.416 0.375 0.293 0.380
Llama-3-70B-I 0.300 0.112 0.367 0.141 0.260 0.437 0.347 0.334 0.401
OpenBioLLM-70B 0.285 0.084 0.376 0.127 0.248 0.421 0.307 0.337 0.383
Phi-3-mini-128k-I 0.254 0.062 0.347 0.128 0.217 0.359 0.310 0.275 0.330

Instruction-tuned + Asclepius (A.)

Llama-3-8B-I + A. 0.302 0.107 0.388 0.150 0.275 0.432 0.350 0.311 0.403
Mistral-7B-I-v0.2 + A. 0.307 0.120 0.390 0.140 0.258 0.434 0.391 0.320 0.404

MIMIC Section Identification

Llama-3-8B-I 2k 0.209 0.022 0.263 0.054 0.171 0.326 0.199 0.355 0.280
Llama-3-8B-I R 2k 0.216 0.026 0.292 0.073 0.191 0.351 0.186 0.306 0.304

Hyperparameter

Llama-3-8B-I Greedy 0.192 0.018 0.274 0.043 0.147 0.314 0.221 0.281 0.241
Llama-3-8B-I ERP 0.238 0.032 0.348 0.093 0.228 0.372 0.221 0.307 0.300

Dynamic Expert Selection

DES 1 0.277 0.097 0.329 0.121 0.217 0.417 0.339 0.319 0.374
DES 2 0.311 0.110 0.414 0.151 0.273 0.439 0.351 0.344 0.406
DES 3 0.296 0.108 0.366 0.128 0.242 0.435 0.352 0.335 0.400
DES 4 0.297 0.112 0.371 0.127 0.244 0.426 0.379 0.320 0.396
DES 5 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411

Top 5 Competitors

HarmonAI Lab Yale 0.300 0.106 0.423 0.180 0.284 0.412 0.381 0.265 0.353
aehrc 0.297 0.097 0.414 0.192 0.284 0.383 0.398 0.274 0.332
EPFL-MAKE 0.289 0.098 0.444 0.155 0.262 0.399 0.336 0.255 0.360
UF-HOBI 0.286 0.102 0.401 0.174 0.275 0.395 0.289 0.296 0.355
de ehren 0.284 0.097 0.404 0.166 0.265 0.389 0.376 0.231 0.339

Table 2: Summary of model performance across different experimental settings. Each section represents a distinct
approach: Baseline, Few-Shot Learning, instruction-tuned, instruction-tuned + Asclepius, MIMIC-SID (2k for
truncation to 2k words and R for reordering the subsections in the text from most to least relevant according to
BERTScore), Hyperparameter, and DES, showcasing respective strategies to address the challenge. I indicates that
the instruction version of the model was used. Furthermore, the Top 5 runs from other challenge participants are
included. Metrics include overall score (Ovr.), BLEU-4 (BLEU), ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L
(R-L), BERTScore (BERT), METEOR (MET), AlignScore (Align) and MEDCON (MED). Bold scores indicate
the best performance in each category, with underlined bold scores highlighting the top overall scores across all
experiments.
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rable to those of other teams and did not achieve
the highest score in any of the evaluated aspects.

In order to compare automated evaluation results
with clinicians’ assessments, it was necessary to
normalize the scores on a scale from 0 to 1. Note
that readability was not compared, as clinicians
did not rate the readability of DI texts, nor did
the challenge metrics include readability scores.
Figure 4 illustrates that clinicians tend to assign
higher scores than the automated metrics in their
evaluation approach. However, the holistic evalua-
tion aligns more closely with the overall automated
scores.

C Rel A Rel C Fact A Fact C Overall A Overall C Holistic
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0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Va

lu
e

Comparison of Clinician and Automatic Scores

Figure 4: Boxplot of Average Clinician Scores and Aver-
age Metric Scores. C stands for Clinician and A stands
for the scores caluclate with the challenge metrics. Here
A Relevance includes ROUGE-1, ROUGE-2, ROUGE-
L, BertScore and BLEU-4. A Factuality includes Align-
Score METEOR and MEDCON.

6 Discussion

Despite being one of the less robust models evalu-
ated, WizardLM-2 exceeded the established base-
line, showing its effectiveness in a Few-Shot learn-
ing context. With minimal training examples, the
model still produced high-quality texts, according
to the metrics, highlighting the potential of Few-
Shot learning in enhancing performance metrics.

The performance of instruction-tuned models
revealed mixed outcomes. Despite being a spe-
cialized adaptation of the Llama-3-70B-I model
tailored for medical contexts, OpenBioLLM-70B
underperformed in relation to its base model. This
behavior was unexpected, considering its design to
enhance relevance and accuracy in clinical appli-
cations. Conversely, the Mistral-7B-I-v0.2 model
demonstrated impressive capabilities, outperform-
ing both the larger OpenBioLLM-70B and the
Llama-8B-I models. This highlights the effec-
tiveness of Mistral-7B-I-v0.2 in handling complex

medical text generation and summarization tasks
despite its smaller size. In contrast to its reputa-
tion as one of the most promising state-of-the-art
open-source LLMs, the Llama-3 models have been
found to be less effective in this challenge. This
is on par with the findings from LMSYS chatbot
arena (Chiang et al., 2024) where LLama-3 mod-
els showed the weakest performance compared to
other state-of-the-art models on the task of summa-
rization (Dunlap et al., 2024).

Using the Asclepius dataset for priming sub-
stantially improved model performance during the
fine-tuning phases. For instance, the Llama-8B-I
model’s score rose from 0.253 to 0.302, and the
Mistral model’s performance increased from 0.289
to 0.307. Notably, the Mistral-7B-I-v0.2 + Ascle-
pius model was the top performer in the challenge,
aside from DES approaches. This underscores the
benefits of further training models with special-
ized datasets to enhance accuracy and relevance in
domain-specific tasks.

The reordering of sections within the MIMIC-
SID approach moderately enhanced overall model
performance, demonstrating that prioritizing the
most relevant sections can be beneficial. However,
it is important to note that metrics sensitive to text
order, such as METEOR and AlignScore, experi-
enced a decline. This suggests that while reorder-
ing can improve general outcomes by emphasizing
key information, it may simultaneously compro-
mise the sequential integrity of the text. Therefore,
this strategy confirms the utility of structurally opti-
mizing input for task-specific relevance, albeit with
some trade-offs in textual coherence.

Exploration of hyperparameter settings revealed
that more complex configurations did not yield
superior results. The basic approach, utilizing
do_sample=True, temp=0.6, and top_p=0.9, con-
sistently outperformed other tested configurations,
including those with greedy decoding and encoder
repetition penalties. This emphasizes the efficacy
of maintaining simpler hyperparameter settings for
stable and high-quality text generation. Additional
complexity in parameter tuning did not always cor-
relate with improved model performance.

The DES that relied on the pre-calculated scores
had varying effects on the metrics evaluated. Us-
ing MEDCON and METEOR in combination with
CLI improved the results, whereas choosing the
correlation as weights resulted in no improvement.
A possible reason might be that the pre-calculated
scores were only calculated on the entire DS and
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BHC DI

Team Avg. Comp Corr Read Hol. Comp Corr Hol.

WisPerMed 3.375 3.667 3.667 3.373 2.440 3.947 4.000 2.533
HarmonAI Lab at Yale 2.903 3.520 2.587 2.107 1.533 4.267 3.947 2.360
aehrc 2.785 2.307 3.053 1.960 1.093 3.907 4.547 2.627
EPFL-MAKE 2.720 3.293 2.827 2.533 1.653 3.453 3.413 1.867
UF-HOBI 2.579 2.480 3.360 2.707 1.413 3.013 3.293 1.787
de ehren 2.335 2.280 2.987 2.680 1.120 2.813 3.053 1.413

Table 3: BHC and DI Metrics for Teams by clinicans. In this Table Avg. stands for Average, Comp stands for
Comperability, Corr stands for Correctness, Read stands for Readability, and Hol stands for Holistic.

not on the target text, as in the final evaluation. It
may also be that the correlations are not always suf-
ficient, and a more elaborate association analysis is
needed.

Consequently, the best overall score of all DES
was achieved by the approach limiting the text
length, suggesting that hallucinations and repet-
itive sequences have a measurable impact on text
quality.

The manual evaluation seen in Table 3 indicates
that the holistic approach by clinicians is compara-
ble to the automated metrics, thus reconfirming the
effectiveness of the metrics used in the competition.
The lower scores for the DI may be caused by infor-
mation loss or distortion due to the simplification.

7 Conclusion

The research identified several opportunities for
future investigation that may enhance the perfor-
mance and utility of the discussed models. Initially,
due to the extensive size of the training dataset
and the constraints imposed by the context length
of input texts, each model was trained for a maxi-
mum of only three epochs. Therefore, extending
the training duration may provide improvements
and merits further exploration.

Moreover, alterations to inference parameters
have demonstrated notable effects on model out-
puts. For example, employing the ERP parameter,
while maintaining other settings constant resulted
in a degradation of performance metrics (from
0.253 to 0.238 overall score). This suggests a sys-
tematic evaluation of inference parameters could
further enhance model output.

Additionally, priming the model has substan-
tially improved results. Investigating additional
datasets for priming purposes could further opti-
mize model performance and expand its applica-

bility across diverse textual tasks. This could be
a promising direction for future research efforts.
Further opportunities lie in optimizing section re-
ordering to balance task-specific relevance while
maintaining text coherence.

The winning approach, evaluated by the auto-
matic and clinicans’ evaluation, a DES, achieved
the highest overall score. This suggests that gener-
ating multiple outputs and developing methodolo-
gies to select the optimal text may further improve
performance. Therefore, exploring various DES
techniques and selection criteria is a field for fur-
ther research.

The clinicians’ evaluation added valuable in-
sights, and the automatic scores demonstrated high
robustness and strong alignment with the manual
assessments. This alignment indicates that the man-
ual evaluation, even on a small subset, effectively
validates the reliability of the generated texts.

Lastly, efforts to enhance the quality of medical
machine learning algorithms are ongoing, along
with a responsibility to report the environmental
impact of the research. In this study, the total en-
ergy consumption for training and inference is esti-
mated with 1,552.10 kWh, resulting in 591.35 kg
CO2 emission. Detailed information is provided in
Appendix D.

Limitations

For the model training, only the entire discharge
summaries were utilized, while the provided radiol-
ogy reports and ICD 9/10 codes were not included.
The decision to exclude these additional documents
might have limited the comprehensiveness of our
models. Future research should consider incor-
porating these documents to potentially improve
model accuracy and contextual understanding.

Moreover, each model was trained for a max-
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imum of three epochs due to the context length
constraints of input texts. Extending the training
duration could potentially enhance performance
and merit further exploration.

Additionally, the influence of inference parame-
ters on model outputs is notable. Systematic evalu-
ation of these parameters is needed, as variations
can measurably affect performance metrics.

Furthermore, the study did not employ advanced
preprocessing or postprocessing techniques, which
could substantially enhance the reliability and ac-
curacy of the generated texts by mitigating issues
such as non-factual content generation ("halluci-
nations"). Notably, DES 5 considered text length,
which may indirectly reduce hallucinations. How-
ever, this approach does not explicitly address the
issue and therefore cannot ensure their complete
avoidance.

The Asclepius dataset, being synthetic and partly
based on the MIMIC-III dataset, may introduce
data redundancy or leakage, potentially impacting
model robustness and generalizability. Future work
should explore advanced data validation techniques
or alternative dataset creation methodologies to
mitigate these issues.

Lastly, while priming models with specialized
datasets showed substantial improvements, further
investigation into additional datasets for priming
could optimize model performance and expand ap-
plicability across diverse textual tasks.
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A Few-Shot Learning Prompts

This section showcases how the WizardLM-2-Model was instructed. A variety of prompts were tested, and
the displayed ones (see Figure 5 and Figure 6) yielded the best results, as measured by human evaluation.
Detailed instructions were provided for the DI text generation, whereas the details for the BHC generation
were excluded. The BHC texts are considerably longer on average and do not follow the same pattern
most of the time.

Discharge Instructions Prompt

USER: Generate a detailed discharge instruction based on the provided summary, adhering to the style of the provided
examples. The instruction should comprehensively cover all aspects of the patient’s care, with a total length of about
300-500 words.

Please follow the format used in previous discharge instructions:

1. Start with a polite greeting and an expression of gratitude or pleasure for having taken care of the patient.

2. Describe the reason for hospitalization succinctly.

3. Detail what occurred during the stay, including any treatments administered, patient responses, and significant
changes to the patient’s condition.

4. Outline clear follow-up care instructions, including medications, dietary recommendations, activity level, and
scheduled follow-up visits.

5. Close with a kind farewell and additional well-wishes or reminders.

Discharge Instruction Format Example:
Dear [Patient Name],
It was a pleasure taking care of you during your hospitalization at [Hospital Name].

Why were you hospitalized?
- [Brief reason for hospitalization]

What happened while you were in the hospital?
- [Key details about treatment and patient response]
- [Any significant tests and their results]
- [Any changes to patient condition]

What should you do after you leave the hospital?
- [Medications and dosage]
- [Dietary instructions]
- [Activity recommendations]
- [Follow-up appointments]

We wish you the best in your recovery!

Sincerely,
Your [Hospital Team Name] Team

Discharge Instruction Example 1 start:
[Discharge Instruction Example from Validation set]
Discharge Instruction Example 1 end.
[· · · ]
Discharge Instruction Example 10 start:
[Discharge Instruction Example from Validation set]
Discharge Instruction Example 10 end.
Discharge Summary:
[Discharge Summary without target section]
Start with the Discharge Instructions for the Discharge Summary.
ASSISTANT:

Figure 5: Discharge Instruction Prompt for Few-Shot learning with WizradLM-2.
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Brief Hospital Course Prompt

USER: Here are some Example Brief Hospital Courses.

Brief Hospital Course Example 1 start:
[Brief Hospital Course Example from Validation set]
Brief Hospital Course Example 1 end.
[· · · ]
Brief Hospital Course Example 7 start:
[Brief Hospital Course Example from Validation set]
Brief Hospital Course Example 7 end.

Now create a Brief Hospital Course in the same style as in the Examples with the information from the following
Discharge Summary:
[Discharge Summary without target section]

ASSISTANT:

Figure 6: Brief Hospital Course Prompt for Few-Shot learning with WizardLM-2.

B Instruction Tuning Prompts

Figure 7 and Figure 8 show the prompts used for instruction tuning DI and BHC. The only difference
between the instruction tuning and inference prompts is that the [Target Discharge Instructions] or [Target
Brief Hospital Course] was left empty for inference. For each model, the recommended chat template
provided by the model inventors was followed and applied. This is especially important when using the
instruction version of those models.

Discharge Instructions Prompt

<SYSTEM>You are in the world’s best hospital as the best doctor. You’re given a patient’s details summarized by your
medical staff in ’Summary’. You now need to figure out the ’Discharge Instructions’ for the patient. Think carefully
without error, since you might endanger a patient’s life, which we do not want to happen.

<User>Summary: [Discharge Summary without target section]

Discharge Instructions:

<ASSISTANT>[Target Discharge Instructions]

Figure 7: Instruction Tuning and Inference Prompt for Discharge Instructions.

Brief Hospital Course Prompt

<SYSTEM>You are in the world’s best hospital as the best doctor. You’re given a patient’s details summarized by your
medical staff in ’Summary’. You now need to figure out a ’Brief Hospital Course’ for the patient. Think carefully
without error, since you might endanger a patient’s life, which we do not want to happen.

<USER>Summary: [Discharge Summary without target section]

Brief Hospital Course:
<ASSISTANT>[Target Brief Hospital Course]

Figure 8: Instruction Tuning and Inference Prompt for Brief Hospital Course.
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C Parameter Setup

Whenever possible, hyperparameters were only changed slightly to ensure high comparability between
results. The LoRA setup is detailed in Table 4. The following modules were targeted with LoRA: “q_proj”,
“k_proj”, “v_proj”, “o_proj”, “gate_proj”, “up_proj”, and “down_proj”. While it is suggested5 to use a
LoRA Rank = LoRA Alpha * 2, this approach was not chosen due to VRAM efficiency considerations.
For the detailed training setup, please see Table 5. All models were trained on 80GB H100s and 48GB

Model LR LA loadIn4Bit LD GC DT

Llama-3-8B-I + A. Prime 16 16 true 0 true bfloat16
Mistral-7B-I-v0.2 + A. Prime 16 16 true 0 true bfloat16
Llama-3-8B-I 16 16 true 0 true bfloat16
Mistral-7B-I-v0.2 16 16 true 0 true bfloat16
Llama-3-70B-I 16 16 true 0 true bfloat16
OpenBioLLM-70B 16 16 true 0 true bfloat16
Phi-3-mini-128k-I 16 16 true 0 true bfloat16
Llama-3-8B-I 2k + A 16 16 true 0 true bfloat16
Mistral-7B-I-v0.2 + A. 16 16 true 0 true bfloat16
Llama-3-8B-I 2k 16 16 true 0 true bfloat16
Llama-3-8B-I R 2k 16 16 true 0 true bfloat16

Table 4: LoRA Setup for fine-tuning. LR means LoRA Rank, LA means LoRA Alpha, LD means LoRA Dropout,
GC means Gradient Checkpointing, DT means dtype. By A. Asclepius is meant. Prime means the instruction tuning
runs with Asclepius.

RTX6000s. The Unsloth open-source training framework was used because it reduced VRAM usage by at
least 50% and subsequently made fine-tuning runs twice as fast. This efficiency allowed training almost
all models on a single GPU. The Maximum Sequence Length for the 70B models was reduced to decrease

Model MSL E GAS WS LR BS O S WD

Llama-3-8B-I + A. P. 15,000 1 4 5 2e-4 4 adamw_8bit linear 0.01
Mistral-7B-I-v0.2 + A. P. 15,000 1 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-8B-I 10,000 3 4 5 2e-4 4 adamw_8bit linear 0.01
Mistral-7B-I-v0.2 10,000 3 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-70B-I 10,000 2 4 5 2e-4 2 adamw_8bit linear 0.01
OpenBioLLM-70B 10,000 2 4 5 2e-4 2 adamw_8bit linear 0.01
Phi-3-mini-128k-I 12,000 2 4 10 2e-4 4 p_adamw_8bit linear 0.01
Llama-3-8B-I + A. 13,000 2 4 5 2e-4 4 adamw_8bit linear 0.01
Mistral-7B-I-v0.2 + A. 13,000 2 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-8B-I 2k 6,000 3 4 5 2e-4 4 adamw_8bit linear 0.01
Llama-3-8B-I R 2k 6,000 3 4 5 2e-4 4 adamw_8bit linear 0.01

Table 5: MSL means Maximum Sequence Length (Tokens), E means Epochs, GAS means Gradient Accumulation
Steps, WS means Warmup Steps, LR means Learning Rate, BS means Batch Size, O means Optimizer, S means
Scheduler, WD means Weight Decay. By A. Asclepius is meant. Prime (P.) means the instruction tuning runs with
Asclepius.

memory consumption. For Phi-3, the optimizer was changed from adamw_8bit (Loshchilov and Hutter,
2019) to paged_adamw_8bit6 to further optimize memory usage.

5https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms Accessed: 2024-05-17
6https://huggingface.co/docs/bitsandbytes/en/optimizers#paged-optimizers Accessed: 2024-05-15
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D Environmental Impact

In scientific research, it is crucial to consider not only the direct results of experiments but also the broader
implications and consequences of the research process. While the following environmental assessment is
not directly tied to the primary results, reporting on the environmental footprint of the work is essential
given the increasing global emphasis on sustainability and the environmental impact of computational
practices. This perspective aligns with the findings of (Ulmer et al., 2022), emphasizing the importance of
understanding and reporting the environmental consequences of experimental work.

The experiments were conducted using HPC resources located in Essen and Dortmund, Ger-
many. The region’s electricity generation has a carbon efficiency of 0.381 kgCO2 eq/kWh7, with
approximately 41,1% 8 of the electricity being sourced from fossil fuels. To estimate the carbon footprint
of our experiments, the Machine Learning Impact calculator, as presented by (Lacoste et al., 2019), is
utilized. This calculator provides a comprehensive framework to quantify the carbon emissions associated
with machine learning experiments, considering both the energy consumption of computational resources
and the carbon efficiency of the electricity source.

Final Models Runtime (hours) Power (Avg. Watts) Energy (kWh) CO2 (kg)

Mistral-7B-I-v0.2 BHC + A. 28.5 651.45 18.58 7.08
Mistral-7B-I-v0.2 + A. Prime 5 637 3.21 1.22
Mistral-7B-I-v0.2 DI + A. 27.4 681 18.71 7.13

Experiment runs 1,920 783.83 1,511.59 575.91

Overall 1,980.9 783.532 1,552.10 591.35

Table 6: Runtime, Energy Consumption and CO2 Emissions for the Final models, Other Experiment Runs and
Overall for All Experiments. By A. Asclepius is meant. Prime means the instruction tuning runs with Asclepius.

The carbon footprint and electricity consumption values for our optimal models, as well as for all
experimental runs conducted throughout the research process presented in Table 6. The values indicate
that substantial resources are expended on debugging and testing during development.

7https://ourworldindatAsclepiusorg/grapher/carbon-intensity-electricity?country=~DEU Accessed: 2024-
05-14

8https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/Production/Tables/
gross-electricity-production.html Accessed: 2024-05-14
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E Licenses

In Table 7 the Licenses as given by the owners of the Dataset/Framework/Model are displayed.

Dataset/Framework/Model License

Asclepius dataset9 Creative Commons Attribution Non Commercial Share Alike 4.0
MIMIC-IV-Note10 PhysioNet Credentialed Health Data License 1.5.0
MIMIC-IV-ED11 PhysioNet Credentialed Health Data License 1.5.0
MIMIC-SID12 MIT License
unsloth13 Apache License Version 2.0
Mistral-7B-I-v0.214 Apache License Version 2.0
Llama-3-8B-I15 Llama 3 Community License Agreement
Llama-3-70B-I16 Llama 3 Community License Agreement
OpenBioLLM-70B17 Llama 3 Community License Agreement
WizardLM-2 8x22B18 MIT License
Phi-3-mini-128k-I19 Apache License Version 2.0

Table 7: Licenses of the dataset, Framework and Models used for this Shared Task.

9https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes Accessed: 2024-05-17
10https://physionet.org/content/mimic-iv-note/2.2/ Accessed: 2024-05-17
11https://physionet.org/content/mimic-iv-ed/2.2/ Accessed: 2024-05-17
12https://github.com/plandes/mimicsid Accessed: 2024-05-17
13https://github.com/unslothai/unsloth Accessed: 2024-05-17
14https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 Accessed: 2024-05-17
15https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct Accessed: 2024-05-17
16https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct Accessed: 2024-05-17
17https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B Accessed: 2024-05-17
18https://huggingface.co/alpindale/WizardLM-2-8x22B Accessed: 2024-05-17
19https://huggingface.co/microsoft/Phi-3-mini-128k-instruct Accessed: 2024-05-17
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Abstract

This paper presents the setup and results of
the second edition of the BioLaySumm shared
task on the Lay Summarisation of Biomedical
Research Articles, hosted at the BioNLP Work-
shop at ACL 2024. In this task edition, we aim
to build on the first edition’s success by further
increasing research interest in this important
task and encouraging participants to explore
novel approaches that will help advance the
state-of-the-art. Encouragingly, we found re-
search interest in the task to be high, with this
edition of the task attracting a total of 53 partic-
ipating teams, a significant increase in engage-
ment from the previous edition. Overall, our
results show that a broad range of innovative
approaches were adopted by task participants,
with a predictable shift towards the use of Large
Language Models (LLMs).

1 Introduction

Lay Summarisation describes the task of generating
a summary of a technical or specialist text that
is suitable for a non-expert audience. To achieve
this goal, a good lay summary will typically focus
on explaining the relevant background information
alongside the significance and findings of an article,
while avoiding extensive use of jargon or technical
language. As such, lay summaries offer significant
benefits in broadening access to technical articles
that are of interest to a broad range of audiences.

Biomedical research publications, containing the
latest research on prominent health-related topics,
represent a perfect example of such texts. Not only
are the contents of these articles relevant to other
researchers working in the same domain, but of-
ten they can also be of interest to researchers in
related domains, medical practitioners, and even
members of the public (e.g., those affected by an ill-
ness/disease being studied). In this scenario, the lay
summary is an essential tool in allowing these sec-
ondary audiences, who don’t possess the expertise

required to interpret the full article, to understand
its key findings and relevance to their information
needs.

Although Lay Summaries are required or encour-
aged by some biomedical publications, they are not
universal, leaving a significant amount of inacces-
sible to lay audiences. Furthermore, the burden of
writing these summaries is often placed upon the
article authors, who are not always adept at effec-
tively communicating their work to a non-technical
audience. As such, automatic lay summary genera-
tion has significant potential to help both authors
and non-expert readers by improving the dissemi-
nation of important research.

The BioLaySumm shared task1 focuses on
improving the automatic lay summarization of
biomedical research. Through this shared task,
we aim to encourage the development of novel
approaches and increase interest in the research
of automatic techniques for disseminating scien-
tific research to broad audiences. In this paper,
we present the results of the second edition of the
BioLaySumm shared task, hosted by the BioNLP
Workshop at ACL 2024.

In what remains of the paper, we address the
task formulation (§2), datasets (§3), and evaluation
procedure (§4), before providing a description of
overall results and notable insights (§5), and finall
the participating systems (§6).

2 Task Description

As part of the task, participants must develop
systems capable of generating a lay summary of
biomedical research, given the article’s text as input.
Our competition was hosted using the CodaBench
platform (Xu et al., 2022).

As with the previous edition of the task, two
separate datasets, PLOS and eLife are used. Partic-
ipants were provided with both training and valida-

1https://biolaysumm.org

122



tion sets, complete with reference lay summaries,
alongside a blind test set. Final system perfor-
mance is determined by the performance of par-
ticipants’ systems on the blind test set, which could
be obtained by submitting their predicted lay sum-
maries to our CodaBench competition, where they
were automatically evaluated. More information
regarding our datasets and evaluation protocol is
provided in subsequent sections (§3 and §4, respec-
tively).

We allowed submissions to be generated from
either two separate summarisation models (i.e., one
trained on each dataset) or a single unified model
(i.e., trained on both datasets). Participants were
required to indicate which approach was taken for
each submission, in addition to whether or not they
made use of additional training data (i.e., data not
provided specifically for the task). Participants
were also allowed to compete as part of teams,
where each team was permitted to make a maxi-
mum of 15 test set submissions to the CodaBench
platform.2 However, teams were required to select
only one of their submissions to appear on the final
task leaderboard.

Because of its strong performance in the previ-
ous edition of the task, we also choose to keep the
same baseline system. Specifically, this baseline
system consists of two separate BART-base models
(Lewis et al., 2020), trained independently on the
PLOS and eLife datasets.

3 Datasets

The datasets used for the task are based on the
previous works of Goldsack et al. (2022) and Luo
et al. (2022b), and are derived from two different
biomedical publications: Public Library of Sci-
ence (PLOS) and eLife. Each dataset consists
of biomedical research articles paired with expert-
written lay summaries.

As described in Goldsack et al. (2022), the lay
summaries of each dataset also exhibit numerous
notable differences in their characteristics, with
eLife’s lay summaries being longer, more abstrac-
tive, and more readable than those of PLOS.

Furthermore, for PLOS, lay summaries are
author-written, and articles are derived from 5
peer-reviewed journals covering Biology, Computa-
tional Biology, Genetics, Pathogens, and Neglected
Tropical Diseases. For eLife, lay summaries are

2A significant increase on the limit of 3 submissions im-
posed in the previous edition of the task.

Dataset Subtask # Train # Val # Test
eLife 1 4,346 241 142
PLOS 1, 2 24,773 1,376 142*

Table 1: Data split sizes for each dataset. * denotes that
this split is different for each subtask.

written by expert editors (in correspondence with
authors), and articles are derived from the peer-
reviewed eLife journal, covering all areas of the
life sciences and medicine. For a more detailed
analysis of dataset content, readers can refer to
Goldsack et al. (2022).

Table 1 summarises the data split information
for both datasets. Note that the training and valida-
tion sets used for both datasets are equal to those
published in Goldsack et al. (2022).

As with the previous task edition, we collect new
test splits for both PLOS and eLife data using more
recently published articles from each respective
journal. This test data consists of 142 PLOS articles
and 142 eLife articles.

In utilizing these datasets for our task, we hope
to enable the training of abstractive summarisa-
tion models that are capable of generating lay sum-
maries for unseen articles covering a wide range
of biomedical topics, enabling the significance of
new, important publications to be effectively com-
municated to non-expert audiences.

4 Evaluation

For both subtasks, we evaluate summary quality
according to three criteria - Relevance, Readability,
and Factuality - where each criterion is composed
of one or more automatic metrics:

• Relevance: ROUGE-1, 2, and L (Lin, 2004)
and BERTScore (Zhang et al., 2020b).

• Readability: Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score
(DCRS), *Coleman-Laiu Index (CLI), and
*LENS (Maddela et al., 2023).

• Factuality: *AlignScore (Zha et al., 2023) and
*SummaC (Zha et al., 2023)

Where “*" indicates that the metric is newly in-
troduced for this year’s edition of the task. Specifi-
cally, the CLI and LENS metrics are introduced in
order to enhance our evaluation of summary read-
ability. Alternatively, AlignScore and SummaC are
introduced to replace the fine-tuned BARTScore
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model used to assess factuality in the previous
task edition, with the reason for this being that
BARTScore was found to exhibit bias toward
BART-based approaches.

The scores calculated for each metric are the
average of those calculated independently for the
generated lay summaries of PLOS and eLife. The
aim is to maximize the scores for all metrics except
for FKGL, DCRS, and CLI the Readability metrics.
For these metrics, the aim is to minimize scores, as
lower scores are indicative of greater readability.3

Following the submission deadline for each sub-
task, an overall ranking is calculated based on the
average performance of submissions across all cri-
teria. Specifically, we first apply min-max nor-
malization to the scores of each metric (thus es-
tablishing a common value range), before averag-
ing across metrics within each criterion to obtain
criterion-level scores.4 Note that, for metrics that
we minimize (i.e., FKGL, DCRS, and CLI) we
calculate 1 minus the mix-max normalized value.
Finally, criterion-level scores are then averaged to
obtain an overall score, by which submissions are
then ranked.

5 Task Results

Table 2 presents the performance of the submis-
sion selected by each team to appear on the final
leaderboard, according to the defined task metrics.

Overall, the final leaderboard of BioLaySumm
2024 contains a total of 53 teams, who made a
combined total of over 200 submissions. This rep-
resents a 165% increase in participation over Bio-
LaySumm 2023, which attracted a total of 20 teams
across two subtasks. In this section, we summarize
some of the key results and notable trends that were
observed among participants.

Model selection trends We identify several
trends amongst participants in terms of the models
used for experiments.5 Firstly, the use of Large
Language Models was found to be particularly
prevalent, with a total of 18 teams indicating that
LLMs were used in some capacity. Compared

3For these metrics, the scores are estimates of the US
Grade level of education required to comprehend a given text.

4This represents a minor change from the averaging proto-
col of the previous task edition, in which we first calculated
rankings for each criterion, before summing these rankings to
compute an overall rank.

5Information about model selection is derived from both
system papers submitted by participants and a “system descrip-
tion" field included in the submission form on CodaBench.

to the 3 teams who used LLMs in BioLaySumm
2023, this represents a stark increase that is reflec-
tive of shifts in the broader research landscape of
NLP. Within those teams using LLMs, biomedical-
specific models such as BioGPT (Luo et al., 2022a)
and BioMistral (Labrak et al., 2024) proved popu-
lar, with 7 teams indicating they used such models.
Other LLMs used include GPT-4 (2), LLAMA (2),
and Claude (1). There is evidence that LLMs were
used for both summary generation and summary
post-processing, with various settings (including
fine-tuned, few-shot, and zero-shot) being adopted.

Outside of LLMs, the T5 (Raffel et al., 2019)
model family proved the most popular alternative
approach, with 13 teams making use of these mod-
els in their selected submissions. In particular, the
FLAN-T5 (Chung et al., 2022a) model was found
to be widely-used, being selected by 9 teams. In-
terestingly, only 3 teams were found to have used
BART-based models, a significant drop from the
previous BioLaySumm edition, where they were
the most widely adopted approach. We find this
shift in model selection to be an encouraging sign
that participants are keen to explore novel methods
for Lay Summarisation, in line with our overall
task objectives.

Baseline comparison As shown in Table 2, 5
teams exceed the overall rank of the BART base-
line system. This represents an an increase on the
previous edition of the task, whereby only 1 team
outperformed the same baseline system in terms of
overall ranking.

Number of models used Contrary to the previ-
ous task edition, we find that more teams opted for
the use of a single unified model for both datasets
(27 out of 53), as opposed to using one model for
each dataset. This is likely a result of a signifi-
cant increase in the use of Large Language Models,
an unsurprising shift that reflects the current re-
search landscape in Natural Language Processing.
Interestingly, the top four ranked teams can all be
seen to adopt a 2-model approach, indicative of
the potential benefits of having a distinct model
specifically catering to the different lay summary
styles of each dataset.

Use of additional data As with this previous
task edition, we found that very few teams opted to
make use of additional data (i.e., data not provided
by the organizers as part of the task) in model de-
velopment. As shown by the + column in Table 2,
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⋆ Team # + Relevance Readability Factuality
R-1 R-2 R-L BertS FKGL DCRS CLI LENS AlignS SummaC

1 UIUC_BioNLP 2 × 48.55 15.69 45.50 86.77 11.75 9.34 13.36 52.85 80.04 73.38
2 Ctyun AI 2 × 47.96 15.46 44.94 86.66 12.44 9.67 14.15 51.09 82.72 74.80
3 Saama Technologies 2 × 47.85 15.45 44.97 86.70 11.36 9.10 13.15 51.90 77.83 72.68
4 WisPerMed 2 × 47.12 15.18 44.28 86.53 11.07 8.86 12.87 51.03 78.18 72.16
5 cylaun 1 × 47.39 14.55 44.45 85.61 10.46 9.33 12.64 41.69 75.26 78.44
6 BART Baseline 2 × 46.96 13.95 43.58 86.23 12.04 10.15 13.49 48.10 77.88 70.26
7 AUTH 1 ✓ 48.23 14.57 44.77 85.76 12.44 10.04 13.50 66.11 74.18 66.40
8 maverick 1 × 42.77 12.97 39.42 85.01 15.04 10.65 16.61 52.30 91.22 83.85
9 Empress 1 × 43.96 12.29 41.36 84.89 10.66 9.06 12.89 59.73 73.47 68.02

10 eulerian 1 × 40.35 11.66 37.10 84.51 14.80 10.76 16.53 48.46 91.73 85.38
11 BioLay_AK_SS 2 × 43.98 12.15 40.39 84.71 14.20 11.12 15.12 49.57 85.03 78.60
12 HULAT-UC3M 2 × 48.72 14.65 45.20 86.22 12.71 10.43 14.08 49.34 66.69 67.03
13 Atif_Tanish 1 × 43.82 11.96 41.01 84.84 10.61 9.12 12.86 60.14 72.92 67.12
14 qwerty 1 × 37.26 10.45 34.48 83.54 13.36 9.18 14.60 42.16 89.89 83.23
15 Deakin 2 × 48.22 14.20 44.41 85.83 14.46 10.76 15.48 63.91 74.57 61.80
16 MDSCL 2 × 42.56 13.01 39.35 85.20 14.01 10.78 15.92 63.05 81.50 71.54
17 MDS-CL 2 × 42.13 12.90 38.93 85.14 14.13 10.82 15.96 61.71 81.98 73.14
18 elirf 2 ✓ 48.15 13.66 43.09 85.95 13.61 10.86 14.66 48.02 78.21 60.66
19 RAG-RLRC-LaySum 2 × 46.24 13.04 42.37 85.29 12.68 10.43 14.41 59.26 71.28 66.29
20 naive_bhais 2 × 43.42 12.60 39.91 85.72 12.89 10.94 14.32 37.86 81.34 67.81
21 MDS-CL 1 × 42.31 11.05 39.22 85.62 11.93 9.23 13.25 74.67 71.52 56.55
22 MDS-CL 1 × 43.43 11.98 40.13 85.55 12.39 9.76 14.28 76.80 72.18 54.41
23 DhruvShlo 1 × 42.15 11.05 39.40 84.42 11.76 9.08 13.02 49.17 71.25 63.98
24 naman_tejas 1 × 39.54 11.06 36.73 84.25 12.29 9.20 13.58 50.44 75.68 68.10
25 SINAI 2 × 42.05 12.49 38.53 85.83 12.23 9.86 13.81 76.95 71.17 53.98
26 XYZ 2 × 41.04 9.93 38.01 85.50 11.02 9.37 13.00 81.21 70.18 54.63
27 gpsigh 2 × 33.60 9.18 30.97 82.97 15.69 9.30 15.17 42.06 91.28 82.11
28 YXZ 2 × 42.25 10.91 39.20 84.99 11.18 8.57 12.44 71.57 64.89 53.49
29 sanika 2 × 42.90 11.16 38.06 83.33 17.93 12.40 17.37 11.37 85.16 90.28
30 Bossy Beaver 1 × 41.32 11.45 37.98 84.73 13.99 10.41 15.74 65.49 78.08 60.65
31 Dayal K-Laksh G 1 × 33.93 9.49 30.55 84.98 14.39 12.15 16.24 32.33 93.07 80.71
32 MKGS 1 × 37.75 9.72 34.67 83.33 15.79 11.92 17.50 22.07 93.08 83.52
33 Shallow-Learning 1 × 42.22 11.33 39.54 83.89 10.56 9.04 12.42 53.68 57.28 61.17
34 NLPSucks 2 × 34.91 8.32 33.32 82.62 10.68 6.76 12.08 37.86 74.36 64.22
35 CookieMonster 2 × 43.06 10.33 39.83 84.57 12.04 9.37 13.18 49.53 63.63 59.19
36 NoblesseUranium 1 × 39.16 10.34 35.87 84.65 14.21 10.44 15.45 51.99 75.74 67.32
37 roon 2 × 44.16 11.24 41.44 84.74 11.78 8.86 12.38 71.26 52.73 50.50
38 jimmyapples 2 × 43.36 10.84 40.35 84.82 11.44 9.03 12.10 71.48 56.54 49.00
39 Shivam 2 × 33.85 8.91 30.76 83.56 12.90 11.89 15.14 15.66 91.64 80.94
40 HGP_NLP 2 × 29.69 8.60 26.95 83.74 11.20 9.91 12.79 44.22 79.45 74.11
41 Cornell-BioLay 1 × 39.50 7.92 35.99 84.50 10.97 9.56 12.66 72.53 60.10 51.76
42 xpc 2 × 44.59 11.80 40.36 84.84 13.45 10.33 15.72 67.72 56.87 48.78
43 Hemlo 1 × 30.04 6.88 27.86 81.10 16.49 7.58 15.74 21.91 89.50 74.41
44 anjaneya 2 × 28.87 8.26 26.00 83.66 13.70 11.45 15.46 37.03 74.71 78.66
45 Runtime_Terror 1 × 40.18 10.14 37.44 83.69 13.98 8.41 13.13 49.60 47.51 50.37
46 Abhi_Sidd 1 × 35.33 9.15 31.79 83.09 17.29 12.42 14.47 17.41 79.09 62.95
47 cbdch 1 × 36.69 9.29 32.98 85.09 14.43 11.18 15.82 74.13 63.34 44.61
48 aLoneLM 1 × 35.67 6.74 33.29 82.33 11.07 8.52 11.04 42.82 48.93 52.62
49 hohoho 2 × 33.46 5.48 31.32 81.93 11.21 8.80 12.04 53.01 44.68 50.98
50 huizige 1 × 37.16 8.82 33.59 83.06 15.40 11.39 16.78 47.53 60.13 49.36
51 SSS 1 × 25.64 6.21 23.18 82.81 13.71 12.45 16.61 43.82 72.72 61.55
52 H2P 1 × 25.93 4.03 23.73 81.70 16.53 11.94 18.98 56.77 56.03 47.04
53 KnowLab 1 ✓ 32.16 7.34 28.31 80.63 36.29 11.55 11.28 1.32 42.41 54.74

Table 2: Task leaderboard - all metrics. The ⋆ column denotes the submission rank, the # column the number of
models used - 1 (unified) or 2 (one for each dataset), and the + column the use of additional training data. R =
ROUGE F1, BertS = BertScore, FKGL = Flesch-Kincaid Grade Level, DCRS = Dale-Chall Readability Score,
CLI = Coleman-Liau Index, AlignS = AlignScore.
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Rank Team Relevance Readability Factuality
R-1 R-2 R-L BertS FKGL DCRS CLI LENS AlignS SummaC

1 UIUC_BioNLP 0.993 1.000 1.000 1.000 0.950 0.547 0.708 0.645 0.743 0.630
2 Ctyun AI 0.967 0.980 0.975 0.982 0.923 0.488 0.609 0.623 0.796 0.661
3 Saama Technologies 0.962 0.979 0.976 0.989 0.965 0.589 0.734 0.633 0.699 0.615
4 WisPerMed 0.931 0.956 0.945 0.962 0.976 0.631 0.770 0.622 0.706 0.603
5 cylaun 0.943 0.902 0.953 0.811 1.000 0.548 0.800 0.505 0.648 0.741
6 BART Baseline 0.924 0.851 0.914 0.913 0.939 0.405 0.693 0.586 0.700 0.561
7 AUTH 0.979 0.904 0.967 0.836 0.923 0.424 0.691 0.811 0.627 0.477
8 maverick 0.742 0.766 0.728 0.713 0.822 0.316 0.298 0.638 0.963 0.859
9 Empress 0.794 0.708 0.815 0.695 0.992 0.596 0.768 0.731 0.613 0.513

10 eulerian 0.637 0.655 0.624 0.632 0.832 0.298 0.308 0.590 0.973 0.893
11 BioLay_AK_SS 0.795 0.697 0.771 0.664 0.855 0.233 0.486 0.604 0.841 0.744
12 HULAT-UC3M 1.000 0.911 0.987 0.912 0.913 0.355 0.618 0.601 0.479 0.491
13 Atif_Tanish 0.788 0.680 0.799 0.686 0.994 0.585 0.771 0.736 0.602 0.493
14 qwerty 0.503 0.551 0.506 0.475 0.888 0.574 0.552 0.511 0.937 0.845
15 Deakin 0.978 0.872 0.951 0.848 0.845 0.298 0.441 0.784 0.635 0.376
16 MDSCL 0.733 0.770 0.725 0.745 0.862 0.294 0.385 0.773 0.771 0.590
17 MDS-CL 0.714 0.761 0.706 0.734 0.858 0.286 0.381 0.756 0.781 0.625
18 elirf 0.976 0.826 0.892 0.867 0.878 0.280 0.544 0.585 0.707 0.351
19 RAG-RLRC-LaySum 0.892 0.772 0.860 0.759 0.914 0.355 0.576 0.725 0.570 0.475
20 naive_bhais 0.790 0.749 0.773 0.850 0.912 0.270 0.578 0.498 0.760 0.493
21 MDS-CL 0.722 0.601 0.719 0.813 0.943 0.567 0.722 0.918 0.575 0.261
22 MDS-CL 0.771 0.682 0.759 0.802 0.925 0.473 0.592 0.945 0.588 0.214
23 DhruvShlo 0.716 0.602 0.727 0.618 0.950 0.593 0.751 0.599 0.569 0.424
24 naman_tejas 0.602 0.603 0.607 0.589 0.929 0.571 0.681 0.615 0.657 0.514
25 SINAI 0.711 0.726 0.688 0.848 0.932 0.455 0.651 0.947 0.568 0.205
26 XYZ 0.667 0.506 0.665 0.793 0.978 0.542 0.754 1.000 0.548 0.219
27 gpsigh 0.345 0.442 0.349 0.381 0.798 0.553 0.481 0.510 0.965 0.821
28 YXZ 0.720 0.590 0.718 0.711 0.972 0.682 0.825 0.879 0.444 0.194
29 sanika 0.748 0.612 0.667 0.440 0.711 0.008 0.203 0.126 0.844 1.000
30 Bossy Beaver 0.679 0.636 0.663 0.668 0.863 0.359 0.409 0.803 0.704 0.351
31 Dayal K-Laksh G 0.359 0.468 0.330 0.708 0.848 0.053 0.346 0.388 1.000 0.790
32 MKGS 0.525 0.488 0.515 0.440 0.794 0.093 0.187 0.260 1.000 0.852
33 Shallow-Learning 0.718 0.626 0.733 0.531 0.996 0.600 0.826 0.655 0.293 0.362
34 NLPSucks 0.402 0.368 0.454 0.324 0.991 1.000 0.870 0.457 0.631 0.429
35 CookieMonster 0.755 0.540 0.746 0.643 0.939 0.541 0.731 0.604 0.419 0.319
36 NoblesseUranium 0.586 0.541 0.568 0.656 0.855 0.353 0.445 0.634 0.658 0.497
37 roon 0.802 0.618 0.818 0.670 0.949 0.632 0.832 0.875 0.204 0.129
38 jimmyapples 0.768 0.584 0.769 0.683 0.962 0.601 0.867 0.878 0.279 0.096
39 Shivam 0.356 0.418 0.340 0.477 0.905 0.098 0.484 0.179 0.972 0.795
40 HGP_NLP 0.175 0.392 0.169 0.507 0.971 0.446 0.781 0.537 0.731 0.646
41 Cornell-BioLay 0.601 0.333 0.574 0.630 0.980 0.508 0.797 0.891 0.349 0.156
42 xpc 0.821 0.666 0.770 0.686 0.884 0.372 0.411 0.831 0.285 0.091
43 Hemlo 0.190 0.245 0.210 0.076 0.766 0.857 0.408 0.258 0.929 0.652
44 anjaneya 0.140 0.363 0.126 0.493 0.874 0.176 0.444 0.447 0.637 0.745
45 Runtime_Terror 0.630 0.524 0.639 0.499 0.864 0.711 0.737 0.604 0.101 0.126
46 Abhi_Sidd 0.420 0.439 0.386 0.400 0.735 0.005 0.568 0.201 0.724 0.401
47 cbdch 0.479 0.451 0.439 0.726 0.846 0.224 0.399 0.911 0.413 0.000
48 aLoneLM 0.435 0.233 0.453 0.277 0.976 0.691 1.000 0.520 0.129 0.175
49 hohoho 0.339 0.124 0.365 0.212 0.971 0.642 0.874 0.647 0.045 0.139
50 huizige 0.499 0.410 0.466 0.395 0.809 0.187 0.277 0.578 0.350 0.104
51 SSS 0.000 0.187 0.000 0.356 0.874 0.000 0.299 0.532 0.598 0.371
52 H2P 0.013 0.000 0.025 0.174 0.765 0.089 0.000 0.694 0.269 0.053
53 KnowLab 0.283 0.283 0.230 0.000 0.000 0.158 0.971 0.000 0.000 0.222

Table 3: Task leaderboard with min-max normalization. R = ROUGE F1, BertS = BertScore, FKGL = Flesch-
Kincaid Grade Level, DCRS = Dale-Chall Readability Score, CLI = Coleman-Liau Index, AlignS = AlignScore.
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only three teams - AUTH, elirf, and KnowLab -
indicated that they adopted such an approach.

Reflection on evaluation protocol changes
Here, we discuss the impact of the changes made to
the evaluation protocol over the previous task edi-
tion. As mentioned in §4, the first of these changes
surrounds the introduction of new metrics for the
Readability and Factuality criteria. As a model-
based simplification metric, LENS was introduced
to provide an additional angle for teams to consider
for Readability, with Maddela et al. (2023) demon-
strating that the metric correlates particularly well
with the fluency ratings of human annotators for
simplified texts. Notably, LENS does not exhibit a
strong alignment with other (more heuristic) Read-
ability metrics, suggesting that these metrics may
not capture this aspect of simplified texts.

For Factuality, we introduced the AlignScore
and SummaC metrics as a replacement for a fine-
tuned version of BARTScore to avoid potential bias
toward BART-based models. However, given that
these metrics broadly involve comparing a gener-
ated summary to the source text, these metrics tend
to favor highly extractive outputs. Given that ref-
erence lay summaries tend to be quite abstractive
(particularly in the case of the eLife dataset), this re-
sulted in a trade-off between scoring highly for Fac-
tuality and the metrics of Relevance or Readability.
Overall, we observe that the systems that ranked the
highest were those that most successfully balanced
this trade-off, typically obtaining strong Relevance
and Readability scores while maintaining relatively
high Factuality scores.

Finally, the process for the calculation of final
rankings was changed from summing individual cri-
terion rankings to the averaging of average criterion
scores. This change was motivated by the failure of
the previous method of ranking to take into account
the relative difference between average scores for
a given criterion, something that was commented
on by last year’s participants.6 However, the new
ranking system was also found to be not without
its issues, particularly surrounding the existence of
outliers. Specifically, it was observed that, if there
existed teams that scored particularly poorly for
a given metric, then all other teams would obtain
relatively strong (and less diverse) scores for this

6For example, in terms of average criterion score, the team
ranked 1st may outperform the team ranked 2nd by a large
margin, who in term may outperform the team ranked 3rd
by a small margin. However, by converting these scores to
rankings, all differences are treated as equal.

metric relative to others - this can be seen for the
FKGL metric in Table 3.

6 Submissions

Out of the 53 participating teams, 14 teams sub-
mitted system papers. Here, we provide a brief
summary of the approaches taken by these teams.

UIUC_BioNLP (You et al., 2024) This team
produced the top-ranked submission, adopting an
extract-then-summarize approach that utilizes Tex-
tRank (Mihalcea and Tarau, 2004) for salient sen-
tence extraction, followed by a fine-tuned GPT-
3.5-turbo model for summary generation. Specifi-
cally, their submitted system extracted the top 40
most salient sentences using TextRank, and their
GPT-bsaed model is fine-tuned on 200 examples.
Additional experimentation was conducted using
various extractive summarization approaches and
comparing the number of examples required for
effective fine-tuning. Furthermore, the team also
explored a LongFormer-based approach that further
incorporates retrieved Wikipedia data in a Retrieval-
Augmented Generation (RAG) setup.

Cytun AI (Zhao et al., 2024) Making the second-
ranked submission, the methodology of this team
surrounds the use of fine-tuned LLMs. As part
of their experimentation, they compare two ap-
proaches for handling lengthy input articles: hard
truncation and text chunking. Additionally, their
summary-generation pipeline includes data prepro-
cessing, augmentation, and prompt engineering.

Saama Technologies (Kim et al., 2024) This
team achieved the third-ranking submission, which
surrounded fine-tuning a Mistral-7B model7 in an
unsupervised fashion using low-ranked adaptation
(LoRA) (Hu et al., 2021), followed by zero-shot
summary generation and post-processing to remove
redundant sentences. This team also experiments
with several other fine-tuning methods, including
supervised fine-tuning with LoRA and Direct Pref-
erence Optimization (Rafailov et al., 2023).

WisPerMed (Pakull et al., 2024) Ranking in
fourth place, the selected submission of Wis-
PerMed utilized a fine-tuned BioMistral model,
combined with few-shot prompting and a Dynamic-
Expert selection (DES) mechanism. Specifically,
their BioMistral Model was trained using abstracts
and lay summaries of the provided train set; and

7mistral-7B-instruct-v0.2
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their proposed DES mechanism involved gener-
ating several lay summary versions with different
prompts for a given input, before selecting the most
desirable based on the scores of the references-less
Readability and Factuality metrics used in the task.
In additional experiments, they also measured sys-
tem performance utilizing LLAMA3, as well as
that of few-shot and zero-shot model variants. The
task organizers selected this team to receive an
award for the “most innovative approach".

AUTH (Stefanou et al., 2024) Being one of the
only teams to utilize external data, this retrieves
300 abstract-lay abstract pairs scraped from the
Science Journal for Kids website.8 They use this
retrieved data as in-context examples for GPT-
4, which they prompt to augment the provided
datasets by rewriting reference summaries with
higher readability scores. Finally, they use this
data to fine-tune to fine-tune BioBART (Yuan et al.,
2022), whilst also experimenting with controllable
generation techniques in the form of control to-
kens prepended to the input article (<elife>
/ <plos> and <general_lay_summary> /
<kids_lay_summary>).

Eulerian (Modi and Karthikeyan, 2024) The
team experimented with different combinations of
the FLAN-T5 (Chung et al., 2022b) model vari-
ations and data selection. They compare the per-
formance of these methods with a preposed “Pre-
processing over Abstract" technique, in which they
use a regular expression to remove some abstract
information (i.e., anything inside of parentheses,
braces and brackets), finding that this outperforms
all neural methods tested in terms of Relevance and
Factuality metrics.

BioLay_AK_SS (Karotia and Susan, 2024) Fo-
cusing largely on data augmentation, this team gen-
erated additional summary samples using 2 general-
purpose models: BART (Lewis et al., 2020) and
PEGASUS (Zhang et al., 2020a). The augmented
dataset was then used to fine-tune a domain-specific
BioBART model, which was found to improve its
overall improved overall performance.

HULAT-UC3M (Gonzalez and Martínez, 2024)
Again comparing the performance of domains-
specific and general-purpose models, this team
experimented with fine-tuning both Longformer
(Beltagy et al., 2020) and BioBART models on the

8https://sciencejournalforkids.org/

given datasets. Additionally, they experiment with
extending BioBART to utilise Longformer-based
sparse attention, thus allowing it to process longer
inputs. Overall, they found that fine-tuning the
standard BioBART model on each dataset yields
the best performance.

DeakinNLP (Quoc To et al., 2024) This team as-
sessed the performance of both a fine-tuned Long-
former and GPT-4 (with zero- and few-shot prompt-
ing). Additional analysis is also conducted sur-
rounding data selection and the performance vs.
cost trade-off between select methods.

elirf (Ahuir et al., 2024) Again utilising Long-
former as their base model, this team experimented
with domain-adaption via a continuous pre-training
approach. During pre-training, several pretraining
tasks were aggregated to inject linguistic knowl-
edge and increase the abstractiveness of generated
summaries. Finally, they developed a regression-
based ranking model that improved system perfor-
mance by selecting the most promising from a set
of generated summaries.

RAG-RLRC-LaySum (Ji et al., 2024) This
team developed a Retrieval-Augmented Genera-
tion (RAG) Lay Summarisation approach, utilizing
multiple knowledge sources (including both source
documents and Wikipedia). They experiment with
LLMs (Gemini and ChatGPT) for both summary
generation and paraphrasing, in addition to a Long-
former baseline. Lastly, the team also develop a
Reinforcement Learning strategy to fine-tune the
readability of generated summaries.

SINAI (Chizhikova et al., 2024) Focusing largely
on a few-shot setting, this team compared the
performance of several popular LLMs includ-
ing GPT-3.5, GPT-4, and LLAMA3. Further
experimentation surrounded the fine-tuning of a
smaller LLAMA model (LLAMA3-8B) using both
parameter-efficient LoRA techniques and Direct
Preference Optimization (Rafailov et al., 2023).

XYZ (Zhou et al., 2024) This team performed
a thorough comparison of several state-of-the-art
LLMs, focusing largely on comparing the readabil-
ity of generated summaries. Further experimenta-
tion surrounds Summary rewriting, Title infusing,
K-shot prompting, and LoRA-based fine-tuning,
with their best-performing submission utilizing a
combination of these methods and obtaining the
best overall Readability scores.
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HGP_NLP (Malik et al., 2024) This team fine-
tune and evaluate multiple T5 model variants, also
experimenting with LoRA-based fine-tuning.

7 Conclusion

The second edition of the BioLaySumm Shared
Task was hosted by the BioNLP Workshop@ACL
2024. Several changes were implemented over
the previous edition of the task covering participa-
tion rules, evaluation metrics, and ranking proto-
col. In terms of participant engagement, the task
attracted a total of 53 teams, representing a signifi-
cant growth from the previous edition’s 20 teams.
Our results indicate a drastic shift towards the use
of LLMs for lay summarisation, with a wide range
of both domain-specific and general-purpose LLMs
being adopted in various settings across participant
submissions.
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tion for Computational Linguistics.

A Appendix

⋆ Team Relevance Readability Factuality Avg.
1 UIUC_BioNLP 0.998 0.712 0.686 0.799
2 Ctyun AI 0.976 0.661 0.728 0.788
3 Saama Technologies 0.977 0.730 0.657 0.788
4 WisPerMed 0.948 0.750 0.655 0.784
5 cylaun 0.902 0.713 0.694 0.770
6 BART Baseline 0.901 0.655 0.631 0.729
7 AUTH 0.922 0.713 0.552 0.729
8 maverick 0.737 0.519 0.911 0.723
9 Empress 0.753 0.772 0.563 0.696

10 eulerian 0.637 0.507 0.933 0.692
11 BioLay_AK_SS 0.732 0.545 0.793 0.690
12 HULAT-UC3M 0.952 0.622 0.485 0.686
13 Atif_Tanish 0.738 0.772 0.547 0.686
14 qwerty 0.509 0.631 0.891 0.677
15 Deakin 0.912 0.592 0.506 0.670
16 MDSCL 0.743 0.579 0.681 0.667
17 MDS-CL 0.729 0.570 0.703 0.667
18 elirf 0.890 0.572 0.529 0.664
19 RAG-RLRC-LaySum 0.821 0.643 0.522 0.662
20 naive_bhais 0.790 0.565 0.626 0.660
21 MDS-CL 0.714 0.788 0.418 0.640
22 MDS-CL 0.753 0.734 0.401 0.629
23 DhruvShlo 0.666 0.723 0.497 0.628
24 naman_tejas 0.600 0.699 0.585 0.628
25 SINAI 0.743 0.746 0.386 0.625
26 XYZ 0.658 0.819 0.384 0.620
27 gpsigh 0.379 0.585 0.893 0.619
28 YXZ 0.685 0.840 0.319 0.614
29 sanika 0.617 0.262 0.922 0.600
30 Bossy Beaver 0.662 0.609 0.528 0.599
31 Dayal K-Laksh G 0.466 0.409 0.895 0.590
32 MKGS 0.492 0.333 0.926 0.584
33 Shallow-Learning 0.652 0.769 0.328 0.583
34 NLPSucks 0.387 0.830 0.530 0.582
35 CookieMonster 0.671 0.704 0.369 0.581
36 NoblesseUranium 0.588 0.572 0.577 0.579
37 roon 0.727 0.822 0.166 0.572
38 jimmyapples 0.701 0.827 0.187 0.572
39 Shivam 0.398 0.417 0.884 0.566
40 HGP_NLP 0.311 0.684 0.688 0.561
41 Cornell-BioLay 0.535 0.794 0.253 0.527
42 xpc 0.736 0.625 0.188 0.516
43 Hemlo 0.180 0.572 0.791 0.514
44 anjaneya 0.281 0.485 0.691 0.486
45 Runtime_Terror 0.573 0.729 0.113 0.472
46 Abhi_Sidd 0.411 0.378 0.563 0.450
47 cbdch 0.524 0.595 0.207 0.442
48 aLoneLM 0.349 0.797 0.152 0.433
49 hohoho 0.260 0.783 0.092 0.378
50 huizige 0.443 0.463 0.227 0.378
51 SSS 0.136 0.426 0.484 0.349
52 H2P 0.053 0.387 0.161 0.200
53 KnowLab 0.199 0.282 0.111 0.197

Table 4: Task leaderboard with min-max normaliza-
tion. The ⋆ column denotes the submission rank. R
= ROUGE F1, BertS = BertScore, FKGL = Flesch-
Kincaid Grade Level, DCRS = Dale-Chall Readability
Score, CLI = Coleman-Liau Index, AlignS = Align-
Score.
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Abstract

As the number of scientific publications is
growing at a rapid pace, it is difficult for laypeo-
ple to keep track of and understand the latest
scientific advances, especially in the biomed-
ical domain. While the summarization of sci-
entific publications has been widely studied,
research on summarization targeting laypeople
has remained scarce. In this study, consider-
ing the lengthy input of biomedical articles, we
have developed a lay summarization system
through an extract-then-summarize framework
with large language models (LLMs) to sum-
marize biomedical articles for laypeople. Us-
ing a fine-tuned GPT-3.5 model, our approach
achieves the highest overall ranking and demon-
strates the best relevance performance in the
BioLaySumm 2024 shared task1.

1 Introduction

New research in the biomedical field is often re-
ported in the latest scientific articles and plays a
crucial role in improving human health and well-
being. However, the complex terminology and
scientific language used in these publications can
be challenging to understand for those without ex-
tensive knowledge of the field. The Biomedical
Lay Summarization task (BioLaySumm) (Goldsack
et al., 2024) addresses this challenge by creating
summaries that are easier to read and understand,
specifically tailored for readers unfamiliar with
biomedical studies. Unlike traditional text summa-
rization, which aims to condense documents into
brief summaries, BioLaySumm also focuses on us-
ing easy-to-understand language. This approach
ensures that the summaries are less technical and
more accessible, while traditional summarization
tasks prioritize capturing the precise scientific ter-
minology used in the original documents. To solve

1Our code is available at https://github.com/
zhiwenyou103/UIUC_BioNLP_BioLaySumm2024.

Figure 1: Our Extract-then-Summarize framework for
the biomedical lay summarization task. We assess the
performance of two models, GPT-3.5 and LED, in gen-
erating lay summaries. The input of the LED model
includes the article sections that are ranked for rele-
vance, Wikipedia knowledge, and an extractive sum-
mary. Meanwhile, the GPT-3.5 model is fine-tuned by
the extractive summaries.

the limited size and scope issue in current lay sum-
marization corpora, Goldsack et al. (2022) have
proposed two novel lay summarization datasets,
PLOS and eLife, including biomedical journal arti-
cles alongside expert- and author-written lay sum-
maries, which form the basis for the shared task.

We submit lay summaries generated by two fine-
tuned LLMs for this task (one for each dataset).
Considering the constraints on input size and com-
putational resources (i.e., one GPU with 32 GB
memory), using the full length of scientific arti-
cles for LLM fine-tuning is not feasible. There-
fore, we adopt an extract-then-summarize approach
(Koh et al., 2022; Bajaj et al., 2021) (illustrated
in Figure 1), which allows us to reduce the in-
put length while maintaining competitive perfor-
mance. We fine-tune the Longformer Encoder-
Decoder (LED) model (Beltagy et al., 2020) and
GPT-3.5 (OpenAI, 2024) and explore the effective-
ness of combining unsupervised extractive summa-
rization methods with a retrieval-augmented gener-
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ation (RAG) approach (Guo et al., 2024) in gener-
ating lay summaries. Our experimental results on
GPT-3.5 achieve the best overall ranking and the
highest relevance score in the shared task.

2 Methods

We introduce our methodology for the biomedical
lay summarization task (illustrated in Figure 1), in-
cluding dataset description, section re-ranking, ex-
tractive summarization, RAG, GPT-3.5 fine-tuning,
and evaluation measures. The detailed experimen-
tal settings are reported in Appendix A.

2.1 Datasets

We use eLife and PLOS datasets provided by Gold-
sack et al. (2022) for experiments. We report the
average tokens of each dataset given the whole doc-
ument and lay summarization in Appendix B. The
lay summaries of eLife are crafted by expert edi-
tors, offering extensive abstraction and enhanced
readability. Conversely, PLOS presents lay sum-
maries written directly by the authors of articles.
In terms of articles, eLife comprises peer-reviewed
publications encompassing a broad spectrum of
life sciences and medicine. PLOS covers journals
spanning Biology, Computational Biology, Genet-
ics, Pathogens, and Neglected Tropical Diseases
(Goldsack et al., 2022).

2.2 Preprocessing

We employ two methods to preprocess the input ar-
ticle, aiming to reduce its length and extract salient
sentences: section reordering and unsupervised ex-
tractive summarization.

2.2.1 Section Reordering
To better understand the experimental datasets, we
conduct preliminary experiments to analyze which
sections are most relevant to the gold standard lay
summaries. We first group the headings of each
article in eLife and PLOS datasets into five cate-
gories using structured section labels provided by
the National Library of Medicine (NLM)2 (See Ap-
pendix C for more details). Then, based on the
results of section-level similarity comparison, we
reorder the whole article in the order of abstract,
background, conclusion, results, and methods sec-
tions. The results of the reordering method in the

2https://lhncbc.nlm.nih.gov/ii/
areas/structured-abstracts/downloads/
Structured-Abstracts-Labels-102615.txt

eLife validation set in Appendix C show the effec-
tiveness of the restructured article compared with
the default section order.

2.2.2 Unsupervised Extractive Summarization
Given the input length constraints and limited com-
puting resources, fully incorporating scientific arti-
cles for model fine-tuning is impractical. To cap-
ture the essential global information of the articles,
we implement two unsupervised extractive summa-
rization approaches: a graph-based ranking method
(TextRank) (Mihalcea and Tarau, 2004) and a
BERT-based clustering method (Miller, 2019), to
extract salient sentences from the documents.

TextRank (Mihalcea and Tarau, 2004) operates
by treating text as a graph, where nodes are con-
structed based on lemmas, parts-of-speech tags
of tokens in the text, and edges based on co-
occurrence within a window. By iteratively apply-
ing a ranking algorithm similar to Google’s PageR-
ank (Brin and Page, 1998), it identifies the essential
tokens, helping generate summaries or extract key
information from text documents.

We use a BERT-based clustering ap-
proach (Miller, 2019) for unsupervised ex-
tractive summarization. It starts by dividing
the article into segments using the LangChain3

NLTKTextSplitter API. Next, we apply a
pre-trained embedding model PubMedBERT4

E deployed through SentenceTransformers5 to
encode sentences from both lay summaries and
segmented passages. We calculate the cosine
similarity between these embeddings to create
a contrastive learning dataset C, essential for
fine-tuning the embedding model adapted for
lay summarization tasks. Specifically, pairs with
cosine similarity scores above 0.9 are considered
positive, indicating high relevance, while those
with scores below 0.01 are negative, indicating
minimal relevance. We then fine-tune E with C
through a contrastive loss. Appendix B presents
the created dataset statistics of C. Following the
method proposed by Miller (2019), we apply a
K-means clustering approach to group sentences
with the same themes and find the sentences closest
to the cluster’s centroids as salient sentences.
We extract the top 50 closest sentences from all
clusters, each with a maximum length of 256

3https://www.langchain.com/
4https://huggingface.co/NeuML/

pubmedbert-base-embeddings
5https://huggingface.co/sentence-transformers

133



Models R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

BART (baseline) 0.4696 0.1395 0.4358 0.8623 12.0359 10.1475 13.4852 48.0963 0.7788 0.7026
GPT-3.5 0.4855 0.1569 0.455 0.8677 11.7535 9.3388 13.3642 52.8504 0.8004 0.7338

PubMedLED 0.4926 0.1563 0.4576 0.8585 12.4500 9.8969 13.4096 63.7736 0.7576 0.6828

Table 1: Performance of our final submission and the baseline models on the test sets of both eLife and PLOS
datasets. BART represents the baseline model proposed by the BioLaySumm organisers. GPT-3.5 is our final
submission on the leaderboard, and PubMedLED is an open-source model for comparison. PubMedLED model tuning
involves reordered sections, extractive summary, and RAG (i.e., DPR and Wikipedia definition retrieval).

tokens, as an extractive summary.
These two extractive summarization approaches

reduce the overall document length, capture the es-
sential global context, and facilitate efficient model
fine-tuning.

2.3 Retrieval-Augmented Generation
To simplify model-generated lay summaries, we
resort to external knowledge due to the limited
background information in the datasets. First, we
use a keyword-based definition retrieval method
to extract definitions from the Wikipedia dataset
(Guo et al., 2024) through string matching. Specifi-
cally, we employ KeyBERT6 to extract the top 10
keywords from each article’s abstract using BERT
embeddings. Then, we use dataset-provided and ex-
tracted keywords to retrieve short definitions from
the Wikidata-based dataset (Guo et al., 2024). We
use the Wikipedia API via LangChain for extended
definitions if no results are found. We concatenate
the retrieved information with the input article.

Additionally, we apply an embedding-based
method to extract relevant information by selecting
passages from the “wiki_dpr” dataset, which con-
tains 21 million 100-word passages from Wikipedia
(Lewis et al., 2020b). Using the pre-trained dense
retrieval (DPR) component of the RAG model, we
retrieve the five most relevant passages to integrate
into our generation tasks.

2.4 GPT-3.5 Fine-Tuning
We also experiment with GPT-3.5-turbo7, a large-
scale closed-source model from OpenAI. Our ex-
periments, along with findings from Turbitt et al.
(2023), demonstrate performance below the base-
line in zero-shot and few-shot prompting settings.
Consequently, we investigate fine-tuning the model
using the OpenAI API8. To minimize API costs,
we employ the extract-then-summarize approach,

6https://github.com/MaartenGr/KeyBERT
7https://platform.openai.com/docs/models/

gpt-3-5-turbo
8https://openai.com/api/

utilizing TextRank to extract key sentences from
the full text, which are then fed into the GPT model
for summary generation. Our results indicate that
fine-tuning on small random samples (100 to 400
examples) is adequate to achieve high performance
for the task. For our final submission, we extract
40 sentences per article using TextRank and fine-
tune separate models for each dataset using random
samples of 200 articles.

2.5 Evaluation

We assess the performance of our model using the
official evaluation scripts provided by the organiz-
ers (Goldsack et al., 2023), employing various auto-
matic metrics related to relevance, readability, and
factuality. Relevance is measured through ROUGE
(1, 2, and L) (Lin, 2004) and BERTScore (Zhang
et al.). Readability metrics include the Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
Dale-Chall Readability Score (DCRS) (Dale and
Chall, 1948), Coleman-Liau Index (CLI) (Cole-
man and Liau, 1975), and LENS (Maddela et al.,
2023). Notably, lower FKGL, DCRS, and CLI
scores signify improved readability. Factuality eval-
uation incorporates AlignScore (Zha et al., 2023)
and SummaC (Laban et al., 2022).

3 Results and Analysis

We present the evaluation results of our methods
in the leaderboard in Table 1. Fine-tuning GPT-
3.5 ranks best overall among our submissions and
outperforms the baseline BART model in all as-
pects. Additionally, we experiment with different
numbers of sentences being extracted by the Tex-
tRank (Table 2) and different numbers of training
examples on the eLife validation set (Table 3). We
observe no significant improvement over various
evaluation metrics when increasing the number of
TextRank sentences beyond 40 and the training set
size beyond 200 examples.

Despite GPT-3.5’s better performance over the
smaller encoder-decoder models in most evaluation
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# TextRank R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

20 0.4923 0.1498 0.4696 0.8647 9.1871 7.4619 10.6136 60.7699 0.6408 0.5460
30 0.5024 0.1525 0.4797 0.8647 9.1804 7.5366 10.5684 59.8206 0.6412 0.5352
40 0.5134 0.1566 0.4897 0.8677 9.0398 7.6474 10.5426 61.9627 0.6502 0.5524
50 0.5094 0.1563 0.4869 0.8661 9.1896 7.5420 10.5649 60.9104 0.6449 0.5466

100 0.5151 0.1582 0.4907 0.8667 9.5302 7.8078 10.8467 60.9124 0.6563 0.5432

Table 2: Ablation study of the number of sentences extracted by the TextRank for GPT-3.5 fine-tuning. The model
is fine-tuned on 200 examples in each case, and evaluation is performed on the eLife validation set.

# Examples R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

w/o FT 0.3430 0.0786 0.3171 0.8360 15.6929 11.2094 17.4336 65.3938 0.7467 0.5106
100 0.49024 0.1449 0.4667 0.8625 9.9315 8.0081 11.2464 57.2724 0.6784 0.5936
200 0.5134 0.1566 0.4897 0.8677 9.0398 7.6474 10.5426 61.9627 0.6502 0.5524
400 0.5120 0.1568 0.4888 0.8673 9.3402 7.7173 10.7939 61.6123 0.6682 0.5580

Table 3: Ablation study of the number of training examples used to fine-tune GPT-3.5. All models use 40 sentences
extracted by the TextRank. We apply the random seed as 42 for selecting examples. The w/o FT case uses a zero-shot
prompting method to generate lay summaries. The prompt template for GPT-3.5 is provided in Appendix D.

Models R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

LED-base4k 0.4724 0.1326 0.4503 0.8462 9.4983 7.8822 10.0612 67.4096 0.6282 0.6093
+ DPR 0.4822 0.1357 0.4592 0.8467 9.2784 7.9563 10.2329 68.4289 0.5760 0.5965
+ Def 0.4791 0.1347 0.4577 0.8466 9.2589 7.9413 10.2708 69.1213 0.5827 0.5981
+ Ext 0.4823 0.1347 0.4599 0.8466 9.2203 7.9210 10.2442 69.1202 0.6141 0.5902
+ TR 0.4818 0.1342 0.4601 0.8468 9.3755 7.9595 10.3095 68.5750 0.6129 0.5920
+ All 0.4810 0.1353 0.4582 0.8470 9.3195 7.9153 10.3041 68.6305 0.6150 0.5883

PubMedLED4k 0.5070 0.1507 0.4770 0.8519 11.5237 8.9008 11.5916 69.7507 0.6442 0.5887
+ AllPubMed 0.5140 0.1550 0.4868 0.8520 10.3212 8.2847 10.6131 70.7518 0.6341 0.5883

Table 4: Ablation study of different model components on the eLife validation set. We use the same reordered
sections of each article as base input. We apply PubMed LED large model for PubMedLED4k and AllPubMed settings,
and use LED-base model for all the other experiments due to limited computing resources. We report the result of
PubMedLED model using All setting in Table 1.

aspects (Table 1), open-source models have some
advantages, including reduced costs, the ability
to fine-tune on various datasets, and reproducibil-
ity. Therefore, we conduct ablation studies on fine-
tuning open-source models in Table 4. Initially,
we compare two baseline configurations: the LED
base model (LED-base4k) and the PubMed LED
large model (PubMedLED4k), both using the top
three sections as base input. We then apply the
functional modules described in Section 2 to these
baseline settings to assess the effectiveness of each
component. In Table 4, DPR and Def refer to the
RAG methods outlined in Section 2.3, which in-
volve dense retrieval and entity-based definition
retrieval from Wikipedia, respectively. Ext and TR
denote the use of BERT-based unsupervised extrac-
tive summarization and TextRank, as introduced in
Section 2.2.2. The term “All” represents the integra-
tion of all components, in the sequence of the top
three sections, Ext, DPR, and Def, as input for fine-
tuning. The results indicate the PubMed LED large

model achieves the highest LENS and relevance
scores when all components are included. How-
ever, the readability scores do not surpass those of
the LED base model.

Meanwhile, we notice that an article’s abstract
achieves the highest factuality scores compared to
the gold lay summary. Therefore, we explore the
possibility of aligning the lay summaries generated
by the PubMed LED model more closely with the
article’s abstracts through GPT-4 post-processing.
However, our experimental results indicate no ap-
parent improvement across most evaluation metrics
when using GPT-4 to enhance the alignment of the
generated lay summaries with the abstracts (experi-
mental details in Appendix E).

4 Discussion and Conclusion

Applying the extract-then-summarize framework
to fine-tune GPT-3.5 demonstrates superior perfor-
mance in the biomedical lay summarization task
compared to LED-based fine-tuning. The ablation
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study indicates that incorporating external knowl-
edge during model fine-tuning slightly enhances
relevance metrics in the experiments of the LED-
base model. However, it negatively impacts factu-
ality scores, similar to the results observed when
using extractive summarization and PubMed LED
large model. None of the components enhance the
factuality scores compared to the baseline settings,
although there are improvements in relevance and
readability scores (Table 4). We hypothesize that
the external knowledge generated by RAG methods
might contain noisy data, potentially affecting the
factuality metrics. Additionally, the extractive sum-
marizer may produce sentences with less contex-
tual coherence than the original article, hindering
the model’s ability to understand causal informa-
tion during fine-tuning. While increasing the model
size enhances relevance scores, it decreases read-
ability and factuality from the LED base model to
the PubMed LED large model.

The case study detailed in Appendix F reveals
that the GPT-3.5 and PubMed LED models produce
unrelated information when creating lay summaries
compared to the gold lay summary. Notably, GPT-
3.5 produces longer summaries than the PubMed
LED model despite both models having the same
maximum decoding token limit of 512. Conse-
quently, while GPT-3.5 includes more relevant sen-
tences that closely match the original summary, it
also introduces more irrelevant content.

Overall, fine-tuning GPT-3.5 with extractive
summaries achieves the best overall ranking and
highest relevance score in the BioLaySumm 2024
shared task, demonstrating the effectiveness of us-
ing key sentences from the article for LLM fine-
tuning. The PubMed LED model, with additional
functional components, also shows competitive
results compared to GPT-3.5. Meanwhile, our
findings using the PubMed LED model suggest
a promising direction for future studies to develop
advanced modules that combine extractive sum-
marization and RAG to generate lay summaries,
especially in improving the relevance scores and
enhancing the accessibility of biomedical research.

Limitations

Our study’s limitations are as follows: 1) We con-
duct experiments using LED-based models for only
one epoch with a small batch size due to time and
computational constraints. We hypothesize that the
model’s performance could vary with more tun-

ing epochs. 2) Our section reordering method may
miss sections that do not match the NLM dictionary
of section names, potentially impacting the model’s
performance by omitting important content from ar-
ticles. The proportions of mismatched sections are
detailed in Appendix C. 3) The unsupervised ex-
tractive summarization methods used in this study
are not tailored for lay summarization tasks, which
may result in less relevant extraction. We suggest
that developing a task-specific extractor could be a
promising direction for future work. 4) We apply
only two RAG methods in our experiments and con-
catenate the retrieved knowledge at the end of the
input. The quality of the retrieved information was
not filtered or verified, which may negatively im-
pact fine-tuning performance. 5) Our method uses
GPT-3.5 from OpenAI, which may not be fully re-
producible since GPT-3.5 is a closed-source model
and may update without unambiguous versions.
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A Experimental Settings

We apply two baseline model types in our exper-
iments: LED base9 (allenai/led-base-16384)
and PubMed LED large10

(patrickvonplaten/led-large-16384-pubmed)
models. Our final submission uses GPT-3.5 as the
base model11.

Longformer Encoder-Decoder (LED). LED
model is initialized from BART-base (Lewis et al.,

9https://huggingface.co/allenai/
led-base-16384

10https://huggingface.co/patrickvonplaten/
led-large-16384-pubmed

11https://platform.openai.com/docs/models/
gpt-3-5-turbo
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Models R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

LED16k 0.4838 0.1378 0.4598 0.8475 9.5573 8.0395 10.2088 69.0407 0.6176 0.5837
LED8k 0.4746 0.1342 0.4522 0.8463 9.5950 7.9085 10.2432 67.5068 0.6315 0.5903

LED8k* 0.4750 0.1348 0.4530 0.8471 9.2274 7.9494 10.2126 69.8675 0.6391 0.6036
LED4k

† 0.4724 0.1326 0.4503 0.8462 9.4983 7.8822 10.0612 67.4096 0.6282 0.6093

Table 5: Performance comparison of various input lengths in the eLife dataset. All experiments are conducted under
led-base-16384. 16k, 8k, and 4k are the maximum length of the model’s input. * indicates that we restructure
the input document in the order of abstract-background-conclusion-results-methods. † denotes we only input an
article’s abstract, background, and conclusion in model tuning.

Dataset Section Avg. Length (Train) Avg. Length (Val) Avg. Length (Test)

eLife Article 13,942 13,705 11,683
Lay Summary 437 445 -

PLOS Article 8,963 8,925 9,039
Lay Summary 239 239 -

Table 6: The average length of eLife and PLOS calculated by an average number of tokens. Article represents the
full document of each article. Lay Summary is the gold summary of each article.

2020a) as both models share the same architecture,
with a maximum input length of 16,384 tokens.

PubMed LED large. PubMed LED large model
is fine-tuned on the PubMed Summarization dataset
(Cohan et al., 2018) through the checkpoint of
led-large-16384.

GPT-3.5. GPT-3.5-turbo-1106 is fine-tuned
on small random samples from the training datasets
using the API provided by OpenAI.

We fine-tune the LED base and PubMed LED
large models for 1 epoch and set batch size as 4.
The maximum length of the decoder is 512. All
experiments are conducted through one NVIDIA
Tesla V100-32GB GPU. Considering memory effi-
ciency, we use the default learning rate as 5e-5 for
Adam optimization and set the floating point to 16
(i.e., fp16=True). For GPT-3.5 model fine-tuning12,
we apply the default API hyper-parameters, along
with default values (i.e., epochs=3, batch size=1,
learning rate multiplier=8).

We compare different input text lengths using the
LED-base model in Table 5. The results indicate
that decreasing the input length affects the rele-
vance scores. Specifically, LED16k, LED8k, and
LED†

4k show a consistent decrease in relevance
scores, while other evaluation metrics exhibit fluc-
tuations. Notably, LED16k achieves the lowest fac-
tuality scores compared to other settings, suggest-
ing a need to reduce the length of the input article
to help the model capture more factual informa-
tion. The encoder maximum length we use for both

12https://platform.openai.com/docs/guides/
fine-tuning

eLife and PLOS datasets in Table 1 is 8,192 tokens
due to the computing limitation.

Dataset # Train # Validation # Test

eLife 4,346 241 142
PLOS 24,773 1,376 142

Table 7: Statistics of LaySumm datasets.

Dataset Split # Positive Pairs # Negative Pairs

eLife Train 16,210 16,210
Val 912 912

PLOS Train 17,910 17,910
Val 1,070 1,070

Table 8: Statistics of contrastive learning datasets. To
balance the created datasets, we sample the same num-
ber of positive and negative pairs for each dataset.

Dataset Train % Val %

eLife 1.6 % 1.2 %
PLOS 0.6 % 0.4 %

Table 9: Unmatched section headings for eLife and
PLOS datasets in section selection.

B Dataset Statistics

We report the average length of the article and lay
summary in Table 6, as well as the statistics of two
datasets in Table 7. As reported by Goldsack et al.
(2022), there are no gold lay summaries for the test
sets of both datasets for fair competition. In Table 8,
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Figure 2: Comparison of section relevance in eLife and PLOS training sets grouped by NLM structured section
labels. Density refers to the estimated probability density function of the cosine similarity scores for each section
heading with the gold lay summary.

Models R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

LEDoriginal 0.4812 0.1355 0.4586 0.8466 9.2523 7.9069 10.2308 67.9287 0.6224 0.5994
LEDordered 0.4750 0.1348 0.4530 0.8471 9.2274 7.9494 10.2126 69.8675 0.6391 0.6036

Table 10: Evaluation of reordering sections in model tuning in the validation set of eLife. We set the input length of
both models as 8192 tokens for equal comparison.

we show the contrastive learning datasets statistics
for fine-tuning the embedding model introduced in
Section 2.2.2.

C Section Relevance

As introduced in Section 2.2.1, we apply a sec-
tion re-ranking strategy in our experiments to deal
with long input lengths. We first pair the head-
ings that appear in each dataset with the structured
abstract section labels provided by NLM, which
contains 3,032 section labels and 5 corresponding
broader NLM categories: BACKGROUND, OB-
JECTIVE, METHODS, RESULTS, and CONCLU-
SIONS. We report the heading matching propor-
tions in Table 9. Specifically, for the eLife dataset,
we identify 339 unmatched headings in the training
set and 14 in the validation set, out of 21,315 and
1,158 headings, respectively. The PLOS dataset
has 833 unmatched headings in the training set
and 28 in the validation set, with overall totals
of 122,873 and 6,800 headings, respectively. No-
tably, no OBJECTIVE sections are matched in ei-
ther the eLife or PLOS datasets. In these cases,
we concatenate the unmatched sections to the end
of the article. Subsequently, we rank the sections
by calculating the cosine similarity between each
section’s content and the lay summary. We em-
ploy a pre-trained sentence transformer embedding

model, all-MiniLM-L6-v213, to encode both the
lay summary and each section, allowing us to com-
pute similarity scores. Figure 2 depicts the section
relevance distribution in eLife and PLOS training
sets. Our findings indicate that the most relevant
sections for both the eLife and PLOS datasets are
the “Abstract”, “Background”, and “Conclusion”,
while the “Method” and mismatched “Other” sec-
tions are found to be less relevant.

Additionally, in Table 10, we compare the ef-
fectiveness of section reordering in an article by
assessing the performance of models using or-
dered sections versus the original order. We use
the LED-8k model on the eLife validation set
for this evaluation. Specifically, we directly trun-
cate the input as the natural order of the original
dataset for the LEDoriginal model. Given our explo-
ration of sections’ relevance with gold lay summary
(Figure 2), we re-rank the sections based on the
order of abstract-background-conclusion-results-
methods. Therefore, we reorder the input of the
LEDre-order model given the above order and trun-
cate the model with an input limit of 8,192 tokens.
Table 10 demonstrates that most evaluation scores
improve with ordered sections as input, whereas
ROUGE scores and DCRS show a decline.

13https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Models R-1 R-2 R-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

Abs. 0.3189 0.0701 0.2934 0.8390 15.5000 11.7386 17.5873 38.3429 0.9935 0.9488
LaySum 1.0000 1.0000 1.0000 1.0000 10.8295 8.9364 12.4921 61.5753 0.5959 0.4943
P-LEDL 0.5140 0.1550 0.4868 0.8520 10.3212 8.2847 10.6131 70.7518 0.6341 0.5883
GPT-4 0.4979 0.1316 0.4668 0.8521 13.1813 9.9235 14.3912 70.3339 0.6669 0.5170

Table 11: Post-processing results in eLife validation set. Abs. and LaySum use the article’s
abstract and gold lay summary for evaluation. P-LED denotes PubMed LED large model (i.e.,
patrickvonplaten/led-large-16384-pubmed) and sets the input length as 8,192 tokens. GPT-4 represents
the results using GPT-4 for post-processing.

D Prompt Template of GPT-3.5

We provide the prompt template for fine-tuning
GPT-3.5 at the end of this section. The ###
Article represents the output of extractive summa-
rization using TextRank introduced in Section 2.2.2.
The ### Summary denotes the gold lay summary
of each article.

In the setting without fine-tuning (w/o FT), as
introduced in Table 3, we use extractive summaries
to prompt GPT-3.5 using the same template as fine-
tuning GPT-3.5. The key difference in the w/o
FT approach is that it does not include the gold-
standard lay summary.

System:
Generate a lay summary of this biomedical
article

User:
### Article:
Cell-fate reprogramming is at the heart of
development...
### Summary:

E Post-Processing using GPT-4

We observe the abstracts of articles achieve higher
factuality scores compared to the gold lay sum-
maries. As illustrated in Table 11, abstracts attain
the highest factuality scores, while gold lay sum-
maries achieve full relevance scores. We assess
whether an LLM can reassemble model-generated
lay summaries to resemble the articles’ abstracts
more closely, thereby improving the factuality of
the lay summaries. The input of GPT-4 includes
a prompt template, original abstract, and PubMed
LED model generated lay summary. While the
AlignScore improves when using GPT-4 compared
to the original settings, most other evaluation met-
rics, particularly readability scores, show a decline.

Due to the lack of factually accurate lay sum-
maries as references to prompt or fine-tune GPT-4,
the experiment is conducted solely under a zero-
shot setting. We conclude that using zero-shot
prompting with GPT-4 does not enhance the factu-
ality of the generated lay summaries.

The prompt template used for GPT-4 is as fol-
lows:

System:
You will be provided with a biomedical
abstract and a corresponding lay summary.

Your task is to enhance the lay sum-
mary by integrating factual information
from the abstract. Consider the abstract as
an additional reference.

Make sure to keep the same word-
ing as the provided lay summary but add
more factual information. Do not change
any factual information. Do not reduce the
readability and relevance of your enhanced
lay summary. Do not make up information.

Keep your enhanced lay summary
roughly the same length as the provided
lay summary.

User:
Abstract: Cell-fate reprograming is at the
heart of development...
Lay Summary: Genes are the building
blocks of life...

F Case Study

To provide a more straightforward comparison of
model-generated lay summaries, we conduct a case
study comparing the generated lay summaries of
GPT-3.5 and the PubMed LED large models in the
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test sets of eLife and PLOS in Table 12 and Ta-
ble 13. We randomly select an article with ID elife-
78005-v1 from eLife and journal.pgen.1008255
from PLOS. Our findings reveal that both the fine-
tuned GPT-3.5 and the PubMed LED model gen-
erate irrelevant information not mentioned in the
gold lay summary in both datasets. However, GPT-
3.5 produces more informative sentences than the
PubMed LED large model.
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Gold When light enters the eyes , it is focused onto the retina , a thin layer of brain tissue at the back of the
eye . The retina converts light information into electrical signals that are transmitted to the rest of the
brain to perceive vision . Unlike the rest of the brain , this light-processing tissue can continue working
even when removed from an animal , making it easier for scientists to study how the retina works .
This has helped it become one of the best-understood parts of the brain . Most knowledge of retinal
signal processing comes from studies of isolated retinas . However , it was still unclear if these samples
behave the same way as they do in live animals , and whether findings in isolated retinas apply to
natural visual processing in an awake state . To determine this , Boissonnet et al . compared the visual
responses of the retina in awake mice , anesthetised mice and when isolated from mice . Measurements
of retinal electrical signals showed that awake mice responded to light substantially more quickly and
strongly than the others . Computational analysis suggested that the amount of information carried
to the brain was largely comparable across the different subjects , but the retina in awake mice used
more energy . The findings indicate that further studies are needed to better understand how the retina
processes visual information in awake animals , rather than just in isolated conditions . Progressing this
understanding could ultimately help to develop prosthetic devices that can act as a retina in the future .

GPT-3.5 The retina is a thin layer of tissue at the back of the eye that contains cells that are sensitive to light .
These cells convert light into electrical signals that are sent to the brain , where they are processed to
create the images that we see . The retina is one of the best understood parts of the brain , and many
of the principles that govern how it works have been discovered by studying the retinas of animals in
the lab . However , it is not clear how much of this knowledge applies to the retina in a living animal .
This is because most of the studies have been done on retinas that have been removed from the eye
and kept alive in a dish , or on retinas of animals that have been anesthetized . To investigate how
the retina works in a living animal , Li et al . recorded the electrical activity of the retinas of mice
while the animals were awake and while they were anesthetized . The experiments showed that the
retinas of awake mice were more active than those of anesthetized mice . They also responded more
quickly to changes in light and were able to detect a wider range of light levels . However , the retinas
of awake mice were less efficient at transmitting information to the brain . This is because the increased
activity in the retina did not result in a proportional increase in the amount of information that was sent
to the brain . The findings of Li et al . suggest that the retina may use a different strategy to process
information in living animals than it does in the lab . This is important because many of the principles
that have been discovered by studying the retina in the lab are used to develop artificial retinas for
people with vision loss . The findings of Li et al . suggest that these artificial retinas may need to be
designed to work differently in living animals than they do in the lab .

PubMedLED The retina is the part of the brain that receives information from the eye and processes it into a visual
image. The retina is made up of many different types of cells, but the activity of the retinal nerve
cells is the most studied. The retinas are the most sensitive to light and are responsible for detecting
color, contrast and motion. The activity of these cells is then processed by the brain, which then sends
the information to the retina. However, it is not clear what exactly the retina tells the brain in awake
animals. To investigate this question, Vlasiuk et al. recorded the electrical activity of retinal cells in
the eyes of mice while they were awake, anesthetized and under anesthesia. The experiments show
that the retinas of awake mice show faster firing rates and a larger range of responses than those of
anesthetics-treated mice. This suggests that the retina uses a dense code of information in the retina,
rather than a sparse code as had been assumed. The results also suggest that the brain uses dense coding
in vivo. The next challenge will be to understand how the retina works in the brain and how it can be
used to help us to understand the brain’s role in visual processing. This could help us understand how
we perceive the world around us, and how the brain responds to the world we see.

Table 12: A case study of article ID elife-78005-v1 generated by GPT-3.5 and PubMed LED large model on the
eLife test set. Information highlighted in green indicates details mentioned in the gold lay summary, while red
indicates details not included in the gold lay summary.
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Gold Gene inactivation in mice can be used to identify genes that are involved in important biological
processes and that may contribute to disease . We used this approach to study the Ric-8B gene ,
which is highly conserved in mammals , including humans . We found that Ric-8B is essential for
embryogenesis and for the proper development of the nervous system . Ric-8B mutant mouse embryos
are smaller than their wild type littermates and show neural tube defects at the cranial region . This
approach also allowed us to identify the biological pathways that potentially contribute to the observed
phenotypes , and uncover a novel role for Ric-8B in the mTORC2 signaling pathway . mTORC2 plays
particular important roles in the adult brain , and has been implicated in neurological disorders . Our
mutant mice provide a model to study the complex molecular and cellular processes underlying the
interplay between Ric-8B and mTORC2 in neuronal function .

GPT-3.5 mTOR is a serine/threonine protein kinase that is involved in a series of critical cellular processes .
mTOR can be found in two functionally distinct complexes , mTORC1 and mTORC2 . In contrast
to mTORC1 , little is known about the mechanisms that regulate mTORC2 . Here we show that
mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene . Ric-8B is
a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor ( GEF
) for heterotrimeric Gs/olf type subunits . We found that Ric-8B hypomorph embryos are smaller
than their wild type littermates , fail to close the neural tube in the cephalic region and die during
mid-embryogenesis . Comparative transcriptome analysis revealed that signaling pathways involving
GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos . Interestingly , this analysis
also revealed an unexpected impairment of the mTOR signaling pathway . Phosphorylation of Akt at
Ser473 is downregulated in the Ric-8B mutant embryos , indicating a decreased activity of mTORC2 .
Knockdown of the endogenous Ric-8B gene in cultured cell lines leads to reduced phosphorylation
levels of Akt ( Ser473 ) , further supporting the involvement of Ric-8B in mTORC2 activity . Our
results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that
regulate mTORC2 .

PubMedLED mTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can
be found in two functionally distinct complexes, mTORC1 and mTOR2. In contrast to mTOR1, little is
known about the mechanisms that regulate mTORc2. Here we show that the Ric-8B gene is required for
proper growth and nervous system formation during mouse embryogenesis. We found that the mutant
embryos fail to close the neural tube at the cephalic region and die during mid-embryogenesis. Our
results reveal a crucial role for Ric- 8B in development and provide novel insights into the signals that
regulate the mTOR signaling pathway.

Table 13: A case study of article ID journal.pgen.1008255 generated by GPT-3.5 and PubMed LED large model on
the eLife test set. Information highlighted in green indicates details mentioned in the gold lay summary, while red
indicates details not included in the gold lay summary.
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Abstract
The lack of comprehensive and standardised
databases containing Pharmacokinetic (PK) pa-
rameters presents a challenge in the drug de-
velopment pipeline. Efficiently managing the
increasing volume of published PK Parameters
requires automated approaches that centralise
information from diverse studies. In this work,
we present the Pharmacokinetic Relation Ex-
traction Dataset (PRED), a novel, manually cu-
rated corpus developed by pharmacometricians
and NLP specialists, covering multiple types of
PK parameters and numerical expressions re-
ported in open-access scientific articles. PRED
covers annotations for various entities and rela-
tions involved in PK parameter measurements
from 3,600 sentences. We also introduce an
end-to-end relation extraction model based on
BioBERT, which is trained with joint named
entity recognition (NER) and relation extrac-
tion objectives. The optimal pipeline achieved
a micro-average F1-score of 94% for NER and
over 85% F1-score across all relation types.
This work represents the first resource for train-
ing and evaluating models for PK end-to-end
extraction across multiple parameters and study
types. We make our corpus and model openly
available to accelerate the construction of large
PK databases and to support similar endeavours
in other scientific disciplines.

1 Introduction

Pharmacokinetics (PK) aims to quantify drug expo-
sure through the study of drug absorption, distribu-
tion, metabolism and excretion (ADME). Drug PK
profiles inform the selection of drug candidates and
establish therapeutically relevant doses and dos-
ing schedules (Morgan et al., 2012; Reichel and
Lienau, 2016). Population PK models, i.e. nonlin-
ear mixed-effects models, have played a significant

role over the last decades in characterising PK prop-
erties through parameterising PK time series data.
This has contributed to improved accuracy of pre-
dicting PK profiles across all stages of the drug
development process.

Prior data from similar drug compounds are of-
ten used to initialise Population PK models and
are also relevant for pre-clinical PK predictions
for novel compounds (Dearden, 2007; Berellini
and Lombardo, 2019; Wang et al., 2019). How-
ever, the primary challenge in collating prior PK
data is the lack of comprehensive, standardised
and open-access databases of PK parameter esti-
mates, which has been recognised as a significant
limitation in the drug development pipeline (Ku-
mar et al., 2021; Mould and Upton, 2013; Grze-
gorzewski et al., 2021; Wang et al., 2009). Existing
databases (Grzegorzewski et al., 2021; Wong et al.,
2019) are manually curated from scientific litera-
ture and are limited to a few drugs. Consequently,
researchers must manually compile PK informa-
tion from the scientific literature (Grzegorzewski
et al., 2021; Lombardo et al., 2018). The ability to
automatically extract and centralise PK data from
the scientific literature is of great interest to solid-
ify existing PK knowledge and improve parameter
predictions.

Annotated biomedical datasets have facilitated
the development of state-of-the-art models for iden-
tifying many biomedical entities and their relation-
ships in free text. However, no such annotated
data exists for PK. In this work, we present a new
dedicated corpus for Named Entity Recognition
(NER) and Relation Extraction (RE) of PK data
from scientific articles. This corpus is manually
annotated at the sentence level by domain experts
and involves entities and relations between PK pa-
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rameter names, estimated values, deviation values,
units and comparative terms. We also develop an
end-to-end relation extraction architecture based
on adapting the SpERT model (Eberts and Ulges,
2019) and training it on our corpus to assess the
feasibility of automated extraction of PK parameter
estimates. Our contributions are as follows:

• The PRED corpus, a publicly available cor-
pus1 of manually annotated entities and rela-
tions between PK parameter names, the cen-
tral and deviation values, their units and com-
parative terms. PRED consists of 1764 entity
mentions and 2016 relations annotated across
3600 sentences from scientific articles.

• A novel RE pipeline2, trained and evaluated
on PRED, for tackling the extraction of PK
parameter estimates from the scientific liter-
ature. We compare architectures that model
NER and RE jointly against models that opti-
mise for a single task and assess the effect of
domain-specific pre-training.

2 Related Work

Automated text mining approaches have been ex-
tensively explored regarding drugs and chemi-
cals (Krallinger et al., 2015; Lee et al., 2020; Sung
et al., 2022), drug-drug interactions (Herrero-Zazo
et al., 2013; Segura Bedmar et al., 2013; Kolchin-
sky et al., 2013, 2015), and biochemical kinetics
(e.g. enzyme kinetics) (Hakenberg et al., 2004;
Spasić et al., 2009; Tsay et al., 2009). However,
little research has been conducted on automatically
extracting PK data from text.

Wang et al. (2009) explored pattern-based ap-
proaches for a single PK parameter for one drug.
However, extending this approach to other PK pa-
rameters, drugs, and study designs becomes un-
feasible due to the high diversity of surface forms.
Instead, approaching PK information extraction
with machine learning approaches has the potential
to model a higher variability of PK parameters and
relations effectively. Previously, Hernandez et al.
(2021) presented an automated pipeline to iden-
tify scientific publications reporting PK parameter
estimates measured in vivo. Subsequently, Hernan-
dez et al. (2024) released a large annotated dataset
of PK parameter mentions in the scientific liter-
ature and fine-tuned BioBERT (Lee et al., 2020)

1https://zenodo.org/records/11187303
2https://github.com/PKPDAI/PKRelations

to perform NER of PK parameters. However, to
our knowledge, no study has yet tackled the task
of end-to-end relation extraction of PK parameter
estimates, which represents a crucial step to auto-
matically construct PK databases useful for drug
development.

3 Methods

3.1 Corpus construction

The PRED corpus was developed to train and eval-
uate end-to-end pipelines that extract PK measure-
ments from sentences and can be found at https:
//zenodo.org/records/11187303. All the rela-
tions tackled in this task appeared between entities
within the same sentence.

Data Source
The following pipeline was applied to create a can-
didate pool of sentences. A PubMed search for

“pharmacokinetics” was initially conducted in June
2020 to retrieve articles. The pipeline from Gon-
zalez Hernandez et al. (2021) retrieved 114,921
relevant publications reporting PK parameters. Out
of these, 10,132 articles (8.82%) were accessible in
full text from the PMC OA subset3, while only ab-
stracts were available for the rest. Both, abstracts
and full-text articles were downloaded in XML
format from PubMed4 and PMC5 FTP sites. The
PubMed Parser (Titipat and Acuna, 2015) was used
to parse the XML files, and paragraphs from the
introduction section were excluded. The scispaCy
sentence segmentation algorithm (Neumann et al.,
2019) split abstracts and paragraphs into sentences.
The resulting sets were randomly sampled to pro-
duce a candidate pool of 1,443,044 sentences, with
a balanced proportion of sentences from the ab-
stract and full-text. Noticeably, 16.4% of sentences
from the initial candidate pool mentioned PK pa-
rameters. Therefore, a filtering protocol was ap-
plied to promote the development of a corpus with a
wide variety of PK mentions and relation instances.
The PK NER model from Hernandez et al. (2024)
was first applied to all the candidate pool sentences.
Then, we selected sentences that at least had (1)
one PK mention detected by the NER model and
(2) a numerical value. From the resulting pool of
sentences, 3600 instances were randomly sampled

3https://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/

4https://www.nlm.nih.gov/databases/download/
pubmed_medline.html

5https://ftp.ncbi.nlm.nih.gov/pub/pmc/
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without replacement and divided into 2100, 500
and 1000 instances for the training, development
and test sets, respectively.

Annotation
The annotation team comprised 12 individuals with
extensive PK expertise and familiarity with the
different parameters and study types in PK liter-
ature. Annotation guidelines were developed and
distributed to the annotators before labelling and
updated as new complex cases emerged during an-
notation. To ensure consistency, annotations were
performed in batches of 200 sentences, following
a three-step procedure: (1) initial annotation by
one PK expert, (2) review by another PK annotator
and (3) final check focusing on span boundary con-
sistency by an annotator with bio-NLP experience.
After the second step in each batch, comments from
the first and second steps were reviewed, and feed-
back regarding incorrect annotation patterns was
given to the annotators. Inter-annotator agreement
was examined using the pair-wise F1 score on 200
sentences, and the mean was computed across each
pair of annotators. For further details on the an-
notation guidelines and interface, please see Ap-
pendix A.

Task Definition
End-to-end RE aims to identify named entities and
extract relations between them. Given some input
text X , the output of any end-to-end RE system
is a list of triplets in the form of (si, sj , r) where
si, sj ∈ S and r ∈ R and S denote all the possible
spans in X and R the set of pre-defined relation
types (Zhong and Chen, 2020). Hence, the an-
notated data was represented as a list of sentences,
each with their corresponding list of relation triplets
and compared to model predictions in the same for-
mat. Because end-to-end RE systems need to (1)
identify candidate spans and (2) predict relation
classes for pairs of spans, this task is often decom-
posed into two sub-tasks:

1. Named Entity Recognition: which at-
tempts to detect the list of entity men-
tions (i.e. spans) and their type E =
{PK,Units, V alue,Range, Compare}
from the input text X .

2. Relation Extraction: which com-
pares all pairs of spans in X and
outputs a relation class for each pair
R = {Centralval, Deviationval, Related}.

For step 1, the following entities were considered
and annotated at the sentence level:

1. PK: Mentions of parameters. This entity
refers to spans mentioning PK parameters, and
it is the same concept as the entity described
by Hernandez et al. (2024).

2. Units: Spans of text corresponding to units of
numerical PK estimations.

3. Value: Spans encapsulating numerical estima-
tions related to PK parameters (i.e. central
and deviation values).

4. Range: Two values defining the boundaries
of a PK estimation.

5. Compare: Textual mentions that pro-
vided information about whether a specific
value/range mention was the extreme of an es-
timated parameter. This entity appeared with
low frequency, but it was important for de-
tecting extracted measurements that were not
central estimations of a certain parameter.

For step 2, three relations classes were consid-
ered between entities to extract structured informa-
tion from raw sentences in a usable format. Please
note the directionality of relations is not considered
in this work as it is not necessary for the desired
tabular output (see Figure 1):

1. Centralval6: This relation type happened be-
tween PK parameter mentions and their esti-
mated values or ranges. This involved central
measurements of the parameter but not mea-
sures of deviation or % of increase concerning
other experimental conditions. The entities be-
tween which this relation could happen were:

• PK↔ Value/Range

2. Deviationval
7: This relation type informed

whether a specific measurement was the devi-
ation of a central measurement and only hap-
pened between the entities:

• Value/Range↔ Value/Range (involved
in a Centralval relation)

3. Related: This relation type complemented
values/ranges with their units or compare
terms and only happened between the follow-
ing entities:

6Abbreviated as C_VAL in the annotation interface.
7Abbreviated as D_VAL in the annotation interface.
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• Compare↔ Value/Range
• Units↔ Value/Range

3.2 Pipeline
Recent work has shown that sharing token repre-
sentations and modelling NER and RE tasks si-
multaneously in a multi-task setting can enhance
performance in both tasks (Bekoulis et al., 2018;
Luan et al., 2019; Eberts and Ulges, 2019). This
might be especially relevant in our corpus, where
spans were only considered entities if they were
part of a relation. For this reason, we propose an
architecture to model NER and RE jointly to share
encoded knowledge from both tasks.

Multi-task Architecture
Our multi-tasking architecture (illustrated in Fig-
ure 2), was inspired by the architecture in the
SpBERT model developed by Eberts and Ulges
(2019). The main modification was using sequen-
tial BIO labelling (Palen-Michel et al., 2021; Gu
et al., 2021) instead of a span-based approach, as
the PRED data does not contain overlapping spans.
There was also no need to predict the directional-
ity of relations for our work, so entity pairs were
arranged in order of appearance in the original text.
Finally, due to only one relation type existing be-
tween entity pairs in PRED, a softmax activation
was used instead of a sigmoid activation.

Using the BERT tokenizer, an input sentence is
initially tokenised into a sequence of sub-words.
Then, tokens are passed through an encoder that
aims to incorporate contextual information in each
token’s representation. The output embeddings
from the encoder (T1, T2, ...TN ) are then used to
(1) recognise entities through the token classifier
using the BIO scheme, (2) generate candidate pairs
of predicted entities and (3) classify all pairs of
recognised entities with a relation classifier. NER
and RE use the same encoder to generate contextual
representations of input tokens and have one task-
specific classification layer for each sub-task. We
assessed the effect of domain-specific pretraining
by comparing BERTBASE (Devlin et al., 2018) and
BioBERT v1.1 (Lee et al., 2020) as the encoder.

Named Entity Recognition Task
NER was treated as a sequential labelling prob-
lem where each output token representation from
the encoder (Ti) was classified into one unique
BIO scheme class using a feed-forward layer with
a sigmoid activation function. The model was

trained with cross-entropy loss over token-level
labels LNER.

Relation Extraction Task
After NER is performed in a specific sen-
tence, all potential pairs of predicted spans
are arranged and filtered before going to
the relation classifier. Then, each candidate
entity pair was classified into one relation
class [Centralval, Deviationval, Relation,No
Relation]. Following Taillé et al. (2020), the
representation of those spans composed of mul-
tiple tokens was generated by max-pooling their
contextual token embeddings. Given the effective
results of the max-pooling strategy presented by
Eberts and Ulges (2019), no other fusion functions
were analysed. The input to the relation classifier
x(s1, s2) was the concatenation of the two-span
representations e(s1) and e(s2) with their context
representation c(s1, s2):

x(s1, s2) = [e(s1); c(s1, s2); e(s2)] (1)

The context representation for two spans was
generated by max-pooling all tokens strictly be-
tween them. If there were no tokens present be-
tween two spans c(s1, s2) = 0. Relations between
entities were symmetric (non-directional) in the
PRED corpus, and no overlapping spans were an-
notated. As a consequence, e(s1) and e(s2) were
arranged according to their relative position in the
sentence from left to right. Analogous to the token
classifier, a single-feed forward layer was used to
classify each candidate span pair. Since only one
relation class could be associated between two enti-
ties, a softmax operation was used as an activation
function. The model was trained with cross-entropy
loss over relation classes, LRE .

Training and Optimisation
All the parameters from the encoder, the token and
the relation classifier were fine-tuned during the
training phase. Given sentences with annotated
entities and relations, the loss was computed jointly
by adding the NER and RE losses:

L = LNER + LRE (2)

Both losses were averaged over each batch’s sam-
ples. Each batch consisted of B sentences from
which samples were drawn for both classifiers. For
the token classifier, the loss was computed for all
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Figure 1: The top panel shows a sentence where all entities and relations have been annotated. The bottom panel
shows how the annotated entities and relations can be mapped into a tabular format that can be integrated into a
database of PK measurements.

Figure 2: The model first receives a sequence of token embeddings (blue boxes, Ei) and goes through the encoder
layers to generate a sequence of contextual token embeddings (green boxes, Ti), which are shared in both tasks.
Then, (A) contextual token embeddings go through the token classifier (feed-forward layer) to output BIO labels that
will allow recognising entities. (B) Entities and contexts (span between two entities) are represented by max-pooling
their contextual token embeddings. Finally, pairs of entities are concatenated with their context representation and
passed through the relation classifier (feed-forward layer).

tokens in the batch using the BIO labels. For the
relation classifier, ground truth (annotated) entities
were used to generate candidate pairs at training
time. Negative samples (No Relation class) were
generated with all candidate entity pairs not la-
belled with a relation during the annotation phase.
At inference time, only those entities predicted by

the NER module were passed to the RE classifier
instead of using ground truth entities.

Models were trained for 50 epochs and evaluated
on the development set after each epoch, saving the
model state with the highest Centralval F1 score.
The maximum sequence length for all experiments
was set to 256, the batch size to 8, and the learning
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rate to µ = 2e−5. The Adam Optimizer with a
linear weight decay of 0.05 was used, and a dropout
probability of 0.1 was applied on all layers. All
experiments were run on a single GPU, NVIDIA
Titan RTX (24GB).

Evaluation
Precision, Recall, and F1 scores were computed
for NER and RE. For NER, scores were based on
strict matching of entity boundaries and types. F1

scores were calculated per entity, with macro and
micro-averages across entity types for overall sys-
tem evaluation. In RE, focus was on F1 score of
Centralval relations, as predicting Deviationval

or Related relations without Centralval renders
extracted data useless. Micro-averaged F1 scores
for NER and Centralval relations for RE served
as the main metrics for comparing different archi-
tectures on the PRED corpus.

4 Results and Discussion

4.1 Corpus Statistics
The main statistics for the PRED dataset are pre-
sented in Table 1. A total of 3,600 sentences were
annotated, from which 56.42% contained annotated
entities and relations. Sentences were evenly sam-
pled from full-text and abstract sections. A total
of 13,404 entity mentions were annotated. 12,411
relations were annotated, most coming from the
Related and Centralval classes. The number of
annotated Centralval relations was over 2.5 times
the number of Deviationval, indicating that mea-
sures of deviation are not often reported along with
central measures of PK parameters (only in 35.8%
of cases).

4.2 Annotator Agreement
The average micro and macro-F1 scores for NER
were 88.74% and 92.36%, respectively, exhibiting
high agreement on entity surfaces on the first anno-
tation phase. For RE, the average pair-wise scores
were 93.02%, 94.47% and 83.2% for Related,
Deviationval and Centralval, respectively. A
lower agreement was obtained between central
values and their PK parameter mentions, mostly
caused by disagreement on parameter span bound-
aries.

4.3 Multitask Model Performance
The effect of using a multi-task (MT) learning ap-
proach, jointly optimising NER and RE, was com-
pared against a model only optimising for NER.

BioBERT was used as an encoder in both cases.
The MT architecture saved the model with the
best Centralval F1 on the development set, while
micro-averaged F1 was used as a metric to select
the best model for the no-MT experiment. Table 2
shows the NER performance on the test set for each
entity type and the macro and micro-averaged F1
scores after ten runs of each experiment. Higher
performance was obtained when using the MT ar-
chitecture for all entities in the PRED corpus. Al-
though the performance gain was relatively low
(≈+∆F1 0.5%), the consistency of this gain across
all entity types suggests that having the RE objec-
tive combined with NER helped the model per-
form better on NER. Finally, we noted higher in-
terquartile variance for Range and Compare enti-
ties, which were the ones with the least number of
annotations.

Although the performance gain of the MT archi-
tecture was small, such an approach also helped
reduce the number of parameters required to model
the task by only having one encoder. These results
indicate that sharing token representations and op-
timising a single loss for NER and RE is beneficial
for extracting PK measurements from the scientific
literature compared to treating both tasks indepen-
dently.

The MT solution’s performance on the RE task
is summarized in Table 3. Results show success-
ful linking of deviation measurements and units
in most cases. Notably, when values and units
are correctly detected, their relation often requires
minimal context, especially with a short distance
between them. Additionally, the context between
units and values typically lacked other units, sim-
plifying extraction. Similarly, the context between
central and deviation values often lacked other
value entities. Therefore, with high NER perfor-
mance for V alue and Units, few errors were ob-
served for Deviationval and Related relations.
Centralval relation showed relatively high perfor-
mance, indicating consistency in dataset annota-
tion and effective end-to-end modeling. Errors in
Centralval predictions mostly stemmed from in-
correct NER predictions and sentences mention-
ing multiple parameters and values. However,
some incorrect predictions of PK entities partially
matched PK parameters, suggesting Centralval
performance could be a lower bound for PK mea-
surement extraction. F1 scores in Table 3 were
close to or exceeded inter-annotator agreement:
93.02% vs. 93.66% for Related, 94.47% vs.
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Table 1: Corpus statistics summarising the sentences, entities and relations in the dataset stratified by the training,
development and test sets.

Training Development Test Total
Amount # 2100 500 1000 3600

Sentences with relations (%) 57.05 53.00 56.80 56.42†

from full-text (%) 48.71 50.00 50.30 49.33†

PK 1890 394 856 3140
Units 2286 474 1056 3816

Entities Value 3524 702 1557 5783
Range 314 74 174 562

Compare 51 18 34 103
Centralval 2794 571 1312 4677

Relations Deviationval 1049 207 419 1675
Related 3643 764 1652 6059

† Weighted average across datasets.

Table 2: Named Entity Recognition results on the test set for the model using multi-task (MT) learning, NER +
RE, against a model only optimising for NER (no-MT). The metrics reported consider strict matching over entity
mentions. Results are displayed as the median over ten runs with their interquartile variance in subscript.

Precision Recall F1

Entity MT no-MT MT no-MT MT no-MT
PK 90.824.02 89.983.86 90.573.76 90.093.05 90.392.1 90.021.72

Units 95.491.87 95.791.66 96.172.07 95.693.85 95.650.68 95.561.52
Value 94.832.78 94.962.87 96.183.17 95.215.94 95.542.53 95.042.02
Range 93.494.9 93.286.24 90.268.22 87.3910.33 91.664.41 90.43.71

Compare 88.236.81 88.2316.99 66.679.09 68.1811.44 76.535.82 75.648.12
Micro-average 94.031.63 93.691.60
Macro-average 90.022.23 89.562.45

93.53% for Deviationval, 83.2% vs. 86.1% for
Centralval, for inter-annotator and MT model
cases, respectively. These results imply that poste-
rior reviews and standardization of span boundaries
significantly improved dataset consistency, and the
model developed competes well with the expected
agreement between pharmacometricians.

4.4 Encoders and Context

To analyse the effect of domain-specific pre-
training in the encoder, the BioBERT model was
replaced with BERTBASE , which was pre-trained
on general-domain English text. As shown in Table
4, there was a significant benefit of pre-training
in biomedical text, with BioBERT exhibiting over
3% gains in all metrics compared to BERTBASE .
The largest gain (≈ ∆6%) was observed in the
Centralval relation, indicating that pre-training
on biomedical text highly improved PK NER and
the understanding between parameter mentions
and their measurements. These results are in line

with previous findings from Wadden et al. (2019)
and Eberts and Ulges (2019). Previous work on
end-to-end relation extraction showed improve-
ments between 1.1-4.4% on the SciERC and GE-
NIA datasets with in-domain pre-training (Wadden
et al., 2019; Eberts and Ulges, 2019). However,
5.9% improvement was obtained in this task for
Centralval, suggesting that in-domain pre-training
is particularly useful. Hence, it is likely that fur-
ther pre-training on PK literature helps the model
performance, and it might be a promising area for
future work.

The effect of removing the local context between
entities was studied. For this, the input to the RE
layer was simplified to the entity embeddings. In
other words, the yellow vector from Figure 2 B
was removed. Table 5 shows the results of this
experiment. Surprisingly, it was observed that the
local context improved not only RE but also NER.
Both micro and macro-F1 scores were slightly im-
proved, suggesting that explicitly encoding local
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Table 3: End-to-end relation extraction results on the test set for the MT model configuration. Results are displayed
as the median over ten runs with their interquartile variance in subscript.

Relation P R F1

Centralval 85.775.04 85.465.07 86.13.49
Deviationval 92.331.9 94.396.27 93.533.01

Related 93.831.69 94.082.51 93.661.52

Table 4: Results on the test set when using different encoder models. Results are displayed as the median over ten
runs with their interquartile variance in subscript. NER metrics are the micro- and macro-averaged F1 scores over
all entities, and RE metrics are the F1 scores for each relation class.

NER RE
Encoder macro-F1 micro-F1 Related Deviationval Centralval

BERTBASE 85.824.07 90.811.77 89.441.69 90.272.2 80.164.14
BioBERT 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49

Table 5: Results on the test set when using different representations as input to the relation classifier. Local context
is the max-pooling of all tokens strictly between two entities. No context only used the concatenation of each
entity representation in a specific relation. Results are displayed as the median over ten runs with their interquartile
variance in subscript. NER metrics are the micro- and macro-averaged F1 scores over all entities, and RE metrics
are the F1 scores for each relation class.

NER RE
RE layer representaiton macro-F1 micro-F1 Related Deviationval Centralval

Local context 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49
No context (E1E2) 89.472.16 93.691.0 91.611.84 90.524.44 81.042.96

context between entities in RE layers can also help
recognise entities better.

For relation extraction, local context seemed to
provide a significant improvement for all relation
types, and especially for the Centralval. This re-
sult suggests that entity embeddings might cap-
ture local information around the entity mentioned
while failing to incorporate longer-range dependen-
cies. The results obtained in this experiment are
in-line with Eberts and Ulges (2019). Although re-
current and Transformer models have improved the
detection of long-range dependencies in sequential
inputs, the noise introduced with long context still
represents a challenge in relation extraction (Eberts
and Ulges, 2019; Zhong and Chen, 2020). Using
this local context, the model can focus on those
tokens that might be more informative about the
dependencies between both entities. Nonetheless,
future studies might benefit from further exploring
different contextual representations for RE of PK
measurements.

5 Conclusion and Future work

We introduce the PRED corpus, a large and com-
prehensive public corpus consisting of PK entities

and relations annotated in sentences from the scien-
tific literature. This dataset facilitates training and
benchmarking models for extracting PK measure-
ments from the scientific literature. We also train
and release a new end-to-end RE model based on a
BioBERT encoder. This model initially performs
NER to identify spans of interest in text, followed
by predicting relations between spans. Our bench-
mark results on the PRED dataset are promising,
achieving a micro-average F1-score of 94% for
NER and over 85% F1-score across all PK relation
types. Our dataset and model can accelerate the
construction of ADME datasets from the scientific
literature, which can benefit drug development and
off-label dosing.
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A Appendix: Corpus Construction

A.1 Annotation Guidelines

The annotation guidelines for annotating entities
and relations of PK estimations from scientific
sentences can be found at https://github.
com/PKPDAI/PKRelations/blob/master/docs/
Annotation_Guidelines_PKRelations.pdf.
Annotators were asked to base their labelling
decisions on these guidelines, which were updated
accordingly as new cases appeared.

Final Annotation Check. After multiple expert
annotators had annotated the development and test
sets, a final check involved comparing model pre-
dictions against their annotated version. This al-
lowed for identifying potentially missed entities
and relations during the annotation.

A.2 Annotation Interface

The annotation interface (see Figure 3) was de-
veloped in Prodigy (Montani, Ines and Honnibal,
2018) and allowed annotation of both entities and
relations at the sentence level. The annotators were
presented with a single sentence at a time and could
swap between the entity and relation annotation
modes. The annotations of named entities were
represented at the character level, and relations
were defined with the unique identifiers of each
entity and their relation class. Candidate values
and ranges were pre-highlighted in the interface
using a rule-based system. PK terms were pre-
highlighted using the NER model from Hernandez
et al. (2024), and a list of dictionary terms was used
to pre-annotate Compare entities.

A.3 Corpus Limitations

The main limitation of PRED is the potential bias
in selecting candidate sentences. The sampled
sentences went through two filtering stages that
involved model predictions: (1) selection of PK-
relevant documents identified by the document clas-
sifier from Hernandez et al. (2021) and (2) selec-
tion of sentences that at least had one PK entity
recognised by our PK RE model. As a result, if
the document classifier missed specific types of
documents, these would not appear on this dataset.
Using the trained PK NER model from Hernandez
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Figure 3: Screenshot of the interface used to annotate entities and relations from scientific text. The example
displays a single sentence after entities and relations were annotated.

et al. (2024) for filtering instances with PK param-
eter mentions might exclude sentences where the
NER model missed a single PK mention. Further-
more, if a specific sentence mentioned more than
one parameter and only one match (partial or not)
was detected by the NER model, the sentence was
included in the candidate pool, and these incorrect
predictions were later corrected during the anno-
tation process. Overall, it is important to consider
that training RE models on this dataset and directly
applying them to sentences in the literature without
additional filtering might result in the extraction of
non-PK measurements due to the filtering approach
performed in the sampling stage. For this reason,
when deploying systems in production, it is impor-
tant to combine models trained on this dataset with
filtering approaches to discard irrelevant measure-
ments (e.g. pre-tagging PK parameters or posterior
EL of PK mentions recognised with RE models).
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Abstract

Large language models (LLMs) have demon-
strated impressive generative capabilities with
the potential to innovate in medicine. However,
the application of LLMs in real clinical settings
remains challenging due to the lack of factual
consistency in the generated content. In this
work, we develop an augmented LLM frame-
work, KG-Rank, which leverages a medical
knowledge graph (KG) along with ranking and
re-ranking techniques, to improve the factual-
ity of long-form question answering (QA) in
the medical domain. Specifically, when receiv-
ing a question, KG-Rank automatically identi-
fies medical entities within the question and re-
trieves the related triples from the medical KG
to gather factual information. Subsequently,
KG-Rank innovatively applies multiple rank-
ing techniques to refine the ordering of these
triples, providing more relevant and precise in-
formation for LLM inference. To the best of
our knowledge, KG-Rank is the first applica-
tion of KG combined with ranking models in
medical QA specifically for generating long an-
swers. Evaluation on four selected medical QA
datasets demonstrates that KG-Rank achieves
an improvement of over 18% in ROUGE-L
score. Additionally, we extend KG-Rank to
open domains, including law, business, music,
and history, where it realizes a 14% improve-
ment in ROUGE-L score, indicating the effec-
tiveness and great potential of KG-Rank.

1 Introduction

Large language models (LLMs), such as GPT-
4 (OpenAI, 2023) and LLaMa2 (Touvron et al.,
2023), have demonstrated powerful generative ca-
pabilities (Gao et al., 2023; Yang et al., 2024b).
Despite their considerable potential in various do-
mains, including medicine (Li et al., 2022a; Yang
et al., 2023c; Ke et al., 2024; Yang et al., 2024a),
their limited training on medical data raises con-
cerns about the consistency of the generated con-

tent with established medical facts (Yang et al.,
2023b; Bi et al., 2024).

To address this challenge without additional
computational cost, previous research, such as Al-
manac (Hiesinger et al., 2023) and ChatENT (Long
et al., 2023), leverages external medical knowledge
to enhance the accuracy and reliability of LLM-
generated content. However, merely retrieving ex-
ternal knowledge risks introducing irrelevant or
unreliable information (Yang et al., 2024a), which
can compromise the effectiveness of LLMs, and
raise issues of credibility, data consistency, privacy,
security, and legality. While previous studies have
emphasized the advantages of utilizing external
knowledge, they have overlooked a crucial ques-
tion: How to better integrate external knowledge?

In this work, we propose KG-Rank, an aug-
mented framework that integrates a structured med-
ical knowledge graph (KG) with ranking tech-
niques into LLMs to achieve more accurate and re-
liable long-form medical question-answering (QA).
We first retrieve one-hop relations of related medi-
cal entities from the medical KG (Unified Medical
Language System (UMLS)) (Bodenreider, 2004).
To retain relevant information from the KG, we
then propose to apply ranking and re-ranking meth-
ods to optimize the ordering of triplets.

Specifically, we introduce three ranking tech-
niques to improve the integration of LLM with KG
by filtering irrelevant data, highlighting key infor-
mation, and ensuring diversity. These techniques
also streamline the process by reducing the number
of triplets required for LLM inference. Addition-
ally, we apply re-ranking models to reassess and
emphasize the most relevant triplets, enhancing the
factuality of KG-Rank in the long-form medical
QA task.

To summarize, our contributions are: (1) We
propose KG-Rank, a KG-augmented LLM frame-
work for the medical QA task. To the best of our
knowledge, this is the first application of KG com-
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bined with ranking techniques to enhance LLMs
for medical QA with long answers. (2) We incorpo-
rate different ranking and re-ranking techniques to
eliminate noise and redundancy in the KG-retrieval
stage. (3) We validate the effectiveness of KG-
Rank on both medical and various open-domain
QA tasks. All the data and code can be found at
https://github.com/YangRui525/KG-Rank.

2 Methodology

As shown in Fig. 1, we introduce the KG-Rank
(Knowledge Graph -Rank) framework for the long-
form medical QA task.

Atrial Fibrillation
Heart Failure
Diabetes Mellitus
...

Query : A 56 year old male patient
with atrial fibrillation presents to the
clinic. Given their history of heart
failure, diabetes and PAD, what is
their risk of stroke? Should they be
placed on anticoagulation?

Step 1: Entity Extraction and Mapping

Step 2: Relation Retrieval and Triplet Ranking 

UMLS
Database

One-hop
Relations 

Step 3: Re-Ranking 

Step 4: Obtaining LLM Response

Top-  Triplets Top-  Triplets

Query + Answers

Cross-Encoder

Similarity

Answer Expansion

MMR

 Triplet Ranking  

LLMs

Figure 1: An illustration of KG-Rank Framework.

2.1 External Knowledge Graph

We define the external KG as G = (V,E), where
V represents the set of entities and E represents
the set of structural relations. For the medical QA
task, we choose UMLS as the primary medical
KG. UMLS is a comprehensive repository of health
and biomedical vocabularies, designed to promote
information standardization and interoperability.
The core component of UMLS, the Metathesaurus,
contains over 3.8 million concepts and more than
78 million relations, and supports 25 languages,
providing extensive medical knowledge coverage

to enhance LLMs. In UMLS, knowledge is rep-
resented in the form of triples, which consist of
two medical concepts and the relation between
them. For example, in the triple (Myopia, clini-
cally_associated_with, HYPERGLYCEMIA), "My-
opia" and "HYPERGLYCEMIA" are medical con-
cepts, while "clinically_associated_with" is the re-
lation between them.

2.2 Entity Extraction and Mapping

In the first step, we extract key entities and find
mappings from the external KG. Specifically, for
the given question Q, we apply a Medical NER
Prompt PMedNER to identify related medical entities
EQ, and then we map each entity ei ∈ EQ to the
corresponding entity in the knowledge graph G.
The detailed prompt can be found in Appendix A.1.

2.3 Relation Retrieval and Triplet Ranking

After identifying the corresponding entities EQ′ ,
we retrieve their one-hop relations from the KG
(denoted as UMLS):

EQ′ = {e′i ∈ V | ∃ei ∈ EQ, ei 7→ e′i}.

Within UMLS, there exists extensive relational
information, where one entity may be associated
with thousands of one-hop relations. Consequently,
to facilitate the extraction of the most relevant, we
propose ranking methods. We encode the question
Q and each triplet (e′i, r, e

′
j) into q, rij through

UmlsBERT (Michalopoulos et al., 2021). Then,
we explore three techniques for ranking the triplets:

Similarity Ranking We compute the similarity
score between the question embedding q and each
relation embedding rij .
Answer Expansion Ranking We first utilize
LLMs to generate a hallucinatory answer A for the
question Q , and then we encode the concatenation
of [Q,A] to obtain text embedding t. Subsequently,
we utilize the expanded question embedding t to
search for the most similar triplets in vector space.
The detailed prompt for answer expansion can be
found in Appendix A.2.
MMR Ranking This method is inspired by an in-
formation extraction method Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein-
Stewart, 1998). Initially, we identify the triplet
with the highest similarity score to the question
Q. For the remaining triplets, we dynamically ad-
just their similarity scores based on the ones that
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have already been selected. In this way, we could
consider both relevancy and redundancy:

w = wbase + δ · n,
scoreij = sim(q, rij)− w · sim(rij , rsel).

Where, w is an adjustable weight, with a base
weight and δ as the incremental weight factor per
selected triplet, n is the count of triplets that have
been selected.
Re-ranking After the ranking stage, we obtain an
ordering of the triplets. We then employ a medical
cross-encoder model, MedCPT (Jin et al., 2023), to
re-rank them, ensuring that the most relevant triples
are chosen. The re-ranked top-p triplets, combined
with the task prompt, are input into LLMs for an-
swer generation. The detailed prompt can be found
in Appendix A.3.

3 Experiments

We conduct experiments on four selected medical
QA datasets, in which the answers are free-text, as
shown in Tab. 1. LiveQA (Abacha et al., 2017) con-
sists of health questions submitted by consumers
to the National Library of Medicine. It includes
a training set with 634 QA pairs and a test set
comprising 104 QA pairs, which is used for evalu-
ation. ExpertQA (Malaviya et al., 2023) is a high-
quality long-form QA dataset with 2177 questions
spanning 32 fields, along with answers verified
by domain experts. Among them, 504 medical
questions (Med) and 96 biology (Bio) questions
were used for evaluation. MedicationQA (Abacha
et al., 2019) includes 690 drug-related consumer
questions along with information retrieved from
reliable websites and scientific papers. We eval-
uate the generated answers using ROUGE (Lin,
2004), BERTScore (Zhang et al., 2019), Mover-
Score (Zhao et al., 2019) and BLEURT (Sellam
et al., 2020).

Dataset Sentence (Q) Word (Q) Sentence (A) Word (A)

LiveQA 1.15 14.76 6.96 141.02
ExpertQA-Bio 1.26 21.69 6.18 184.38
ExpertQA-Med 1.37 22.19 5.96 180.55
MedQA 1.02 7.36 3.38 71.48

Table 1: Statistics on the average number of sentences
and words across four medical datasets (Q: Question, A:
Answer).

3.1 Results
As shown in Tab. 2, we evaluate GPT-4 and
LLaMa2-13b across the following settings: zero-
shot (ZS), and three proposed ranking techniques:

Similarity Ranking (Sim), Answer Expansion
Ranking (AE), and Maximal Marginal Relevance
Ranking (MMR). Also with the Re-ranking (RR),
which is on top of the Similarity Ranking.

3.2 Datasets

The results show that incorporating the knowledge
graph and ranking techniques notably enhances per-
formance in almost all benchmarks and evaluation
metrics in the zero-shot setting, demonstrating the
effectiveness of KG-Rank. Significantly, the RR
method excels in the ExpertQA-Bio, ExpertQA-
Med, and Medication QA datasets, particularly evi-
dent in the over 18% increase in the ROUGE-L
score for ExpertQA-Bio. While KG-Rank still
shows effectiveness on LiveQA, the RR method
does not show steady improvement compared to
other ranking techniques. This inconsistency may
arise since the answers in LiveQA are generated
via automatic extraction methods, leading to issues
with semantic coherence and disorganized formats.
Moreover, the performance of the three ranking
methodologies exhibited variability across various
datasets, indicating their unique strengths and limi-
tations in differing contexts.

In assessing model performance, GPT-4 consis-
tently surpasses LLaMa2-13b in both zero-shot and
various ranking settings. Additionally, we evaluate
the zero-shot performance of a medical LLM on
these datasets in Section 4 (Medical LLM).

4 Ablation Study and Analysis

Medical LLM To further investigate the ca-
pability of the medical LLM, we compare the
zero-shot performance of LLaMa2-7b and baize-
healthcare (Xu et al., 2023) without KG-Rank.
Baize-healthcare, which is fine-tuned on LLaMa-
7b using medical data, consistently outperforms
LLaMa2-7b across all four datasets, as shown in
Fig. 2. More comparison results can be found in
Appendix B.1.

Re-ranking Models We employ GPT-4 with sim-
ilarity ranking as the final setting and compare
two re-ranking models: the MedCPT cross-encoder
model, trained on the extensive PubMed articles,
and the Cohere (https://cohere.com) re-ranking
model, designed for broader domain applications.
As shown in Tab. 3, MedCPT steadily outperforms
the Cohere re-rank model on all datasets, highlight-
ing the importance of specialized re-rank models
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Dataset Method GPT-4 LLaMA2-13b
ROUGE-L BERTScore MoverScore BLEURT ROUGE-L BERTScore MoverScore BLEURT

LiveQA ZS 18.89 82.50 54.02 39.84 17.73 81.93 53.37 40.45
Sim 19.35 83.01 54.08 40.47 18.52 82.78 53.79 40.59
AE 19.24 82.95 54.04 40.15 18.45 82.60 53.70 39.80
MMR 19.32 82.91 54.03 40.55 18.25 82.70 53.67 40.22
RR 19.44 82.94 54.11 40.50 18.83 82.79 53.72 39.59

ExpertQA-Bio ZS 23.00 84.50 56.15 44.53 23.26 84.38 55.58 44.65
Sim 25.90 85.72 56.73 45.10 24.96 84.91 55.83 44.35
AE 26.78 85.77 56.79 45.18 24.84 84.97 55.72 43.55
MMR 26.54 85.76 56.77 44.93 25.40 85.08 55.98 44.04
RR 27.20 85.83 57.11 45.91 25.79 85.18 56.17 45.20

ExpertQA-Med ZS 25.45 85.11 56.50 45.98 24.86 84.89 55.74 46.32
Sim 27.61 86.10 57.13 46.47 26.40 85.50 56.23 46.15
AE 27.98 86.12 57.25 46.80 26.15 85.36 56.17 46.02
MMR 27.78 86.22 57.28 46.84 26.42 85.57 56.24 46.41
RR 28.08 86.30 57.32 47.00 27.49 85.80 56.58 46.47

MedicationQA ZS 14.41 82.55 52.62 37.41 13.30 81.81 51.96 38.30
Sim 16.05 83.56 53.23 37.60 14.60 82.73 52.47 38.38
AE 16.13 83.46 53.23 37.87 14.19 82.50 52.33 37.90
MMR 15.89 83.48 53.22 37.73 14.56 82.69 52.44 38.31
RR 16.19 83.59 53.30 37.91 14.71 82.79 52.59 38.42

Table 2: Automatic evaluation scores: we compare ROUGE-L, BERTScore, MoverScore, BLEURT on different
settings. The superior scores among the same models are highlighted in bold.

LiveQA Ep-Bio Ep-Med MedicationQA
80.0

82.0

84.0

86.0

88.0

81.8

84.1
84.7

81.8

83.3

85.3
85.7

83.4

LLaMa2-7b baize-healthcare

Figure 2: BERTScore comparison: zero-shot setting
with LLaMa2-7b and Baize-Healthcare. Ep stands for
ExpertQA.

in the medical field. Additional evaluations are
provided in Appendix B.2.

Dataset ROUGE-L BERTScore MoverScore BLEURT

Cohere
LiveQA 18.72 82.94 54.08 40.07
ExpertQA-Bio 26.08 85.81 56.93 45.70
ExpertQA-Med 27.59 86.08 57.14 46.54
MedicationQA 16.14 83.46 53.25 37.82

MedCPT
LiveQA 19.44 82.95 54.11 40.50
ExpertQA-Bio 27.20 85.83 57.11 45.91
ExpertQA-Med 28.08 86.30 57.32 46.84
MedicationQA 16.19 83.59 53.30 37.91

Table 3: The performance of Cohere re-rank model and
MedCPT in the re-ranking stage.

Case Study To further analyze the generated
content of the KG-Rank framework, a case study
is presented in Fig. 3. When asked about ideal
diet recommendations for a 53-year-old male with
acute renal failure and hepatic failure, both pro-
vide guidelines regarding protein intake. However,
the original recommendation emphasizes ensuring

adequate protein consumption (1.6-2.2 grams per
kilogram), whereas the answer generated under the
KG-Rank framework advises controlling protein
intake (limited to about 0.8-1 gram per kilogram).
The difference is critical for patients with acute
renal and hepatic failure, where an inappropriate
protein dosage, such as the higher range of 1.6-2.2
grams per kilogram, could worsen the strain on
already compromised kidneys and liver, potentially
leading to escalated health issues. This case shows
that KG-Rank is more factually correct in the gen-
erated answer. More case studies can be found in
the Appendix C.

Question: What would be the ideal diet recommendations for a
53 year old male with acute renal failure and hepatic failure?

LLaMa2-13b: ...3. Protein intake: Provide adequate protein to
support liver function and wound healing. The recommended
daily intake of protein for a 53-year-old male is approximately
1.6-2.2 grams per kilogram of body weight...

LLaMa2-13b w KG-Rank:...1. Low protein intake: Protein
intake should be limited to about 0.8-1.0 gram per kilogram of
body weight per day, as excessive protein intake can
exacerbate renal failure and liver disease...

Figure 3: A case study from ExpertQA-Med: results
from LLaMa2-13b and with KG-Rank.

LLM-based Evaluation Although KG-Rank
achieves significant improvements in ROUGE,
BERTScore, MoverScore, and BLEURT, these au-
tomatic scores may have limitations in evaluating
the factuality of long-form medical QA. Therefore,
we introduce GPT-4 score specifically for factuality
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evaluation (Zheng et al., 2024). The evaluation cri-
teria are designed by two resident physicians with
over five years of experience, which can be found
in Appendix A.4. As shown in Tab. 4, we choose
GPT-4 as the vanilla model, and KG-Rank outper-
forms the zero-shot setting across all datasets.

Dataset Zero-Shot Tie KG-Rank

LiveQA 0 43 61
ExpertQA-Bio 0 43 52
ExpertQA-Med 3 235 266
MedQA 8 211 468

Table 4: GPT-4 evaluation across four medical datasets.

KG-Rank in Open Domain Additionally, to
demonstrate the effectiveness of our KG-Rank,
we extend it to the open domain by replacing
UMLS with Wikipedia through the DBpedia API
(https://www.dbpedia.org/). We conduct the
experiment on Mintaka (Sen et al., 2022), which
is a complex, natural, and multilingual dataset de-
signed for experimenting with end-to-end question-
answering models. We randomly select 1,000 pairs
from the test set for evaluation. Under the enhance-
ment of the KG-Rank framework, the accuracy
increases from 60.40% to 61.90%. The detailed
prompt can be found in Appendix A.5.

We also conduct experiments in the domains
of law, business, music, and history using the Ex-
pertQA dataset. We employ GPT-4 as the vanilla
model and use ROUGE-L, BERTScore, and Mover-
Score for evaluation. As shown in Tab. 5, KG-Rank
outperforms the baseline across all benchmarks.
Building on these findings, the effectiveness of our
framework is not limited to the medical domain
but can also be applied to various other fields. For
more case studies, please refer to Appendix C.

5 Conclusion

In this work, we propose KG-Rank, an enhanced
LLM framework that integrates a medical KG and
ranking techniques to improve the factuality of
medical QA. As far as we know, KG-Rank is the
first application of KG combined with ranking tech-
niques for long-answer medical QA. Across four
medical QA datasets, KG-Rank demonstrates over
an 18% improvement in ROUGE-L score. Its ap-
plication to open domains yields a 14% ROUGE-L
score enhancement, underscoring KG-Rank’s ef-
fectiveness and versatility.

Setting ROUGE-L BERTScore MoverScore

ExpertQA-Law
Base 26.33 85.03 48.57
KG-Rank 29.93 86.25 48.63

ExpertQA-Business
Base 21.78 84.46 48.92
KG-Rank 24.20 85.42 49.10

ExpertQA-Music
Base 23.84 85.21 45.73
KG-Rank 27.31 86.23 46.55

ExpertQA-History
Base 25.65 85.55 45.82
KG-Rank 27.75 86.21 47.08

Table 5: Base and KG-Rank performance in the open
domain.

Limitations

In this research, we propose an LLM framework
augmented by UMLS to improve the quality of
the content generated. However, there are some
limitations, which we will address in the next
phase. Firstly, we plan to incorporate physician
evaluations to validate the factual accuracy of KG-
Rank’s answers. Secondly, we aim to assess the
performance of more medical-specific base models
on medical QA tasks. Lastly, while the ranking
method may increase computational time, we rec-
ognize the need to optimize its efficiency. We will
consider graph-based methods (Yang et al., 2023a;
Li et al., 2022b) and some efficiency methods (Feng
et al., 2023).

Ethical Considerations

This research utilize public medical datasets solely
for academic purposes, not for practical applica-
tion. We employ GPT-4, LLaMa2-13b, LLaMa2-
7b, baize-healthcare for text generation, ensuring
that no harmful content was produced. Both the
benchmark datasets and the model outputs are free
of any individual privacy data.
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A Prompt Templates

In this section, we present the detailed prompt templates employed as inputs for LLMs at each phase of
the KG-Rank process.

A.1 Medical NER Prompt
Fig. 4 illustrates the Medical NER prompt template that is specifically designed for extracting medical
terminologies from a given question.

Question: {question}

You are interacting with a knowledge graph that contains definitions and relational information of medical
terminologies. To provide a precise and relevant answer to this question, you are expected to:

1. Understand the Question Thoroughly: Analyze the question deeply to identify which specific medical
terminologies and their interrelations, as extracted from the knowledge graph, are crucial for
formulating an accurate response.

2. Extract Key Terminologies: Return the 3-5 most relevant medical terminologies based on their
significance to the question.

3. Format the Output: Return in a structured JSON format with the key as "medical terminologies".

For example:
{"medical terminologies": ["term1", "term2", ...]}

Figure 4: Prompt used to extract medical terminologies.

A.2 Answer Expansion Prompt
Figure 5 illustrates the prompt template designed for our proposed answer expansion ranking strategy, as
shown in step 2 of Fig. 1 and as described in Section 2.3.

Question: {question}

Provide an example answer to the given question. 

Your answer is derived from a biomedical knowledge graph. 

This knowledge graph encompasses a wide range of medical terminologies and elucidates the complex
interconnections between these terms, supporting an in-depth and accurate response to the question.

Figure 5: Prompt for answer expansion ranking technique.

A.3 KG-Enhanced Prompt
Fig. 6 shows the prompt template to obtain final answers from LLMs, corresponding to step 4 in Fig. 1.

Answer the question in conjunction with the following content.

Context:
{context}

Patient: 
{input}

Physician:

Figure 6: Prompt for obtaining KG-enhanced LLM answers.
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A.4 Physician-Designed Criteria for GPT-4 Evaluation
Tab. 6 shows the criteria for evaluating medical long-form QA established by two resident physicians with
over five years of experience. This critria is part of the GPT-4 evaluation prompt.

Evaluation Criteria

Factuality:
The degree to which the generated text aligns with established medical facts,
providing accurate explanations for further verification.

Readability:
The extent to which the generated text is readily comprehensible to the user,
incorporating suitable language and structure to facilitate accessibility.

Relevance:
The extent to which the generated text directly addresses medical questions
while encompassing a comprehensive range of pertinent information.

Completeness:
The degree to which the generated text comprehensively portrays the clinical
scenario or posed question, including other pertinent considerations.

Table 6: Physician-designed criteria for GPT-4 evaluation.

A.5 KG-Enhanced Prompt for Mintaka Task
Fig. 7 presents the prompt for obtaining KG-enhanced LLM answers, specially designed for the Mintaka
dataset.

Here are some examples for output format: 

Question: What is the seventh tallest mountain in North America? 
Example Output: Mount Lucania

Question: What year was the first book of the A Song of Ice and Fire series published?
Example Output: 1996

Question: How old was Taylor Swift when she won her first Grammy?
Example Output: 20

Question: Has there ever been a Christian U.S. senator?
Example Output: Yes

Context:
{context}

Question: 
{input}

Answer:

Figure 7: Prompt for obtaining KG-enhanced LLM answers, with special design for Mintaka dataset.
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B Detailed Evaluation Results

B.1 Zero-shot Performance of Different LLMs
In this section, we evaluate the performance of widely-used LLMs on four medical datasets under the
zero-shot setting. As shown in Tab. 7, the results indicate that GPT-4 performing better than the other
LLMs.

Dataset Evaluation Metrics
ROUGE-1 ROUGE-2 ROUGE-L BERTScore MoverScore BLEURT

LLaMa2-7b
LiveQA 18.87 3.60 17.44 81.83 53.28 39.43
ExpertQA-Bio 24.19 6.96 22.15 84.14 55.18 43.81
ExpertQA-Med 26.24 8.11 23.86 84.72 55.51 45.75
MedicationQA 14.19 2.60 13.12 81.77 51.94 37.32

baize-healthcare
LiveQA 17.92 2.73 16.10 83.30 53.41 31.30
ExpertQA-Bio 23.45 6.52 21.31 85.32 54.95 33.80
ExpertQA-Med 24.95 7.21 22.41 85.73 55.12 34.52
MedicationQA 15.05 2.48 13.59 83.37 52.41 31.39

LLaMa2-13b
LiveQA 19.15 3.60 17.73 81.93 53.37 40.45
ExpertQA-Bio 25.33 7.92 23.26 84.38 55.58 44.65
ExpertQA-Med 27.41 8.86 24.86 84.89 55.74 46.32
MedicationQA 14.42 2.62 13.30 81.81 51.96 38.30
GPT-4
LiveQA 20.54 4.65 18.89 82.50 54.02 39.84
ExpertQA-Bio 25.06 7.84 23.00 84.50 56.15 44.53
ExpertQA-Med 27.78 9.49 25.45 85.11 56.50 45.98
MedicationQA 15.52 3.51 14.41 82.55 52.62 37.41

Table 7: Automatic evaluation scores: we compare ROUGE-1, ROUGE-2, ROUGE-L, BERTScore, MoverScore,
BLEURT on the zero-shot setting for different LLMs with medical QA tasks. The best scores are highlighted in
bold.

B.2 Performance of Different Re-rank Models
In this section, we evaluate the performance of MedCPT and the Cohere re-rank model on four medical
datasets within the GPT-4 with similarity ranking setting. As shown in Table 8, the results indicate that
MedCPT outperforms the Cohere re-rank model.

Dataset GPT-4
ROUGE-1 ROUGE-2 ROUGE-L BERTScore MoverScore BLEURT

Cohere
LiveQA 21.08 4.13 18.72 82.94 54.08 40.07
ExpertQA-Bio 29.07 9.35 26.08 85.81 56.93 45.70
ExpertQA-Med 30.84 10.62 27.59 86.08 57.14 46.54
MedicationQA 17.76 3.65 16.14 83.46 53.25 37.82

MedCPT
LiveQA 21.70 4.33 19.44 82.95 54.11 40.50
ExpertQA-Bio 30.05 10.51 27.20 85.83 57.11 45.91
ExpertQA-Med 31.34 10.96 28.08 86.30 57.32 46.84
MedicationQA 17.94 3.72 16.19 83.59 53.30 37.91

Table 8: Automatic evaluation scores: we compare the performance of different re-rank models on ROUGE-1,
ROUGE-2, ROUGE-L, BERTScore, MoverScore, BLEURT. The best scores are highlighted in bold.
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C More Case Studies

We put another case study from the ExpertQA-Med dataset, where in regards to the prognosis survival
rates of breast cancer cases, the answer generated by KG-Rank is more factually accurate in terms of
medical evidence, as shown in Fig. 8. Moreover, Fig. 9 shows a case study on the open-domain QA
tasks from the Mintaka dataset, comparing the performance of the vanilla GPT-4 model against the
KG-Rank-enhanced GPT-4 model. The case study involves a question: “How many of the Godfather
movies was Robert De Niro in?” While GPT-4 responded with “2”, our proposed KG-Rank-enhanced
GPT-4 provided the correct answer “1”, which matches the ground truth. We also show the evidence
retrieved from DBPedia. This case study shows that by incorporating KG-Rank, the model is able to
leverage the relevant information effectively to derive the correct answer, whereas the vanilla GPT-4 did
not. This demonstrates the efficacy of KG-Rank in improving the accuracy of answers in LLMs when
dealing with general domain factual questions.

Question:
What is the prognosis of a case of triple negative ductal breast carcinoma?

LLaMa2-13b:

The prognosis for triple negative ductal breast cancer
(TNBC) varies depending on several factors, such as the
stage of the disease, the presence of certain biomarkers, and
the patient's overall health. However, in general, the
prognosis for TNBC is considered to be less favorable
compared to other types of breast cancer. 

Here are some general prognostic factors for TNBC: 
1. Stage: The stage of the cancer is a major determinant of
prognosis. TNBC that is confined to the breast (stage I or II)
has a better prognosis than more advanced stages (III or IV).
2. Lymph node involvement: If the cancer has spread to the
lymph nodes under the arm (axillary lymph nodes), it can
indicate a poorer prognosis. 
3. Biomarkers: The presence of certain biomarkers, such as
high levels of Ki-67 (a protein that indicates cell division) or
low levels of estrogen receptors (ER) and progesterone
receptors (PR), can indicate a poorer prognosis. 
4. Genetic mutations: The presence of specific genetic
mutations, such as those in the BRCA1 or BRCA2 genes,
can increase the risk of recurrence and reduce the prognosis. 
5. Patient characteristics: Factors such as age, overall health,
and the presence of other medical conditions can also affect
the prognosis for TNBC patients. 

Despite these factors, many women with TNBC can achieve
long-term survival and even cure. According to the
American Cancer Society, the 5-year survival rate for TNBC
is about 70% for women who are diagnosed at an early stage
(stage I or II). For women diagnosed at a later stage (stage
III or IV), the 5-year survival rate is about 40%. 

It's important to note that these statistics are based on
averages and that each individual case is unique. Many
factors can influence the prognosis for TNBC, and it's best to
consult with a doctor to get a more accurate assessment of
your specific situation.

LLaMa2-13b w KG-Rank:

The prognosis of a case of triple negative ductal breast
carcinoma can be challenging to determine due to the lack of
specific targeted therapies and the limited availability of
clinical trials for this specific subtype of breast cancer.

However, some studies suggest that triple negative breast
cancer patients who are diagnosed at an early stage (stage I
or II) have a relatively good prognosis, with a 5-year
survival rate of around 80-90%. However, for patients with
more advanced stages (stage III or IV), the prognosis is
generally poorer, with a 5-year survival rate of around 50-
60%. This is because advanced stages of triple negative
breast cancer are often associated with a higher risk of
recurrence and metastasis. 

It's important to note that the prognosis for triple negative
breast cancer can vary depending on several factors, such as
the size of the tumor, the presence of lymph node
involvement, and the patient's overall health status.
Additionally, the prognosis can also be influenced by the
specific molecular biomarkers present in the tumor, such as
the ERBB2 gene, which has been shown to be associated
with a worse prognosis in some studies. 

Overall, while the prognosis for triple negative ductal breast
carcinoma can be challenging to predict, it is important for
patients to receive prompt and appropriate treatment,
including surgery, chemotherapy, and targeted therapies
where available, to improve their chances of a successful
outcome.

Figure 8: A case study from ExpertQA-Med: we show results from vanilla LLaMa2-13b and KG-Rank-enhanced
LLaMa2-13b.
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Question:
How many of the Godfather movies was Robert De Niro in?

GPT-4 Answer: 2 
KG-Rank: 1 
Ground_truth: 1

Retrieved from Wiki: Sian unuan Akademian Premion Robert
de Niro gajnis en la jaro 1974, pro la plej bona epizoda rolo en
la filmo The Godfather, Part II, direktita de Francis Ford
Coppola.

Figure 9: A case study from Mintaka: we show results from vanilla GPT-4 and KG-Rank-enhanced GPT-4.

D Experimental Setup

In our experimental setup, we employ UmlsBERT1, baize-healthcare2, llama-2-7b-chat-hf3,
llama-2-13b-chat-hf4, MedCPT5 from Hugging Face. For GPT-4, we use the OpenAI API with a
zero-temperature setting. For the Cohere re-rank model, we employ it through its API. In the MMR
Ranking setting, the default value for w is 0.1, and δ is set to 0.01. All experiments are conducted on a
cluster equipped with 4 NVIDIA A100 GPUs. The prediction for each sample takes about a few seconds.
Based on the size of each dataset, it may take up to hours to finish the evaluation.

1GanjinZero/UMLSBert_ENG
2https://huggingface.co/project-baize/baize-healthcare-lora-7B
3https://huggingface.co/meta-llama
4https://huggingface.co/meta-llama
5https://huggingface.co/ncbi/MedCPT-Cross-Encoder
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Abstract

This paper introduces MedExQA, a novel
benchmark in medical question-answering, to
evaluate large language models’ (LLMs) under-
standing of medical knowledge through expla-
nations. By constructing datasets across five
distinct medical specialties that are underrepre-
sented in current datasets and further incorpo-
rating multiple explanations for each question-
answer pair, we address a major gap in cur-
rent medical QA benchmarks which is the ab-
sence of comprehensive assessments of LLMs’
ability to generate nuanced medical explana-
tions. Our work highlights the importance of
explainability in medical LLMs, proposes an ef-
fective methodology for evaluating models be-
yond classification accuracy, and sheds light on
one specific domain, speech language pathol-
ogy, where current LLMs including GPT4 lack
good understanding. Our results show gen-
eration evaluation with multiple explanations
aligns better with human assessment, highlight-
ing an opportunity for a more robust automated
comprehension assessment for LLMs. To di-
versify open-source medical LLMs (currently
mostly based on Llama2), this work also pro-
poses a new medical model, MedPhi-2, based
on Phi-2 (2.7B). The model outperformed med-
ical LLMs based on Llama2-70B in generat-
ing explanations, showing its effectiveness in
the resource-constrained medical domain. The
benchmark datasets and the model can be found
at https://github.com/knowlab/MedExQA.

1 Introduction

Recent advancements in large language models
(LLMs) have not only enhanced their understand-
ing of medical domain text but also improved their
ability to generate coherent text with correct medi-
cal knowledge (Tu et al., 2023; Singhal et al., 2023).
Chatbots, powered by these LLMs, have emerged
as indispensable tools, offering unprecedented op-
portunities to enhance patient care, streamline clini-
cal decision-making processes, and medical knowl-

edge retrieval (Achiam et al., 2023; OpenAI, 2023;
Groves et al., 2023). Moreover, open-source med-
ical LLMs further enhance the usability of such
technologies in hospitals by resolving the privacy
concerns associated with patient data (Toma et al.,
2023; Kweon et al., 2023; Chen et al., 2023).

This research in medical LLMs has been facil-
itated by the introduction of question-answering
(QA) datasets that serve as benchmarks for evaluat-
ing the model’s understanding of medical domain
knowledge (Hendrycks et al., 2020; Jin et al., 2021;
Pal et al., 2022; Singhal et al., 2023). The bench-
mark QA datasets typically consist of multiple-
choice questions (MCQ), enabling researchers to
readily assess the capabilities of LLMs in com-
prehending and responding to diverse medical in-
quiries. Thus, the diversity within these datasets
is a key component in creating a rigorous assess-
ment benchmark for complex medical concepts.
Nonetheless, certain areas within the medical do-
main, such as speech language pathology, still re-
main uncovered by the current benchmark datasets.

As current medical QA benchmarks are often
structured as MCQ, classification accuracy is used
as an evaluation metric. However, classification
accuracy alone may not adequately assess whether
LLMs possess the nuanced medical expertise re-
quired for reasoned responses. The explanation and
rationale behind the selection of a particular choice
by an LLM would provide a deeper understand-
ing of the model’s capabilities and limitations in
generating responses to intricate medical questions.
This comprehensive evaluation, delving into the
explanation and rationale, is especially important
in clinical settings where misleading information
such as hallucinations produced by LLMs can have
serious consequences.

In order to assess the quality of the model ex-
plainability, the dataset should include a golden
explanation for the reasoning behind the answer.
Additionally, since there are often multiple ways to
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express the same rationale in text, an ideal dataset
would provide a multiple set of explanations for
a single QA pair. However, current benchmark
datasets are not focused on providing explanations
as they often lack explanations entirely or only a
subset of the dataset comes with an explanation
(Hendrycks et al., 2020; Jin et al., 2021; Pal et al.,
2022). This limitation highlights the need for im-
proved datasets that are explicitly designed to in-
clude comprehensive explanations.

To address this issue, this paper presents a novel
QA benchmark, MedExQA, with two sets of ex-
planations, aiming to provide a more comprehen-
sive evaluation of LLMs in the medical domain.
To diversify the knowledge coverage in the cur-
rent datasets, our proposed benchmark consists of
five underrepresented specialties in current datasets:
biomedical engineering, clinical laboratory sci-
ence, clinical psychology, occupational therapy,
and speech language pathology. In this work,
the datasets were used to benchmark the perfor-
mance of an extensive list of LLMs, including those
trained with medical domain text. With this com-
prehensive benchmark evaluation, we explored the
effects of medical domain-specific training. Addi-
tionally, to diversify the pool of open-source medi-
cal LLMs which are currently almost all based on
the Llama2 model, we introduce our own trained
model, MedPhi-2, a Phi-2 model trained with med-
ical domain text. Our MedPhi-2 model outper-
formed medical LLMs based on the Llama2-70B
model in generating explanations for the rationale
behind the answer.

The contributions of this paper are as follows:

1. MedExQA novel datasets with explana-
tions. We constructed a benchmark with 5
distinct specialties within the medical domain.
The datasets include two explanations for each
question and answer pairs.

2. Comprehensive Benchmark. We evaluated
an extensive list of models: 18 baseline open-
source models with various sizes (from 2.7B
to 70B), 3 OpenAI GPT models, as well as our
model (detailed below). In terms of evaluation
approach, classification accuracy, generated
explanation performance, and human evalua-
tions are considered. To highlight, this is the
first benchmark using multiple explanations,
and the results demonstrate that our bench-
mark can better evaluate language models’ un-
derstanding of medical domain knowledge.

3. MedPhi-2 model. We trained a small lan-
guage model (SLM) based on the Phi-2
model, with medical pretraining corpus and
instruction-tuning datasets. The model outper-
formed medical LLMs based on Llama2 70B
in generating explanations.

4. Open source. We release the datasets, model
weights, and codes to facilitate the research in
medical large language modeling.

2 Related Works

2.1 MMLU

MMLU (Hendrycks et al., 2020) is a benchmark de-
signed to measure the model’s ability in knowledge-
intensive QA with four-way MCQs. Within the
extensive list of subjects, there are nine healthcare-
related subjects such as professional medicine and
medical genetics. Collectively, these nine subjects
comprise a total of 1,871 questions in the test set.
While MMLU provides a comprehensive set of
questions, it lacks explanations for the answers,
thereby limiting the dataset’s evaluation to mere
multiple-choice classification accuracy.

2.2 MedQA

MedQA (Jin et al., 2021) is an open-ended MCQ
dataset made from professional medical doctor li-
cense exams. The dataset contains questions drawn
from both real exams and mock tests for the United
States Medical License Exams (USMLE). 1,273
questions, each question accompanied by four or
five answer choices, are provided as the test dataset.
Similar to MMLU, MedQA does not include expla-
nations for assessing the ability to generate ratio-
nale behind the answer.

2.3 MedMCQA

MedMCQA (Pal et al., 2022) is a benchmark with
questions sourced from postgraduate-level Indian
medical school entrance exams (AIIMS and NEET
PG). The dataset covers a breadth of medical spe-
cialties, 2,400 healthcare topics and 21 subjects and
provides 4,183 MCQ with four answer choices for
evaluation. Although MedMCQA is known to have
explanations, nearly half of the evaluation dataset
lacks explanations and instances of duplicate expla-
nations are also observed. In fact, accuracy is only
reported as the evaluation metric and explanation is
not used in their paper entirely. Therefore, MedM-
CQA is not primarily designed for the assessment
of generating explanations.
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Specialty NUM ExSIM
Biomedical Engineering 148 75.8
Clinical Laboratory Science 377 73.7
Clinical Psychology 111 79.7
Occupational Therapy 194 79.5
Speech Language Pathology 135 80.5
Total 965 78.7

Table 1: Statistics of datasets within MedExQA. NUM
represents the number of questions. ExSIM represents
the average cosine similarity of the explanation pairs.

3 MedExQA Datasets

We introduce MedExQA, a novel QA benchmark
designed to tackle the limitations of existing bench-
marks by incorporating two sets of explanations.
This approach aims to offer a more thorough evalu-
ation of performance in five underrepresented spe-
cialties in the medical domain: Biomedical En-
gineering, Clinical Laboratory Science, Clinical
Psychology, Occupational Therapy, and Speech
Language Pathology.

3.1 Datasets Preparation

The raw data was manually collected from diverse
freely accessible online sources, including mock
tests and online exams tailored to each medical pro-
fessional specialty. Some questions of the mock
tests and online exams have explanations for the an-
swers, which we used the creation of the MedExQA
datasets. The pass mark for the collected mock tests
and online exams was 60 percent.

To ensure data integrity, rigorous preprocess-
ing was conducted, including the removal of du-
plicate questions and explanations. Additionally,
similar questions were identified and eliminated us-
ing BERT cosine similarity analysis (Devlin et al.,
2018). Questions containing keywords specific to
laws or regulations were filtered out using a manu-
ally curated list of words. Following fair use regula-
tions1, answer options were systematically shuffled
to maintain fairness and uphold the integrity of the
dataset. Furthermore, to enhance the quality and
coherence of the datasets, two sets of explanations
as well as the questions underwent thorough hu-
man validation. This validation process aimed to
ensure that the explanations exhibited distinct writ-
ing styles and provided comprehensible reasoning
for the correct answer selection.

1https://www.copyright.gov/fair-use/more-info.html

The resulting datasets have a total of 965 ques-
tions. Table 1 provides a detailed breakdown of
the number of questions for each specialty. These
datasets were split into a few-shot development set
and a test set. Specifically, the few-shot develop-
ment set has 5 questions per specialty, while the
test set consists of 940 questions in total. It is note-
worthy that each subject contains a minimum of
100 test examples, a length surpassing that of most
exams tailored for human assessment.

Also, to validate that each pair of explanations
is different sufficiently at the individual question
level, Table 1 also provides the average cosine sim-
ilarity of the pairs. The overall similarity is 78.7%
which indicates the lexical difference of the two
corresponding versions of explanations for each
question. An example of the dataset as well as the
difference in the pair of example can be found in
the Appendix Figure 4.

Figure 1: 2D t-SNE plot for MedExQA, MedQA,
MedMCQA, and MMLU (Medicine Related 9 subjects)
datasets.

3.2 Comparison of benchmark datasets

We compared MedExQA with existing benchmark
datasets by visualizing their questions in the same
vector space. Using t-distributed Stochastic Neigh-
bour Embedding (tSNE), each question is repre-
sented as a point in the vector space. We used the
‘all-mpnet-base-v2’ sentence transformer model in
sklearn package tSNE to retrieve vectors from
questions. 965 questions were randomly sampled
from each dataset. There is a cluster towards the
top region mainly composed of questions from
MedExQA, which clearly demonstrates its novelty
compared to existing medical QA datasets.
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4 Methods

For all the experiments in this paper, both training
and evaluation, we used 8 A6000 GPUs.

4.1 Baseline Models
We explored 18 baseline models with different sizes
from 2.7B to 70B. Table 2 provides a comprehen-
sive overview of the baseline models used in this
paper, while more detailed descriptions of each
model are available in the appendix. In cases where
multiple sizes of a model are used, we distinguish
each version by appending the model size to the
model name. For example, the Llama2 models with
sizes 7, 13, and 70B are denoted as Llama2-7B,
Llama2-13B, and Llama2-70B, respectively. On
the other hand, when a model has only one size, we
refer to it solely by its name. For instance, Clini-
calCamel denotes the ClinicalCamel 70B model.

Llama2 Variant Models Model Size
Llama2(Touvron et al., 2023) 7B,13B,70B
ClinicalCamel(Toma et al., 2023) 70B
Asclepius(Kweon et al., 2023) 7B,13B
Med42(M42, 2023) 70B
AlpaCare(Zhang et al., 2023) 7B,13B
Meditron(Chen et al., 2023) 7B,70B
Medinote(Bonnet et al., 2023) 7B,13B
Other foundational models Model Size
Mistral(Jiang et al., 2023) 7B
Yi(01.AI, 2024) 6B
Phi-2(Microsoft, 2023) 2.7B
SOLAR(Kim et al., 2023) 10.7B
InternLM2(Shanghai AI Lab) 7B

Table 2: Baseline Models. The models are sorted in the
order of release dates.

4.2 Training MedPhi-2
As far as we know, all the publicly available open-
source medical LLMs are based on Llama models,
we further extended our work to test the effect of
medical domain training on a different foundational
model. Phi-2 model was further trained using the
medical datasets that are publicly available. We
pretrained Phi-2 with a 110M medical-related cor-
pus. We further finetuned the continued pretrained
model with 239K instructions. We refer to the re-
sulting model as MedPhi-2 throughout our paper.
Table 3 summarizes the detailed composition of our
training dataset. We used LLaMaFactory2 and used

2https://github.com/hiyouga/LLaMA-Factory

Deep3 for efficient training. For both pretraining
and finetuning, We trained the model with a batch
size of 16 and a learning rate of 1e-5 with 3 epochs,
which took 36 hours in total.

Pretrain Tokens
Meditron Medical Guidelines3 48.3M
SNOMED CT descriptions4 28.3M
Biomedical Article Abstracts5 13.6M
Wikipedia Medical Terms6 13.3M
PMC Patients Notes7 6.7M
Finetuning Instructions
Asclepius Instruction8 158,114
AlpaCare Instruction9 52,002
NHS QA and Medical Task10 29,354

Table 3: MedPhi-2 training data. The number of tokens
for pretraining data and the number of instructions for
finetuning data are listed.

4.3 Evaluation

We evaluated all models with test datasets except
for human evaluation, which was performed on
the development datasets. For all the evaluations,
we used zero-shot, a batch size of 1, temperature
of 0. To benchmark the performance of closed
source models we further extended to include
OpenAI’s GPT models. We used GPT3.5_1106,
GPT4.0_1106, and GPT4.0_0125 APIs11.

4.3.1 Classification Accuracy - Logits

Classification accuracy of MCQ for generative
models relies on classifying the next token using
logits. In other words, the token with the highest
logit value is selected as the model’s predicted an-
swer. However, this approach cannot assess the
model’s understanding of the rationale behind the
answer. We exclude GPT models for this evalua-
tion, as we are not able to get the logit value for the
next token.

3https://huggingface.co/datasets/epfl-llm/guidelines
4https://huggingface.co/datasets/FremyCompany/AGCT-

Dataset
5https://huggingface.co/datasets/paniniDot/sci_lay
6https://huggingface.co/datasets/gamino/wiki_medical_terms
7https://huggingface.co/datasets/zhengyun21/pmc-

patients
8https://huggingface.co/datasets/starmpcc/asclepius-

synthetic-clinical-notes
9https://huggingface.co/datasets/casey-

martin/medinstruct
10https://github.com/CogStack/OpenGPT
11https://platform.openai.com/docs/models
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4.3.2 Classification Accuracy - Chat
We utilize string-matching using regular expres-
sions and thefuzz package to assess the model’s
proficiency in generating accurate textual re-
sponses. This approach involves searching the spe-
cific phrase for the answer choice or the choice let-
ter within the generated response, enabling a more
realistic evaluation for the model’s performance.

4.4 Explanation Generation

The quality of generated explanations is further
assessed using a combination of general lexical
metrics. BLEU (Papineni et al., 2002). measures
the geometric mean of precision scores of the gen-
erated explanations compared to reference expla-
nations based on n-gram matches. ROUGE (Lin,
2004). assesses the similarity between generated
and reference explanations, with ROUGE-L, pro-
viding a score that combines precision and recall
based on the longest common subsequence. ME-
TEOR (Banerjee and Lavie, 2005). considers
the semantic similarity and lexical variations with
WordNet. BERTScore (Zhang et al., 2019). uses
contextual embeddings, scibert embedding (Belt-
agy et al., 2019) for our work, to capture nuances in
the semantics of the explanations. All the metrics
are calculated using evaluate package.

We propose an enhanced methodology for eval-
uating models’ understanding of medical domain
knowledge by incorporating classification accuracy
based on string matches into calculating these met-
rics. We assign a score of 0 to responses with
incorrect answers based on string-matching classi-
fication results.

4.5 Evaluation - Human Evaluation

For human evaluation, three human annotators with
MSc degrees in health-related subjects participated
in assessing the quality of generated explanations.
The evaluation process involved assigning a score
for each explanation-answer pair based on the fol-
lowing rules:

1. Score 0 the answer was incorrect, no explana-
tion was provided, and/or the explanation is
fully irrelevant.

2. Score 0.5 the answer was correct, but the ex-
planation or rationale was incorrect. Also, an
incomplete explanation that ended with an in-
complete sentence.

3. Score 1.0 when both the answer and explana-
tion were correct.

Although this human evaluation was performed
on a small scale (development dataset: 5 samples
for each specialty), this systematic evaluation pro-
cess ensured a comprehensive assessment of the
models’ performance in providing accurate and co-
herent explanations.

5 Results and Discussion

5.1 Classification Accuracy - Logits

Table 4 shows the detailed results of all models. As
expected, smaller language models demonstrated
lower accuracy across specialties than larger mod-
els. Med42 showed the best overall performance. It
showed outstanding performance in Biomedical En-
gineering and Clinical Laboratory Science (83.2%
and 84.9% respectively). It performed on par with
Meditron-70B in Clinical Psychology (84.9%). In
Occupational Therapy, Llama2-70B showed the
highest accuracy (80.4%). All models underper-
formed in Speech Language Pathology, with SO-
LAR performing the best (33.1%).

The effect of continued training is observed only
in some models. MedPhi-2 demonstrated better
performance than Phi-2, and this improvement was
also found in AlpaCare-13B compared to Llama2-
13B and Med42 compared to Llama2-70B. How-
ever, ClinicalCamel and Meditron-70B performed
worse than Llama2-70B. This drop in performance
could be due to task-specific challenges as some
models may not effectively handle varied levels of
specificity in MedExQA.

5.2 Classification Accuracy - Chat

Classification accuracy using chat decreased in
most of the models (Table 4). Phi-2, Llama2-13B,
Yi, InternLM2, and Meditron-70B did not pass
the pass mark indicating these models are not ro-
bust. Meditron-70B showed the biggest perfor-
mance drop by 29.3%. Llama2-70B also showed
a significant performance drop in this testing by
28.5%, although it passed in Biomedical Engineer-
ing. Of the 70B models we tested, ClinicalCamel
was the most robust model (7.7% decrease), and it
scored higher than Med42 by 0.7%.

Our model, MedPhi-2 was the most robust model
among the passed ones (0.2% decrease), and it out-
performed AlpaCare-13B, Meditron-70B, Llama2-
70B. This result highlights the importance of the
supervised finetuning with in-domain instructions
of high quality as more robust models, such as
AlpaCare, ClinicalCamel, and MedPhi-2, were
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Model BE CP SLP OT CLS MAvg
Medinote-7B 33.6 (-4.9) 34.9 (-8.5) 23.1 (6.2) 38.1 (-8.5) 44.6 (-11.6) 34.9 (-5.5)
Meditron-7B 37.8 (-7.7) 46.2 (-16.0) 20.8 (2.3) 42.9 (-10.6) 43.3 (-6.7) 38.2 (-7.8)
Llama2-7B 42.0 (-9.1) 47.2 (-9.4) 22.3 (1.5) 40.2 (-12.7 47.6 (-17.5) 39.9 (-9.4)

Asclepius-7B 44.8 (-11.2) 47.2 (-17.0) 27.7 (-1.5) 42.9 (-15.3) 45.2 (-13.4) 41.5 (-11.7)
Medinote-13B 46.2 (-18.9) 52.8 (-30.2) 28.5 (-4.6) 49.2 (-28.1) 52.4 (-20.2) 45.8 (-20.4)
AlpaCare-7B 53.2 (6.3) 53.8 (1.9) 26.9 (6.2) 59.8 (-3.7) 54.6 (-0.5) 49.6 (2.0)

Asclepius-13B 57.3 (-21.0) 56.6 (-33.0) 25.4 (-3.8) 59.8 (-34.4) 56.5 (-22.9) 51.1 (-23.0)
Phi-2 61.5(-35.7) 68.9 (-38.7) 26.2 (2.3) 64.0 (-43.4) 50 (-25.0) 54.1 (-28.1)

Llama2-13B 63.6 (-26.6) 65.1 (-42.8) 27.7 (16.2) 60.9 (-28.8) 59.4 (-17.5) 55.3 (-19.9)
MedPhi-2 65.7 (-5.6) 70.8 (0.0) 23.1 (0.0) 65.1 (-0.5) 55.1 (5.1) 56.0 (-0.2)

AlpaCare-13B 67.1 (-4.9) 69.8 (-10.4) 26.9 (-1.5) 65.1 (-4.8) 61.6 (-4.3) 58.1 (-5.2)
Mistral 75.5 (-11.2) 73.6 (-10.4) 32.3 (-6.2) 75.7 (-6.3) 71.2 (0.0) 65.7 (-6.8)

Meditron-70B 78.3 (-36.4) 84.9 (-43.4) 30.8 (-5.4) 69.8 (-37.0) 68.6 (-24.2) 66.5 (-29.3)
Yi 75.5 (-20.3) 83.0 (-28.3) 30.8 (0.8) 74.1 (-20.6) 73.4 (-17.2) 67.4 (-17.1)

SOLAR 74.8 (0.0) 81.1 (-2.8) 33.1 (-7.7) 73.0 (-1.1) 76.1 (-3.2) 67.6 (-3.0)
InternLM2 77.6 (-25.2) 82.1 (-38.7) 29.2 (-5.4) 74.6 (-36.0) 75.0 (-33.6) 67.7 (-27.8)

ClinicalCamel 78.3 (-6.3) 84.0 (-14.1) 28.5 (-5.4) 79.9 (-6.3) 75.8 (-6.2) 69.3 (-7.7)
Llama2-70B 78.3 (-10.5) 84.0 (-47.2) 31.5 (-10.8) 80.4 (-44.4) 72.9 (-29.8) 69.4 (-28.5)

Med42 83.2 (-14.) 84.9 (-10.4) 31.5 (-4.6) 79.4 (-13.8) 80.9 (-12.6) 72.0 (-11.1)
GPT3.5_1106 72.0 82.1 29.2 70.4 71.5 65.0
GPT4_1106 86.7 86.8 31.5 88.4 91.7 77.0
GPT4_0125 90.2 91.5 30.8 90.0 91.7 78.8

Table 4: MCQ accuracy (%) using logits vs chat generation. The MCQ accuracy using logits is reported (except for
GPT models). The performance gain/loss with chat generation approach is marked in parenthesis. "BE": Biomedical
Engineering; "CP": Clinical Psychology; "SLP": Speech Language Pathology; "OT": Occupational Therapy; "CLS":
Clinical Laboratory Science; "MAvg": Macro Average.

Figure 2: Scatter plot of model performance. The Y-axis is the macro average of accuracy based on logits (Table 4).
The X-axis is the average score of generated explanations (Table 5). The dot size is proportional to the model size.
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Model Size (B) ROUGE-L METEOR BLEU BERTScore AVG
Medinote 13 1.88 2.79 0.46 12.96 4.52
Llama2 7 4.92 4.03 0.16 17.52 6.66

Asclepius 13 6.12 6.12 0.32 17.70 7.56
Asclepius 7 6.07 5.61 0.22 18.48 7.60

Phi-2 2.7 5.77 7.51 1.76 16.41 7.86
Medinote 7 4.78 7.82 2.14 16.81 7.89
Meditron 7 5.15 7.96 2.56 17.43 8.27
Llama2 13 6.65 6.89 1.37 20.80 8.93
Llama2 70 6.41 6.71 1.40 21.84 9.09

Meditron 70 7.42 8.32 1.63 21.59 9.74
InternLM2 7 10.30 12.20 3.89 26.28 13.17
AlpaCare 13 11.56 11.97 2.77 33.29 14.90

Yi 6 10.97 13.25 4.79 31.62 15.16
Med42 70 11.03 12.88 3.46 35.89 15.82

AlpaCare 7 12.43 14.19 3.64 33.47 15.94
Mistral 7 12.59 17.49 5.28 36.66 18.00

ClinicalCamel 70 13.45 17.38 5.52 38.80 18.79
MedPhi-2 2.7 15.26 17.75 6.13 37.45 19.15
SOLAR 10.7 16.45 20.17 6.72 42.46 21.45

GPT3.5_1106 - 21.71 25.99 14.07 46.59 27.09
GPT4_1106 - 23.08 35.74 14.40 54.50 31.93
GPT4_0125 - 24.83 35.21 16.71 54.40 32.79

Table 5: Explanation Generation performance (average across the 5 subjects for each evaluation metric).

instruction-tuned with medical domain data, while
Meditron-70B was just further pretrained.

GPT4_0125, GPT4_1106, and GPT3.5_1106
outperformed all the open-source models. Even
with the addition of high-performing closed-source
models, there is still a universal failure in perfor-
mance for Speech Language Pathology.

5.3 Combining Classification Accuracy with
Generated Explanation Performance

Figure 2 shows the relationship between model
size and accuracy achieved in both MCQ (using
logits) and generation performance. Generally,
larger models tend to exhibit better performance as
70B models perform better than most of the other
smaller models. However, SOLAR, Yi, and Mistral
stand out as these smaller general domain models
demonstrate competitive performance to the 70B
medical LLMs. Further training on these founda-
tion models holds great promise as we have seen
with the Phi-2 model.

All medical LLMs with 13B (AlpaCare, Ascle-
pius, and Meditron) exhibit worse performance
in both MCQ accuracy and generation perfor-
mance compared to their 7B counterparts. In

fact, Medinote-13B is the worst-performing model.
Also, 70B models do not always perform better
than smaller models as Meditron-70B and Llama2-
70B performed worse than many smaller models
including AlpaCare and our model in the genera-
tion of reasonable explanations.

The performance evaluation presented in Table 5
also provides valuable insights into the efficacy of
various models in generating explanations. Among
the models evaluated, our model, MedPhi-2 stands
out in generating reasonable explanations as it out-
performed all medical LLMs including 70B mod-
els. This result confirms the findings of Section 5.2
which highlighted the importance of supervised
finetuning with in-domain instructions.

The SOLAR model performed the best among
the open-source models, suggesting its competi-
tive capability in explanation generation although it
was not trained specifically for the medical domain.
However, even this best-performing open-source
model demonstrates a significant performance gap
(5.64) compared to the worst-performing closed-
source model, GPT3.5_1106, indicating the sub-
stantial advancements in OpenAI’s GPT models.

Interestingly, despite the recent release of GPT4,
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Figure 3: Human evaluation on the generated explanations, which scales from 0 to 5. The models in the legend are
ordered by macro average from lowest to highest. Only models passed (3 or above) in at least one of the specialties
are included.

the performance varies across different evaluation
metrics. While the most recent release outperforms
GPT4_1106 on average, GPT4_1106 still shows su-
perior performance in METEOR and BERTScore.
This highlights the importance of considering mul-
tiple metrics and nuances in model performance
assessment, as different models may excel in dis-
tinct aspects of explanation generation.

5.4 Evaluation - Human Evaluation

Human evaluation of generated responses reveals
that MedPhi-2 has the best quality among the open-
source models (Figure 3). Our model was the
only open-source model that passed (a score of
3 or above) in all specialties in MedExQA. In fact,
MedPhi-2 on par with GPT3.5_1106 in Biomedi-
cal Engineering and Clinical Laboratory Science,
and with GPT4_1106 in Occupational Therapy.

The performance of models in Speech Lan-
guage Pathology during human evaluation was
relatively decent, which contrasts with results ob-
tained through other evaluation methods. Appendix
Figure 4 provides an example of generated re-
sponses of the models, in the context of Speech-

Language Pathology questions. MedPhi-2 and
GPT3.5_1106 generated the most coherent and
accurate responses. However, other models gen-
erated irrelevant sentences or failed to provide ex-
planations. Medinote-13B generated a case study
example instead of answering the question and pro-
viding an explanation and Asclepius-13B halluci-
nated and provided an option for the answer that
was not present and generated further incorrect ex-
planations. Appendix Table 6 shows the detailed
results.

5.5 Effect of additional explanation

The effect of adding additional explanation was
confirmed by analyzing the Pearson correlation
between human evaluation and generation perfor-
mance. When we used just one set of explanations
the correlation was 0.9347, and this correlation in-
creased to 0.9385 when we used two versions of
explanations together. Although, the increase is
small, this finding still indicates generation evalua-
tion with multiple explanations aligns better with
human evaluation, which is usually treated as the
gold standard.
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6 Conclusion

Our MedExQA benchmark proposes an effective
methodology for evaluating LLMs beyond classifi-
cation accuracy which can be used to assess the ex-
plainability of medical LLMs. While, the findings
reveal that the generation of coherent and accurate
explanations remains a challenging frontier for the
current medical LLMs, the results also highlight an
opportunity for a more robust automated compre-
hension assessment for LLMs because generation
evaluation with multiple explanations aligned bet-
ter with human assessment.

We also find that the ‘Speech Language Pathol-
ogy’ dataset posed challenges for all language mod-
els, including GPT4. Speech Language Pathology
could potentially be attributed to several factors,
with one prominent explanation being the absence
of relevant text in the corpora used to train the
foundation model. As Speech Language Pathol-
ogy is a highly specialized field that encompasses
a wide range of topics related to rare diseases or
disorders of speech and language, the collection
of high-quality text for this specialty can be very
challenging. However, it is important to acknowl-
edge that confirming this hypothesis definitively
poses a challenge due to the proprietary nature of
the pretraining corpora used for training LLMs.

Through the development and evaluation of our
MedPhi-2 model, we underscore the importance of
targeted pretraining and fine-tuning strategies in im-
proving explanation quality. The model showed the
significant potential of LLMs in enhancing medical
QA with explanations. Our benchmark and model
will set the foundation for future advancements in
medical research by facilitating the development
and evaluation of medical LLMs.

Limitation

While MedExQA provides a robust benchmark for
evaluating LLMs in the context of the medical do-
main, the current version only tests the model’s
ability in QA task, limiting its applicability in real-
world clinical scenarios to a few applications. This
limitation results from the manual collection pro-
cess. Future work will extend our benchmark to
include tasks such as summarizing clinical notes
with accompanying explanations.

Though we performed the human evaluation of
generated explanations of different LLMs through
three authors, we performed this at a small scale, at
5 samples per specialty. Future work will seek to

increase both the volume of samples and the num-
ber of annotators to provide a more robust method
of assessing models’ performance.

Broader Impacts and Ethics Statement

We release MedExQa under a Creative Commons
Attribution-Non Commercial-ShareAlike 4.0 In-
ternational License. MedPhi-2 follows the MIT li-
cense as it is based on Phi-2. License and copyright
information and Terms of Use will be shared when
the dataset and model are released. The dataset
may be used for non-commercial purposes and any
models trained using the dataset should be used
only for research purposes.

Our work does not raise any major ethical con-
cerns. All LLMs tested, including Phi-2, were used
for research purposes only. While MedPhi-2 out-
performed all medical variants of Llama2 models
in generating accurate medical answers and expla-
nations, MedPhi-2 is not rigorously tested for use in
real-world clinical applications or scenarios. Thus,
MedPhi-2 is not suitable for use in the clinical de-
cision making process. This restriction of usage
in clinical care is to mitigate any potential risks or
harms such as wrong decisions from hallucinations
which can lead to unwanted situations.
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Appendix

Question Which of the following is a correct description of a language learning disability? 

A It shows difficulties in reading and writing. 

B It does not show problems with higher-level language abilities. 

C It occurs due to visual or motor disabilities. 

D It often accompanies autism spectrum disorder. 

 
Correct Answer: A. It shows difficulties in reading and writing. 

Explanation 1 Language learning disabilities, such as dyslexia, are characterized by difficulties with 

reading and writing stemming from issues with processing language. These challenges are 

not directly caused by visual or motor impairments. Although language learning 

disabilities may occur alongside other disorders like autism spectrum disorder, there is no 

one-to-one correlation between the two; individuals with language learning disabilities 

may not have autism, and vice versa. … 

Explanation 2 Language learning disabilities, such as dyslexia, typically involve challenges with reading 

and writing. These difficulties are due to problems with language processing, not 

necessarily related to visual or motor disabilities. While language learning disabilities can 

co-occur with other conditions, including autism spectrum disorder, not all individuals 

with language learning disabilities have autism, and not all individuals with autism have 

language learning disabilities. … 

Medinote-13B 

Score: 0 

A 10-year-old boy with a language-learning disability was assessed...  

Asclepius-13B 

Score: 0 

E. It is a type of specific learning disorder (SLD). … 

AlpaCare-13B 

Score: 0 

The answer is A) It shows difficulty in reading & writing. 

Med42 

Score: 0 

So, the correct answer is: A. It showing difficulties in readings and writings. 

Meditron-70B 

Score: 0 

The following is an open-ended question. You should answer it in your own words… 

ClinicalCamel 

Score: 0.5 

\end{blockquote} think the answer is A. 

… It is not a problem with higher level language abilites. Visual or motor difficulties can 

cause learning difficulties, but they are not the cause of language learning difficulties. 

Language learning difficulties often accompany autism, but this is not the correct 

description. Therefore, the correct answer is option A. 

GPT3.5_1106 

Score: 1 

A. It shows difficulties in reading and writing. 

Explanation: A language learning disability typically involves difficulties in reading and 

writing, such as dyslexia. … While other options may also be associated with learning 

disabilities, the primary characteristic of a language learning disability is the difficulty in 

reading and writing. 

Phi-2 

Score: 0 

Answer: D. It is often accompanied by autism spectrum disorders. 

Explanation: … 

MedPhi-2 

Score: 1 

The answer is A.... Additionally, language learning disorders are not typically caused by 

visual or hearing impairments, but rather by difficulties with processing and using 

linguistic information. Finally, while language learning deficits can be associated with 

autism spectrum disorders, not all individuals with autism have language learning 

problems, ... 
 

Figure 4: Example of data in Speech Language Pathology and Qualitative Analysis Example. Two sets of
explanations, Explanation 1 and Explanation 2, are provided. The score given by humans is provided beneath the
model name. The response with no explanations has a grey font color. Red shows the irrelevant or wrong sentences
or phrases. Yellow demonstrates incoherent phrases or errors. Green highlights coherent and correct sentences.
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.1 Frequency Plots
We use frequency plots to demonstrate the word count distribution for the two different types of explana-
tions in each dataset. For MedExQA, as shown in Figure 5, the average length of the words in the first set
of explanations is 82.50 and in the second set of explanations, is 83.17.

Figure 5: Word Count Distribution Plots for Explanations. Top: Explanation 1. Bottom: Explanation 2.

.2 First Three Words Frequency
In Figure 6, we present a detailed visualization of the lexical distribution within two distinct explanations
from MedExQA datasets. For each pie chart, we combined the explanations from all five specialties.
The pie chart encapsulates the hierarchical structure of the explanations, segmented into three concentric
circles that correspond to the first, second, and third words of explanation, respectively. The top pie chart
represents the word combination from explanation version 1, and the bottom pie chart represents the
explanation version 2.

Upon examination, we note a convergence in linguistic choices, evidenced by recurring phrases such
as "In the context" and "The correct answer." These phrases serve as linguistic anchors, providing a
structured starting point for explanations. Despite this lexical overlap, the majority of the word choices
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Figure 6: First three words combination of explanations. Left: Explanation 1. Right: Explanation 2.

exhibit significant variability. Some examples of this variability are "A pH meter" marked as orange and
"When a patient" marked as purple on the top pie chart. By employing two versions of explanations
that are semantically aligned yet lexically distinct, we aim to conduct a more holistic assessment of the
model’s generative outputs.

.3 Baseline Models

.3.1 Llama2 variants
Llama2 We use Llama2 Hugging Face weights released on the Hugging Face model repository12. 7B,
13B, and 70B models without chat optimization are used in this work to assess the effect of continued
training of the following Llama2 medical models with medical domain text. These models are trained on
2 trillion pretraining tokens in the general domain and have a context length of 4,096.

ClinicalCamel We use ClinicalCamel 70B weights from the Hugging Face model repository. It is a
finetuned Llama2-70B model with instruction-tuning datasets made from medical articles and MedQA. It
uses QLoRA for finetuning. The instruction tuning datasets are not released.

Asclepius We use Asclepius Llama2 weights released on the Hugging Face model repository. We use
both 7B and 13B models which are further finetuned Llama2 models using instruction tuning dataset
made from synthetic clinical notes. The synthetic clinical notes are generated from PMC-patients using
GPT3.5 and turned into instruction-tuning datasets using GPT3.5. The synthetic clinical notes are used
due to the privacy concerns of the real clinical notes. This training dataset is released.

Med42 We use Med42 70B weights from the Hugging Face model repository. The details of the
training dataset and training method are not available. The only detail available is that it was continued
trained Llama2-70B model with medical domain text.

AlpaCare We use AlpaCare Llama2 weights from the Hugging Face model repository. Llama2 7B and
13B models were further finetuned on a medical self-instruct dataset made from the clinical seed set. The
dataset is released.

Meditron We use Meditron weights released on the Hugging Face model repository. Both 7B and 70B
models are used in this work. Meditron models are continued pretrained with clinical guidelines, medical
articles abstracts, and full text of the articles. A subset of clinical guidelines are released.

Medinote We use Medinote weights released on the Hugging Face model repository. Both 7B and 13B
models are used in this work. These models are further finetuned from the Meditron models to generate
clinical notes from doctor and patient dialogues. Their training dataset is a synthetic dialog generated
with ChatGPT from PMC-patients data.

.3.2 Other baseline models
We extended our baseline models to other general domain baseline models with various sizes.

12https://huggingface.co/meta-llama
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Mistral We use Mistral-7B-v0.1 weight released on the Hugging Face model repository. The details of
the training dataset remain unknown. However, this model is known to use Grouped Query Attention,
which Llama2-70B also uses, and Sliding Window Attention. The model size is known to be 7.24B
parameters, and this is slightly larger than Llama2-7B, 6.74B.

Yi We use Yi-6B weight released on the Hugging Face model repository. The model is trained on 3
trillion pretraining tokens in the general domain and has a context length of 4,096. The model size is
known to be 6.06B parameters, which is smaller than other 7B models.

Phi-2 We use Phi-2 model weight released on the Hugging Face model repository. It has 2.78B
parameters and is trained on the augmented textbook corpus, 1.4 trillion tokens. This is the smallest model
in our paper.

SOLAR We use SOLAR-10.7B-v1.0 model weight released on the Hugging Face model repository.
The model size is 10.7 billion parameters. It uses depth-wise scaling called Depth up-scaling and continued
pretraining of the scaled model. However, the pretraining dataset details are unknown.

InternLM2 We use InternLM2-7b model weight from the Hugging Face model repository. The details
of the training method and data are unknown.

.4 Result Tables

Model Size (B) BE CP SLP OT CLS AVG
Llama2 13 0 0 0 0 0 0

Meditron 70 0 0 0.5 0.5 0.5 0.3
Asclepius 13 0 1.5 0 0 1 0.5
Medinote 13 0.5 0.5 0.5 0 1 0.5
Meditron 7 0.5 0 1 1 0 0.5
Llama2 7 0 1 0 1.5 1 0.7
Llama2 70 0.5 0 1 0.5 2 0.8

Asclepius 7 1 1.5 0 0 2 0.9
Medinote 7 1.5 0.5 1 0 1.5 0.9

InternLM2 7 2 2 1 0 1.5 1.3
Phi-2 2.7 2 2 0 1 2 1.4

Mistral 7 1 1 2 1 3 1.6
AlpaCare 13 1 1.5 1 3 2.5 1.8
AlpaCare 7 1 2 1.5 2 4 2.1

Yi 6 1 2 4 3 3 2.6
SOLAR 10.7 2.5 4 3 2.5 1.5 2.7
Med42 70 4 2.5 1 3 3.5 2.8

ClinicalCamel 70 2.5 3.5 3 2.5 4 3.1
MedPhi-2 2.7 3 3.5 3 3 3 3.1

GPT3.5_1106 - 3 5 4 4 3 3.8
GPT4_1106 - 4 5 5 3 5 4.4
GPT4_0125 - 4 5 5 4 5 4.6

Table 6: Explanation Generation performance (human evaluation). "BE": Biomedical Engineering; "CP": Clinical
Psychology; "SLP": Speech Language Pathology; "OT": Occupational Therapy; "CLS": Clinical Laboratory
Science; "AVG": Average score.
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Abstract
This study examines the effect of prompt en-
gineering on the performance of Large Lan-
guage Models (LLMs) in clinical note genera-
tion. We introduce an Automatic Prompt Op-
timization (APO) framework to refine initial
prompts and compare the outputs of medical ex-
perts, non-medical experts, and APO-enhanced
GPT3.5 and GPT4. Results highlight GPT4-
APO’s superior performance in standardizing
prompt quality across clinical note sections. A
human-in-the-loop approach shows that experts
maintain content quality post-APO, with a pref-
erence for their own modifications, suggesting
the value of expert customization. We recom-
mend a two-phase optimization process, lever-
aging APO-GPT4 for consistency and expert
input for personalization 1.

1 Introduction

Large Language Models (LLMs), including iter-
ations of the Generative Pre-trained Transformer
(GPT) series, have dramatically expanded the scope
of natural language processing (NLP). Their appli-
cations now range from simple Q&A to the intricate
demands of clinical documentation, necessitating
the craft of prompt engineering (Brown et al., 2020;
Sanh et al., 2021; Chowdhery et al., 2022; Longpre
et al., 2023; OpenAI, 2023; Wang et al., 2023a;
Yang et al., 2023b). The quality of a prompt is
paramount, as it is typically created by a human
mentor to guide an LLM mentee to generate the
document. Yet, this prompt creation process is
encumbered by the complexities of human expres-
sion—rich in subtleties and cultural nuance—that
often surpass the computational confines of LLMs,
resulting in a cognitive gap (Zamfirescu-Pereira
et al., 2023). Variances in prompt quality lead to
differences in prompt efficacy, which can fluctu-
ate considerably (1) when switching between LLM

∗* Indicates equal contribution
1https://github.com/seasonyao/Automatic_

Prompt_Optimization_Physician_Prompting

Figure 1: Influence of different mentors on AI mentee
performance enhancement. This figure illustrates the
changes in AI mentee performance following prompting
by three individual human mentors and an APO system,
represented on the x-axis. The y-axis measures the varia-
tion in ROUGE scores before and after prompting, with
blue bars indicating GPT3.5 and orange bars denoting
GPT4 as mentee to generate clinical note content ac-
cording to different prompt groups. The results indicate
the differential impact of human versus APO prompting
on AI content generation quality.

mentees (As shown in Figure 1, ‘mentor’ modifies
the prompt to allow ‘mentee’ to perform the tar-
geted task better) and (2) across various sections of
the documentation or (3) among different human
mentors, as illustrated in Figure 1. This inherent
variability underscores the need for a consistent
tool that standardizes prompt quality to achieve
reliable uniformity in LLM performance.

In the clinical domain, where the stakes are par-
ticularly high, optimizing prompt engineering is
critical to help busy clinicians most efficiently use
LLMs for clinical practice. Our study adopts Au-
tomatic Prompt Optimization (APO) (Prasad et al.,
2022) as a novel solution to address these chal-
lenges. APO refines the initial prompts provided
by clinicians, adapting them to the nuanced re-
quirements of different clinical note sections for
AI-assisted clinical documentation. Thus, the re-
sulting clinical notes are significantly enhanced in
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quality and efficiency.
Through a comprehensive comparative analysis,

our research elucidates how APO, when used with
human experts, substantially elevates the refine-
ment process of prompts. Our first experimental set
pits generic prompts, modified by medical experts,
non-medical experts, and APO-enhanced GPT3.5
and GPT4, against each other. The results highlight
APO-GPT4’s remarkable ability to elevate content
generation, revealing an inherent capacity for self-
improvement that aligns with recent academic dis-
course. Our second experimental set delves into
the potential of human-in-the-loop systems. Here,
we further refine APO-generated prompts with hu-
man experts. Contrary to non-expert interventions,
which often detracted from the quality of the con-
tent, expert modifications maintained the high stan-
dards set by APO. Moreover, our human preference
feedback suggests that, while experts may not sig-
nificantly alter the content quality, they prefer the
results of their own modifications, pointing to a
personalized touch without sacrificing the quality
of the content.

In light of our findings, we advocate a two-
pronged approach to prompt optimization: initially
employing APO-GPT4 to standardize prompt qual-
ity, followed by expert-led customization based on
preference. This strategy offers a pragmatic bal-
ance, effectively harnessing the power of AI while
respecting the nuances of human expertise.

2 Related Work

Soft prompts and parameter adjustments offer
promising results for open-source LLMs (Li and
Liang, 2021; Lester et al., 2021; Hu et al., 2021),
while discrete prompt searches (Shin et al., 2020;
Wen et al., 2023) and reinforcement learning (Deng
et al., 2022; Zhang et al., 2022) push the boundaries
further. Closed-source LLMs, conversely, necessi-
tate gradient-free optimization, relying on iterative
prompt refinement and natural language feedback
for efficacy (Prasad et al., 2022; Xu et al., 2022;
Guo et al., 2023; Fernando et al., 2023; Zhou et al.,
2022; Xu et al., 2023; Pryzant et al., 2023; Yang
et al., 2023a; Wang et al., 2023d; Dong et al., 2023;
Li et al., 2023; Sun et al., 2023).

In the clinical context, synthesizing such opti-
mization techniques has been pivotal. Foundational
work in automated note generation (Krishna et al.,
2020; Song et al., 2020; Yim and Yetisgen-Yildiz,
2021; Su et al., 2022; Giorgi et al., 2023; Wang

et al., 2023b,c; Yao et al., 2023) informs our ap-
proach, integrating APO to streamline medical doc-
umentation. This research leverages both iterative
enhancement and expert feedback, embodying the
iterative, gradient-free optimization approach to im-
prove the precision of clinical LLM applications.

3 Method

We are given a dataset D of n i.i.d training clin-
ical data, comprised of f features (D ∈ Rn×f )
including the doctor-patient dialogue, the name of
a SOAP (Podder et al., 2021, 2023) note section 2,
the ground truth section clinical note summary, the
model-generated section clinical note summary, etc.
Our method broadly consists of a “forward pass”
(3.1) and a “backward pass” (3.2). First, an LLM
generates summaries for a batch h from a section
s ∈ S using a generic prompt p0 provided by the
user. An LLM is then asked via a fixed prompt p∇
to provide suggestions to make p0 more suitable for
s given the ground truth and generated summaries,
producing an answer g. Afterward, another fixed
prompt, pδ, is used to command the LLM to use
g to fix p0, outputting a new prompt p′. p′ should
now be slightly more tailored to generate better
summaries for s, closer to the theoretical optimal
prompt p∗. This is executed for all S utilizing a
random sample of data h (batch) from each section,
where h ⊆ n. This process is illustrated in Figure
2 and detailed in Algorithm 1 3.

3.1 Forward Pass

The forward pass utilizes an LLM to generate
summaries (ŷ) for h from section s by passing
in a generic user-provided prompt (p0), doctor-
patient dialogue (x), and s. We use black box
LLMs via API, denoted as LLMp(i) 4. This API
yields a probable text continuation, symbolized as
ŷ, given a prompt. This prompt is a fusion of p and
i. Mathematically, LLMp(i) is approximated by
argmaxŷ∈LPLLM(ŷ|p, i), where it selects the most
likely continuation ŷ from the set of natural lan-
guage tokens L. The ones used for our method are
OpenAI’s GPT3.5 and GPT4 5.

2SOAP structure details can be found in the Appendix A.1.
3Algorithm 1 is simplified to use one data point’s dialogue

(x). In reality, a batch (h) of data is used. Note that iterations
for batch h involve a single type but not multiple types of
sections.

4i is defined as all the inputs to the prompt (dialogue,
section, etc.).

5We use OpenAI’s gpt-3.5-turbo-0613 and
gpt-4-0613 in our experiments.
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p0 is a generic prompt such as the one shown
in Figure 2 or Appendix A.4 that, in our use case,
would be provided by a medical professional such
as a clinician. It is a prompt that only instructs the
model, in this step LLM a. p0 and x are passed
into a to output a generated summary ŷ. This first
ŷ is likely to be very suboptimal for s.

Algorithm 1 SOAP Note Prompt Optimization
1: p0 = “Generate a SOAP summary.”
2: p∇ = “What’s wrong with p0?”
3: pδ = “Use g to fix p0.”
4: procedure FORWARD(s, x)
5: p0 = p0 + s+ x
6: return a(p0) ▷ LLM a
7: end procedure
8: procedure BACKWARD(s, x, y, ŷ)
9: p∇ = p∇ + p0 + s+ x+ y + ŷ

10: g = b(p∇) ▷ LLM b
11: pδ = pδ + p0 + g
12: return b(pδ) ▷ LLM b
13: end procedure
14: procedure MAIN

15: for i = 1 to k do
16: for c = 1 to j do
17: ŷ = FORWARD(x, s)
18: p′ = BACKWARD(s, x, y, ŷ)
19: p0 = p′

20: end for
21: end for
22: end procedure

3.2 Backward Pass

This segment of the algorithm represents the key
transformational stage. The backward pass consists
of (1) utilizing the same or a different LLM as be-
fore to provide suggestions on what is wrong with
ŷ, (2) utilizing the LLM in step 1 to fix p0 using the
suggestions provided in step 1. Step 1 generates
“gradients” and step 2 performs “backpropagation”.

The backward pass starts by passing in a fixed
prompt (p∇), p0, x, s, the ground truth summaries
(y), and ŷ into an LLM b to generate suggestions
(g) on how to fix p0 to make it more suitable for
generating summaries for s. An example is shown
in Appendix A.4. These suggestions are named
“gradients”, the reason p is labeled with ∇. Note
that a ?

= b, i.e. a may or may not be equal to b.
Next, a fixed prompt (pδ), like the one shown

in Appendix A.4, commands b to use g to fix p0.
g, p0, and pδ are passed into b. “gradient descent”
happens here. pδ resembles differentiation in tradi-

tional neural network training by using g (the “gra-
dient”) to guide the model toward a lower “loss”.
Hence the p is labeled with δ. A new prompt p′

is outputted by b, which should be closer to the
optimal prompt p∗. p∗ = argmaxp∈L{m(p, T )},
where m(·) represents a metric function and T is
all the training data for s. p′ should be an edited
version of p0 that is in the opposite semantic direc-
tion.

3.3 Iterations & Validation

At this point in the algorithm, the same h is sum-
marized again using a, but this time with p′. The
new summaries are evaluated against y.
p′ is set to p0 and the “iteration” restarts, re-

peating j times. After j iterations, the “epoch”
is finished, and the final prompt, p′final, is used
to generate summaries for a validation dataset E.
These summaries are evaluated against y to check
the performance of p′final. The epochs are repeated
k times.

3.4 Human-in-the-Loop Prompt Refinement

Enhancing the APO framework, we incorporate a
human-in-the-loop component for prompt refine-
ment. Post-APO, medical experts and laypersons
review and adjust p′final for each s, adding clin-
ical acumen to the AI’s output. These revised
prompts, p′final−human, are then evaluated by gen-
erating new summaries and scoring them against
ground truths. The goal is to determine if there is a
potential for human-AI collaboration on this task,
and whether it should be with experts or not.

4 Experiments

4.1 Dataset

With 1.7k total doctor-patient dialogues and sum-
maries, MTS-Dialog supports advances in au-
tomatic clinical note generation (Abacha et al.,
2023b,a). For our initial exploration of which GPT
variants are the best across most sections (more
details in Section 4.4), we use the original eval-
uation split of 100 data points. For APO, since
the evaluation split is small, we merge the training
and evaluation data into a single pool. The data
is comprised of 20 SOAP sections. We discard
sections with less than 10 data points, resulting
in 14 sections that meet the criteria for further ex-
perimentation. Then, we randomly sample 5 data
points from each section as training data. Detailed
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Mentor
R1 R2 RL M U-f

X guides GPT3.5
Gen 23.50 8.05 21.69 22.58 32.83

Exp 23.99 8.55 22.18 23.69 32.79

NoExp 25.77 7.96 23.96 22.69 33.27

APO-GPT3.5 24.22 9.17 22.45 22.82 32.53

APO-GPT4 27.92 11.32 26.14 25.00 36.89

X guides GPT4
Gen 24.99 8.94 23.74 24.82 33.13

Exp 24.06 8.43 21.74 25.12 31.84

NoExp 23.87 7.56 22.21 23.32 31.88

APO-GPT3.5 23.19 8.31 21.59 23.79 28.94

APO-GPT4 30.00 11.14 27.86 26.35 35.27

Table 1: Performance across different prompting groups
for GPT3.5 and GPT4. ‘Gen’ denotes the base-
line generic prompts, ‘Exp’ and ‘NoExp’ represent
expert and non-expert human modifications, respec-
tively, while ‘APO-GPT3.5’ and ‘APO-GPT4’ indicate
prompts refined through APO.

data distribution for these sections is outlined in
the Appendix Table 3.

4.2 Metrics
Models are evaluated with full-length F1-scores
of ROUGE (Lin, 2004) and METEOR (Banerjee
and Lavie, 2005). We use QuickUMLS6 to ex-
tract medical concepts from both model-generated
and ground truth summaries and then calculate F1-
scores for these two lists of concepts, which is
named UMLS-F1 (Adams et al., 2023). We also
add human preferences in Experiment Set-2.

4.3 Experimental Setup
We put the details of our dataset in Appendix 4.1.
First, we designed the experiment to use the generic
prompt, outlined in Appendix A.4, on six differ-
ent GPT models 7. This objective was to evaluate
which variants are the best across most sections,
thereby guiding our selection for use in APO. We
then divided our experiments into two sets 8:

Set-1: Comparative Analysis of APO and Hu-
man Contributions in Clinical Note Generation.
This experiment aims to assess how APO, com-
pared with humans, can assist in improving con-
tent generation for different sections of clinical
notes. Specifically, we introduce a generic prompt
and training data for distinct sections. The goal is

6https://github.com/Georgetown-IR-Lab/QuickUMLS
7text-ada-001, text-babbage-001, text-curie-001,

text-davinci-003, gpt-3.5-turbo-0613, and
gpt-4-0613

8After we got the different sets’ prompts, we then
ran gpt-3.5-turbo-0613 or gpt-4-0613 API with self-
consistency and zero-shot settings (Wang et al., 2022), where
temperature=0.3, run numbers=5. We used the default num-
bers for all other parameters in OpenAI API.

Mentor
R1 R2 RL M U-f

X guides GPT3.5
APO-GPT4 27.92 11.32 26.14 25.00 36.89

Exp-APO 26.89 10.82 25.39 25.46 36.62

NoExp-APO 26.71 9.07 24.89 21.68 33.44

X guides GPT4
APO-GPT4 30.00 11.14 27.86 26.35 35.27

Exp-APO 28.83 10.70 27.20 26.48 35.57

NoExp-APO 28.28 9.78 26.60 24.25 32.68

Table 2: Comparative effectiveness of post-APO-GPT4
human prompt modifications. This table shows the re-
sults of human intervention after APO-GPT4 prompts,
where ‘Exp-APO’ and ‘NoExp-APO’ denote the post-
APO-GPT4 modifications by experts and non-experts.

to aid AI systems, such as GPT3.5 and GPT4, in
identifying suitable section prompts that enhance
content generation in each section. Our experi-
ment involves four groups of prompters: medical
experts 9, non-medical experts 10, GPT3.5 (with
APO), and GPT4 (with APO). Each group modi-
fies the generic prompt based on the training data
for each section. We then compare the effective-
ness of these modified prompts in assisting AI to
generate summaries for different sections, using
the results of the generic prompt as a baseline.

Set-2: Enhancing AI-Generated Clinical Con-
tent through Humans Prompt Modification Post-
APO. In this set of experiments, we take the re-
sults of GPT3.5 (with APO) and GPT4 (with APO)
as new baselines and invite medical experts and
non-medical experts to further modify the prompts
based on their knowledge and preferences. This
approach examines how human intervention, post-
APO implementation, affects the quality of AI-
generated content in various clinical note sections.
We analyze the effectiveness of these modifications
by comparing them against the baseline established
by APO-modified prompts, focusing on the nu-
ances introduced by the domain-specific knowl-
edge and preferences of the two human groups.

4.4 Results
For our initial experiment, the findings indicate that
GPT-4 and GPT3.5 emerged as the most effective
variants, in descending order of performance, as
detailed in Appendix A.5. As a result, they were
used for our proposed algorithm.

Set-1: Comparative Analysis of APO and
Human Contributions in Clinical Note Gener-
ation. Upon examining the ‘X guides GPT3.5’
results from Table 1 11, we observed that expert

9One licensed physician
10One has a master’s degree, and one has a bachelor’s de-

gree. They do not have any medical background.
11The details can be found in Appendix Table 5
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and non-expert modifications resulted in slight im-
provements compared to the generic (baseline) re-
sults. However, according to the ROUGE and ME-
TEOR scores, ‘expert guides GPT3.5’ did not yield
better outcomes than ‘non-expert guides GPT3.5’;
non-experts led regarding factuality (UMLS-f1)
scores. The performance of APO-GPT3.5 did
not significantly differ from the baseline, whereas
APO-GPT4 markedly surpassed all other meth-
ods. Compared to human modifications, APO-
GPT4 enhanced summary quality, a feat APO-
GPT3.5 did not achieve. For the same Table 1 ‘X
guides GPT3.5’ experiment, the results indicated
that prompts modified by experts, non-experts, and
APO-GPT3.5 all fell short of the generic prompt
across various sections, with expert modifications
slightly outperforming non-experts, and both hu-
man groups surpassing APO-GPT3.5, especially in
terms of factuality score. Consistent with the ‘X
guides GPT3.5’ findings, APO-GPT4 again signifi-
cantly elevated the scores across the board. Finally,
the results in the Appendix Table 5 show the help-
ful effect of APO-GPT4 on problem (2) and (3) in
Figure 1. These results further demonstrate GPT4’s
emergent abilities in self-critique (Madaan et al.,
2023), self-feedback (Huang et al., 2022), and self-
explanation (Zhao et al., 2023).

Set-2: Enhancing AI-Generated Clinical Con-
tent through Humans Prompt Modification Post-
APO. In this experiment, we continued to explore
the outcomes of the human-in-the-loop paradigm
on top of APO. From the previous experiments
in Table 1, it was evident that APO-GPT4 signif-
icantly boosted the summary quality, raising the
lower bound of AI performance on this task and
providing a new baseline for users to engage in fur-
ther prompt engineering. We refer to the process
of experts post-editing APO-refined APO-GPT4
prompts as ‘Exp-APO’ and the analogous post-
editing by non-experts as ‘NoExp-APO’. We com-
pared Exp-APO and NoExp-APO modifications,
with the term ‘APO’ now exclusively referring to
the results achieved by APO-GPT4. In Table 2,
we found that for both ‘X guides GPT3.5’ and
‘X guides GPT4’, Exp-APO modifications did not
significantly differ from APO-GPT4 in terms of
ROUGE, METEOR, and UMLS-f1 scores, whereas
NoExp-APO modifications notably degraded sum-
mary quality, particularly factuality scores, suggest-
ing a loss of key information or the introduction of
hallucinations.

In a detailed comparison between Exp-APO

and APO-GPT4, we curated a human evalua-
tion dataset from 100 randomly selected instances
within the evaluation set. This allowed experts who
contributed to Exp-APO to assess and provide feed-
back on their preference for summaries generated
from their revised prompts compared to those pro-
duced by the original APO-GPT4 prompts. The
outcome showed a preference distribution where
75% favored Exp-APO, 3% indicated no prefer-
ence, and 22% preferred APO-GPT4. These results
show that while factuality scores remained closely
comparable, there was a slight decrease in ROUGE
scores for Exp-APO, yet the expert preference was
markedly in favor of Exp-APO. This can be at-
tributed to how APO tends to enforce certain struc-
tural elements within prompts, such as explicitly
stating ‘None’ in the absence of information. Ex-
perts tended to remove such repetitive formulations,
which, although potentially reducing the strict ad-
herence to format and the ROUGE score, did not
impact the factuality score. Moreover, experts’
preferences are less influenced by rigid formatting
and more by their own knowledge and experience.
These expert insights, incorporated through the
human-in-the-loop approach, may have introduced
a degree of personalization to the prompts, aligning
the AI-generated content more closely with human
evaluative criteria and contributing to the overall
preference for Exp-APO. This suggests that while
expert post-editing prompts may not markedly en-
hance the quality of APO-GPT4 summaries, they
align more closely with user preferences, offering
a more personalized result without sacrificing sum-
mary quality.

5 Conclusion

Our investigation has demonstrated the profound
impact of prompt engineering on the effectiveness
of LLMs, specifically in clinical note generation.
Implementing our APO framework has notably ad-
vanced the standardization of prompt quality, par-
ticularly with GPT4, which has shown superior per-
formance in generating clinical notes. Incorporat-
ing a human-in-the-loop approach further validated
the importance of expert involvement, indicating a
clear preference for expert-modified prompts, sug-
gesting that personalized tweaks to APO-generated
prompts yield user-preferred outcomes without
compromising the content’s integrity.
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6 Limitations

Our research, while insightful, acknowledges sev-
eral limitations. The task-specific nature of our
findings implies that even if prompts perform well
within our dataset, this does not guarantee simi-
lar success in real-world, complex scenarios. The
MTS-Dialog dataset’s limitations also pose chal-
lenges; many sections had insufficient data, lead-
ing to exclusion and a lack of comprehensive
coverage. Even after preprocessing and filtering,
data imbalance remains a concern. Moreover,
our evaluation metrics—ROUGE, METEOR, and
UMLS-f1—may not fully encapsulate the qualita-
tive subtleties of clinical note generation, poten-
tially overlooking nuances apparent to human ex-
perts. The number of human mentors involved was
constrained by time and financial resources, possi-
bly introducing bias into the results.

Recent advancements in APO have seen the de-
velopment of more sophisticated algorithms aimed
at enhancing efficacy and stability (Fernando et al.,
2023; Wang et al., 2023d; Dong et al., 2023; Li
et al., 2023; Sun et al., 2023; Opsahl-Ong et al.,
2024); however, these were not compared in our
study. Additionally, our approach to prompting
with APO and human experts primarily focused on
general quality without targeting specific aspects
such as hallucination (Huang et al., 2023). Tailor-
ing the APO algorithm to improve particular model
performances (e.g., factuality) could yield more
targeted enhancements. The integration of external
resources, like databases, information retrieval sys-
tems, or writing assistant tools, could also provide
additional information to aid AI in making more
accurate suggestions during the forward pass and
refinements during the backward pass, overcoming
some of the AI’s knowledge limitations (Petroni
et al., 2019; Sung et al., 2021; Yao et al., 2022a,b;
Singhal et al., 2022).

Moving forward, we plan to delve deeper into
the nuances of prompt engineering, exploring the
boundaries of personalization and the potential for
even more sophisticated AI-human collaboration
models. We aim to expand the diversity of expert
input and examine the impact of such variations on
the overall system performance. Furthermore, fu-
ture work will also investigate the scalability of our
approach to other domains within NLP, testing the
generalizability and robustness of the APO frame-
work. In addition, we are also interested in the
emergent ability of GPT4 that can perform APO for

other AI and itself well, and we plan to distill this
ability into trainable LLMs, such as the LLaMA
family (Touvron et al., 2023a,b), by creating a batch
of synthetic instruction learning data (Wang et al.,
2022; Tran et al., 2023).

7 Ethics Statement

In conducting this research, we have adhered to eth-
ical guidelines, ensuring that all patient data used
in the dataset was anonymized and used strictly
for research purposes. We have also considered
the potential implications of our work on clinical
practice, emphasizing the enhancement of AI tools
as assistive rather than replacement technologies
to support medical professionals. As we progress,
we remain committed to upholding these ethical
standards and continuously assessing the societal
impacts of our research.
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A Appendix

A.1 SOAP Structure
The SOAP (Subjective, Objective, Assessment, and
Plan) structure is commonly used by providers
(Podder et al., 2021).
∗ The Chief Complaint section is a brief descrip-

tion of a patient’s conditions and the reasons
for the visit.
∗ The Subjective section is a detailed report

of the patient’s current conditions, such as
source, onset, and duration of symptoms,
mainly based on the patient’s self-report. This
section usually includes a history of present
illness and symptoms, current medications,
and allergies.
∗ The Objective section documents the results of

physical exam findings, laboratory data, vital
signs, and descriptions of imaging results.
∗ The Assessment section typically contains

medical diagnoses and reasons that lead to
medical diagnoses. The assessment is typi-
cally based on the content of the chief com-
plaint and the subjective and objective sec-
tions.
∗ The Plan section addresses treatment plans

based on the assessment.

A.2 Human Annotation Guideline

SOAP sections # Data
ASSESSMENT 33
PLAN 9
EDCOURSE 6
DISPOSITION 12
PASTSURGICAL 66
PASTMEDICALHX 117
ROS 66
GENHX 297
ALLERGY 59
MEDICATIONS 55
FAM SOCHX 368
DIAGNOSIS 15
CC 75
EXAM 19
Overall 1197

Table 3: The data distribution across sections in our
evaluation dataset.
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Figure 2: Overview and example of a correct APO on clinical note generation. While training on a batch, all the
data instances start from the updated prompt based on suggestions from its immediate prior data instance.

Figure 3: Overview and example of an incorrect APO on clinical note generation.
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Section Subsection Definition

Subjective

Chief Complaint Patient’s primary motivation for the visit and type of visit

Review of Systems Patient’s report of system-related health and symptoms

Past Medical History Patient’s reported diagnoses/conditions (when and what,
excluding laboratory and imaging results and surgeries)

Past Surgical History Patient’s reported prior surgeries (what, when, where)

Family Medical History Conditions affecting patient’s close genetic relatives

Social History Patient’s alcohol, tobacco, and drug-related behaviors

Medications Patient’s list of medications (not prescribed during visit)

Allergies Patient’s list of allergies (primarily medicinal)

Miscellaneous Patient’s clinically relevant social and other circumstances

Objective

Immunizations Vaccination record (not frequently discussed)

Laboratory and Imaging Results Clinician’s discussion of laboratory/imaging results

Assessment

Assessment Synthesis of the reason for the visit and pertinent diagnosis

Plan

Diagnostics & Appointments Plan for future tests, appointments, or surgeries

Prescriptions & Therapeutics Plan for medications and therapeutics

Table 4: Details of the SOAP structure used in our CC and CCUser datasets.

X guides GPT3.5 X guides GPT4
SOAP sections GEN Human1 Human2 Human3 APO GEN Human1 Human2 Human3 APO

ASSESSMENT 18.77 +1.27 -0.16 +0.09 +0.37 17.44 -1.67 -5.33 -0.97 -1.7
PLAN 17.64 +5.05 +5.42 +5.12 +5.59 22.01 +0.17 -1.59 +0.21 +4.12

EDCOURSE 31.16 -2.87 +0.3 +3.16 +3.34 38.2 -3.51 -2.66 -2.87 -2.68
DISPOSITION 16.00 +3.48 -1.71 -0.07 +4.92 17.14 +2.88 +4.86 -1.19 -1.07

PASTSURGICAL 22.42 +1.28 +4.89 +11.53 +4.36 23.06 -2.05 -0.86 -0.41 +1.9
PASTMEDICALHX 23.62 +0.64 +0.61 +2.79 +2.78 25.19 +0.07 -0.19 +0.1 +0.4

ROS 29.01 +0.58 -0.04 +0.14 +0.61 29.79 +0.06 -6.86 -2.77 -1.45
GENHX 40.21 +1.66 -2.53 +2.16 +0.74 43.27 +0.1 -4.93 -2.44 -3.95

ALLERGY 21.48 -1.89 -0.94 +8.93 +24.58 28.29 -0.8 +0.96 +0.26 +14.2
MEDICATIONS 20.14 -1.15 +0.82 +27.44 +6.78 19.81 -7.59 -2.07 +4.87 +24.72

FAM SOCHX 31.63 -0.64 -1.66 -3.92 -1.3 30.71 -0.71 -0.82 -7.91 -0.19
DIAGNOSIS 17.81 -1.54 +0.93 +0.35 -0.13 16.4 -2.93 +4.35 +0.59 +8.87

CC 16.09 -0.64 -0.54 -0.68 +3.99 15.17 +1.85 +2.92 +3.7 +22.12
EXAM 23.30 +1.4 +2.71 -1.86 +4.94 23.47 +1.04 -1.92 -10.2 +4.85

Overall 23.50 +0.49 +0.59 +3.96 +4.42 24.99 -0.93 -0.88 -1.36 +5.01

Table 5: Different sections’ performance across different prompting groups for GPT3.5 and GPT4. This is the
ROUGE1 full table for Figure 1, and Table 1.‘Gen’ denotes the baseline generic prompts. ‘Human1’, ‘Human2’,
and ‘Human3’ denote different humans’s prompting engineering results over the generic prompt. The number here
is the increment compared to GEN after prompting. Orange/red represents an increase, blue represents a decrease.
The darker the color, the greater the increment.
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ROUGE1
X guides GPT3.5 X post-edit APO-guides-GPT3.5

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 18.77 20.04 18.61 18.86 19.39 19.14 18.99 19.52 19.13
PLAN 17.46 22.69 23.06 22.76 23.45 23.23 22.42 20.69 23.1

EDCOURSE 31.16 28.29 31.46 34.32 35.15 34.5 34.84 26.61 32.83
DISPOSITION 16 19.48 14.29 15.93 19.34 20.92 19.18 14.58 16.67

PASTSURGICAL 22.42 23.7 27.31 33.95 25.93 26.78 26.21 30.8 32.94
PASTMEDICALHX 23.62 24.26 24.23 26.41 19.85 26.4 25.78 22.06 26.16

ROS 29.01 29.59 28.97 29.15 14.31 29.62 25.78 24.59 30.34
GENHX 40.21 41.87 37.68 42.37 42.76 40.95 40.83 39.14 42.01

ALLERGY 21.48 19.59 20.54 30.41 34.66 46.06 44.86 45.27 31.76
MEDICATIONS 20.14 18.99 20.96 47.58 17.25 26.92 27.15 20.27 48.78

FAM SOCHX 31.63 30.99 29.97 27.71 30.96 30.33 30.13 29.79 30.49
DIAGNOSIS 17.81 16.27 18.74 18.16 15.22 17.68 17.57 16.33 17.27

CC 16.09 15.45 15.55 15.41 17.61 20.08 18.05 15.02 21.24
EXAM 23.3 24.7 26.01 21.44 23.29 28.24 24.67 26.15 24.51
Overall 23.5 23.99 24.09 27.46 24.22 27.92 26.89 25.06 28.37

ROUGE2
X guides GPT3.5 X post-edit APO-guides-GPT3.5

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 5.94 6.45 7.05 5.52 6.79 6.52 5.75 6.69 6.21
PLAN 5.76 8.11 7.78 9.3 8.99 7.45 10.26 8.1 7.75

EDCOURSE 12.11 12 11.46 14.15 12.89 13.35 13.36 11.04 12.09
DISPOSITION 3.46 7.46 2.84 4.5 7.53 13.86 8.02 3.71 1.75

PASTSURGICAL 8.63 10.12 12.18 9.34 10.18 11.59 10.83 8.98 9.65
PASTMEDICALHX 8.7 8.19 8.49 9.86 6.1 9.73 9.09 6.92 10.08

ROS 8.24 8.54 8.21 8.34 3.93 8.71 8.88 6.86 8.86
GENHX 14.11 14.86 12.28 15.21 15.73 14.37 14.33 13.62 14.94

ALLERGY 8.41 8.55 7.06 2.74 22.34 29.83 30.2 30.55 3.11
MEDICATIONS 7.51 6.46 7.37 4.87 5.24 9.3 9.74 6.85 11.55

FAM SOCHX 13.26 12.85 11.8 10.19 12.74 11.83 11.61 11.97 11.85
DIAGNOSIS 5.37 5.6 5.63 5.48 4.33 6.04 6.04 4.75 5.51

CC 4.49 3.68 3.81 3.59 5.1 6.87 5.14 4.37 8.23
EXAM 6.71 6.86 8.06 5.86 6.48 9.11 8.27 8.75 9.26
Overall 8.05 8.55 8.14 7.78 9.17 11.32 10.82 9.51 8.63

ROUGEL
X guides GPT3.5 X post-edit APO-guides-GPT3.5

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 17.24 18.31 17.65 16.95 17.73 17.62 17.47 17.51 17.76
PLAN 15.73 19.53 19.97 20.58 20.84 20.5 20.48 18.01 20.55

EDCOURSE 28.17 27.02 29.86 31.84 33.15 33.17 33.21 25.14 29.95
DISPOSITION 16 19.27 14.05 15.93 19.11 20.92 19.18 14.58 16.67

PASTSURGICAL 20.51 21.6 25.35 32.59 24.11 24.9 24.24 28.79 31.08
PASTMEDICALHX 21.27 21.86 21.74 23.46 18.39 24.32 23.56 20.25 24.03

ROS 25.36 26.37 25.54 25.83 12.86 26.35 26.59 22.4 27.02
GENHX 37.4 38.94 34.88 39.4 39.68 38 37.98 36.38 39.02

ALLERGY 20.79 19.2 19.92 30.2 34.42 45.9 44.62 44.91 31.65
MEDICATIONS 19.18 18.19 20.05 47.37 16.18 25.49 25.74 19.37 47.83

FAM SOCHX 29.6 29.16 28.02 25.69 29.03 28.16 27.95 27.98 28.45
DIAGNOSIS 15.2 13.31 15.88 14.81 12.02 14.45 14.34 13.1 13.72

CC 14.89 14.42 14.42 14.39 16.55 18.67 16.88 14.12 19.73
EXAM 22.32 23.44 24.6 20.09 20.23 27.51 23.22 23.76 23.35
Overall 21.69 22.18 22.28 25.65 22.45 26.14 25.39 23.31 26.48

Table 6: Different sections’ performance across different prompting groups for GPT3.5. This is the ROUGE1, 2, L
full table for Table 1, and Table 2 .
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METEOR
X guides GPT3.5 X post-edit APO-guides-GPT3.5

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 20.99 22.57 24.6 20.95 22.41 22.95 19.61 21.77 22.83
PLAN 17.31 23.09 22.57 25.03 20.57 19.53 23.54 19.98 21.8

EDCOURSE 20.57 19.48 22.93 23.32 23.52 24.08 24.65 19.43 23.55
DISPOSITION 23.52 28.33 23.23 28.82 27.14 12.32 25.34 20.61 3.89

PASTSURGICAL 22.54 24.76 26.53 17.19 22.89 29.07 27.1 19.36 3.89
PASTMEDICALHX 21.25 22.04 22.03 23.15 19.6 22.84 21.98 20.15 23.26

ROS 21.63 22.17 21.37 21 9.32 22.73 23.08 16.54 22.84
GENHX 26.39 28.68 23.91 28.96 29.33 27.6 27.58 26.77 28.69

ALLERGY 23.04 23.33 21.99 10.93 31.49 42.76 42.63 39.36 9.61
MEDICATIONS 22.09 22.08 23.01 10.34 15.57 22.01 22.15 21.47 18.84

FAM SOCHX 28.75 29.28 26.88 25.39 28.49 26.33 26.16 28.45 26.54
DIAGNOSIS 22.99 22.37 27.53 27.24 20.91 25.08 24.97 26.11 23.79

CC 21.06 19.48 19.29 21.21 24.45 24.9 22.33 20.59 24.04
EXAM 24.04 24.1 25.23 20.73 23.88 27.82 25.28 26.44 26.47
Overall 22.58 23.69 23.65 21.73 22.82 25 25.46 23.36 20

UMLS-F1
X guides GPT3.5 X post-edit APO-guides-GPT3.5

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 29.43 30.78 26.29 26.28 26.87 28.78 32.66 27.29 29.48
PLAN 28.94 32.57 32.54 30.81 35.08 33.98 31.86 32.56 35.29

EDCOURSE 29.83 31.7 36.98 32.04 38.5 37.25 38.31 31.37 35.62
DISPOSITION 33.43 33.34 37.47 38.32 38.62 29.72 27.23 26.4 36.11

PASTSURGICAL 29.66 29.02 32.75 34.39 29.9 35.18 35.29 32.7 31.27
PASTMEDICALHX 33.93 34.3 34.2 36.26 28.99 37.22 37.01 32.84 37.35

ROS 36.71 37.84 34.66 34.86 14.36 37.95 38.13 25.7 36.75
GENHX 43.97 45.42 40.66 45.97 45.72 44.91 44.67 41.66 45.75

ALLERGY 27.4 18.66 25.29 12.75 39.51 46.57 46.59 47.14 12.85
MEDICATIONS 39.88 38.07 39.84 49.73 33.08 45.43 45.99 38.47 41.45

FAM SOCHX 34.48 35.23 33.12 30.39 33.81 33.88 33.65 32.9 33.59
DIAGNOSIS 36.11 37.73 34.5 37.83 35.35 40 38.73 30.7 41.17

CC 28.49 27.95 29 25.2 31.57 33.73 31.76 27.35 36.17
EXAM 27.4 26.5 31.29 28.22 24.13 31.84 30.86 24.99 31.62
Overall 32.83 32.79 33.47 33.07 32.53 36.89 36.62 32.29 34.6

Table 7: Different sections’ performance across different prompting groups for GPT3.5. This is the METEOR and
UMLS-F1 full table for Table 1, and Table 2 .
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ROUGE1
X guides GPT4 X post-edit APO-guides-GPT4

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 17.44 15.77 12.11 16.47 17.28 15.74 16.72 15.16 15.49
PLAN 22.01 22.18 20.42 22.22 22.88 26.13 25.9 25.9 25.86

EDCOURSE 38.2 34.69 35.54 35.33 24.91 35.52 37.43 34.98 34.35
DISPOSITION 17.14 20.02 22.01 15.95 11.97 16.07 19.31 15.45 16.3

PASTSURGICAL 23.06 21.04 22.2 22.65 28.12 24.96 22.14 26.9 33.94
PASTMEDICALHX 25.19 25.26 25 25.29 20.37 25.59 25.19 19.58 24.84

ROS 29.79 29.85 22.93 27.02 28.85 28.34 28.54 28.91 28.23
GENHX 43.27 43.37 38.34 40.83 40.97 39.32 39.63 37.7 40.88

ALLERGY 28.29 27.49 29.25 28.55 42.23 42.49 42.58 42.64 33.57
MEDICATIONS 19.81 12.22 19.54 24.68 14.33 44.53 44.28 40.92 46.36

FAM SOCHX 30.71 30 29.89 22.8 25.8 30.52 24.22 24.62 31.25
DIAGNOSIS 15.17 17.02 18.09 18.87 13.76 37.29 37.15 29.14 21.43

CC 16.4 13.47 20.75 16.99 13.96 25.27 16.08 22.15 29.11
EXAM 23.47 24.51 21.55 13.27 19.27 28.32 24.49 28.16 18.11
Overall 24.99 24.06 24.11 23.63 23.19 30 28.83 28.01 28.55

ROUGE2
X guides GPT4 X post-edit APO-guides-GPT4

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 4.8 5.01 2.8 4.88 5.13 5.28 5.36 4.58 4.78
PLAN 9.29 9.86 8.23 9.02 9 12.27 12.9 12.82 12.98

EDCOURSE 16.04 13.59 15.92 13.5 8.25 14.49 15.32 12.87 14.2
DISPOSITION 3.22 5.3 6.57 3.47 1.3 3.99 5.4 3.99 4.8

PASTSURGICAL 9.94 8.43 9.06 6.54 10.16 11.65 8.69 12.41 11.98
PASTMEDICALHX 8.48 8.43 8.59 9.19 6.35 8.9 8.72 6.16 8.34

ROS 8.59 8.86 6.48 7.22 8.5 8.33 8.13 8.16 8.79
GENHX 15.96 15.99 12.55 14.1 14.52 12.65 12.88 12.24 13.63

ALLERGY 5.69 6.09 5.78 4.05 3.22 9.02 13.31 9.58 6.14
MEDICATIONS 12.56 12.59 13.36 1.67 29.29 29.49 29.29 28.62 3.1

FAM SOCHX 6.67 3.65 6.63 0.89 4.24 8.91 8.76 6.78 9.38
DIAGNOSIS 12.6 11.75 11.63 8.07 9.23 11.85 8.35 7.43 12.48

CC 4.16 3.34 5.78 5.62 3.11 10.6 4.56 8.16 14.08
EXAM 7.22 5.15 5.68 4.67 4.08 8.52 8.23 8.94 6.66
Overall 8.94 8.43 8.5 6.63 8.31 11.14 12.07 10.19 9.38

ROUGEL
X guides GPT4 X post-edit APO-guides-GPT4

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 15.78 5.15 11.57 14.64 15.39 8.52 15.09 13.58 13.84
PLAN 19.46 20.12 17.44 19.16 19.8 23.06 22.84 22.84 23.16

EDCOURSE 36.83 33.57 33.69 34.45 23.08 34.62 35.47 33.51 33.34
DISPOSITION 16.91 19.79 21.78 15.95 11.57 16.07 19.07 15.45 16.3

PASTSURGICAL 21.63 19.32 20.86 21.94 26.34 23.25 20.43 25.28 32.14
PASTMEDICALHX 21.63 23.03 22.81 22.56 18.74 22.96 22.81 17.64 22.15

ROS 21.63 26.86 20.97 24 25.67 25.98 26.32 26.22 26.21
GENHX 40.11 40.17 35.44 37.72 37.98 36.42 36.52 34.88 37.68

ALLERGY 40.11 27.13 28.9 28.42 41.94 42.22 42.32 42.39 33.4
MEDICATIONS 18.73 11.6 18.39 24.61 13.85 44.11 43.86 39.88 45.92

FAM SOCHX 28.54 27.87 27.81 21.11 24.12 28.32 22.54 22.9 29.12
DIAGNOSIS 13.9 15.64 14.64 16.58 12.94 35.18 35.94 27.49 18.75

CC 15.3 12.31 18.62 14.55 12.6 23.24 15 20.02 27.31
EXAM 21.92 21.93 21.14 12.31 18.28 26.18 22.62 26.12 17.33
Overall 23.74 21.74 22.43 22 21.59 27.86 27.2 26.3 26.9

Table 8: Different sections’ performance across different prompting groups for GPT4. This is the ROUGE1, 2, L
full table for Table 1, and Table 2 .
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METEOR
X guides GPT4 X post-edit APO-guides-GPT4

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 19.69 18.77 15.05 17.67 19.1 19.06 20.28 18.04 18.81
PLAN 22.62 25.27 21.66 26.74 22.49 23.07 23.81 23.8 24.3

EDCOURSE 26.72 26.07 26.7 28.43 18.78 25.55 26.67 25.57 26.55
DISPOSITION 22.81 25.35 31.92 19.23 19.34 25.65 26.24 24.78 25.03

PASTSURGICAL 27.59 25.68 26.87 11.21 26.28 27.67 26.84 30.59 25.24
PASTMEDICALHX 23.38 24.91 23.79 24.3 20.49 24.07 23.88 15.96 23.49

ROS 24.13 23.36 20.68 20.09 22.7 23.7 23.82 23.55 23.33
GENHX 30.48 30.87 29.44 28.65 30.13 29.52 29.69 29.14 30.6

ALLERGY 30.48 37.42 40.43 5.86 43.96 41.56 44.3 42.55 4.32
MEDICATIONS 22.77 16.67 40.43 2.99 20.22 19.48 19.61 21.07 17

FAM SOCHX 29.33 30.19 29.1 21.52 26.64 29.01 25.8 20.67 29.45
DIAGNOSIS 22.16 26.86 26.57 30.39 22.55 32.69 35.95 34.53 32.16

CC 22.16 16.79 23.82 23.79 18.95 23.77 20.74 24.81 19.73
EXAM 23.24 23.57 22.8 12.85 21.52 24.22 23.08 24.05 19.99
Overall 24.82 25.12 27.09 19.55 23.79 26.35 26.48 25.65 22.85

UMLS-F1
X guides GPT4 X post-edit APO-guides-GPT4

GEN Human1 Human2 Human3 GPT3.5 GPT4 Human1 Human2 Human3

ASSESSMENT 32.1 25.84 19.55 3.09 27.71 26.28 30.68 26.16 26.57
PLAN 31.91 29.73 24.87 30.55 31.22 27.15 20.28 20.28 19.99

EDCOURSE 37.12 39.34 39.99 34.46 23.85 37.26 37.3 38.41 37.54
DISPOSITION 27.53 31.8 36.7 34.54 19.75 25.78 35.87 20.95 27.54

PASTSURGICAL 29.79 30.07 36.7 36 25.76 31.65 35.87 32.87 34.12
PASTMEDICALHX 33.35 33.74 32.99 34.35 28.49 35.59 33.64 30.61 33.68

ROS 35.69 37.34 25.95 34.39 33.57 36.51 35.34 34.57 34.92
GENHX 45.63 45.03 39.13 44.27 42.72 41.11 41.41 39.33 43.41

ALLERGY 25.01 22.78 27.26 8.58 4.48 44.62 45.68 43.33 13.11
MEDICATIONS 38.37 22.72 37.19 35.89 28.32 40.26 39.72 30.95 41.58

FAM SOCHX 33.66 34.43 32.61 27.17 28.89 33.74 27.87 27.45 33.04
DIAGNOSIS 31.54 35.48 32.61 34.86 29.2 52.42 50.33 47.7 44.94

CC 30.4 28.36 33.24 30.07 26.25 31.91 32.54 34.67 39.14
EXAM 30.76 23.21 25.04 19.63 13.52 29.61 31.56 30.33 27.97
Overall 33.13 31.84 32.63 31.13 28.94 35.27 35.57 32.68 32.68

Table 9: Different sections’ performance across different prompting groups for GPT4. This is the METEOR,
UMLS-F1 full table for Table 1, and Table 2 .
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A.3 Prompts
Type Prompt
“Forward Pass”

[Initial generic prompt or prompt iterations]

SOAP note section:
[section]
Conversation snippet:
[Conversation snippet]

Output your summary.
Return the output as a dictionary object, adhering to the following structure:
{"summary": ...}
Please provide your response solely in the dictionary format without including any additional text.

p0

In this task, we ask for your expertise in writing SOAP notes from the doctor-patient conversation.
Mainly we provide the target section in the SOAP note and the conversation snippet.
We need you to generate a summary for the respective snippet.

p∇
In this task, you need to provide suggestions to modify the instruction in our SOAP notes writing system, which uses a model to generate SOAP

↪→ notes from the doctor-patient conversation according to manually created instructions.
Specifically, we feed the AI a conversation snippet and the target section in the SOAP note and ask it to generate the corresponding summary.
But we found that the instruction in the current system is not perfect, so we need you to modify the instruction for this model to improve our

↪→ system.

The instruction now in our rating system:
[Intial generic prompt or prompt iterations]
SOAP note section for summary:
[section]
Conversation snippet for the model:
[Conv_snippet]
Current AI summary:
[AI_summary]
Reference summary:
[label_summary]

Here are some of the requirements you need to be aware of when suggesting the instruction modification in our system:
1) For better generalization, what you suggest should be abstracted as high-level criteria as much as possible instead of only describing the

↪→ details
2) We will improve the instructions based on your suggestions. If I re-provide the system with the conversation snippet and the target section

↪→ in the SOAP note, it needs to be able to generate the reference summary using your new suggested instructions.
3) The instruction now in our system is for the zero-shot setting, don’t try to add any examples to the instruction.
4) We are currently only focusing on this target section, so you don’t need to consider the situation of other sections in the SOAP note, just

↪→ optimize the instructions completely for this section.

Let’s think step by step. First, output your reasons for why the current instruction in the system cannot generate the correct reference
↪→ summary, then output your suggestions to modify the instruction for our system.

Return the output as a dictionary object, adhering to the following structure:
{"reasons": ..., "suggestions": ...}
Ensure the ’suggestions’ only includes text but not a list. Please provide your response solely in the dictionary format without including any

↪→ additional text.

pδ

In this task, you need to provide suggestions to modify the instruction in our SOAP notes writing system, which uses a model to generate SOAP
↪→ notes from the doctor-patient conversation according to manually created instructions.

Specifically, we feed the AI a conversation snippet and the target section in the SOAP note and ask it to generate the corresponding summary.
But we found that the instruction in the current system is not perfect, so we need you to modify the instruction for this model to improve our

↪→ system.

The instruction now in our system:
[Intial generic prompt or prompt iterations]
Suggestions from summary [i]:
[suggestions]
Here are some of the requirements you need to be aware of when modifying the instruction in our system:
1) For better generalization, what you suggest should be abstracted as high-level criteria as much as possible instead of only describing the

↪→ details
2) We will improve the instructions based on your suggestions. If I re-provide the system with the conversation snippet and the target section

↪→ in the SOAP note, it needs to be able to generate the reference summary using your new suggested instructions.
3) The instruction now in our system is for the zero-shot setting, don’t try to add any examples to the instruction.
4) We are currently only focusing on this target section, so you don’t need to consider the situation of other sections in the SOAP note, just

↪→ optimize the instructions completely for this section.

Let’s think step by step. First, briefly summarize the suggestions of all the data to get a final suggestion containing only the highest
↪→ priority requirement, then output your modified instruction for our system based on the final suggestion.

Return the output as a dictionary object, adhering to the following structure:
{"final suggestion": ..., "new instruction": ...}
Please provide your response solely in the dictionary format without including any additional text.

Table 10: All prompts used in our proposed algorithm.
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A.4 APO Iterations Examples
Scores Suggestions & Prompt
Initial:
summary_rouge1 0.1041
summary_rouge2 0.0085
summary_rougeL 0.1041
summary_meteor 0.0926

In this task, we ask for your expertise in writing SOAP notes from the doctor-patient conversation.
Mainly we provide the target section in the SOAP note and the conversation snippet.
We need you to generate a summary for the respective snippet

First epoch (good direction):
summary_rouge1 0.1674
summary_rouge2 0.0462
summary_rougeL 0.151
summary_meteor 0.2417

final suggestion in this step: The instruction should ask the model to generate a concise summary of the patient’s chief
↪→ complaint based on the doctor-patient dialogue. The summary should focus on the main reason for the visit,
↪→ excluding unnecessary details unless they are directly relevant to the chief complaint. The use of medical
↪→ terminology should be appropriate and not overused, with the focus being on clear and accurate communication.

after curr epoch, the target_trainable_instruction is:
Based on the doctor-patient dialogue, please generate a concise summary of the patient’s chief complaint, which is the

↪→ primary reason for their visit to the doctor. The summary should be straightforward and focus on the main issue,
↪→ excluding any unnecessary details unless they are directly relevant to the chief complaint. Use medical
↪→ terminology appropriately, but ensure the summary remains clear and accurate. Remember, you are a smart doctor
↪→ and a professional medical scribe, your goal is to accurately reflect the conversation.

Second epoch (good direction):
summary_rouge1 0.2079
summary_rouge2 0.0704
summary_rougeL 0.1897
summary_meteor 0.2376

final suggestion in this step: The summary should be a succinct reflection of the patient’s chief complaint based on the
↪→ doctor-patient dialogue. It should focus solely on the main issue, excluding any details that do not directly
↪→ contribute to understanding the chief complaint. The summary should be as brief as possible without losing the
↪→ essence of the complaint. Use standard medical terminology appropriately, but ensure the summary remains clear
↪→ and accurate. The goal is to distill the conversation into the most brief, yet comprehensive summary possible,
↪→ using appropriate medical language.

after curr epoch, the target_trainable_instruction is:
Please generate a succinct summary of the patient’s chief complaint, which is the primary reason for their visit, based on

↪→ the doctor-patient dialogue. The summary should focus solely on the main issue, excluding any details that do
↪→ not directly contribute to understanding the chief complaint. While using medical terminology appropriately,
↪→ ensure the summary is as brief as possible, without losing the essence of the complaint. The goal is to distill
↪→ the conversation into the most brief, yet comprehensive summary possible, using appropriate medical language.
↪→ Remember, you are a smart doctor and a professional medical scribe, your task is to accurately and succinctly
↪→ reflect the conversation.

Third epoch (good direction):
summary_rouge1 0.2224
summary_rouge2 0.0927
summary_rougeL 0.2051
summary_meteor 0.255

final suggestion in this step: The summary should be a concise reflection of the patient’s chief complaint, capturing the
↪→ essence of the doctor’s inquiries and the patient’s responses. It should focus on the main issue, excluding any
↪→ extraneous details that do not directly contribute to understanding the chief complaint. The use of standard
↪→ medical terminology is crucial, but the summary should remain brief and comprehensive. The goal is to distill
↪→ the conversation into a succinct summary that accurately reflects the doctor’s understanding of the chief
↪→ complaint.

after curr epoch, the target_trainable_instruction is:
Please generate a concise summary of the patient’s chief complaint, which is the primary reason for their visit, based on

↪→ the doctor-patient dialogue. The summary should capture the essence of the doctor’s inquiries and the patient’s
↪→ responses, focusing solely on the main issue and excluding any details that do not directly contribute to
↪→ understanding the chief complaint. Use standard medical terminology to describe the complaint, ensuring the
↪→ summary is as brief as possible, without losing the essence of the complaint. The goal is to distill the
↪→ conversation into the most brief, yet comprehensive summary possible, using appropriate medical language.
↪→ Remember, you are a smart doctor and a professional medical scribe, your task is to accurately and succinctly
↪→ reflect the conversation using standard medical terms.

Third epoch (bad direction):
summary_rouge1 0.1851
summary_rouge2 0.0595
summary_rougeL 0.1715
summary_meteor 0.2537

final suggestion in this step: The instruction should guide the model to generate a concise summary of the patient’s chief
↪→ complaint based on the doctor-patient dialogue, focusing on the main issue and excluding irrelevant details. The
↪→ summary should reflect the level of certainty or uncertainty expressed in the conversation, and accurately
↪→ represent any symptoms or conditions the patient denies experiencing. The use of standard medical terminology is
↪→ important, but it should not lead to verbosity. The summary should be written from the doctor’s perspective,
↪→ reflecting the doctor’s role in the patient’s care.

after curr epoch, the target_trainable_instruction is:
Please generate a concise summary of the patient’s chief complaint, which is the primary reason for their visit, based on

↪→ the doctor-patient dialogue. The summary should capture the essence of the doctor’s inquiries and the patient’s
↪→ responses, focusing solely on the main issue. Exclude any details that do not directly contribute to
↪→ understanding the chief complaint. Reflect the level of certainty or uncertainty expressed in the conversation.
↪→ If the patient denies experiencing certain symptoms or conditions, ensure to reflect this accurately in the
↪→ summary. Use standard medical terminology to describe the complaint, ensuring the summary is as brief as
↪→ possible, without losing the essence of the complaint. Avoid verbosity in the use of medical terminology. The
↪→ summary should be written from the doctor’s perspective, reflecting the doctor’s role in the patient’s care. The
↪→ goal is to distill the conversation into the most brief, yet comprehensive summary possible, using appropriate
↪→ medical language. Remember, you are a smart doctor and a professional medical scribe, your task is to accurately
↪→ and succinctly reflect the conversation using standard medical terms.
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Table 11: APO iterations of good and bad examples from the ‘CC’ section.
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A.5 GPT Variants Per Section
Section Variant Average Best Variant
MEDICATIONS text-ada-001 0.02255639098 text-davinci-003
MEDICATIONS text-babbage-001 0.1096938776 text-davinci-003
MEDICATIONS text-curie-001 0.09467405383 text-davinci-003
MEDICATIONS text-davinci-003 0.2071920384 text-davinci-003
MEDICATIONS gpt-3.5-turbo-0613 0.2035366419 text-davinci-003
MEDICATIONS gpt-4 0.1999162675 text-davinci-003
PASTSURGICAL text-ada-001 0.03455261137 gpt-3.5-turbo-0613
PASTSURGICAL text-babbage-001 0.02777777778 gpt-3.5-turbo-0613
PASTSURGICAL text-curie-001 0.08775603992 gpt-3.5-turbo-0613
PASTSURGICAL text-davinci-003 0.1024338849 gpt-3.5-turbo-0613
PASTSURGICAL gpt-3.5-turbo-0613 0.1309354758 gpt-3.5-turbo-0613
PASTSURGICAL gpt-4 0.1283720208 gpt-3.5-turbo-0613
ALLERGY text-ada-001 0.04682662539 gpt-4
ALLERGY text-babbage-001 0 gpt-4
ALLERGY text-curie-001 0.1891025641 gpt-4
ALLERGY text-davinci-003 0.1002458291 gpt-4
ALLERGY gpt-3.5-turbo-0613 0.2307379782 gpt-4
ALLERGY gpt-4 0.2795421063 gpt-4
FAM/SOCHX text-ada-001 0.02921216026 gpt-4
FAM/SOCHX text-babbage-001 0.03212721942 gpt-4
FAM/SOCHX text-curie-001 0.1216424461 gpt-4
FAM/SOCHX text-davinci-003 0.1441214133 gpt-4
FAM/SOCHX gpt-3.5-turbo-0613 0.2415016373 gpt-4
FAM/SOCHX gpt-4 0.26145789 gpt-4
ASSESSMENT text-ada-001 0.0388869863 text-curie-001
ASSESSMENT text-babbage-001 0.005281690141 text-curie-001
ASSESSMENT text-curie-001 0.1543199765 text-curie-001
ASSESSMENT text-davinci-003 0.1242746478 text-curie-001
ASSESSMENT gpt-3.5-turbo-0613 0.106788819 text-curie-001
ASSESSMENT gpt-4 0.1281340914 text-curie-001
CC text-ada-001 0.03660714286 gpt-4
CC text-babbage-001 0 gpt-4
CC text-curie-001 0.1886569845 gpt-4
CC text-davinci-003 0.2283677945 gpt-4
CC gpt-3.5-turbo-0613 0.2139382547 gpt-4
CC gpt-4 0.2475876016 gpt-4
EXAM text-ada-001 0.08333333333 text-curie-001
EXAM text-babbage-001 0 text-curie-001
EXAM text-curie-001 0.2142857143 text-curie-001
EXAM text-davinci-003 0.08333333333 text-curie-001
EXAM gpt-3.5-turbo-0613 0.15 text-curie-001
EXAM gpt-4 0.18 text-curie-001
EDCOURSE text-ada-001 0.1304407442 text-davinci-003
EDCOURSE text-babbage-001 0.02094356261 text-davinci-003
EDCOURSE text-curie-001 0.1772495791 text-davinci-003
EDCOURSE text-davinci-003 0.2750014022 text-davinci-003
EDCOURSE gpt-3.5-turbo-0613 0.2590712521 text-davinci-003
EDCOURSE gpt-4 0.2440284049 text-davinci-003
ROS text-ada-001 0.03748626835 gpt-4
ROS text-babbage-001 0.0340848458 gpt-4
ROS text-curie-001 0.08547537401 gpt-4
ROS text-davinci-003 0.0952141002 gpt-4
ROS gpt-3.5-turbo-0613 0.1714490651 gpt-4
ROS gpt-4 0.1762812153 gpt-4
DISPOSITION text-ada-001 0 gpt-3.5-turbo-0613/gpt-4
DISPOSITION text-babbage-001 0.1584821429 gpt-3.5-turbo-0613/gpt-4
DISPOSITION text-curie-001 0.2519607843 gpt-3.5-turbo-0613/gpt-4
DISPOSITION text-davinci-003 0.2091346154 gpt-3.5-turbo-0613/gpt-4
DISPOSITION gpt-3.5-turbo-0613 0.2608359133 gpt-3.5-turbo-0613/gpt-4
DISPOSITION gpt-4 0.2608359133 gpt-3.5-turbo-0613/gpt-4
DIAGNOSIS text-ada-001 0.05555555556 gpt-3.5-turbo-0613
DIAGNOSIS text-babbage-001 0 gpt-3.5-turbo-0613
DIAGNOSIS text-curie-001 0.05555555556 gpt-3.5-turbo-0613
DIAGNOSIS text-davinci-003 0.2532051282 gpt-3.5-turbo-0613
DIAGNOSIS gpt-3.5-turbo-0613 0.3211143695 gpt-3.5-turbo-0613
DIAGNOSIS gpt-4 0.245994832 gpt-3.5-turbo-0613
PASTMEDICALHX text-ada-001 0 gpt-3.5-turbo-0613
PASTMEDICALHX text-babbage-001 0 gpt-3.5-turbo-0613
PASTMEDICALHX text-curie-001 0.07830882353 gpt-3.5-turbo-0613
PASTMEDICALHX text-davinci-003 0.14375 gpt-3.5-turbo-0613
PASTMEDICALHX gpt-3.5-turbo-0613 0.2317706867 gpt-3.5-turbo-0613
PASTMEDICALHX gpt-4 0.2045185666 gpt-3.5-turbo-0613
PLAN text-ada-001 0.05696640316 gpt-4
PLAN text-babbage-001 0 gpt-4
PLAN text-curie-001 0.07544836116 gpt-4
PLAN text-davinci-003 0.1067404817 gpt-4
PLAN gpt-3.5-turbo-0613 0.2096407229 gpt-4
PLAN gpt-4 0.2272458144 gpt-4
GENHX text-ada-001 0.05855827354 gpt-4
GENHX text-babbage-001 0.0200537811 gpt-4
GENHX text-curie-001 0.09488431364 gpt-4
GENHX text-davinci-003 0.1421504194 gpt-4
GENHX gpt-3.5-turbo-0613 0.3101982791 gpt-4
GENHX gpt-4 0.3141274328 gpt-4

Table 11a: The best GPT variant for each section when using
the generic prompt. Note: The Average column is the mean
of the Rouge1, Rouge2, RougeL, and RougeLsum scores.

Variant Count
text-curie-001 2
text-davinci-003 2
gpt-3.5-turbo-0613 3
gpt-4 6
gpt-3.5-turbo-0613/gpt-4 1

Table11b: The number of sections where

each variant is the best. Note: The last row

is where two variants are tied for the

“Disposition” section.
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Abstract

The success of pretrained language models
(PLMs) across a spate of use-cases has led to
significant investment from the NLP commu-
nity towards building domain-specific founda-
tional models. On the other hand, in mission
critical settings such as biomedical applications,
other aspects also factor in—chief of which is a
model’s ability to produce reasonable estimates
of its own uncertainty. In the present study, we
discuss these two desiderata through the lens of
how they shape the entropy of a model’s output
probability distribution. We find that domain
specificity and uncertainty awareness can often
be successfully combined, but the exact task at
hand weighs in much more strongly.

1 Introduction

Deep-learning models are trained with data-
driven approaches to maximize prediction accuracy
(Goodfellow et al., 2016). This entails several well-
documented pitfalls, ranging from closed-domain
limitations (Daume III and Marcu, 2006) to so-
cial systemic biases (McCoy et al., 2019; Schnabel
et al., 2016). These limitations compound to a se-
vere deterioration of model performances in out-of-
domain (OOD) scenarios (Hurd et al., 2013; Shah
et al., 2020). This has led to engineering efforts
towards developing models tailored to specific do-
mains, ranging from the legal (Paul et al., 2023)
to the biomedical (Lee et al., 2020; Singhal et al.,
2023) ones.

Domain-specific models, while useful, are rarely
considered as a definitive answer. Crucially, in
the biomedical domain, experts require more reli-
ability from these models—in particular, insofar
as accounting for uncertainty in prediction is con-
cerned. For example, in the case of a risk scor-
ing model used to rank patients for live transplant,
uncertainty-awareness becomes critical. The lack
of uncertainty-aware models may lead to improper
allocation of medical resources (Steyerberg et al.,
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Figure 1: Illustration of this study’s setup. We per-
form a systematic comparison of domain-specificity and
uncertainty-awareness in the medical domain.

2010). Such concerns exemplify the importance
of uncertainty aware models and its critical role in
model selection.

The compatibility of domain-specific pretraining
and uncertainty modeling appears under-assessed.
To illustrate this, one can consider the entropy of
output distributions: Domain-specific pretraining
will lead to more probability mass assigned to a sin-
gle (hopefully correct) estimate, leading to a lower
entropy; whereas uncertainty-aware designs intend
to not neglect valid alternatives—meaning that the
probability mass should be spread out, which en-
tails a higher entropy when uncertainty is due.

In this work, we reflect on how model-specificity
and uncertainty-awareness articulate with one an-
other. Figure 1 illustrates the experimental setup
we use for our study. In practice, we study the
performances of frequentist and Bayesian general
and domain-specific models on biomedical text
classification tasks across a wide array of metrics,
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Dataset Task Description
Splits Statistics

train val test #Class CIR avglen maxlen

MedABS Predict the patient condition described, given a medical abstract 8662 2888 2888 5 3.1445 180.59 597
MedNLI Predict the inference type, given a hypothesis and a premise 11232 1395 1422 3 1 23.83 151
SMOKING Predict the patient smoking status, given a medical discharge record 398 100 104 5 23.75 654.30 2788
PxSLU Predict the drug prescription intent, given a user speech transcription 1386 198 397 4 98.1538 11.40 48
MedMCQA Predict the number of answers, given a medical multi-choice question 2171 312 622 5 21.1176 12.90 92
MORFITT Predict the speciality, given a scientific article abstract 1514 1022 1088 12 15.3529 226.33 1425

Table 1: Datasets description. CIR denotes class imbalance ratio.

ranging from macro F1 to SCE, with a specific
focus on entropy (Ruder and Plank, 2017; Kuhn
et al., 2023). More narrowly, we study the follow-
ing research questions: RQ1: Are the benefits of
uncertainty-awareness and domain-specificity or-
thogonal? RQ2: Given our benchmarking results,
should medical practitioners prioritize domain-
specificity or uncertainty-awareness?

2 Related Work

Recently, uncertainty quantification has gained
attention from the NLP community (Xiao and
Wang, 2019; Xiao et al., 2022; Hu et al., 2023)—
particularly in mission critical settings, such as in
the medical domain (Hwang et al., 2023; Barandas
et al., 2024). In parallel, compared to domain adap-
tation approaches (Wiese et al., 2017) for the medi-
cal domain, there is a growing interest in domain-
specific language models starting from BioBERT
(Lee et al., 2020) to the recent MedPalM (Singhal
et al., 2023). Xiao et al. (2022) presented an elab-
orate study of uncertainty paradigm for general-
domain PLMs. While uncertainty modeling has
been applied to biomedical data previously (e.g.,
Begoli et al., 2019; Abdar et al., 2021), surpris-
ingly little has been done for biomedical textual
data. Therefore, our study precisely focuses on the
interaction between the two paradigms for medical
domain NLP tasks. We address this gap by focus-
ing specifically on predictive entropy (Ruder and
Plank, 2017; Kuhn et al., 2023).

3 Methodology

Datasets. We conduct experiments on six stan-
dard biomedical datasets: three English datasets,
viz. MedABS (Schopf et al., 2023), MedNLI
(Romanov and Shivade) and SMOKING (Uzuner
et al., 2008); as well as three French datasets, viz.
MORFITT (Labrak et al., 2023b), PxSLU (Ko-
cabiyikoglu et al., 2022) and MedMCQA (Labrak
et al., 2023a).

For MEDABS, SMOKING, PxSLU, and
MEDMCQA, we do not perform any special pre-

processing. For MEDMCQA, we perform Task 2,
i.e., predicting the number of possible responses
(ranging from 1-5) for the input multi choice ques-
tion. For MEDNLI, we concatenate the statement
and hypothesis using the [SEP] token and use it
as an input converting it to a multi-class task. For
MORFITT, which is originally a multi-label classi-
fication task, we use the first label for each sample
to convert it to a multi-class problem. The descrip-
tive statistics of these datasets are listed in Table
1, along with class imbalance ratio (CIR; Yu et al.,
2022). See Appendix A.4 for more information.

Models. We derive classifiers from language-
specific PLMs: for English datasets, we use BERT
(Devlin et al., 2018) and BioBERT (Lee et al., 2020);
for French, we use CamemBERT (Martin et al., 2019)
and CamemBERT-bio (Touchent et al., 2023). We
compare two types of models, frequentist deep
learning models (DNN) and Bayesian deep learn-
ing models (BNNs). The DNN model comprises of
a PLM-based encoder, a Dropout unit along with
1-layer classifier. The BNN models are likewise
based on a PLM encoder, along with a Bayesian
module applied over the classification layer. We
also experimented with MC-dropout models (Gal
and Ghahramani, 2016), DropConnect (Mobiny
et al., 2021), and variational inference (Blundell
et al., 2015) models. We focus1 on the DropCon-
nect architecture which comprises a PLM encoder
along a DropConnect dense classification layer.
This approach infuses stochasticity into a deter-
ministic model by randomly zeroing out classifier
weights with probability 1− p. This allows us to
sample multiple outputs for a given input, thus en-
abling to aggregate the predictions and to produce
estimates of uncertainty.

For simplicity, we note domain-specific mod-
els as +D (and general models −D); uncertainty
aware models are referred to as +U (with frequen-

1We justify our focus on DropConnect empirically, as it
yielded the highest validation F1 scores on average in our case.
See Appendices A.1 and B for details. All main text results
for uncertainty-aware classifiers pertain to DropConnect.
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tist models noted−U ). We replicate training across
10 seeds per model and dataset; further implemen-
tation details can be found in Appendix A.2.

Evaluation Setup. We evaluate classifiers on two
aspects: task performance and uncertainty aware-
ness. For text classification, we report Macro-F1
and accuracy. For uncertainty quantification we
report Brier score (BS; Brier, 1950), Expected Cal-
ibration Error (ECE; Naeini et al., 2015), Static
Calibration Error (SCE; Nixon et al., 2019), Neg-
ative log likelihood (NLL), coverage (Cov%) and
entropy (H). See Appendix A.3 for definitions.
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(c) Calibration metrics

Figure 2: Performances for empirically best models
(selected metrics), z-normalized per dataset. See Table 5
in Appendix B for full non-normalized results.

4 Results

Performance. All results are listed in Table 5
in Appendix B, we highlight some key metrics in
Figure 2. Insofar as classification metrics go, +D
configurations outperform −D ones. More gen-
erally, as all scores are highly dependent on the
exact dataset considered, we first de-trend them
by z-normalizing results on a per-dataset basis to
simplify analysis. We find +D + U classifiers
to be strong contenders, although they are often

outperformed—especially by +D − U models on
classification metrics (Figure 2b) and by −D + U
models on calibration metrics (Figure 2c). As for
entropy, we find both +D − U and +D + U to
lead to lower scores. Trends are consistent across
languages.

Relative importance. To interpret results in Fig-
ure 2 more rigorously, we rely on SHAP (Lundberg
and Lee, 2017). SHAP is an algorithm to compute
heuristics for Shapley values (Shapley, 1953), viz.
a game theoretical additive and fair distribution of a
given variable to be explained across predetermined
factors of interest. Here, we analyze the scores ob-
tained by individual classifiers on all 8 metrics,
and try to attribute their values (z-normalized per
dataset) to domain specificity (±D), uncertainty
awareness (±U) and the dataset one observation
corresponds to (ds.).

Results are displayed in Figure 3; specific points
correspond to weights assigned to one of the fac-
tors for one of the datapoints, factors are sorted
from most to least impactful from top to bottom.
We can see that which of domain specificity and
uncertainty awareness has the strongest impact de-
pends strictly on the metrics: Cases where ±D
is assigned on average a greater absolute weight
than ±U account for exactly half of the metrics
we study. Another import trend is that effects tied
to +D are also often attested for +U : if domain
specificity is useful, then uncertainty awareness is
as well.2 Lastly, weights assigned to both ±D and
±U are considerably smaller than those assigned
to datasets, showcasing that these trends are often
overpowered by the specifics of the task at hand.

Entropy. A desideratum we laid out above is to
have large entropy scores when the model is in-
correct. Focusing on entropy, we display how it
compares to the probability mass assigned to the
target in Figure 4. In detail, we retrieve all predic-
tions for every datapoint across all classifiers and
then z-normalize entropy scores and probability as-
signed the target class.3 We can see that incorrect

2There are two notable exceptions: ECE and coverage,
where we find +D to be detrimental. Variation across seeds
might explain the discrepancy with Table 5.

3When plotting entropy against probability mass assigned
to the target class, we can keep in mind some useful points
of reference. A perfect classifier that is always confidently
correct should display a high probability mass and a low en-
tropy (i.e., top left of our plot); what we hope to avoid is a
confidently incorrect classifier (bottom left). As entropy and
probability are statistically related, it is impossible to observe
a high probability mass and a high entropy (top right). Lastly,
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0.2 0.1 0.0 0.1 0.2
±
±
ds.

(a) F1

0.2 0.1 0.0 0.1 0.2
±
±
ds.

(b) Acc.

0.50 0.25 0.00 0.25 0.50
±
±
ds.

(c) NLL
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±
±
ds.

(d) H
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±
±
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(e) Brier score
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(f) SCE
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±
±
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(g) ECE
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±
±
ds.

(h) Cov %

Figure 3: SHAP attributions. Variables are ordered by mean absolute SHAPs. In blue, weight assigned when the
variable is negative; in red, when it is positive. ‘ds.’ denotes a categorical variable tracking the dataset.
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Figure 4: Entropy vs. probability mass assigned to the
target (z-normalized per classifier). Orange: correct
predictions; Blue: incorrect.

predictions do result in more spread out entropy
scores. Moreover, we can notice some tentative
differences between the four types of classifiers of
our study: Correct predictions from +D + U mod-
els seem to lead to an especially tight correlation
between entropy and probability mass.

However, establishing whether this difference
is significant requires further testing. We there-
fore measure whether incorrect predictions lead
to higher entropy in two ways: (i) using Mann–
Whitney U-tests, from which we derive a common
language effect size f (as the entropy of incorrect
predictions should be higher);4 and (ii), by comput-
ing Spearman correlation coefficients between the

assuming the classifier outputs continuous scores, this statisti-
cal dependency also dictates that probability mass and entropy
be inversely correlated for correct predictions.

4All U-tests suggest entropy for incorrect predictions is
significantly higher (p < 10−10).

effect size f Spearman’s ρ

−
D
−
U

+
D
−
U

−
D

+
U

+
D

+
U

−
D
−
U

+
D
−
U

−
D

+
U

+
D

+
U

MedABS 62.5 64.8 62.4 67.3 −48.0 −47.9 −44.6−53.5
MedNLI 73.2 73.2 74.0 77.0 −73.2 −77.4 −76.1−83.3
SMOKING 75.8 71.6 74.2 74.8 −56.5 −38.0 −50.0 −56.0
PxSLU 65.4 87.2 65.1 85.8 −85.4 −69.1 −87.3−96.2
MedMCQA 65.6 63.8 66.6 68.2 −82.3 −82.2 −60.8 −62.6
MORFITT 65.6 66.1 65.0 64.8 −54.6 −55.1−50.8 −51.0

Table 2: Statistical tests on entropy measurements, with
best and second best highlighted.

entropy and the mass assigned to the target class (as
entropy should degrade with correctness). Corre-
sponding results are listed in Table 2: Across most
of the datasets we study, the top or second most
coherent distributions we observe are for domain-
specific and uncertainty-aware models. However,
we also observe that actual performances are highly
sensitive to the exact classification task at hand.

5 Discussion & Conclusion

We can now answer our initial research questions.
RQ1: Are the benefits of uncertainty-awareness

and domain-specificity orthogonal? We have seen
in Table 2 that in most cases, using a classifier that
was both domain-specific and uncertainty-aware
led to the optimal distribution shape, with entropy
more gracefully increasing with incorrectness.

RQ2: Should medical practitioners priori-
tize domain-specificity or uncertainty-awareness?
SHAP attributions in Figure 3 strongly suggest that
the evaluation metric dictates the strategy to follow.
As one would expect, accuracy is better captured
with domain-specific models, whereas uncertainty-
aware models tend to be better calibrated.

We also found significant evidence throughout
our experiments that the exact classification task at
hand weighs in much more strongly than the design
of the classifier. This extraneous factor necessar-
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ily complicates the relationship between domain-
specificity and uncertainty-awareness: In a handful
of cases in Figure 2, we observe classifiers that
are neither uncertainty-aware nor domain specific
faring best among all the models we survey—and
conversely domain-specific uncertainty-aware clas-
sifiers can also rank dead last. This is also related
to the often limited quantitative difference between
best and worst models, which for instance can be
as low as ±2.3% for F1 on MEDABS (cf. Table 5).

Overall, our experiments suggest a very nuanced
conclusion. Domain-specificity and uncertainty-
awareness do appear to shape classifiers’ distri-
butions and their entropy in distinct but compat-
ible ways, but they have a lesser impact than
the task itself. Hence, while we can often com-
bine uncertainty-awareness and domain-specificity,
there are no out-of-the-box solutions, and optimal
performances require careful application designs.
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A Experimental details

A.1 Supplementary Bayesian models

We include the details for two more Bayesian mod-
els: MC-dropout and variational inference. Note
that for all the Bayesian models we sample K=3
predictions at inference and use the mean predic-
tion.

MCDropout (MCD) This model is based on
a PLM encoder, similar to the main study mod-
els. The difference in this case is that Stochas-
tic Dropout is applied over the classification layer.
MCD (Gal and Ghahramani, 2016) proposes to
extend the usage of Dropout but at inference time
enabling it to sample a multiple K models, to make
K predictions. The final prediction in the case of
classification model can denoted as

ŷ = K−1
K∑

k=1

fi(x)

.

Variational inference (VI) This model is based
on a PLM encoder, similar to the main study mod-
els, with variational inference dense layer as the
classification layer. We use the Bayes by BackProp
(Blundell et al., 2015) for the VI Dense layer. It
approximates the distribution of each weight with a
Gaussian distribution with parameterN (µ, ρ). The
weights are approximated with Monte Carlo gra-
dient. Finally, the predictions are computed using
the predictive posterior distribution, by sampling K
weight instances and making one forward pass per
set of weights same as MCD.

A.2 Implementation details

We use keras-uncertainty models for imple-
menting our BNN model backbones.

Models MedABS MedNLI SMOKING PxSLU MedMCQA MORFITT

lr E lr E lr E lr E lr E lr E

−D DNN 1e-5 4 5e-6 12 1e-4 15 5e-6 15 5e-6 14 5e-5 15
−D DC 5e-6 7 1e-5 11 1e-5 15 5e-6 13 5e-6 15 5e-5 13
−D MCD 5e-5 5 5e-6 15 5e-5 15 1e-5 14 5e-6 11 5e-5 10
−D VI 5e-6 7 1e-5 14 5e-6 13 5e-6 14 1e-6 15 5e-5 13

+D DNN 1e-5 4 1e-5 14 5e-5 15 1e-5 15 1e-5 10 5e-5 15
+D DC 5e-5 3 1e-5 13 1e-4 13 1e-5 15 5e-6 15 5e-5 13
+D MCD 5e-5 3 5e-5 12 5e-5 10 1e-5 14 1e-5 15 5e-5 13
+D VI 1e-5 5 5e-6 13 5e-5 14 1e-5 14 1e-6 15 5e-5 5

Table 3: Best hyparameter for each model configu-
ration and dataset pair. We denote both English and
French domain-specific PLMs with +D. The models
DC, MCD, VI are from the +U set.

Hyperparameter Setting In all cases, we fine-
tune the PLM backbone for all the downstream
task with a maximum sequence length of 512 and
a batch size of 50 sentences. We perform a grid
hyper-parameter search for epochs= {3,4,5, ..., 15}
and lr= {1e-7, 5e-6, 1e-6, 5e-5, 1e-5, 5e-4, 1e-4}.
We replicate training with 3 seeds for each hyperpa-
rameter configuration, select the optimal configura-
tion for validation F1, and replicate training with
7 more seeds for these optimal configurations, so
as to obtain 10 models per dataset, PLM and archi-
tecture. We also select the main BNN model of the
study by selecting the system yielding the highest
average rank across all six datasets, as displayed in
Figure 5.

We train all models with binary cross entropy
loss and Adam optimizer with ϵ = 10−8 and β =
(0.9, 0.999). For all BNN models, we obtain 3 sets
of predictions after training the models to calcu-
late the mean class probabilities. Corresponding
optimal hyperparameters are listed in table 3.

A.3 Calibration metrics definition
In what follows, N denotes the number of sam-
ples in test set, C denotes the number of classes.
Lower score for Brier score, ECE, SCE, NLL and
Entropy metrics; and higher score for coverage, are
indicative of better uncertainty aware model.

Brier score. Brier (1950) proposed BS which
computes the mean square difference between the
true classes and the predicted probabilities.

BS =
1

N

N∑

i=1

C∑

c=1

(y(i)c − ŷ(i)c )2

Expected Calibration Error. Naeini et al.
(2015) provides weighted average of the difference
between accuracy and confidence across B bins.

ECE =

B∑

b=1

nb

N
|acc(b)− conf(b)|
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Figure 5: Comparison of various BNN models for different datasets on classification task based on Macro-F1 on
validation set.

where acc(b) and conf(b) are the average accuracy
and confidence of predictions in bin b, respectively.
We set B = 15 in our experiments.

Static Calibration Error. Nixon et al. (2019)
proposed an extension of ECE to multi-class prob-
lems to overcome its limitation of dependence of
the number of bins.

SCE =

C∑

c=1

B∑

b=1

nb

NC
|acc(b)− conf(b)|

We set B = 15 in our experiments.

Negative Log Likelihood. serves as the primary
approach for optimizing neural networks in clas-
sification tasks. Interestingly, this loss function
can also double as an effective metric for assessing
uncertainty.

NLL = −
N∑

i=1

yi log(ŷi)

Coverage Percentage. The normalized form of
number of times the correct class in indeed contain
within the prediction set.

Shannon Entropy. quantifies the expected un-
certainty inherent in the possible outcomes of a
discrete random variable.

H = −
N∑

i=1

pi log(pi)

A.4 Dataset
We provided supplementary details about each
dataset we used in Table 4.

B Full results

We present the detailed Table for all the configu-
rations in Table 5. As noted in the main text, the
most obvious trend across the board is that scores
are tightly coupled with datasets: The range of
scores achieved by all classifiers we study tends to
be fairly limited across a given dataset, whereas we
can observe often spectacular differences from one
dataset to the next.

Insofar as classification metrics go, we observe
that +D models almost always occupy the top
ranks. This is especially salient in MedABS and
MedNLI, where all +D classifiers outperform all
−D classifiers both in terms of F1 and accuracy.
In PxSLU, the only model that deviates from this
trend is the +D−U model, which appears to suffer
from an especially low accuracy. In the two other
French datasets, along with SMOKING, classifi-
cation metrics do not exhibit as clear a division
between domain-specific and general PLMs.

As for calibration metrics, we find a very sim-
ilar behavior to what we highlight in the main
text: uncertainty-unaware model almost never rank
among the top two contenders. Rankings per met-
ric tend to be fairly stable as long as we control for
domain-specificity.

Lastly, having a look at the various Bayesian
architecture, we can see that DropConnect is not
necessarily the most optimal system across all
uncertainty-aware classifiers. Selecting the best
architectures given 3 seeds, and then expanding to
10 seeds most likely led to some degree of sampling
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Dataset Sample Classes Label Distribution
MedABS (Schopf et al., 2023) {text: "Catheterization of coronary artery bypass graft from

the descending aorta. The increasing frequency of reoperation
for coronary artery disease has led to the use of a variety of
grafts. This report describes the catheter technique for selective
opacification of a saphenous vein graft from the descending
thoracic aorta to the posterior coronary circulation. ", label:
"Cardiovascular diseases" }

{’Neoplasms’, ’Digestive sys-
tem’, ’Nervous system’, ’Car-
diovascular’, ’General patholog-
ical’ }

[1925 913 1149 1804
2871]

MedNLI (Romanov and Shivade) {text: "No history of blood clots or DVTs, has never had chest
pain prior to one week ago. [SEP] Patient has angina", label:
"entailment"}

{"entailment", "contradict",
"neutral" }

[3744 3744 3744]

SMOKING (Uzuner et al., 2008) {text: "071962960 bh 4236518 417454 12/10/2001 12:00:00
am discharge summary unsigned dis report status : unsigned
discharge summary name : sterpsap , ny unit number : 582-96-
88 admission date : 12/10/2001 discharge date : 12/19/2001
principal diagnosis : prosthetic aortic valve dysfunction as-
sociated diagnoses : aortic valve insufficiency bacterial en-
docarditis , active principal procedure : urgent re-do aortic
valve replacement and correction of left ventricular to aortic
discontinuity . ( 12/13/2001 ) other procedures : aortic root
aortogram ( 12/12/2001 ) cardiac ultrasound ( 12/13/2001 ) in-
sertion dual chamber pacemaker ( 12/15/2001 ) picc line place-
ment ( 12/18/2001 ) history and reason for hospitalization : mr.
sterpsap ...", label: "CURRENT SMOKER"}

{’CURRENT SMOKER’,
’NON-SMOKER’, ’PAST
SMOKER’, ’SMOKER’,
’UNKNOWN’ }

[ 27 49 24 8 190]

MEDMCQA (Labrak et al., 2023a) {text: "ans la liste suivante, quels sont les antibiotiques utilis-
ables pour traiter une salmonellose chez un adulté?", label: 2}

{1,2,3,4,5} [595 528 718 296 34]

MORFITT (Labrak et al., 2023b) {text: "La survenue de complications postopératoires
représente un cauchemar (bien réel), tant pour le patient
que pour son chirurgien. Dès lors, quoi de plus fan-
tasmagorique que d’administrer une « potion magique »
au patient avant l’intervention pour éliminer ce risque ?
Le but de cet article est de résumer l’état des connais-
sances actuelles concernant les bénéfices potentiels, liés
à l’administration d’immunonutrition aux patients traités
pour cancer urologique.....", original_label: [ "Immunolo-
gie","Chirurgie",], label: "Immunologie"}

{’Vétérinaire’, ’Étiologie’,
’Psychologie’, ’Chirurgie’,
’Génétique’, ’Physiologie’,
’Pharmacologie’, ’Microbiolo-
gie’, ’Immunologie’, ’Chimie’,
’Virologie’, ’Parasitologie’ }

[ 82 261 32 122 40 17 152
39 242 185 104 238]

PxSLU (Kocabiyikoglu et al., 2022) {text: "antacapone 200 milligrammes 2 comprimés le matin 1
comprimé à midi 2 comprimé le soir traitement pour une durée
totale de 4 semaines", label: "medical_prescription"}

{"medical_prescription",
"negate","replace", "none" }

[1276 15 82 13]

Table 4: Sample data from each Dataset

bias, explaining this discrepancy. It does however
constitute a strong contender across many situa-
tions: it still remains the best ranking Bayesian
architecture on average both in terms of F1 across
the validation set, as well as in terms of test BS.,
ECE, SCE, NLL and Entropy.

In fact, differences in terms of ranks across
datasets per architecture are not always significant:
If we normalize all 80 classifiers per dataset by tak-
ing their rank, then Kruskal-Wallis H-test suggest
that F1, accuracy and ECE do not lead to signifi-
cant rank differences across architectures (assum-
ing a threshold of p < 0.05). Likewise, comparing
+D and −D models with the same procedure does
not lead to significant differences in terms of ECE,
SCE, and coverage.
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Model
Classification Uncertainty

Macro-F1(↑) Accuracy(↑) BS(↓) ECE(↓) SCE(↓) NLL(↓) Cov%(↑) Entropy(↓)

M
ed

A
B

S

−D DNN 60.3633±0.003 60.9765±0.002 0.5535±0.008 0.1387±0.016 0.0683±0.004 1.3261±0.001 0.8976±0.013 1.5579±0.002

−D DC 60.9855±0.004 61.1842±0.003 0.5518±0.002 0.1342±0.007 0.0674±0.003 1.3192±0.002 0.9611±0.003 1.5556±0.001

−D MCD 60.6979±0.004 60.0993±0.006 0.5691±0.015 0.1503±0.014 0.0688±0.01 1.3235±0.008 0.9401±0.013 1.5542±0.002

−D VI 60.8725±0.001 61.1611±0.001 0.5531±0.006 0.1394±0.004 0.0695±0.003 1.3164±0.003 0.958±0.001 1.5541±0.001

+D DNN 60.8077±0.013 61.3343±0.01 0.5499±0.014 0.1448±0.005 0.0695±0.001 1.3201±0.014 0.9193±0.005 1.5561±0.003

+D DC 62.5642±0.009 62.1018±0.01 0.5243±0.015 0.1381±0.016 0.0624±0.007 1.2962±0.007 0.9597±0.008 1.5523±0.002

+D MCD 62.2038±0.022 62.1307±0.022 0.5226±0.031 0.1238±0.031 0.0593±0.015 1.3056±0.013 0.9666±0.01 1.5562±0.002

+D VI 63.1893±0.004 63.1694±0.003 0.5234±0.009 0.1464±0.01 0.0653±0.003 1.288±0.006 0.9603±0.005 1.5491±0.002

M
ed

N
L

I

−D DNN 73.8951±0.013 73.8397±0.015 0.3976±0.006 0.1278±0.02 0.0846±0.012 0.8177±0.015 0.9119±0.008 1.0156±0.008

−D DC 74.8161±0.019 74.8711±0.018 0.4242±0.021 0.185±0.007 0.1259±0.005 0.7945±0.014 0.8509±0.007 0.9941±0.002

−D MCD 72.8896±0.03 73.0192±0.03 0.4163±0.009 0.1214±0.049 0.0865±0.03 0.8298±0.037 0.9109±0.04 1.0171±0.02

−D VI 73.0816±0.022 73.1364±0.022 0.4426±0.016 0.185±0.023 0.1265±0.015 0.8109±0.022 0.857±0.035 0.9983±0.011

+D DNN 77.172±0.041 77.2386±0.039 0.3783±0.05 0.1579±0.009 0.107±0.007 0.7736±0.039 0.857±0.015 0.9952±0.008

+D DC 79.9945±0.037 80.0047±0.037 0.3375±0.045 0.1392±0.005 0.0956±0.002 0.7486±0.041 0.8872±0.011 0.9924±0.011

+D MCD 80.1022±0.014 80.1688±0.014 0.3453±0.02 0.1565±0.009 0.1065±0.005 0.7437±0.012 0.8654±0.004 0.9872±0.001

+D VI 77.0617±0.043 77.1027±0.042 0.351±0.046 0.1041±0.019 0.0773±0.01 0.7851±0.046 0.9293±0.025 1.0101±0.015

SM
O

K
IN

G

−D DNN 27.1141±0.041 45.8333±0.142 0.7724±0.054 0.2961±0.057 0.154±0.012 1.4298±0.106 0.7724±0.163 1.5536±0.028

−D DC 25.7924±0.041 46.7949±0.039 0.6407±0.035 0.1625±0.043 0.1215±0.016 1.4331±0.035 0.9455±0.031 1.5791±0.01

−D MCD 26.707±0.058 45.8333±0.073 0.7609±0.077 0.2771±0.048 0.1507±0.021 1.4519±0.045 0.8942±0.058 1.5651±0.003

−D VI 23.4485±0.034 32.0513±0.043 0.7197±0.053 0.2171±0.021 0.15±0.023 1.5031±0.038 0.8974±0.113 1.5887±0.004

+D DNN 24.9822±0.041 51.6026±0.071 0.6764±0.076 0.2262±0.013 0.1334±0.031 1.3928±0.068 0.6571±0.114 1.5596±0.011

+D DC 27.0293±0.033 47.1154±0.075 0.841±0.043 0.3441±0.053 0.1738±0.007 1.4297±0.06 0.7276±0.118 1.5419±0.02

+D MCD 25.0029±0.051 40.3846±0.058 0.6777±0.022 0.206±0.019 0.1401±0.014 1.482±0.014 0.9487±0.04 1.5895±0.003

+D VI 26.1167±0.03 50.3205±0.094 0.765±0.175 0.3201±0.094 0.1584±0.045 1.3857±0.094 0.75±0.063 1.5397±0.003

Px
SL

U

−D DNN 32.2541±0.075 88.2452±0.012 0.5743±0.077 0.4556±0.094 0.2955±0.014 1.2807±0.05 0.995±0.004 1.3821±0.003

−D DC 34.1464±0.026 84.2989±0.05 0.4599±0.088 0.3936±0.047 0.2354±0.03 1.2154±0.062 1.0±0.0 1.3768±0.007

−D MCD 33.211±0.067 88.6902±0.018 0.5232±0.103 0.4852±0.079 0.2615±0.027 1.2571±0.062 1.0±0.0 1.3806±0.004

−D VI 25.9883±0.041 88.9169±0.013 0.5393±0.021 0.5014±0.026 0.2552±0.007 1.2666±0.014 1.0±0.0 1.3814±0.001

+D DNN 33.1131±0.097 80.1763±0.238 0.5389±0.116 0.3929±0.057 0.2867±0.037 1.2548±0.06 0.9831±0.018 1.38±0.003

+D DC 40.3372±0.07 89.1184±0.039 0.2649±0.127 0.2576±0.105 0.1568±0.058 1.0539±0.111 0.9997±0.001 1.3496±0.021

+D MCD 34.1571±0.029 89.1436±0.026 0.5403±0.043 0.5074±0.015 0.2663±0.013 1.2694±0.026 1.0±0.0 1.3821±0.002

+D VI 41.8279±0.073 91.0999±0.015 0.1634±0.051 0.1403±0.064 0.0861±0.029 0.9464±0.066 0.9958±0.004 1.3246±0.019

M
E

D
M

C
Q

A

−D DNN 28.5727±0.03 63.88±0.055 0.6787±0.1 0.3256±0.043 0.1575±0.021 1.5347±0.062 0.9625±0.033 1.6063±0.003

−D DC 32.0291±0.003 63.5584±0.007 0.4822±0.015 0.165±0.01 0.1099±0.0 1.3846±0.009 0.9764±0.007 1.5888±0.001

−D MCD 28.3648±0.029 61.3612±0.103 0.7533±0.044 0.3819±0.084 0.1518±0.02 1.5848±0.024 1.0±0.0 1.6091±0.0

−D VI 23.1977±0.042 48.5531±0.046 0.7499±0.023 0.242±0.033 0.1329±0.004 1.5822±0.013 1.0±0.0 1.6089±0.0

+D DNN 28.1549±0.045 61.0932±0.089 0.6859±0.12 0.3026±0.009 0.1582±0.01 1.5388±0.077 0.9775±0.02 1.6064±0.004

+D DC 29.7558±0.07 60.343±0.103 0.6687±0.17 0.2973±0.069 0.1278±0.018 1.5216±0.122 0.9893±0.019 1.6025±0.012

+D MCD 31.0912±0.016 68.4352±0.033 0.5541±0.115 0.3122±0.059 0.1477±0.031 1.4543±0.081 0.9936±0.011 1.5999±0.007

+D VI 23.1243±0.035 49.8553±0.031 0.7415±0.017 0.2336±0.026 0.1222±0.008 1.5765±0.01 1.0±0.0 1.6085±0.0

M
O

R
FI

T
T

−D DNN 49.7506±0.009 59.038±0.012 0.6499±0.022 0.2323±0.021 0.0398±0.005 2.0748±0.015 0.796±0.045 2.4454±0.003

−D DC 55.4551±0.01 62.5306±0.008 0.6134±0.003 0.2243±0.003 0.0425±0.001 2.0332±0.006 0.8775±0.014 2.4411±0.001

−D MCD 48.3269±0.008 57.3529±0.008 0.6309±0.021 0.1519±0.05 0.0464±0.007 2.2692±0.03 0.9856±0.006 2.4767±0.003

−D VI 53.0834±0.014 61.6728±0.01 0.6408±0.042 0.2571±0.039 0.0477±0.006 2.0245±0.007 0.7724±0.047 2.4369±0.004

+D DNN 53.4963±0.019 61.8015±0.014 0.6081±0.017 0.2098±0.014 0.0363±0.002 2.0538±0.015 0.8334±0.01 2.4453±0.002

+D DC 56.4418±0.018 62.9596±0.02 0.6148±0.027 0.2325±0.018 0.0433±0.003 2.0251±0.015 0.8667±0.03 2.4394±0.001

+D MCD 51.8519±0.015 60.5392±0.006 0.5718±0.003 0.0687±0.022 0.0298±0.0 2.1426±0.01 0.9651±0.005 2.4629±0.002

+D VI 54.2993±0.011 62.7145±0.01 0.5346±0.008 0.0488±0.018 0.0279±0.002 2.1064±0.014 0.9752±0.007 2.4602±0.002

Table 5: Comparison for text classification performance and uncertainty-awareness. We report the mean of 10 seed
runs for all the metrics. We denote best score with bold and second best with underline. We denote both English
and French domain-specific PLMs with +D. The models DC, MCD, VI are from the +U set.
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Abstract

Developing imaging models capable of detect-
ing pathologies from chest X-rays can be cost
and time-prohibitive for large datasets as it re-
quires supervision to attain state-of-the-art per-
formance. Instead, labels extracted from ra-
diology reports may serve as distant supervi-
sion since these are routinely generated as part
of clinical practice. Despite their widespread
use, current rule-based methods for label ex-
traction rely on extensive rule sets that are lim-
ited in their robustness to syntactic variabil-
ity. To alleviate these limitations, we introduce
RadPert, a rule-based system that integrates
an uncertainty-aware information schema with
a streamlined set of rules, enhancing perfor-
mance. Additionally, we have developed Rad-
Prompt, a multi-turn prompting strategy that
leverages RadPert to bolster the zero-shot pre-
dictive capabilities of large language models,
achieving a statistically significant improve-
ment in weighted average F1 score over GPT-
4 Turbo. Most notably, RadPrompt surpasses
both its underlying models, showcasing the syn-
ergistic potential of LLMs with rule-based mod-
els. We have evaluated our methods on two En-
glish Corpora: the MIMIC-CXR gold-standard
test set and a gold-standard dataset collected
from the Cambridge University Hospitals.

1 Introduction

Supervised deep learning for medical imaging clas-
sification has accomplished significant milestones.
In the chest X-ray (CXR) domain, such models
have exhibited predictive capabilities on par with
expert physicians (Rajpurkar et al., 2018; Tang
et al., 2020) and are being utilized in collaborative

*Equal contribution.

settings to increase clinician accuracy (Rajpurkar
et al., 2020).

Annotating medical images, however, is expen-
sive and arduous: it requires a committee of ex-
pert radiologists to resolve the inherently high de-
gree of annotator variance and subjectivity (Razzak
et al., 2018). This issue is particularly problem-
atic considering the global shortage of radiologists
(Jeganathan, 2023; Kalidindi and Gandhi, 2023;
Konstantinidis, 2023). Instead, we often have ac-
cess to a form of distant supervision: the radiol-
ogy report. Radiology reports are semi-structured
free-text interpretations of an X-ray image and are
generated as a routine part of clinical practice to
communicate findings.

In the past, rule-based models (Irvin et al., 2019;
Peng et al., 2017) have been used to extract struc-
tured labels from radiology reports in various imag-
ing datasets, including ChestX-ray14 (Wang et al.,
2017), CheXpert (Irvin et al., 2019), MIMIC-CXR
(Johnson et al., 2019) and BRAX (Reis et al., 2022).
However, those rule-based methods are often based
on elementary techniques and, thus, exhibit lim-
ited robustness to syntactic variation. Naturally,
supervised deep learning models offer superior per-
formance through their robustness to syntactic vari-
ability (Smit et al., 2020; Jain et al., 2021b). In con-
trast, Large Language Models (LLMs) represent a
significant improvement over rule-based models in
an unsupervised setting and have achieved impres-
sive performance in the field of radiology (Infante
et al., 2024; Adams et al., 2023; Liu et al., 2023).

In this paper, we present RadPert, a rule-based
model built on the RadGraph knowledge graph
(Jain et al., 2021a). RadPert leverages entity-level
uncertainty labels from RadGraph, reducing the
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need for a comprehensive rule set and enhancing
its resilience to syntactic variations. We have eval-
uated RadPert internally on MIMIC-CXR and ex-
ternally on a dataset collected from the Cambridge
University Hospitals (CUH). RadPert surpasses
CheXpert, the former rule-based state-of-the-art
(SOTA), by achieving statistically significant im-
provement in weighted average F1 score.

Furthermore, we explore the collaborative po-
tential of LLMs with rule-based models through
RadPrompt. RadPrompt is a multi-turn prompt-
ing strategy that employs RadPert as an implicit
means of encoding medical knowledge (Figure 1).
In fact, RadPrompt, based on GPT-4 Turbo, man-
ages to outperform both its underlying models in a
zero-shot setting.

2 Related Work

Numerous natural language processing methods
have been developed to derive structured predic-
tions from radiology reports (Peng et al., 2017;
Hassanpour et al., 2017; Pons et al., 2016; Bozkurt
et al., 2019; Wang et al., 2018). Many of those
approaches are designed for the multitask classi-
fication of radiology reports, written in English,
into labels representing prevalent pathologies from
CXRs. Each such label can exhibit one of four
output classes: Null, Positive, Negative and Uncer-
tain. CheXpert (Irvin et al., 2019), the rule-based
SOTA, follows an approach based on regular ex-
pression matching and the Universal Dependency
Graph (UDG) of a radiology report. Due to the
rudimentary regular expression matching, however,
CheXpert is sensitive to syntactic variation. Thus,
multiple over-generalized rules are used in an at-
tempt to alleviate these shortcomings. Furthermore,
the UDG is a type of information extraction that
does not explicitly identify negation and uncer-
tainty. Therefore, its ability to detect uncertainty
in complex phrases is hampered despite the exten-
sive rule set. Extensions of CheXpert have been
developed for Brazilian Portuguese (Reis et al.,
2022) and German (Wollek et al., 2024). CheXbert
(Smit et al., 2020) is a semi-supervised model pre-
trained on automatically extracted labels from the
CheXpert model, fine-tuned on manually annotated
reports, and evaluated on 687 MIMIC-CXR gold-
standard test set reports. However, the published
model weights1 of CheXbert differ from the origi-
nal model. This discrepancy complicates compar-

1https://github.com/stanfordmlgroup/CheXbert

isons on the MIMIC-CXR dataset as the published
model is fine-tuned on unspecified MIMIC-CXR
manually annotated reports, which can potentially
overlap with the MIMIC-CXR gold-standard test
set.

Recent work has also explored the adoption of
LLMs for radiology report classification. Specifi-
cally, Dorfner et al. (2024) examine the zero and
few-shot capabilities of LLMs. However, they
mainly treat the task as a binary classification for
each pathology. Namely, for multitask classifica-
tion, they only report the few-shot results on an
unpublished institutional dataset. CheX-GPT (Gu
et al., 2024) utilizes zero-shot GPT-4 labels as a dis-
tant supervision to fine-tune a BERT-based model.
Nonetheless, they also simplify the task into binary
classification.

Alternative approaches to the classification of
chest X-rays (CXRs) explore moving away from
the distantly supervised paradigm of training uni-
modal vision models on classifying structured la-
bels extracted from radiology reports. In lieu of
structured prediction, Vision-Language (VL) mod-
els are trained to align the embedding representa-
tions of CXRs with the representations of the cor-
responding radiology reports via self-supervised
contrastive learning objectives (Huang et al., 2021;
Boecking et al., 2022; Tiu et al., 2022; Wang et al.,
2022; Bannur et al., 2023). This alignment task is
transformed into CXR classification through the
cosine similarity of CXR embeddings to the em-
beddings of textual prompts representing the ex-
istence or absence of pathologies. However, vi-
sion models trained with the structured prediction
paradigm outperform VL models such as CheXzero
(Tiu et al., 2022), even when the latter utilizes an
expert-annotated validation set for selecting opti-
mal classification thresholds.

In this paper, we will focus on improving the
unsupervised SOTA for the multitask classification
of radiology reports.

3 Methods

3.1 Task

Similar to CheXpert and CheXbert, we will focus
on the multitask classification of CXR radiology
reports. Specifically, our models classify thirteen
labels that correspond to pathologies (Atelectasis,
Edema, Cardiomegaly, Consolidation, Enlarged
Cardiomediastinum, Fracture, Lung Lesion, Lung
Opacity, Pleural Effusion, Pleural Other, Pneumoth-
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Figure 1: Overview of the RadPrompt methodology. RadPrompt utilizes the rule-based RadPert model to detect
potential errors in the original (first-turn) LLM classification decision. A second-turn prompt is then constructed,
offering evidence that may cause the LLM to revise its original classification outcome.

orax, Support Devices and Pneumonia), with each
label having four possible output classes: Null, Pos-
itive, Negative and Uncertain. A pathology is clas-
sified as Null if there are no references to it in the
radiology report. It is considered Negative when its
absence is explicitly mentioned. Positive classes en-
tail that the existence of the corresponding pathol-
ogy is specified in the report. Finally, Uncertain
classes imply that while the pathology is discussed
in the report, its existence cannot be determined.

3.2 RadPert
In order to overcome the limitations of existing
tools, we have designed RadPert. RadPert incorpo-
rates hand-crafted rules with the RadGraph (Jain
et al., 2021a) knowledge graph.

3.2.1 RadGraph Information Schema
RadGraph (Jain et al., 2021a) defines an infor-
mation schema specifically designed for radiol-
ogy reports. It contains two top-level entity types:
Anatomy (ANAT) and Observation (OBS). Anatomy
entities describe bodily anatomical structures (e.g.
“lobe”) and their spatial characteristics (e.g. “left”).
Observation entities include pathological abnor-
malities (e.g. “opacities”), diagnosed diseases (e.g.
“pneumonia”) and various other characteristics (e.g.
“acute”). It is important to note that Observation
entities are further categorized into three second-
level attributes: Definitely Present (DP), Definitely
Absent (DA) and Uncertain (U).

Additionally, RadGraph defines three types of
directed relations between entities. Firstly, the sug-
gestive of relation indicates that some Observa-
tion implies the existence of another Observation.
Secondly, located at relations account for Observa-
tions relating to specific Anatomies. Finally, modify
relations can exist only between the same type of
entity and describe the characteristics relating to a
specific entity (e.g., modify(“left”, “lung”)).

The RadGraph model is based on the Dy-
GIE++ (Wadden et al., 2019) framework initial-
ized with PubMedBERT weights (Gu et al., 2021).
The model is fine-tuned on 500 expert-annotated
MIMIC-CXR reports based on the RadGraph infor-
mation schema.

3.2.2 RadPert Pipeline
RadPert employs the following four-stage pipeline:

Knowledge graph extraction. We first extract
the RadGraph entities and relations from radiology
reports. Utilizing RadGraph instead of the UDG
allows uncertainty and negation classes to be ex-
tracted at an entity level. Thus, the negation and
the uncertainty of various complex phrases can be
determined based on those classes, reducing the
need for complex negation and uncertainty rules.

Mention extraction. In this stage, for each
pathology label, we have adapted and simplified
the CheXpert rules (Irvin et al., 2019) so they can
be applied to RadGraph entities and relations. Es-
sentially, those rules can be represented as graphs
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(a) Mention extraction rules.
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(b) Negation/uncertainty detection rules.

Figure 2: Examples of RadPert rules for Cardiomegaly. The rules take the form of graphs that follow the RadGraph
(Jain et al., 2021a) information schema. The “.*” symbolizes allowing the matching of different prefixes and suffixes
within the entity span.

based on the RadGraph information schema. Fig-
ure 2a includes examples of mention extraction
rules in the form of graphs. Checking whether
a pathology is mentioned in a radiology report
amounts to determining whether any rule-graphs
for the specific pathology are subgraphs of the ra-
diology report knowledge graph2. If none of the
pathology rules match a given radiology report,
then the class for that pathology is Null.

Negation/uncertainty detection. We next aim
to determine whether an extracted mention is Posi-
tive, Negative, or Uncertain. For mentions that con-
tain Observation entities in their subgraph, the un-
certainty quantifier of the Observation determines
the initial class of that mention. For instance, if
a “heart” Anatomy is connected with an “enlarged”
Observation, which is characterized as Definitely
Absent, then that mention will be labeled as Neg-
ative. If a mention only possesses Anatomy en-
tities, then we consider by default that mention
to be Positive. However, certain phrases contain
implicit negations/uncertainties. In cases such as
“normal heart size”, the entity “normal” would be
considered under RadGraph a Definitely Present
Observation attached to an Anatomy. Thus, in or-
der to detect such implicit negations/uncertainties
and determine the final uncertainty class for each
pathology, we have developed a negation and an
uncertainty rule set. Both rule sets are constructed
from hand-crafted rules in the form of graphs. Ex-
amples of Cardiomegaly negation/uncertainty rules
can be observed in Figure 2b. When a negation

2This problem corresponds to the edge-colored and node-
colored variant of Induced Subgraph Isomorphism. Exhaus-
tive search with subgraphs of fixed-length has polynomial
complexity (Floderus et al., 2015).

rule is activated, the initial class of the mention
will be negated (i.e., Positive becomes Negative
and Negative becomes Positive). However, when
an uncertainty rule is matched, RadPert considers
the class of the mention to be Uncertain.

Mention aggregation. After extracting and clas-
sifying all mentions in a radiology report for a
specific label, RadPert aggregates them into the
final uncertainty class for that label. Similarly to
CheXpert (Irvin et al., 2019), we prioritize posi-
tive mentions, followed by uncertain ones, while
negative mentions have the lowest priority.

3.3 RadPrompt

RadPert, through its rules, implicitly encodes ex-
pert knowledge vital to classifying radiology re-
ports. However, as a rule-based system, it is still
sensitive to syntactic and lexical variability. To al-
leviate this limitation, we propose RadPrompt, a
zero-shot prompting technique that injects prompts
with insights derived from the application of Rad-
Pert. RadPrompt, as seen in Figure 1, employs a
two-turn prompting strategy.

In the first turn, the zero-shot prompt contains
instructions, which define the task, and the radi-
ology report that needs to be classified. After a
response is received from the LLM, the first-turn
classification outcome is compared with the output
of RadPert.

In the second turn, a prompt is constructed by
specifying that a rule-based model is used to verify
the validity of the LLM’s answer. Hints are then
added by specifying for each pathology either Rad-
Pert’s agreement with the LLM or the radiology re-
port sentence that leads RadPert to a disagreement.
This is possible since RadPert, as a rule-based sys-
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tem, allows the detection of the specific mention
that leads to the classification decision. Finally, the
prompt instructs the LLM to adjust its answer by
accepting or rejecting RadPert’s hints. In Table 14
of the Appendix, we present the format of our first
and second-turn prompts.

3.3.1 Base Model
As a base model for the RadPrompt strategy, we
explore various LLMs, including API-based mod-
els such as Gemini-1.5 Pro (Reid et al., 2024),
Claude-3 Sonnet, GPT-4 Turbo (OpenAI, 2023),
and Llama-2 (Touvron et al., 2023). In the case of
Llama-2, we are using the 70 billion parameter chat
variant, quantized with the Int 4 AWQ method (Lin
et al., 2024), which we run locally with a single
NVIDIA RTX 6000 Ada GPU.

4 Results and Discussion

4.1 Evaluation

To allow comparison with previous work (Irvin
et al., 2019; Smit et al., 2020), for each pathol-
ogy, we evaluate our methodology based on the
weighted average F1 score across three aspects
of the task: negation detection, positive mention
detection, and uncertainty detection. We report
the F1 scores of the sub-tasks in the Appendix.
Each of those sub-tasks amounts to binary classi-
fication. For instance, Negative classes are trans-
formed into positive in negation detection, while
the other classes are transformed into negative. Pos-
itive mention detection and uncertainty detection
are constructed with an analogous logic. The re-
ported scores correspond to the averages across
1000 bootstrap replicates (Efron and Tibshirani,
1986), reported along the 95% Confidence Inter-
vals (CI).

4.2 Data

For internal evaluation, we are evaluating the mod-
els on the gold-standard test set of annotated ra-
diology reports used in the MIMIC-CXR paper
(Johnson et al., 2019). MIMIC-CXR is considered
an internal dataset for methods based on RadPert
since RadGraph is trained on MIMIC-CXR radi-
ology reports. The MIMIC-CXR gold-standard
test set contains 687 radiology reports that do not
overlap with the training and validation set of Rad-
Graph.

For external evaluation, we have collected a pri-
vate dataset from the Cambridge University Hos-

pitals in Cambridge, UK. The CUH dataset con-
sists of 650 radiology reports annotated by a single
consultant radiologist with six years of experience,
using the same annotation guidelines as MIMIC-
CXR3. Details regarding the label distribution of
both datasets are attached in Table 15 of the Ap-
pendix.

4.3 RadPert Evaluation

In Table 1, we report the weighted average F1
scores across the sub-tasks of positive mention
detection, negation detection, and uncertainty De-
tection for the MIMIC-CXR and CUH datasets.
We are also reporting the improvements over the
CheXpert labeler alongside their confidence inter-
vals. Radpert achieves a statistically significant
improvement both on average and on the majority
of the pathologies. Namely, for MIMIC-CXR, Rad-
Pert is 8.0% (95% CI: 5.5%, 10.8%) better than
CheXpert, yielding an average F1 score of 0.757
(95% CI: 0.779, 0.800).

In Table 6 of the Appendix, we also report fine-
grained results in the distinct sub-tasks. In addition
to the sub-tasks of negation, positive mention, and
uncertainty detection, we also report the perfor-
mance improvement in mention detection. Men-
tion detection treats Null as the positive class, and
Negative, Uncertain, and Positive as the negative
class.

4.3.1 Discussion on RadPert’s Performance

We observe performance improvement in all sub-
tasks. The strongest improvement is achieved in
the uncertainty detection task, showcasing the ef-
fectiveness of utilizing the uncertainty labels of
RadGraph. However, the improvement in mention
detection is marginal. A primary cause of mention
detection failure is the reliance on the RadGraph
model, which occasionally fails to recall all entities
and relations within a radiology report.

Focusing on specific pathologies, RadPert fails
to consistently outperform CheXpert for Atelecta-
sis, Edema, and Pleural Effusion. In the case of
Atelectasis and Edema, the rule sets are straight-
forward, and their mentions often lack syntactic
variability in practice, offering limited benefit from
the uncertainty-aware entity representations of Rad-
Graph. Regarding Pleural Effusion, RadPert is hin-
dered by the divergence between RadGraph annota-

3MIMIC-CXR annotation guidelines were provided upon
request by the authors of Johnson et al. (2019).
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MIMIC-CXR Gold Standard Test Set CUH

Pathologies
Weighted F1
RadPert

Improvement over
CheXpert (%)

Weighted F1
RadPert

Improvement over
CheXpert (%)

Atelectasis 0.782 (0.740, 0.825) -5.2 (-10.2, 0.2) 0.893 (0.836, 0.941) -0.8 (-6.3, 4.4)

Cardiomegaly 0.801 (0.749, 0.846) 8.1 (4.2, 12.6) 0.910 (0.872, 0.945) 27.3 (16.4, 41.1)

Consolidation 0.806 (0.731, 0.872) 15.5 (1.9, 33.4) 0.951 (0.928, 0.971) 3.0 (0.4, 5.8)

Edema 0.801 (0.758, 0.843) 0.1 (-5.6, 3.9) 0.625 (0.466, 0.754) -5.5 (-28.1, 19.1)

Enlarged Card. 0.628 (0.548, 0.702) 23.8 (5.6, 4.7) 0.908 (0.860, 0.950) 0.7 (-2.1, 3.5)

Fracture 0.866 (0.765, 0.946) 30.8 (9.7, 60.9) 0.764 (0.593, 0.898) 12.7 (-8.1, 47.5)

Lung Lesion 0.696 (0.583, 0.797) 4.0 (-5.4, 14.8) 0.816 (0.706, 0.911) 660.4 (210.8, 2700.3)

Lung Opacity 0.783 (0.741, 0.827) 3.2 (-1.3, 8.7) 0.712 (0.652, 0.766) 0.8 (-1.6, 3.5)

Pleur. Effusion 0.873 (0.843, 0.901) -3.3 (-6.4, -0.2) 0.641 (0.587, 0.689) 0.1 (-2.5, 2.8)

Pleur. Other 0.547 (0.390, 0.692) 16.7 (1.6, 44.0) 0.082 (0.043, 0.127) 189.8 (45.9, 713.3)

Pneumonia 0.757 (0.704, 0.806) 28.1 (15.8, 42.5) 0.656 (0.520, 0.773) 54.5 (9.4, 130.9)

Pneumothorax 0.898 (0.856, 0.934) 5.1 (-0.4, 10.9) 0.626 (0.568, 0.682) 2.1 (-0.9, 5.7)

Sup. Devices 0.886 (0.854, 0.915) 2.1 (-0.4, 5.1) 0.858 (0.825, 0.890) -2.6 (-4.8, -0.6)

Macro Avg. 0.757 (0.779, 0.800) 8.0 (5.5, 10.8) 0.726 (0.699, 0.752) 14.6 (10.4, 19.1)

Weighted Avg. 0.816 (0.802, 0.830) 3.4 (1.5, 5.3) 0.787 (0.765, 0.808) 5.0 (2.6, 7.3)

Table 1: Weighted average F1 scores for RadPert alongside improvements over the CheXpert model on the MIMIC-
CXR gold-standard and CUH test sets. The F1 scores are averaged across the sub-tasks of positive mention detection,
negation detection, and uncertainty detection weighted by the support sets. The scores correspond to the averages
across 1000 bootstrap replicates and are reported alongside their confidence intervals.

tion guidelines4 and those of the MIMIC-CXR and
CUH datasets concerning uncertainty. Specifically,
RadGraph suggests annotating any degree of uncer-
tainty as OBS:Uncertain (Jain et al., 2021a) while
the MIMIC-CXR guidelines, also used by CUH,
permit some degree of uncertainty within Positive
and Negative labels. For instance, “likely repre-
senting pneumonia” should be labeled as positive
according to MIMIC-CXR guidelines. For Pleural
Effusion, uncertain mentions such as “minimal if
any pleural effusion” are commonplace and labeled
inconsistently by the annotators in MIMIC-CXR.
However, due to RadGraph’s annotation guidelines,
RadPert primarily labels such mentions as Uncer-
tain, resulting in low precision in the uncertainty
detection task for Pleural Effusion. This behavior
can be observed in the Pleural Effusion confusion
matrices (Appendix, Figure 3).

Notably, RadPert’s performance for Lung Le-
sion showed a substantial improvement over CheX-
pert’s performance on the CUH dataset compared
to MIMIC-CXR. This discrepancy arises because
“lung lesion” is a specific term frequently used in
the CUH reports, while it rarely appears in MIMIC-
CXR reports. The CheXpert labeler treats Lung Le-
sion as an umbrella term encompassing “masses”,
“nodular opacities”, and “carcinomata”, lacking spe-

4Available on OpenReview.

cific rules for “lung lesions” and only identifying
the less general terms, leading to inconsistent per-
formance in CUH. Additionally, variations such as
“edema” in the US and “oedema” in the UK also
illustrate the divergent terminology and spelling
conventions between the two corpora, although
these spelling differences do not affect the ability
of CheXpert to detect Edema mentions.

Finally, in Table 5 of the Appendix, we provide
carbon estimates for both CheXpert and RadPert.
RadPert not only improves upon CheXpert in per-
formance but also demonstrates greater energy effi-
ciency.

4.4 RadPrompt Evaluation
In Table 2, we present the improvement in the
weighted average F1 score of RadPrompt for vari-
ous base LLMs on the MIMIC-CXR gold-standard
test set. Specifically, we compare the revised classi-
fication outcome of the second-turn prompt, which
is infused with RadPert hints, to the first-turn clas-
sification outcome. For all tested LLMs, we ob-
serve that the RadPrompt strategy leads, on average
(across pathologies), to a statistically significant im-
provement over the baseline zero-shot prompting.
For clarity, in Tables 7, 8, 9, 10 and 11 of the Ap-
pendix, we also report the task-specific F1 scores
of the first and second turns of RadPrompt.

Furthermore, we compare RadPrompt’s second-
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RadPrompt Improvement of Weighted Average F1 Over 1st Turn (%)
Pathologies Gemini-1.5 Pro Llama-2 70B Claude-3 Sonnet GPT-4 Turbo
Atelectasis -0.9 (-4.4, 3.0) -7.0 (-12.6, -0.2) -1.4 (-7.1, 5.3) -3.9 (-7.2, -0.4)

Cardiomegaly -2.3 (-6.6, 1.9) 14.3 (9.2, 20.2) 2.7 (-2.4, 7.6) -1.9 (-5.5, 1.5)

Consolidation 26.6 (13.9, 40.5) 70.7 (43.8, 102.6) 31.9 (15.7, 49.7) 2.6 (-3.6, 9.4)

Edema 7.7 (3.2, 12.5) 10.3 (4.5, 16.6) 7.4 (1.9, 13.1) -3.1 (-5.9, -0.4)

Enlarged Card. 49.7 (22.1, 89.6) 160.2 (75.1, 309.4) 103.0 (55.7, 167.3) 3.9 (-8.6, 17.3)

Fracture 10.7 (1.4, 23.6) 20.1 (4.6, 42.0) 14.8 (0.8, 31.2) 5.2 (0.9, 9.9)

Lung Lesion 65.5 (37.3, 100.6) 24.0 (3.7, 48.0) 3.2 (-11.5, 18.5) 6.5 (-7.0, 20.4)

Lung Opacity 26.9 (18.8, 36.2) 23.5 (15.9, 32.3) 23.6 (14.1, 34.0) 8.1 (2.2, 14.4)

Pleural Effusion 4.1 (1.5, 6.5) 4.9 (1.2, 9.0) 8.3 (5.2, 11.4) 0.3 (-1.8, 2.4)

Pleural Other 21.0 (1.8, 44.6) 158.3 (-0.1, 291.8) 36.8 (8.2, 72.8) 10.8 (-6.9, 29.4)

Pneumonia 15.6 (10.3, 21.4) -5.3 (-14.1, 4.0) 22.0 (14.2, 30.5) 4.5 (1.2, 8.3)

Pneumothorax 20.5 (14.9, 26.3) 19.3 (12.7, 26.8) 34.9 (28.2, 42.5) 1.0 (-1.3, 3.3)

Support Devices 4.1 (1.8, 6.7) 23.1 (15.7, 31.7) 1.1 (-0.8, 3.3) 0.5 (-0.5, 1.6)

Macro Average 14.8 (12.2, 17.3) 20.8 (16.2, 25.8) 16.2 (13.1, 19.4) 2.1 (0.3, 4.1)

Weighted Average 10.2 (8.4, 12.0) 12.5 (9.7, 15.4) 12.7 (10.7, 15.0) 0.9 (-0.2, 2.1)

Table 2: Improvement of weighted average F1 scores for RadPrompt over the base LLM on MIMIC-CXR gold-
standard test set, alongside confidence intervals. Improvement is measured in a multi-turn chat setting by comparing
the initial classification decision of the LLM to the revised classification decision after introducing RadPert hints.

RadPrompt Improvement of Weighted Average F1 Over RadPert (%)
Pathologies Gemini-1.5 Pro Llama-2 70B Claude-3 Sonnet GPT-4 Turbo
Atelectasis 6.2 (0.8, 11.7) -0.0 (-1.6, 1.7) 3.8 (0.6, 7.5) 6.2 (0.7, 11.7)

Cardiomegaly -1.4 (-4.0, 1.2) 0.7 (-0.9, 2.4) -0.2 (-1.5, 1.0) 0.7 (-2.8, 4.5)

Consolidation -7.7 (-16.0, 0.1) -22.4 (-29.6, -16.2) -0.6 (-4.2, 3.2) 2.4 (-3.8, 9.1)

Edema -0.9 (-3.9, 2.3) 0.5 (-0.8, 1.9) 0.1 (-0.8, 1.2) 1.3 (-1.7, 4.7)

Enlarged Card. -11.6 (-19.1, -5.1) -1.5 (-4.0, 0.7) -8.0 (-14.1, -2.4) -6.5 (-12.8, -0.8)

Fracture -8.5 (-15.7, -1.2) -1.2 (-4.0, 1.2) -2.0 (-5.2, 0.0) -4.5 (-11.7, 3.3)

Lung Lesion -2.4 (-9.2, 4.9) -28.4 (-37.9, -19.4) 2.1 (-5.3, 11.1) -2.9 (-14.0, 9.2)

Lung Opacity -5.0 (-8.0, -2.1) -0.4 (-1.9, 1.1) -0.4 (-2.7, 1.8) -0.2 (-3.1, 2.8)

Pleural Effusion 2.0 (0.0, 4.1) -0.7 (-2.1, 0.9) 3.2 (1.6, 5.0) 2.8 (0.4, 5.4)

Pleural Other -10.0 (-20.3, 1.8) -4.0 (-12.5, 0.0) 0.0 (0.0, 0.0) 13.5 (-3.9, 39.7)

Pneumonia 4.2 (-0.1, 9.4) -14.8 (-19.8, -9.7) 3.0 (0.5, 6.4) 4.4 (-0.4, 9.5)

Pneumothorax -0.6 (-3.1, 2.1) -3.0 (-5.0, -1.3) 2.7 (0.3, 5.6) 3.5 (0.8, 7.1)

Support Devices 2.2 (0.5, 4.0) -0.2 (-1.2, 0.5) 1.2 (-0.0, 2.5) 0.2 (-2.4, 2.8)

Macro Average -2.2 (-3.8, -0.6) -5.5 (-6.9, -4.3) 0.5 (-0.4, 1.4) 1.4 (-0.5, 3.2)

Weighted Average -0.2 (-1.5, 1.2) -3.5 (-4.4, -2.7) 1.4 (0.7, 2.1) 1.9 (0.7, 3.2)

Table 3: Improvement of weighted average F1 scores for RadPrompt over the rule-based RadPert on the MIMIC-
CXR gold-standard test set, alongside confidence intervals.
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turn results with RadPert in Table 3 for the MIMIC-
CXR gold-standard test set. On average, Rad-
Prompt with Gemini-1.5 Pro and Llama-2 70 B
fail to outperform RadPert. However, Claude-3
Sonnet and GPT-4 Turbo-based RadPrompt sur-
pass RadPert.

Regarding the external evaluation of RadPrompt,
the current ethical agreement with the Cambridge
University Hospitals limits the use of third-party
APIs. Thus, we are only able to evaluate Rad-
Prompt with a Llama-2 base. We present the
weighted average and the sub-task-specific results
in Tables 12 and 13. Similarly to the MIMIC-CXR
gold-standard test set, we observe that Llama-2-
based RadPrompt enhances the performance of
Llama-2 but fails to improve upon RadPert.

4.4.1 Discussion on RadPrompt’s
Performance

We can observe from Tables 2 and 3 that Rad-
Prompt on Claude-3 Sonnet and on GPT-4 Turbo
exceeds, on average, both RadPert and the initial
LLM predictions. Namely, RadPrompt with GPT-4
Turbo is 2.1% (CI 0.3%, 4.1%) better than baseline
GPT-4 Turbo and 1.4% (CI -0.5%, 3.2%) better
than RadPert.

Focusing on individual pathologies, we notice
that RadPrompt with a Gemini-1.5 Pro base man-
ages to outperform both of its underlying mod-
els for Pleural Effusion, Pneumonia, and Support
Devices. Additionally, RadPrompt with Claude-
3 Sonnet surpasses its underlying models in the
case of Lung Lesion, Pleural Effusion, Pneumo-
nia, Pneumothorax, and Support Devices. For a
GPT-4 Turbo base, the same behavior is observed
for Consolidation, Pleural Effusion, Pleural Other,
Pneumonia, and Pneumothorax. The ability of Rad-
Prompt to boost the performance of both its under-
lying models demonstrates the potential of combin-
ing the language reasoning capabilities of LLMs
with the insights encoded in rule-based models.

In Table 4, we present a fine-grained comparison
between the first and second turns of RadPrompt.
We observe that all models, with the exception
of GPT-4 Turbo, initially struggled to understand
that we intended to classify only those patholo-
gies explicitly mentioned in the report. This ef-
fect disproportionately affects the Negative class
since Null is often conflated with Negative. The
distinction, however, between those two labels is
non-negligible. Inconsistencies often exist between
the gold-standard labels extracted directly from

chest X-ray Images and the gold-standard labels
of their corresponding radiology reports, and thus,
pathologies visible within a chest X-ray may be ex-
cluded from the radiology report (Jain et al., 2021b).
Such observations are also noted in other clinical
domains, such as Magnetic Resonance Imaging
(MRI), where the clinical context and the refer-
rer physician may bias the observations mentioned
within a radiology report (Wood et al., 2020).

5 Limitations

While this study demonstrates promising improve-
ments in radiology report classification using the
RadPrompt methodology, several limitations must
be considered.

RadPert and RadPrompt are exclusively devel-
oped and tested for the English language. The
study also centers around a list of pathologies typi-
cal of chest X-rays. As such, the extension of our
methodologies to other languages, types of med-
ical imaging, and additional pathologies was not
verified.

Furthermore, previous studies have highlighted
discrepancies between labels from radiology report
annotations and those from the corresponding imag-
ing study annotations (Jain et al., 2021b; Wood
et al., 2020). The source of such inconsistencies
includes incomplete radiology report impressions,
hierarchical relationships within labels, and the un-
deniable uncertainty of the task. In future work, we
aim to study this effect within the CUH test set.

Due to ethical considerations, we are currently
unable to perform inference for the CUH test set
through third-party APIs. Thus, we have not evalu-
ated RadPrompt externally for SOTA LLMs. We
expect to overcome this limitation after the planned
release of the CUH dataset.

Additionally, we cannot estimate the computa-
tional cost and carbon footprint for GPT-4-based
RadPrompt due to a lack of specific metrics. In
the Appendix, we provide carbon footprint esti-
mates for the Llama-2-based RadPrompt, which
is significantly higher than RadPert and CheXpert.
Nonetheless, RadPert delivers performance compa-
rable to GPT-4 while operating on a commercial
CPU with minimal carbon emissions, underscoring
its benefits in resource-limited environments.

Finally, there is an inherent degree of ambiguity
in classifying radiology reports, especially as it per-
tains to the Uncertainty labels. We aim to extend
current datasets with labels from multiple annota-
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RadPrompt Improvement of Weighted Average F1 Over 1st Turn (%)
Sub-task Gemini-1.5 Pro Llama-2 70B Claude-3 Sonnet GPT-4 Turbo
Mention Detection 17.8 (15.6, 20.0) 26.7 (23.8, 29.8) 24.6 (21.7, 27.8) 1.9 (0.9, 3.0)

Negation Detection 31.9 (26.4, 37.6) 54.8 (45.8, 64.2) 62.3 (52.1, 73.1) 4.9 (2.3, 8.1)

Pos. Mention Detection 3.8 (2.4, 5.2) 1.7 (-0.5, 4.1) 0.7 (-0.9, 2.4) -0.4 (-1.6, 0.7)

Uncertainty Detection 2.9 (-5.9, 13.0) -6.4 (-20.7, 9.8) -0.5 (-13.0, 14.0) -2.6 (-10.3, 5.9)

Weighted Average 10.2 (8.4, 12.0) 12.5 (9.7, 15.4) 12.7 (10.7, 15.0) 0.9 (-0.2, 2.1)

Table 4: Improvement of RadPrompt over the base LLM for the different sub-tasks on MIMIC-CXR gold-standard
test set. For each sub-task. we report the improvement of the weighted average F1 score across all pathologies,
along with confidence intervals. The weighted average refers to averaging over sub-tasks, excluding the mention
detection task.

tors in order to measure annotator agreement.

6 Conclusions

This paper introduced RadPert, a rule-based system
enhanced by the RadGraph information schema,
demonstrating significant improvements in the clas-
sification of radiology reports. By leveraging entity-
level uncertainty labels, RadPert reduces reliance
on comprehensive rule sets. Our evaluations show
that RadPert surpasses CheXpert, the previous rule-
based SOTA, by achieving an 8.0% (95% CI: 5.5%,
10.8%) increase in F1 score, with confidence inter-
vals strongly supporting this improvement.

Further extending the application of RadPert,
we developed RadPrompt, a multi-turn prompting
strategy that utilizes insights from RadPert to en-
hance the zero-shot prediction capabilities of large
language models. RadPrompt demonstrated a 2.1%
(95% CI: 0.3%, 4.1%) improvement in F1 score
over GPT-4 Turbo, indicating its potential to re-
fine predictions in clinical settings. These results
highlight the growing synergy between structured
rule-based systems and large language models, of-
fering a promising direction for future research in
biomedical Natural Language Processing.

As we continue to refine these tools, future
work will focus on expanding the existing datasets
and addressing the discrepancies between gold-
standard image labels and those extracted from
radiology reports.

Code and Data Availability

Code for RadPert and RadPrompt is available on
GitHub5. The CUH dataset is planned to be re-
leased in the following months while managed and
made available through the hospital’s clinical infor-
matics unit.

5https://github.com/PanagiotisFytas/RadPert-RadPrompt.

Ethical Considerations

For the MIMIC-CXR gold-standard test set, access
to LLMs through APIs conforms to the PhysioNet
responsible use guidelines6.

This ethical agreement with Cambridge Univer-
sity Hospitals currently limits the use of third-party
APIs, but it is being revised prior to the dataset’s
release.
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CheXpert RadPert Llama-2 70B RadPrompt /w Llama-2 70B
Runtime (min) 7.1 4.8 41.8 43.6
CO2e (g) 5.44 3.68 85.48 89.16
Device CPU CPU GPU GPU
Model Core i7-6700k Core i7-6700k NVIDIA RTX 6000 Ada NVIDIA RTX 6000 Ada

Table 5: Carbon footprint for inference on both MIMIC-CXR gold-standard and CUH test sets, as estimated
utilizing the tools from Lannelongue et al. (2021). For RadPert, calculations include the extraction of the RadGraph
knowledge graph. Notably, we are not able to provide estimates for GPT-4 Turbo, Gemini-1.5 Pro, and Claude-3
Sonnet since this information is not provided by the respective API providers.

Negation Detection Uncertainty Detection

Pathologies
F1 Score
RadPert

Improvement over
CheXpert (%)

F1 Score
RadPert

Improvement over
CheXpert (%)

Atelectasis 0.581 (0.000, 0.909) 61.6 (-41.8, 340.2) 0.386 (0.256, 0.511) 0.1 (-29.1, 44.7)
Cardiomegaly 0.834 (0.769, 0.892) 7.1 (0.6, 14.8) 0.093 (0.000, 0.227) Inf. (0.0, Inf.)
Consolidation 0.877 (0.762, 0.960) -6.2 (-17.4, 2.8) 0.665 (0.488, 0.818) 269.7 (0.0, 909.7)
Edema 0.832 (0.773, 0.886) 8.7 (2.6, 16.5) 0.395 (0.160, 0.600) 104.2 (3.4, 275.3)
Enlarged Card. 0.916 (0.836, 0.982) 49.5 (21.9, 96.6) 0.062 (0.000, 0.207) -3.3 (-28.6, 23.1)
Fracture 0.733 (0.444, 0.947) 0.0 (0.0, 0.0) 0.498 (0.000, 1.000) Inf. (0.0, Inf.)
Lung Lesion 0.422 (0.000, 0.800) -5.1 (-50.0, 55.6) 0.128 (0.000, 0.400) Inf. (0.0, Inf.)
Lung Opacity 0.513 (0.353, 0.674) 32.2 (-17.3, 128.6) 0.000 (0.000, 0.000) 0.0 (0.0, 0.0)
Pler. Effusion 0.916 (0.871, 0.956) -2.6 (-6.3, 1.3) 0.422 (0.267, 0.561) -14.5 (-42.6, 22.8)
Pler. Other 0.000 (0.000, 0.000) 0.0 (0.0, 0.0) 0.000 (0.000, 0.000) 0.0 (0.0, 0.0)
Pneumonia 0.915 (0.867, 0.955) 17.3 (8.6, 29.0) 0.671 (0.582, 0.743) 43.8 (19.1, 76.5)
Pneumothorax 0.937 (0.912, 0.960) 2.1 (-0.7, 5.2) 0.645 (0.307, 0.909) 125.6 (-7.7, 540.1)
Sup. Devices 0.283 (0.000, 0.545) 0.0 (0.0, 0.0) 0.000 (0.000, 0.000) 0.0 (0.0, 0.0)
Macro Avg. 0.743 (0.686, 0.810) 4.1 (-4.9, 14.5) 0.453 (0.369, 0.554) 40.4 (9.5, 79.8)
Weighted Avg. 0.872 (0.852, 0.893) 5.9 (3.3, 8.7) 0.530 (0.460, 0.607) 31.4 (8.2, 61.3)

Positive Mention Detection Mention Detection

Pathologies
F1 Score
RadPert

Improvement over
CheXpert (%)

F1 Score
RadPert

Improvement over
CheXpert (%)

Atelectasis 0.819 (0.776, 0.859) -5.8 (-10.2, -1.5) 0.944 (0.920, 0.965) 0.0 (0.0, 0.0)
Cardiomegaly 0.851 (0.806, 0.893) 7.5 (3.4, 12.0) 0.858 (0.826, 0.890) -0.0 (-2.8, 3.0)
Consolidation 0.815 (0.724, 0.885) 8.6 (-0.6, 19.8) 0.930 (0.888, 0.963) 0.0 (0.0, 0.0)
Edema 0.809 (0.759, 0.859) -8.2 (-12.9, -3.3) 0.887 (0.859, 0.916) -0.2 (-0.9, 0.4)
Enlarged Card. 0.442 (0.336, 0.551) 1.3 (-21.3, 28.8) 0.529 (0.454, 0.609) 16.1 (-0.7, 36.7)
Fracture 0.902 (0.831, 0.964) 8.1 (0.9, 17.5) 0.952 (0.907, 0.990) 5.4 (-0.1, 12.4)
Lung Lesion 0.796 (0.702, 0.878) 1.9 (-6.4, 10.2) 0.834 (0.752, 0.901) -2.4 (-7.0, 1.7)
Lung Opacity 0.819 (0.774, 0.859) 1.6 (-1.3, 4.5) 0.800 (0.757, 0.840) -0.0 (-1.2, 1.2)
Pler. Effusion 0.889 (0.859, 0.916) -3.1 (-6.3, 0.0) 0.979 (0.968, 0.989) 0.6 (-0.1, 1.4)
Pler. Other 0.592 (0.441, 0.727) 16.7 (1.6, 44.0) 0.592 (0.459, 0.709) 1.1 (-5.3, 11.3)
Pneumonia 0.654 (0.550, 0.744) 36.9 (8.5, 75.6) 0.952 (0.931, 0.971) -0.5 (-1.5, 0.4)
Pneumothorax 0.765 (0.630, 0.870) 9.6 (-7.5, 30.4) 0.963 (0.945, 0.980) -0.7 (-1.5, 0.0)
Sup. Devices 0.898 (0.869, 0.926) 1.3 (-0.7, 3.5) 0.893 (0.862, 0.918) 1.4 (-0.2, 3.1)
Macro Avg. 0.773 (0.749, 0.796) 4.1 (1.5, 6.8) 0.855 (0.839, 0.870) 1.0 (-0.0, 2.0)
Weighted Avg. 0.824 (0.809, 0.839) 0.9 (-0.8, 2.6) 0.899 (0.890, 0.908) 0.4 (-0.1, 0.9)

Table 6: F1 scores of RadPert and improvement over CheXpert on MIMIC-CXR gold-standard test set. We report
results for the sub-tasks of negation detection, uncertainty detection, positive mention detection and mention
detection. The scores correspond to the averages across 1000 bootstrap replicates and are reported alongside their
confidence intervals.
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Weighted Average F1 Across Tasks
Gemini-1.5 Pro Llama-2 70B

Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.838 (0.792, 0.878) 0.830 (0.787, 0.870) 0.842 (0.790, 0.884) 0.782 (0.739, 0.822)

Cardiomegaly 0.809 (0.771, 0.842) 0.790 (0.740, 0.835) 0.706 (0.657, 0.755) 0.807 (0.756, 0.853)
Consolidation 0.588 (0.507, 0.662) 0.743 (0.665, 0.815) 0.368 (0.302, 0.430) 0.625 (0.544, 0.700)
Edema 0.737 (0.695, 0.778) 0.794 (0.752, 0.834) 0.729 (0.686, 0.766) 0.804 (0.762, 0.845)
Enlarged Card. 0.376 (0.275, 0.468) 0.556 (0.464, 0.643) 0.248 (0.158, 0.343) 0.619 (0.537, 0.695)
Fracture 0.718 (0.602, 0.820) 0.792 (0.696, 0.874) 0.717 (0.583, 0.839) 0.855 (0.759, 0.932)
Lung Lesion 0.413 (0.321, 0.508) 0.678 (0.575, 0.776) 0.404 (0.313, 0.498) 0.498 (0.397, 0.595)
Lung Opacity 0.587 (0.532, 0.638) 0.744 (0.700, 0.791) 0.632 (0.583, 0.681) 0.780 (0.737, 0.824)
Pleural Effusion 0.856 (0.829, 0.880) 0.891 (0.863, 0.916) 0.827 (0.798, 0.853) 0.867 (0.837, 0.895)
Pleural Other 0.409 (0.281, 0.535) 0.492 (0.346, 0.626) 0.312 (0.129, 0.490) 0.525 (0.363, 0.669)
Pneumonia 0.683 (0.635, 0.734) 0.789 (0.740, 0.836) 0.682 (0.638, 0.724) 0.645 (0.587, 0.698)

Pneumothorax 0.741 (0.699, 0.781) 0.893 (0.855, 0.926) 0.730 (0.687, 0.773) 0.871 (0.825, 0.908)
Support Devices 0.870 (0.836, 0.903) 0.905 (0.877, 0.932) 0.718 (0.669, 0.767) 0.883 (0.851, 0.913)

Macro Average 0.664 (0.642, 0.685) 0.761 (0.739, 0.783) 0.609 (0.585, 0.631) 0.736 (0.714, 0.756)
Weighted Average 0.740 (0.724, 0.755) 0.815 (0.799, 0.829) 0.700 (0.684, 0.717) 0.788 (0.772, 0.803)

Claude-3 Sonnet GPT-4 Turbo
Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.823 (0.774, 0.868) 0.812 (0.769, 0.850) 0.864 (0.819, 0.902) 0.830 (0.785, 0.870)

Cardiomegaly 0.778 (0.742, 0.813) 0.799 (0.746, 0.845) 0.822 (0.777, 0.858) 0.806 (0.754, 0.849)

Consolidation 0.609 (0.530, 0.679) 0.801 (0.729, 0.865) 0.804 (0.729, 0.864) 0.825 (0.752, 0.892)
Edema 0.747 (0.702, 0.788) 0.802 (0.758, 0.846) 0.837 (0.801, 0.875) 0.811 (0.771, 0.853)

Enlarged Card. 0.289 (0.211, 0.369) 0.578 (0.494, 0.658) 0.567 (0.474, 0.650) 0.587 (0.502, 0.667)
Fracture 0.742 (0.622, 0.856) 0.849 (0.751, 0.929) 0.785 (0.692, 0.868) 0.826 (0.732, 0.908)
Lung Lesion 0.689 (0.586, 0.784) 0.709 (0.596, 0.808) 0.634 (0.534, 0.725) 0.675 (0.565, 0.780)
Lung Opacity 0.632 (0.574, 0.686) 0.780 (0.737, 0.823) 0.724 (0.674, 0.769) 0.782 (0.738, 0.823)
Pleural Effusion 0.832 (0.806, 0.858) 0.901 (0.875, 0.925) 0.895 (0.869, 0.920) 0.898 (0.872, 0.923)
Pleural Other 0.404 (0.278, 0.530) 0.547 (0.390, 0.692) 0.558 (0.418, 0.680) 0.616 (0.462, 0.737)
Pneumonia 0.640 (0.588, 0.688) 0.780 (0.727, 0.828) 0.756 (0.699, 0.807) 0.790 (0.738, 0.838)
Pneumothorax 0.684 (0.638, 0.723) 0.922 (0.887, 0.953) 0.920 (0.890, 0.948) 0.929 (0.895, 0.960)
Support Devices 0.886 (0.856, 0.914) 0.896 (0.867, 0.924) 0.883 (0.849, 0.913) 0.887 (0.855, 0.918)

Macro Average 0.674 (0.653, 0.693) 0.783 (0.761, 0.804) 0.773 (0.752, 0.792) 0.789 (0.768, 0.808)
Weighted Average 0.734 (0.718, 0.750) 0.827 (0.813, 0.841) 0.824 (0.808, 0.838) 0.832 (0.818, 0.845)

Table 7: Weighted F1 Scores across positive mention detection, negation detection, and uncertainty detection for
RadPrompt on MIMIC-CXR gold-standard test set. The “Base LLM” column refers to the first-turn prediction of
the LLM, and the “RadPrompt” column to the second-turn prediction. The scores correspond to the averages across
1000 bootstrap replicates and are reported alongside their confidence intervals.
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Mention Detection F1
Gemini-1.5 Pro Llama-2 70B

Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.785 (0.748, 0.819) 0.926 (0.901, 0.949) 0.746 (0.706, 0.785) 0.939 (0.914, 0.961)
Cardiomegaly 0.827 (0.793, 0.861) 0.848 (0.815, 0.882) 0.767 (0.731, 0.803) 0.865 (0.832, 0.896)
Consolidation 0.516 (0.450, 0.579) 0.869 (0.817, 0.912) 0.374 (0.318, 0.428) 0.738 (0.672, 0.797)
Edema 0.781 (0.745, 0.819) 0.869 (0.838, 0.898) 0.744 (0.704, 0.782) 0.883 (0.854, 0.911)
Enlarged Card. 0.409 (0.344, 0.480) 0.504 (0.427, 0.582) 0.326 (0.244, 0.414) 0.534 (0.458, 0.614)
Fracture 0.469 (0.385, 0.548) 0.840 (0.767, 0.906) 0.324 (0.258, 0.390) 0.934 (0.881, 0.976)
Lung Lesion 0.293 (0.236, 0.346) 0.708 (0.625, 0.788) 0.283 (0.229, 0.335) 0.589 (0.495, 0.664)
Lung Opacity 0.573 (0.526, 0.620) 0.765 (0.724, 0.807) 0.592 (0.545, 0.634) 0.783 (0.743, 0.823)
Pleural Effusion 0.913 (0.892, 0.932) 0.966 (0.952, 0.978) 0.883 (0.860, 0.907) 0.964 (0.950, 0.977)
Pleural Other 0.227 (0.158, 0.297) 0.448 (0.323, 0.560) 0.149 (0.091, 0.210) 0.577 (0.444, 0.699)
Pneumonia 0.802 (0.767, 0.838) 0.940 (0.917, 0.960) 0.714 (0.674, 0.753) 0.890 (0.861, 0.915)
Pneumothorax 0.760 (0.719, 0.797) 0.941 (0.919, 0.961) 0.758 (0.716, 0.795) 0.943 (0.919, 0.964)
Support Devices 0.804 (0.767, 0.837) 0.888 (0.858, 0.913) 0.655 (0.606, 0.701) 0.892 (0.862, 0.917)

Macro Average 0.627 (0.611, 0.647) 0.809 (0.788, 0.829) 0.563 (0.547, 0.580) 0.810 (0.793, 0.827)
Weighted Average 0.742 (0.724, 0.759) 0.874 (0.861, 0.887) 0.687 (0.670, 0.705) 0.871 (0.860, 0.881)

Claude-3 Sonnet GPT-4 Turbo
Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.802 (0.767, 0.837) 0.936 (0.911, 0.959) 0.928 (0.901, 0.950) 0.942 (0.918, 0.962)
Cardiomegaly 0.777 (0.740, 0.813) 0.858 (0.826, 0.890) 0.858 (0.826, 0.889) 0.859 (0.826, 0.892)
Consolidation 0.50 (0.437, 0.561) 0.921 (0.879, 0.956) 0.882 (0.829, 0.922) 0.930 (0.888, 0.963)
Edema 0.789 (0.750, 0.826) 0.884 (0.855, 0.911) 0.895 (0.868, 0.921) 0.872 (0.842, 0.902)

Enlarged Card. 0.270 (0.222, 0.322) 0.530 (0.453, 0.610) 0.585 (0.505, 0.655) 0.559 (0.478, 0.637)
Fracture 0.442 (0.360, 0.522) 0.933 (0.880, 0.976) 0.811 (0.736, 0.883) 0.885 (0.821, 0.942)
Lung Lesion 0.398 (0.330, 0.464) 0.847 (0.774, 0.908) 0.701 (0.618, 0.776) 0.799 (0.722, 0.868)
Lung Opacity 0.564 (0.514, 0.612) 0.790 (0.749, 0.830) 0.742 (0.695, 0.786) 0.795 (0.754, 0.834)
Pleural Effusion 0.856 (0.830, 0.881) 0.977 (0.966, 0.988) 0.966 (0.953, 0.978) 0.976 (0.965, 0.987)
Pleural Other 0.211 (0.141, 0.278) 0.592 (0.459, 0.709) 0.560 (0.429, 0.674) 0.630 (0.50, 0.744)
Pneumonia 0.748 (0.708, 0.787) 0.950 (0.928, 0.969) 0.928 (0.905, 0.950) 0.953 (0.932, 0.971)
Pneumothorax 0.693 (0.651, 0.731) 0.970 (0.953, 0.985) 0.953 (0.934, 0.973) 0.970 (0.953, 0.985)
Support Devices 0.862 (0.831, 0.890) 0.895 (0.866, 0.920) 0.897 (0.868, 0.922) 0.901 (0.875, 0.926)

Macro Average 0.608 (0.591, 0.628) 0.853 (0.837, 0.868) 0.824 (0.804, 0.843) 0.852 (0.836, 0.867)
Weighted Average 0.720 (0.701, 0.739) 0.897 (0.889, 0.906) 0.881 (0.868, 0.892) 0.897 (0.888, 0.907)

Table 8: Mention detection F1 Scores for RadPrompt on MIMIC-CXR gold-standard test set. The “Base LLM”
column refers to the first-turn prediction of the LLM, and the “RadPrompt” column to the second-turn prediction.
The scores correspond to the averages across 1000 bootstrap replicates and are reported alongside their confidence
intervals.
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Negation Detection F1
Gemini-1.5 Pro Llama-2 70B

Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.066 (0.000, 0.143) 0.340 (0.000, 0.616) 0.015 (0.000, 0.047) 0.579 (0.000, 0.909)
Cardiomegaly 0.673 (0.594, 0.739) 0.742 (0.667, 0.811) 0.546 (0.477, 0.617) 0.852 (0.789, 0.906)
Consolidation 0.286 (0.188, 0.379) 0.790 (0.654, 0.893) 0.210 (0.136, 0.293) 0.739 (0.591, 0.857)
Edema 0.656 (0.583, 0.721) 0.801 (0.737, 0.857) 0.555 (0.483, 0.621) 0.833 (0.769, 0.890)
Enlarged Card. 0.455 (0.344, 0.561) 0.696 (0.581, 0.804) 0.125 (0.000, 0.294) 0.887 (0.800, 0.962)
Fracture 0.122 (0.043, 0.206) 0.474 (0.235, 0.688) 0.058 (0.020, 0.105) 0.688 (0.400, 0.909)
Lung Lesion 0.036 (0.000, 0.089) 0.225 (0.000, 0.500) 0.028 (0.000, 0.068) 0.263 (0.000, 0.750)
Lung Opacity 0.203 (0.101, 0.306) 0.428 (0.256, 0.600) 0.235 (0.142, 0.327) 0.539 (0.373, 0.692)
Pleural Effusion 0.733 (0.660, 0.798) 0.888 (0.839, 0.932) 0.625 (0.545, 0.698) 0.870 (0.816, 0.923)
Pleural Other 0.035 (0.000, 0.087) 0.000 (0.000, 0.000) 0.023 (0.000, 0.057) 0.000 (0.000, 0.000)

Pneumonia 0.624 (0.553, 0.692) 0.887 (0.833, 0.933) 0.498 (0.428, 0.567) 0.823 (0.753, 0.888)
Pneumothorax 0.714 (0.665, 0.756) 0.922 (0.894, 0.948) 0.710 (0.664, 0.753) 0.909 (0.878, 0.937)
Support Devices 0.059 (0.000, 0.143) 0.207 (0.000, 0.414) 0.026 (0.000, 0.065) 0.295 (0.000, 0.556)

Macro Average 0.371 (0.340, 0.416) 0.628 (0.569, 0.693) 0.302 (0.268, 0.350) 0.717 (0.648, 0.787)
Weighted Average 0.622 (0.590, 0.655) 0.820 (0.788, 0.850) 0.544 (0.511, 0.579) 0.841 (0.818, 0.864)

Claude-3 Sonnet GPT-4 Turbo
Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.099 (0.025, 0.198) 0.581 (0.000, 0.909) 0.515 (0.167, 0.800) 0.868 (0.500, 1.000)
Cardiomegaly 0.554 (0.478, 0.621) 0.796 (0.721, 0.857) 0.717 (0.640, 0.785) 0.761 (0.684, 0.829)
Consolidation 0.227 (0.151, 0.305) 0.896 (0.788, 0.973) 0.752 (0.615, 0.857) 0.899 (0.800, 0.978)
Edema 0.661 (0.589, 0.731) 0.827 (0.768, 0.884) 0.871 (0.814, 0.921) 0.836 (0.775, 0.893)

Enlarged Card. 0.148 (0.102, 0.199) 0.713 (0.590, 0.818) 0.620 (0.488, 0.736) 0.741 (0.625, 0.841)
Fracture 0.090 (0.031, 0.160) 0.733 (0.444, 0.947) 0.627 (0.333, 0.857) 0.811 (0.545, 1.000)
Lung Lesion 0.023 (0.000, 0.058) 0.530 (0.000, 1.000) 0.239 (0.000, 0.500) 0.412 (0.000, 0.800)
Lung Opacity 0.117 (0.059, 0.177) 0.495 (0.326, 0.647) 0.382 (0.217, 0.540) 0.494 (0.318, 0.653)
Pleural Effusion 0.572 (0.500, 0.644) 0.937 (0.897, 0.973) 0.903 (0.855, 0.946) 0.948 (0.910, 0.981)
Pleural Other 0.032 (0.000, 0.076) 0.000 (0.000, 0.000) 0.305 (0.000, 0.632) 0.425 (0.000, 1.000)
Pneumonia 0.537 (0.466, 0.604) 0.909 (0.859, 0.951) 0.862 (0.802, 0.910) 0.914 (0.866, 0.954)
Pneumothorax 0.638 (0.591, 0.683) 0.947 (0.924, 0.969) 0.937 (0.913, 0.959) 0.955 (0.934, 0.973)
Support Devices 0.174 (0.000, 0.350) 0.259 (0.000, 0.500) 0.182 (0.000, 0.545) 0.123 (0.000, 0.375)

Macro Average 0.305 (0.276, 0.340) 0.731 (0.673, 0.795) 0.640 (0.571, 0.715) 0.757 (0.697, 0.832)
Weighted Average 0.532 (0.495, 0.571) 0.862 (0.842, 0.882) 0.827 (0.796, 0.855) 0.867 (0.847, 0.888)

Table 9: Negation detection F1 Scores for RadPrompt on MIMIC-CXR gold-standard test set. The “Base LLM”
column refers to the first-turn prediction of the LLM, and the “RadPrompt” column to the second-turn prediction.
The scores correspond to the averages across 1000 bootstrap replicates and are reported alongside their confidence
intervals.
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Uncertainty Detection F1
Gemini-1.5 Pro Llama-2 70B

Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.301 (0.136, 0.464) 0.376 (0.208, 0.536) 0.364 (0.143, 0.560) 0.386 (0.256, 0.515)
Cardiomegaly 0.385 (0.235, 0.529) 0.170 (0.044, 0.320) 0.000 (0.000, 0.000) 0.095 (0.000, 0.227)
Consolidation 0.258 (0.138, 0.386) 0.448 (0.250, 0.643) 0.236 (0.133, 0.341) 0.542 (0.367, 0.706)
Edema 0.253 (0.082, 0.410) 0.317 (0.087, 0.522) 0.382 (0.154, 0.571) 0.382 (0.148, 0.585)
Enlarged Card. 0.000 (0.000, 0.000) 0.045 (0.000, 0.150) 0.000 (0.000, 0.000) 0.068 (0.000, 0.229)
Fracture 0.292 (0.000, 0.800) 0.341 (0.000, 1.000) 0.000 (0.000, 0.000) 0.405 (0.000, 1.000)
Lung Lesion 0.041 (0.000, 0.092) 0.136 (0.000, 0.324) 0.035 (0.000, 0.086) 0.085 (0.000, 0.276)
Lung Opacity 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Pleural Effusion 0.483 (0.333, 0.619) 0.466 (0.296, 0.606) 0.488 (0.308, 0.654) 0.434 (0.276, 0.571)
Pleural Other 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Pneumonia 0.705 (0.621, 0.776) 0.710 (0.624, 0.781) 0.704 (0.614, 0.788) 0.592 (0.497, 0.678)

Pneumothorax 0.652 (0.353, 0.870) 0.568 (0.222, 0.834) 0.475 (0.000, 0.800) 0.566 (0.250, 0.846)
Support Devices 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Macro Average 0.393 (0.332, 0.462) 0.393 (0.322, 0.473) 0.394 (0.316, 0.476) 0.407 (0.329, 0.496)
Weighted Average 0.498 (0.432, 0.560) 0.512 (0.445, 0.577) 0.513 (0.439, 0.584) 0.478 (0.414, 0.548)

Claude-3 Sonnet GPT-4 Turbo
Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.310 (0.095, 0.522) 0.398 (0.254, 0.530) 0.406 (0.200, 0.583) 0.337 (0.182, 0.491)

Cardiomegaly 0.476 (0.300, 0.634) 0.096 (0.000, 0.227) 0.474 (0.293, 0.644) 0.248 (0.074, 0.429)

Consolidation 0.454 (0.286, 0.607) 0.634 (0.444, 0.783) 0.651 (0.455, 0.815) 0.648 (0.461, 0.810)

Edema 0.202 (0.048, 0.344) 0.395 (0.154, 0.606) 0.498 (0.222, 0.714) 0.496 (0.222, 0.706)

Enlarged Card. 0.000 (0.000, 0.000) 0.062 (0.000, 0.207) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Fracture 0.722 (0.000, 1.000) 0.498 (0.000, 1.000) 0.342 (0.000, 1.000) 0.498 (0.000, 1.000)
Lung Lesion 0.275 (0.062, 0.500) 0.120 (0.000, 0.375) 0.287 (0.000, 0.526) 0.186 (0.000, 0.545)

Lung Opacity 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Pleural Effusion 0.583 (0.390, 0.735) 0.490 (0.318, 0.633) 0.469 (0.292, 0.625) 0.464 (0.300, 0.615)

Pleural Other 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Pneumonia 0.688 (0.595, 0.765) 0.687 (0.598, 0.761) 0.683 (0.599, 0.758) 0.708 (0.626, 0.780)
Pneumothorax 0.652 (0.363, 0.880) 0.645 (0.307, 0.909) 0.651 (0.308, 0.889) 0.645 (0.307, 0.909)

Support Devices 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Macro Average 0.493 (0.418, 0.567) 0.460 (0.374, 0.569) 0.521 (0.448, 0.599) 0.511 (0.425, 0.592)

Weighted Average 0.546 (0.484, 0.606) 0.543 (0.469, 0.618) 0.579 (0.516, 0.639) 0.564 (0.497, 0.627)

Table 10: Uncertainty detection F1 Scores for RadPrompt on MIMIC-CXR gold-standard test set. The “Base LLM”
column refers to the first-turn prediction of the LLM, and the “RadPrompt” column to the second-turn prediction.
The scores correspond to the averages across 1000 bootstrap replicates and are reported alongside their confidence
intervals.
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Positive Mention Detection F1
Gemini-1.5 Pro Llama-2 70B

Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.900 (0.869, 0.928) 0.878 (0.843, 0.910) 0.899 (0.866, 0.927) 0.819 (0.775, 0.859)

Cardiomegaly 0.928 (0.895, 0.957) 0.879 (0.840, 0.914) 0.869 (0.828, 0.905) 0.850 (0.805, 0.892)
Consolidation 0.811 (0.729, 0.881) 0.810 (0.733, 0.883) 0.469 (0.382, 0.550) 0.597 (0.496, 0.689)
Edema 0.824 (0.775, 0.867) 0.822 (0.773, 0.867) 0.866 (0.822, 0.906) 0.816 (0.767, 0.866)

Enlarged Card. 0.327 (0.185, 0.472) 0.468 (0.347, 0.583) 0.336 (0.242, 0.437) 0.446 (0.336, 0.557)
Fracture 0.851 (0.762, 0.921) 0.868 (0.787, 0.939) 0.883 (0.800, 0.950) 0.902 (0.831, 0.964)
Lung Lesion 0.495 (0.409, 0.578) 0.788 (0.701, 0.865) 0.485 (0.396, 0.568) 0.573 (0.479, 0.662)
Lung Opacity 0.638 (0.584, 0.688) 0.786 (0.743, 0.827) 0.684 (0.636, 0.731) 0.811 (0.769, 0.852)
Pleural Effusion 0.917 (0.891, 0.939) 0.918 (0.893, 0.941) 0.909 (0.883, 0.933) 0.894 (0.864, 0.920)

Pleural Other 0.438 (0.312, 0.561) 0.532 (0.387, 0.659) 0.335 (0.136, 0.526) 0.569 (0.393, 0.704)
Pneumonia 0.723 (0.634, 0.806) 0.744 (0.649, 0.821) 0.856 (0.792, 0.912) 0.493 (0.398, 0.584)

Pneumothorax 0.880 (0.792, 0.950) 0.817 (0.704, 0.906) 0.872 (0.781, 0.945) 0.754 (0.625, 0.864)

Support Devices 0.887 (0.857, 0.915) 0.920 (0.894, 0.945) 0.733 (0.683, 0.780) 0.896 (0.865, 0.922)

Macro Average 0.740 (0.719, 0.762) 0.787 (0.763, 0.809) 0.708 (0.683, 0.731) 0.725 (0.701, 0.749)
Weighted Average 0.814 (0.800, 0.827) 0.845 (0.831, 0.858) 0.785 (0.770, 0.800) 0.799 (0.784, 0.814)

Claude-3 Sonnet GPT-4 Turbo
Pathologies Base LLM RadPrompt Base LLM RadPrompt
Atelectasis 0.882 (0.849, 0.913) 0.850 (0.810, 0.887) 0.909 (0.876, 0.936) 0.871 (0.833, 0.903)

Cardiomegaly 0.937 (0.908, 0.964) 0.870 (0.828, 0.907) 0.915 (0.881, 0.947) 0.887 (0.845, 0.923)

Consolidation 0.811 (0.724, 0.880) 0.808 (0.720, 0.882) 0.868 (0.793, 0.930) 0.844 (0.760, 0.914)

Edema 0.841 (0.790, 0.885) 0.813 (0.762, 0.861) 0.839 (0.793, 0.883) 0.816 (0.765, 0.864)

Enlarged Card. 0.389 (0.271, 0.504) 0.493 (0.379, 0.603) 0.539 (0.415, 0.652) 0.492 (0.378, 0.602)

Fracture 0.864 (0.775, 0.938) 0.881 (0.805, 0.946) 0.829 (0.742, 0.908) 0.837 (0.750, 0.913)
Lung Lesion 0.796 (0.716, 0.871) 0.806 (0.727, 0.877) 0.710 (0.621, 0.789) 0.762 (0.673, 0.841)
Lung Opacity 0.700 (0.644, 0.753) 0.817 (0.773, 0.858) 0.769 (0.717, 0.817) 0.820 (0.775, 0.859)
Pleural Effusion 0.926 (0.902, 0.947) 0.917 (0.892, 0.941) 0.920 (0.896, 0.943) 0.910 (0.885, 0.934)

Pleural Other 0.434 (0.309, 0.557) 0.592 (0.441, 0.727) 0.571 (0.419, 0.693) 0.624 (0.480, 0.747)
Pneumonia 0.706 (0.607, 0.791) 0.713 (0.611, 0.800) 0.698 (0.595, 0.786) 0.720 (0.621, 0.803)
Pneumothorax 0.895 (0.812, 0.963) 0.858 (0.767, 0.938) 0.891 (0.800, 0.958) 0.867 (0.766, 0.949)

Support Devices 0.901 (0.873, 0.927) 0.910 (0.882, 0.936) 0.898 (0.870, 0.924) 0.904 (0.876, 0.928)

Macro Average 0.776 (0.755, 0.795) 0.795 (0.772, 0.816) 0.797 (0.773, 0.817) 0.796 (0.773, 0.816)

Weighted Average 0.837 (0.823, 0.850) 0.843 (0.828, 0.857) 0.849 (0.834, 0.863) 0.846 (0.831, 0.860)

Table 11: Positive mention detection F1 Scores for RadPrompt on MIMIC-CXR gold-standard test set. The “Base
LLM” column refers to the first-turn prediction of the LLM, and the “RadPrompt” column to the second-turn
prediction. The scores correspond to the averages across 1000 bootstrap replicates and are reported alongside their
confidence intervals.
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Pathologies
Weighted F1
Llama-2 RadPrompt

Improvement over
1st Turn Llama-2 (%)

Improvement over
RadPert (%)

Atelectasis 0.830 (0.767, 0.888) 37.9 (22.9, 56.8) -7.1 (-11.6, -3.0)
Cardiomegaly 0.810 (0.747, 0.867) 41.3 (28.6, 57.9) -11.0 (-16.6, -6.0)
Consolidation 0.929 (0.903, 0.953) 27.7 (21.7, 34.8) -2.3 (-4.2, -0.7)
Edema 0.529 (0.381, 0.639) 41.5 (-4.1, 99.8) -15.1 (-27.3, -0.8)
Enlarged Card. 0.844 (0.790, 0.894) Inf. (Inf., Inf.) -7.0 (-10.6, -3.3)
Fracture 0.684 (0.531, 0.817) 12.6 (-5.8, 38.8) -10.3 (-20.0, -0.6)
Lung Lesion 0.699 (0.577, 0.817) 191.8 (132.3, 268.1) -14.3 (-23.3, -5.7)
Lung Opacity 0.692 (0.636, 0.748) 2.9 (-6.5, 13.4) -2.8 (-5.7, -0.1)
Pleur. Effusion 0.615 (0.562, 0.665) -22.6 (-29.5, -16.1) -3.9 (-7.6, -0.9)
Pleur. Other 0.106 (0.059, 0.163) -80.9 (-89.5, -70.8) 34.2 (-8.5, 104.7)
Pneumonia 0.519 (0.374, 0.654) 259.1 (144.6, 433.0) -21.0 (-33.4, -10.7)
Pneumothorax 0.606 (0.550, 0.661) -16.0 (-23.4, -8.2) -3.3 (-6.0, -0.2)
Sup. Devices 0.822 (0.785, 0.857) 6.2 (-0.3, 13.5) -4.2 (-6.3, -2.3)
Macro Avg. 0.668 (0.639, 0.694) 27.4 (21.9, 32.6) -8.0 (-10.2, -5.7)
Weighted Avg. 0.695 (0.668, 0.748) 3.0 (-1.3, 10.4) -11.7 (-13.3, -5.3)

Table 12: Weighted average F1 scores for Llama-2-based RadPrompt on the CUH test set, alongside improvements
over 1st turn Llama-2 and RadPert predictions. The scores correspond to the averages across 1000 bootstrap
replicates and are reported alongside their confidence intervals.
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Sub-Task F1 Scores
Negation Detection Uncertainty Detection

Pathologies Base Llama-2 RadPrompt Base Llama-2 RadPrompt
Atelectasis 0.175 (0.111, 0.238) 0.853 (0.766, 0.923) 0.000 (0.000, 0.000) 0.126 (0.000, 0.400)
Cardiomegaly 0.579 (0.515, 0.639) 0.835 (0.779, 0.884) 0.000 (0.000, 0.000) 0.412 (0.000, 0.727)
Consolidation 0.665 (0.608, 0.720) 0.923 (0.887, 0.953) 0.145 (0.000, 0.298) 0.490 (0.154, 0.769)
Edema 0.160 (0.102, 0.223) 0.444 (0.278, 0.597) 0.322 (0.000, 1.000) 0.408 (0.000, 0.800)
Enlarged Card. 0.000 (0.000, 0.000) 0.904 (0.854, 0.947) 0.000 (0.000, 0.000) 0.639 (0.471, 0.791)
Fracture 0.052 (0.018, 0.098) 0.269 (0.071, 0.483) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Lung Lesion 0.285 (0.215, 0.359) 0.790 (0.684, 0.884) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Lung Opacity 0.022 (0.000, 0.056) 0.187 (0.000, 0.421) 0.228 (0.000, 0.667) 0.000 (0.000, 0.000)

Pleural Effusion 0.758 (0.717, 0.797) 0.532 (0.468, 0.592) 0.414 (0.000, 0.800) 0.319 (0.000, 0.600)

Pleural Other 0.556 (0.490, 0.615) 0.035 (0.000, 0.077) 0.000 (0.000, 0.000) 0.515 (0.000, 1.000)
Pneumonia 0.113 (0.063, 0.171) 0.642 (0.424, 0.813) 0.128 (0.028, 0.237) 0.310 (0.087, 0.522)
Pneumothorax 0.730 (0.683, 0.771) 0.610 (0.551, 0.663) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Support Devices 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Macro Average 0.377 (0.356, 0.413) 0.596 (0.550, 0.664) 0.296 (0.149, 0.441) 0.459 (0.335, 0.585)
Weighted Average 0.617 (0.588, 0.643) 0.607 (0.568, 0.705) 0.263 (0.127, 0.413) 0.506 (0.387, 0.616)

Positive Mention Detection Mention Detection
Pathologies Base Llama-2 RadPrompt Base Llama-2 RadPrompt
Atelectasis 0.889 (0.826, 0.938) 0.843 (0.779, 0.902) 0.454 (0.394, 0.510) 0.868 (0.822, 0.908)
Cardiomegaly 0.885 (0.750, 0.976) 0.888 (0.765, 0.977) 0.625 (0.567, 0.679) 0.851 (0.805, 0.895)
Consolidation 0.806 (0.761, 0.851) 0.950 (0.924, 0.975) 0.737 (0.704, 0.771) 0.966 (0.951, 0.980)
Edema 0.828 (0.631, 0.960) 0.697 (0.400, 0.917) 0.230 (0.167, 0.295) 0.546 (0.405, 0.659)
Enlarged Card. 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.026 (0.000, 0.065) 0.876 (0.829, 0.919)
Fracture 0.843 (0.711, 0.947) 0.847 (0.722, 0.955) 0.196 (0.136, 0.257) 0.637 (0.500, 0.761)
Lung Lesion 0.094 (0.021, 0.172) 0.434 (0.000, 0.750) 0.204 (0.154, 0.257) 0.742 (0.635, 0.837)
Lung Opacity 0.701 (0.655, 0.746) 0.716 (0.659, 0.772) 0.523 (0.476, 0.566) 0.696 (0.638, 0.755)
Pleural Effusion 0.916 (0.875, 0.953) 0.848 (0.789, 0.901) 0.831 (0.801, 0.859) 0.711 (0.665, 0.752)

Pleural Other 0.687 (0.451, 0.875) 0.836 (0.640, 0.968) 0.577 (0.517, 0.635) 0.162 (0.096, 0.239)

Pneumonia 0.187 (0.077, 0.298) 0.479 (0.240, 0.684) 0.147 (0.099, 0.193) 0.580 (0.454, 0.693)
Pneumothorax 0.618 (0.333, 0.833) 0.607 (0.286, 0.857) 0.734 (0.691, 0.777) 0.625 (0.568, 0.678)

Support Devices 0.780 (0.736, 0.819) 0.828 (0.792, 0.863) 0.646 (0.602, 0.688) 0.818 (0.782, 0.852)

Macro Average 0.687 (0.647, 0.723) 0.752 (0.696, 0.798) 0.461 (0.443, 0.499) 0.698 (0.671, 0.723)
Weighted Average 0.781 (0.763, 0.801) 0.822 (0.799, 0.842) 0.612 (0.590, 0.652) 0.726 (0.704, 0.748)

Table 13: F1 Scores for all sub-tasks for Llama-2-based RadPrompt on the CUH dataset. The “Base Llama-2”
column refers to the first-turn prediction of the LLM, and the “RadPrompt” column to the second-turn prediction.
The scores correspond to the averages across 1000 bootstrap replicates and are reported alongside their confidence
intervals.
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First Turn Prompt Second Turn Prompt

Please accurately classify radiology reports for the
presence or absence of findings. For each report,
you will classify for the presence or absence of the
following findings: Enlarged Cardiomediastinum,
Cardiomegaly, ....

Structure your answer like the template I provided
to you delimited by triple backticks and return this
template and nothing else.

ALWAYS RETURN THE FULL TEMPLATE:
``` {“Enlarged Cardiomediastinum”:

[ANSWER],
“Cardiomegaly”:

[ANSWER], ...
} ```

If the existence of a finding is mentioned, answer
“Yes”.
If a finding is mentioned as not existing, answer
“No”.
If it cannot be determined if the patient has the
findings, answer “Maybe”.
If a finding is not mentioned in the report, answer
‘Undefined”.

Important steps to consider:
1. Read the radiology report and identify any
mentions of Enlarged Cardiomediastinum, Car-
diomegaly, ...
2. For every mention, determine if it is a positive,
a negative, or an uncertain one.
3. If a finding is not mentioned in the report,
answer “Undefined”.
4. For every finding, answer “Yes” if it is men-
tioned as existing (positive), “Maybe” if it is men-
tioned as uncertain, and “No” if it is mentioned as
not existing (negative).

Classify the following radiology report according
to the template. Always output the full template,
even if a finding is not mentioned.

<START OF REPORT>
...
<END OF REPORT>
<ANSWER:>

I am using a rule-based expert model to verify
your answer. Here are some insights. However,
those suggestions may be wrong. Please give me
your new answer after either accepting or rejecting
some or all of these suggestions:

1. The tool agrees that the overall report should be
classified as “Yes” for Pneumonia.
2. In agreement with your previous answer, the
tool detected no mentions of Enlarged Cardiome-
diastinum, Cardiomegaly,...
3. The tool did not detect any explicit mentions
for Lung Lesion and, thus, its suggested output is
“Undefined” for Lung Lesion.
4. The tool considers Atelectasis as “Maybe” be-
cause of the sentence “...”. However, you pre-
viously classified the overall report as “Yes” for
Atelectasis.

Please use the same template for your revised an-
swer:
``` {“Enlarged Cardiomediastinum”:

[ANSWER],
“Cardiomegaly”:

[ANSWER], ...
} ```

Table 14: Example of RadPrompt first and second-turn prompts. The first-turn prompts are adapted from (Dorfner
et al., 2024).
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MIMIC-CXR Gold-Standard CUH
Pathologies Null Negative Uncertain Positive Null Negative Uncertain Positive
Atelectasis 469 4 17 197 538 41 3 68
Cardiomegaly 452 82 14 139 523 100 10 17
Consolidation 592 23 17 55 355 138 6 151
Edema 460 85 10 132 614 23 2 11
Enlarged Card. 617 28 1 41 536 90 23 1
Fracture 637 8 2 40 623 8 0 19
Lung Lesion 621 4 8 54 607 34 2 7
Lung Opacity 493 23 0 171 471 7 1 171
Pleural Effusion 317 82 18 270 311 240 6 93
Pleural Other 660 2 0 25 476 158 2 14
Pneumonia 464 83 62 78 617 14 8 11
Pneumothorax 461 179 8 39 403 237 2 8
Support Devices 453 5 0 229 369 1 1 279
Total 6696 608 157 1470 6443 1091 66 850

Table 15: Number of output classes per pathology for the MIMIC-CXR gold-standard test set and CUH dataset.
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Figure 3: Normalized confusion matrices for MIMIC-CXR gold-standard test set.

234



Figure 4: Normalized confusion matrices for CUH test set.
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Abstract
Biomedical question-answering systems re-
main popular for biomedical experts interacting
with the literature to answer their medical ques-
tions. However, these systems are difficult to
evaluate in the absence of costly human experts.
Therefore, automatic evaluation metrics are of-
ten used in this space. Traditional automatic
metrics such as ROUGE or BLEU, which rely
on token overlap, have shown a low correlation
with humans. We present a study that uses large
language models (LLMs) to automatically eval-
uate systems from an international challenge
on biomedical semantic indexing and question
answering, called BioASQ. We measure the
agreement of LLM-produced scores against hu-
man judgements. We show that LLMs correlate
similarly to lexical methods when using basic
prompting techniques. However, by aggregat-
ing evaluators with LLMs or by fine-tuning,
we find that our methods outperform the base-
lines by a large margin, achieving a Spearman
correlation of 0.501 and 0.511, respectively.

1 Introduction

Biomedical question answering (QA) is concerned
with building systems that automatically answer
biomedical questions posed by humans in natu-
ral language (Soares and Parreiras, 2018; Nguyen,
2019). To develop and optimise these systems, we
must use metrics that evaluate the quality of their
output. Automatic metrics such as ROUGE (Lin,
2004) and BLEU (Papineni et al., 2002) have
been shown to correlate poorly with human eval-
uation (Liu et al., 2016), and human annotations
are prohibitively expensive and impractical in the
biomedical domain (Pampari et al., 2018; Guo et al.,
2006). To rectify this problem, recent research
has suggested using medium-sized model-based
evaluators and Large Language Models (LLMs).
Model-based evaluators such as BERTscore (Zhang
et al., 2020) or BLEURT (Sellam et al., 2020) have
demonstrated improvements over n-gram based

metrics in various natural language generation
(NLG) evaluation contexts such as summarisation
and QA (Zhong et al., 2022). However, their evalu-
ation capability is still far below that of humans.

The recent improvement of LLMs for various
tasks has fostered research on their use for the eval-
uation of the performance of text generation tasks
such as summarisation and dialogue generation
(Liu et al., 2023). In this paper, we experiment with
using LLMs to evaluate biomedical query-focused
summarisation systems. To the best of our knowl-
edge, this is the first study for such a task. In par-
ticular, we compare the correlation between human
judgements and LLM-based evaluators for the eval-
uation of several systems participating in the “ideal
answer” task of BioASQ 2021 and 2022 (Nentidis
et al., 2022). Our study examines different prompt-
ing strategies for such evaluations.

2 Related Work

Fu et al. (2024) indicates that the use of LLMs as
reference-free probability-based evaluators yields
performance superior to n-gram metrics and model-
based evaluators such as BERTscore, all the while
providing a customised and multi-faceted evalua-
tion with no training cost. Probability-based LLM
evaluation, however, suffers from issues of robust-
ness which lead to biases and loopholes (He et al.,
2023) that impact its efficacy.

LLMs, through prompting, have also been used
to evaluate text via Likert scale scoring (a five-
level scale) (Likert, 1932), leading to greater per-
formance than n-gram and model-based evalua-
tion techniques. However, Chiang and Lee (2023)
showed that outputting only a number could be sub-
optimal but that asking the LLM to explain its rat-
ing can lead to an increase in correlation to human
ratings. The pairwise ranking also showed promis-
ing results (Kotonya et al., 2023), with accuracy
outperforming n-gram and model-based evaluators.
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LLMs can also leverage emergent abilities which
can be used to incorporate in-context learning (ICL)
and chain-of-thought (CoT) in their evaluation
strategies. In ICL (Xie et al., 2022), a model is
provided with input-output examples of a down-
stream task instead of being trained or fine-tuned
on the task. In CoT (Kojima et al., 2022), a com-
plex task is broken down into multiple intermediate
steps to improve reasoning in LLMs.

Liu et al. (2023) used GPT-4 to achieve the
highest correlation with human evaluations in com-
parison to other model and n-gram based metrics.
Jain et al. (2023), using GPT-3, showed that using
few-shot prompting — a small number of exam-
ples added to the prompt — can reach or exceed
the state-of-the-art on multi-dimensional evalua-
tion and that this is robust to the sampling method
of in-context examples whether it be random or
representative of the range of scores in the exam-
ple pool. However, Kotonya et al. (2023) showed
using a small LLM (orca-mini-v3-7B), that one-
shot prompting doesn’t bring significantly greater
results than zero-shot.

The use of LLMs as meta-evaluators who use
their reasoning capabilities to combine diverse eval-
uation techniques has also seen promise. In Shu
et al. (2023), various LLMs were given supplemen-
tary evaluation metrics like NLI Score (Bowman
et al., 2015), BLEURT and probability-based LLM
techniques to aid with their judgements, with the
meta-evaluation outperforming all individual eval-
uators.

The above research, however, was not used in
query-focused summarisation tasks. This paper is
the first that tests the use of LLMs for the evaluation
of biomedical query-focused summarisation.

3 Methodology

We use the human judgements of runs participating
in the “ideal answers” question answering task of
BioASQ (Nentidis et al., 2022). Such “ideal an-
swers” are multi-sentence answers, and therefore
the task is about biomedical query-focused sum-
marisation. In particular, training and development
is based on systems (runs) participating at BioASQ
20201, whereas testing is on runs participating at
BioASQ 20212 and BioASQ 20223. The rationale
for using BioASQ 2020 for training is that it is the

1Run MQ1 in each batch submitted by Mollá et al. (2020).
2Run MQ1 in each batch submitted by Khanna and Mollá

(2021).
3Run MQ1 in each batch submitted by Mollá (2022).

Evaluation criteria

Recall: Fraction of information in the
known answers that is reported in the gen-
erated response
Precision: Fraction of information in the
generated response that is in the known an-
swers
Repetition: Amount that the generated re-
sponse repeats the same information
Readability: Generated response’s ability
to be easily understood and easily identi-
fiable as an answer to the question by a
human

Figure 1: Human criteria for the evaluation of a (ques-
tion, ideal answer) pair given the known answer. Each
criterium was scored between 1 and 5.

most recent year prior to the test data. Resource
constraints do not allow us to use all runs partic-
ipating at BioASQ 2020 for training, or all runs
participating at BioASQ 2021 and 2022 for testing.

The human judges are given instructions to eval-
uate the pair (question, generated answer), given a
correct answer, according to four criteria presented
in Figure 1. The final score of a (question, gener-
ated answer) pair is the average of the 4 criteria.
These judgements are provided to us by the organ-
isers of BioASQ. To preserve privacy, we only had
access to the judgement of runs submitted by us.

For each automatic evaluation technique, the
Spearman correlation (Spearman, 1904) is calcu-
lated. In addition, since the LLM-based evalua-
tion generated integer numbers 1 to 5, for each
LLM-based evaluation technique, the quadratic
kappa, a well-established correlation metric for
nominal scales (Cohen, 1968), was also calculated4.
BioASQ runs five to six evaluation batches each
year. Since there is no guarantee that the same runs
participated in all batches, the correlations are com-
puted separately for every batch, and the results
reported in this paper are the average correlation.
Each batch has approximately 100 (question, gen-
erated answer, known answer) triples.

Given that the automatic evaluation by LLMs
can vary each time the LLM is run, each batch is
evaluated three times and then the evaluation re-

4Quadratic kappa could not be used on the output of the
other evaluation techniques we tested because they generate
real numbers between 0 and 1.
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sults are averaged before computing the correlation
with the human judges.

The LLM-based evaluations return independent
evaluation scores for each evaluation criterion (Fig-
ure 1). Our correlation experiments consequently
measure the correlation of each criterion (and av-
erage) per the corresponding human criterion (and
average). For example, the Precision column of Ta-
ble 1 shows the correlation of the Precision scores
generated by each LLM evaluator for the Precision
scores of the human judges.

4 Experiments

We investigated several evaluation strategies, from
baseline well-known token-based metrics to the use
of LLMs as evaluators in different settings.

4.1 Token-based Techniques and their
Limitations

ROUGE-1 and ROUGE-2 (F1), as well as Sci-
BERTscore (Precision, Recall, F1), were tested
to attain a baseline correlation level. ROUGE F1
was chosen given its robustness over precision and
recall (Mollá and Jones, 2020). Sci-BERT (Beltagy
et al., 2019) is a BERT (Devlin et al., 2019) model
pretrained on papers from Semantic Scholar, of
which 82% are from the biomedical domain. Sci-
BERT was chosen over BERT due to its greater
understanding of biomedical terminology.

4.2 LLMs
GPT-3.5 (gpt-3.5-turbo-0125) and GPT-4
(gpt-4-1106-preview) were used as evaluators.
All prompts included the question, reference
answer(s), a system output, the defined evaluation
criteria, and instructions rating responses on a 1-5
integer scale. For all runs, the system prompt was
set to “You are a useful evaluator of a biomedical
question answering system”, and the temperature
and top p were set to 0 and 0.6, respectively, to
facilitate reproducibility. Out-of-the-box (OTB)
GPTs were tested with the base prompt listed in
Figure 2.

4.2.1 Reason then Score
Chain-of-thought (CoT) prompting has demon-
strated an increase in performance in various
tasks, such as arithmetic and commonsense rea-
soning (Kojima et al., 2022). We used the variant
of CoT called “Reason then Score” (RTS), in which
an LLM is asked to explain its reasoning. RTS has
emerged as a popular prompting technique (Shen

OTB prompt

We have a biomedical question, a list of
known answers, and the output generated
by an automatic question-answering system.
Given the known answers, evaluate the qual-
ity of the answer generated by the system.
In your evaluation, address the following:
1. recall: The fraction of information in the
known answers that is reported in the gen-
erated response. A higher score indicates
better recall.
2. precision: The fraction of information in
the generated response that is in the known
answers. A higher score indicates better
precision.
3. repetition: The amount that the gener-
ated response repeats the same information.
A higher score indicates less repetition.
4. readability: The generated response’s
ability to be easily understood and easily
identifiable as an answer to the question by
a human. A higher score indicates better
readability.
Use a 1-5 integer scale. Report the answer
as a json structure using the template.
{"readability": {"score": 1-5}, "recall":
{"score": 1-5}, "precision": {"score": 1-
5}, "repetition": {"score": 1-5} }.
remember to report the answer as the for-
mat above with no deviations from this for-
mat. remember "score" is a key.

Figure 2: Prompt used in the out-of-the-box (OTB)
LLM systems.

et al., 2023). In our experiments, we altered the
answer reporting format to include an explanation
area that instructs the LLM to explain its answers
(Figure 3).

4.2.2 Few Shot
LLMs are reported to display an increase in perfor-
mance when the prompt includes a few examples
with their input query (Brown et al., 2020). We pro-
vided the LLMs with six examples from BioASQ
2020. Our initial experiments showed that random
sampling of examples yielded poor performance.
We instead used a percentile-based selection strat-
egy to ensure a wide coverage of the example pool,
based on the scores given by the human judges. In
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RTS prompt

... (text of figure 2 inserted here, replacing
its json template with the following) ...
{“recall”: {“explanation”:"", “score":1-5}
“precision”: {“explanation”:"", “score":1-
5}

“repetition”: {“explanation”:"", “score":1-
5}

“readability”: {“explanation”:"", “score":1-
5}

Figure 3: Prompt used for Reason then Score (RTS)
prompting.

particular, examples with 15th and 80th-percentile
scores for recall, precision and readability were
included in the prompt.

4.2.3 Fine-tuning
We also experimented with fine-tuned
LLMs. In particular, we fine-tuned GPT-3.5
(gpt-3.5-turbo) using the same prompting
format as OTB.

4.2.4 LLMs as Meta Evaluators
Inspired by work by Shu et al. (2023), we experi-
mented with the use of LLMs as meta-evaluators
of 3 different evaluators. In particular:

1. To aid the LLM in scoring repetition, we pro-
vided it with a “Repscore” which took the
number of unique words in a response and
divided it by the total number of words.

2. Smog score (Laughlin, 1969), which looks
at the number of polysyllabic words and sen-
tences in a text, was used to aid the scoring of
readability.

3. Finally, the output from the fine-tuned GPT-
3.5 model was also included to aid with the
scoring of all dimensions.

Testing was done primarily on GPT-4, since
GPT-3.5 showed a very limited capability in rea-
soning with other scores.

4.2.5 Pairwise Ranking
LLMs have also shown potential in comparative
assessment (Liusie et al., 2024). We conducted
pairwise ranking, where the LLM evaluator (gpt4-
1106-preview) was given the output of two systems,

Pairwise Ranking prompt

We have a biomedical question, a list of
known answers, and outputs generated by
different automatic question answering sys-
tems.
Given the known answers, rank the qual-
ity of the outputs generated by the system
based on how similair they are to the ideal
answers and if they answer the question
properly.
Report the answer as a JSON structure using
the template, noting that a rank of 1 implies
that this system output is the best compared
to the others:
{"ranks": 1: "system name", 2: "system
name", "Explanation": "reasoning for why
you ranked the systems this way. be spe-
cific"}.

Figure 4: Prompt used for Pairwise ranking prompting.

the question, and was asked to rank them. We gave
the LLM a CoT of the form Score then Reason as
shown in Figure 4. We used accuracy and Cohen’s
kappa5 to evaluate the performance.

5 Results and Discussion

Table 1 shows the results of all experiments except
pairwise ranking, and Table 2 shows the results of
the experiments with pairwise ranking.

Similar to previous work, we find that token-
based methods perform worse than LLMs in gen-
eral (Liu et al., 2023). Possible causes of the
relatively poor performance of token-based ap-
proaches is, as mentioned by Hanna and Bojar
(2021), that ROUGE is unable to incorporate infor-
mation on context and semantic meaning, whereas
Sci-BERTscore is less sensitive to errors in text, es-
pecially if the candidate is lexically or stylistically
similar, and both are insensitive to negation. These
limitations have increasingly larger impacts on ab-
stractive over extractive systems, making evaluat-
ing outputs using these metrics potentially unreli-
able. Still, Table 1 shows that the token-based meth-
ods achieve a correlation with the human judge-
ments of precision and readability that is compara-
ble to that of some of the LLM approaches.

5This is the standard Cohen’s kappa, not quadratic kappa,
since now the score is not a nominal scale.
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Table 1: Spearman Correlation and Quadratic Kappa values. The Average column shows the average of Precision,
Recall, Readability, and Repetition scores. The Combined column shows the correlation between the score resulting
from averaging the machine predictions for Precision, Recall and averaging the human annotations. FS: Few Shot
and CoT: Chain-of-Thought.

Precision Recall Readability Repetition Average Combined

ρ κ ρ κ ρ κ ρ κ ρ κ ρ

To
ke

n-
ba

se
d ROUGE-1-F1 0.384 - 0.280 - 0.159 - 0.118 - 0.235 - 0.357

ROUGE-2-F1 0.412 - 0.271 - 0.164 - 0.129 - 0.244 - 0.364
Sci-BERTscore-P 0.489 - 0.184 - 0.150 - 0.233 - 0.264 - 0.391
Sci-BERTscore-R 0.283 - 0.325 - 0.146 - 0.152 - 0.227 - 0.341
Sci-BERTscore-F1 0.420 - 0.264 - 0.154 - 0.208 - 0.262 - 0.391

L
L

M

GPT-3.5 0.370 0.235 0.298 0.229 0.123 0.090 0.232 0.143 0.256 0.174 0.388
GPT-3.5 - CoT 0.322 0.266 0.293 0.256 0.168 0.151 0.242 0.155 0.256 0.207 0.376
GPT-3.5 - FS 0.363 0.252 0.333 0.253 0.130 0.122 0.039 0.036 0.216 0.166 0.370
Fine-tuned GPT-3.5 0.537 0.472 0.352 0.331 0.295 0.273 0.516 0.460 0.425 0.384 0.511
GPT-4 as meta evaluator 0.531 0.472 0.426 0.428 0.343 0.317 0.388 0.275 0.422 0.373 0.501

Table 2: Accuracy and Kappa values of pairwise ranking
evaluation.

Accuracy Kappa

Pairwise Ranking 0.61 0.31

GPT-3.5 with basic prompting displays similar
performance to token-based metrics when using
prompt engineering techniques such as CoT and
few shot. When fine-tuned, GPT-3.5 attains a much
higher correlation with humans than the token-
based metrics. GPT-4 as a meta-evaluator achieves
very similar results to the fine-tuned model. More
testing is needed to be done on GPT-4 to see if
prompt engineering leads to even better results.

Few-shot prompting performed the worst out of
the LLM-based methods. In our preliminary ex-
periments, we observed that the performance of
the few-shot approach varied, with some batches
increasing their correlations and others decreasing.
This was in contrast with the performance of the
fine-tuned approach, which had a lower variation
across batches. This suggests that the examples
chosen for few-shot could be more suited to cer-
tain batches. A promising future direction is to
incorporate a dynamic selection of examples.

6 Conclusions

We compared the use of traditional evaluation met-
rics (ROUGE, BERTScore) with the use of LLMs
for the evaluation of query-focused summarisation
of biomedical questions. For this, we used system
runs that participated in BioASQ challenge, and
computed correlation between automatic evalua-

tions and human judgements.
Our experiments show that, while LLMs with

basic prompting do not outperform ROUGE or
BERTScore, approaches that use fine-tuning or
that combine LLMs with additional scorers, sig-
nificantly improve correlation with human judge-
ments.

7 Limitations

Due to limitations of resources and the availability
of few runs, we have not experimented with a wide
range of outputs of differing characteristics. Our
training and test data used runs that were performed
in the middle to the top range of systems participat-
ing in BioASQ. Therefore, the quality of the evalu-
ators has not been tested on poor-quality runs. As
a consequence, even though the results presented
here should be valid to evaluate medium to high-
quality systems, we cannot guarantee that the qual-
ity of the evaluations applies to poor-performing
systems.

8 Ethical Considerations

The human judgements were obtained from the or-
ganisers of BioASQ. To ensure the privacy of these
judgements, we only had access to judgements of
past runs submitted by the authors of this paper,
and the review judgements were anonymous.

Even though our results show a better correla-
tion with human judgements than other automatic
evaluation metrics, there is still room for improve-
ment, and the evaluation results might not be reli-
able enough for applications requiring high-quality
output systems and high-quality evaluation.

240



References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-

ERT: Pretrained language model for scientific text.
In EMNLP.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher Manning. 2015. A large annotated cor-
pus for learning natural language inference. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, Lisbon, Portu-
gal. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

Cheng-Han Chiang and Hung-yi Lee. 2023. A closer
look into using large language models for automatic
evaluation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 8928–
8942, Singapore.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychol Bull, 70(4):213–20.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4171–4186, Minneapolis, MN.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2024. GPTScore: Evaluate as you desire. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6556–6576, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Yikun Guo, Robert Gaizauskas, Ian Roberts, and George
Demetriou. 2006. Identifying personal health infor-
mation using support vector machines. In i2b2 Work-
shop on Challenges in Natural Language Processing
for Clinical Data, Washington, DC.
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Abstract

Electronic Health Records (EHR) serve as a
valuable source of patient information, offering
insights into medical histories, treatments, and
outcomes. Previous research has developed
systems for detecting applicable ICD codes
that should be assigned while writing a given
EHR document, mainly focusing on discharge
summaries written at the end of a hospital
stay. In this work, we investigate the poten-
tial of predicting these codes for the whole pa-
tient stay at different time points during their
stay, even before they are officially assigned
by clinicians. The development of methods
to predict diagnoses and treatments earlier in
advance could open opportunities for predic-
tive medicine, such as identifying disease risks
sooner, suggesting treatments, and optimizing
resource allocation. Our experiments show that
predictions regarding final ICD codes can be
made already two days after admission and we
propose a custom model that improves perfor-
mance on this early prediction task.

1 Introduction

Electronic health records (EHR) are rich reposito-
ries of patient information, chronicling their med-
ical history, diagnoses, treatment plans, medica-
tions and outcomes (Jensen et al., 2012; Johnson
et al., 2016). The aggregation and modeling of this
data over time presents a unique opportunity for
revealing patterns that can improve patient care, op-
erational efficiency, and healthcare delivery. Con-
tained within the EHR are textual notes written
by clinicians during patient encounters, which are
essential for a comprehensive understanding of pa-
tient health. These free-text narratives stand out as
a particularly rich source of nuanced information,
but their unstructured format and domain-specific
language use have left them largely underutilized,
compared to more readily available structured data
sources (Tayefi et al., 2021).

Category # notes # words

Discharge summ. 59,652 79,649,691
ECG 209,051 5,625,393
Echo 45,794 12,810,062
Nursing 1,046,053 185,856,841
Physician 141,624 322,961,183
Radiology 522,279 165,805,982
Respiratory 31,739 11,957,187
Other 26,988 13,086,023

Table 1: The number of clinical notes from different
categories, along with the number of words in those
notes, in the MIMIC-III dataset.

Health records are often accompanied by the In-
ternational Classification of Diseases (ICD) codes –
standardized codes that categorize diagnoses and
procedures performed during clinical encounters
(Cartwright, 2013). Assigning ICD codes man-
ually is a highly time-consuming task necessary
for billing, therefore previous research has been
developing multi-label classification systems to de-
tect applicable codes that should be assigned while
writing a given document (Mullenbach et al., 2018;
Liu et al., 2021). The research focus has been on
classifying discharge summaries, which are writ-
ten at the end of a patient’s hospital stay (Ji et al.,
2021; Dai et al., 2022). While this setup provides
a useful proxy task, the complete EHR sequence
is much longer, containing detailed reports from
nursing and radiology, along with specialized notes
on echographies and cardiograms (FCG), among
others (Table 1). Recent work has argued that for
most practical applications such code classifica-
tion should be performed on earlier medical notes
instead of the discharge summary (Cheng et al.,
2023).

In this work, we investigate the potential of pre-
dicting ICD codes for the whole patient stay at
different time points during their stay. Beyond the
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task of detecting codes for a given note, we treat
ICD codes as a structured summary of all the treat-
ments provided and diagnoses assigned during a
hospital stay. The development of models for pre-
dicting this information early in the clinical time-
line, based on partial indicators even before these
codes have been officially assigned, would open
many possibilities for predictive medicine. Such
systems would go beyond the post-discharge diag-
nostic practices and could be used for identifying
early disease risks, suggesting potential treatments
or optimizing hospital resource allocation.

We investigate the feasibility of this novel task
and evaluate to what extent the final set of ICD
codes can be predicted at earlier stages during the
hospital stay. In addition, we propose a custom
model for this task that is able to improve pre-
diction accuracy at different time steps. Unlike
previous ICD code prediction models, the architec-
ture is designed with causal attention to ensure that
representations at any point throughout a patient’s
hospital stay are constructed based on the notes
available up to that point, without accessing infor-
mation in the future. The model is then optimized
to predict ICD codes after every additional note in
the input sequence, instead of only at the discharge
summary, teaching it to make predictions at any
chosen time point during the hospital stay. This
task poses additional challenges, as the length of
the complete EHR sequence far exceeds that of the
discharge summary and early notes have a weaker
correlation with the final labels. We introduce a
novel method that both augments the data during
training and extends the context during inference,
substantially enhancing the performance on early
ICD code prediction. The code for the model and
the experiments are available online.1

2 Related Work

The closest previous research to ours has been on
automating ICD code assignment. Given a docu-
ment mentioning diagnoses and treatments in free-
form text, the aim is to detect the correct codes
that should be assigned by the clinician. The first
attempts at this task primarily relied on convolu-
tional neural networks (CNNs) (Mullenbach et al.,
2018; Li and Yu, 2020; Liu et al., 2021) and long
short-term memory networks (LSTMs) (Vu et al.,
2020; Yuan et al., 2022). These models utilized

1https://github.com/mireiahernandez/icd-continuous-
prediction

pre-trained word2vec embeddings (Mikolov et al.,
2013) and combined neighbouring word represen-
tations using convolutional filters or recurrent ar-
chitectures. Despite their simplicity, some of these
models achieved very high-performance baselines
that were difficult to surpass with transformer ap-
proaches (Ji et al., 2021).

Efforts to apply pre-trained transformers without
further modifications to the ICD coding problem
were unsuccessful (Ji et al., 2021; Dai et al., 2022).
The discharge summary contains 3,594 tokens on
average, while the combined set of notes contains
an average of 21,916 tokens per patient stay (Ng
et al., 2023). Crucial information to predict pa-
tient diagnoses is likely to be dispersed throughout
these notes, thus models with limited context length
risk overlooking a significant portion of relevant
data. For this reason, subsequent studies focused
on adapting transformer architectures to process
longer textual sequences.

PubMedBERT-hier (Ji et al., 2021) employed
hierarchical transformers to mitigate the length lim-
itation issue, obtaining substantially better results.
This approach segments the document into chunks
of 512 tokens and employs a BERT-based model
pre-trained on the biomedical domain to encode
each segment (Gu et al., 2022). The segments are
then combined using a hierarchical transformer run-
ning over the CLS-token embeddings. The TrLDC
model (Dai et al., 2022) further improved perfor-
mance by employing a RoBERTa-based model pre-
trained from scratch on biomedical articles and
clinical notes (Lewis et al., 2020).

The PAAT (Partition Attention) model (Kim,
2022) was able to surpass LSTM-based models like
MSMN (Yuan et al., 2022) on the task of identify-
ing the top 50 labels. PAAT combines the Clinical
Long-Former and a bi-LSTM, employing partition-
based label attention for improved performance.
HiLAT (Hierarchical Label-Attention) (Liu et al.,
2022) achieved strong results on the top 50 labels
by utilizing ClinicalPlusXLNet, which outperforms
other transformers like RoBERTa variants, with the
downside being that the training speed is four times
slower due to its bidirectional context capturing
(Liu et al., 2022).

The HTDS (Hierarchical Transformer for Docu-
ment Sequences) model (Ng et al., 2023) integrated
earlier notes into the input context when making de-
cisions about the discharge summary. This model
employs a RoBERTa base transformer and a sepa-
rate transformer layer running over the individual
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token representations, not only the CLS embed-
dings. They found that the earlier notes were in-
deed useful as additional evidence at the end of the
hospital stay and provided performance improve-
ments when classifying discharge summaries.

All this prior work has trained systems to assign
ICD codes at the end of the hospital stay, whereas
we investigate models for making predictions at any
point during the stay. Furthermore, while previous
work has focused on detecting explicit mentions of
diagnoses and treatments in a given text, we inves-
tigate to what extent future labels can be inferred
based on only earlier documents.

3 Architecture

We investigate a model architecture that can be
trained to encode a long temporal sequence of
many clinical notes and make predictions at any
time point, only using earlier notes as context. The
model breaks the sequence into smaller chunks
and encodes them using a hierarchical transformer.
These chunks are combined with causal label at-
tention, which gathers evidence with label-specific
attention heads while ensuring that representations
at any time are constructed based on the notes avail-
able up to that point, without accessing informa-
tion in the future. Finally, a probability distribution
across the labels is predicted at each possible time
point. We refer to the model as a Label-Attentive
Hierarchical Sequence Transformer (LAHST) and
describe it in more detail below. Figure 1 provides
a diagram of the architecture.

Step 1. Document splitting. Each document
within the EHR sequence of a patient is tokenized
and split into chunks of T tokens. Each patient
has a variable total number of chunks, and during
training, a maximum of N chunks is selected based
on the criteria described in the next section.

Step 2. Chunk encoding. Each of the chunks is
encoded with a pre-trained language model (PLM),
extracting the CLS-token embedding as the repre-
sentation, yielding a tensor e ∈ RN×D. We use
the RoBERTa-base-PM-M3-Voc checkpoint, as it
has been trained on two domains that match our
task closely: 1) PubMed and PMC, which cover
biomedical publications, and 2) MIMIC-III, which
contains clinical health records (Lewis et al., 2020).

Step 3. Causal attention. We augment a trans-
former layer with causal attention (Choromanski
et al., 2021) in order to combine temporal infor-
mation from any previous step without providing

access to information in the future steps. At the
same time, the whole sequence can be efficiently
processed in parallel by masking any attention con-
nections on the right side of the target position.
This component takes as input the sequence of
chunk embeddings e ∈ RN×D and generates a
sequence of embeddings h ∈ RN×D which com-
bines information over past documents:

hi = CausalAttn(e1, ..., ei), i ∈ [1, N ] (1)

Step 4. Masked multi-head label attention.
We apply label-wise attention (Mullenbach et al.,
2018) with two key modifications: the use of multi-
ple attention heads, and the use of causal masking
to obtain temporal label-wise document embed-
dings. For each temporal position t, we define an
attention mask at ∈ RL×N to prevent attention
to future notes, which is constant in the label di-
mension, and nullifies attention weights beyond
temporal position t.

at[:, i] =

{
0, if i ≤ t

−∞ otherwise
(2)

We then combine this mask with multi-head atten-
tion (Vaswani et al., 2017) using learnable label em-
beddings q ∈ RL×D as queries and the previously
generated past context embeddings h ∈ RN×D as
keys and values:

dt = MultiHeadAttn(q, h, h, at)

= Concat(head1, · · · , headH)W o (3)

Here, each head inputs a linear projection of the
key, query and value embeddings ek,i = WK

i q,
eq,i = WQ

i h, ev,i = W V
i h and applies masked

attention (Choromanski et al., 2021) as follows:

headi = Attention(ek,i, eq,i, ev,i,mask = at)

= SoftMax(
ek,ie

T
q,i√

D/H
+ at)ev,i

(4)

This yields a sequence of label-wise document
embeddings dt ∈ RL× D for each position t ∈
{1, ..., N}. In practice, we obtain all the embed-
dings d ∈ RN×L×D efficiently in one pass by as-
signing the batch dimension to the temporal dimen-
sion.

Step 5. Temporal label-wise predictions. Fi-
nally, temporal probabilities are calculated by pro-
jecting the embedding using linear weights w ∈
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Figure 1: LAHST (Label-Attentive Hierarchical Sequence Transformer) architecture. Clinical notes generated
throughout the hospital stay are split into chunks. Each chunk is encoded using a pre-trained language model (PLM)
to extract the CLS-token embedding. Next, a hierarchical transformer encoder is applied, utilizing causal masking
to combine information among past segment embeddings. Finally, the network generates a distinct document
representation for each label and temporal point combination and these are then transformed into probabilities by
the output layer.

RL×D followed by a sigmoid activation. The prob-
ability at time t for label l is calculated using the
the label weight wl ∈ RD and the label document
embedding at position t, denoted as dt,l ∈ RD:

pt,l = sigmoid(wl · dt,l) (5)

The output of the model is a probability matrix
p ∈ RN×L, containing probabilities for each label
at each temporal point. The masking process within
the transformer and label attention modules ensures
that time t probability calculations consider only
past documents. The model is trained using the
binary cross-entropy loss.

4 Extending the Context

Hierarchical transformer architectures break long
inputs into smaller components and reduce the num-
ber of long-distance attention operations, thereby
keeping memory and computation requirements
more manageable when processing very long se-
quences. This makes them well-suited for ICD

code classification, as local context is more impor-
tant for this task and hierarchical models have been
shown to outperform long-context models in this
setting (Dai et al., 2022). However, even hierar-
chical models have difficulty with very long se-
quences, particularly during training. The gradient
must be backpropagated through each individual
chunk encoding, which can easily cause memory
issues when the models are large and the number
of segments exceeds a maximum limit.

For this reason, we propose a novel solution for
applying hierarchical transformers to very long doc-
ument sequences, such as the sequences of notes in
EHR. We refer to this method as the Extended Con-
text Algorithm (ECA). It consists of the following
modifications to the training and inference loops.

Training (Algorithm 1). For each episode of
training, the loop iterates over the training dataset
Dtrain, processing each data sample (s, y), where
s is the input sequence and y is the correspond-
ing label. Within the loop, a random selection of
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Algorithm 1 ECA Training loop
Dtrain ← training set (sequence-label pairs)
Nmax ← max. number of chunks
for each episode do

for each (s, y) in Dtrain do
m← min(Nmax, len(s))
select m random indices i1, ...im
sort i1, · · · , im in ascending order
s′ ← [s[i1], · · · , s[im]]
p, h← model.forward(s′)
L← BCE(y, p)
do backward pass and optimizer step

end for
end for

Algorithm 2 ECA Inference loop
Dtest ← test set (no labels)
Nmax ← max. number of chunks
for each s in Dtest do

hlist ←empty list
for i in range(0, len(s), Nmax) do

sbatch ← s[i : i+Nmax]
pbatch, hbatch ← model.forward(sbatch)
append hbatch to hlist

end for
h← concatenate hlist along batch dim.
p← model.label_attention(h)

end for

notes is chosen to create a subset of the input se-
quence, with the maximum number of chunks set
as Nmax. These sub-sequences s′ are then used
for optimizing the model, each time sampling a
slightly different training instance. Instead of try-
ing to fit the whole sequence into the input during
training, we sample notes and form multiple dif-
ferent shorter versions of the sequence for training
the model. This has the added benefit of creating
a data augmentation effect, as the model learns to
make decisions based on different versions of the
same datapoint.

Inference (Algorithm 2). During inference, we
process all the notes in the sequence in batches of
Nmax chunks. Each sequence batch, denoted as
sbatch, is encoded to obtain embeddings hbatch ∈
RNmax×D. Even if the full sequence does not
fit into memory, it can be processed in separate
batches to obtain all the hbatch embeddings. These
embeddings are then concatenated along the batch
dimension to obtain chunk embeddings for the
complete sequence h ∈ RNtotal×D. Finally, the

collected embeddings are passed through causal
attention and masked multi-head label attention
to obtain predictions p based on the complete se-
quence.

As the computation can be performed in sep-
arate batches and then combined, this allows for
considerably longer sequences to be used as in-
put during inference. Unlike other methods for
extending the context of transformers that rely on
reducing or compressing long-distance attention
(Beltagy et al., 2020; Munkhdalai et al., 2024), this
proposed method is also exact – the result is always
the same as it would be with a single pass using
infinite memory.

5 Experiment Set-up

5.1 Evaluation framework

We investigate the novel task of temporal ICD code
prediction, which requires the prediction of ICD
codes at any point during the hospital stay using the
notes available at that time, without relying on the
discharge summary. To evaluate the performance,
we will compare the predictive power of our model
at different points throughout the EHR sequence.
Our evaluation setup is inspired by the Clinical-
BERT model (Huang et al., 2019), which evaluates
the likelihood of readmission at different cut-off
times since admission.

The cut-off times were selected to be the 25%,
50%, and 75% percentiles of the total volume of
notes present in the training dataset, which are
shown in Table 2. These correspond to 2, 5, and
13-day cut-offs, respectively. For example, in the 2-
day setting, the model only has access to the notes
written in the first 2 days in order to predict all
the ICD codes that will be assigned to that patient
by the end of their hospital stay. Where space al-
lows, we additionally report on all the notes up to
(but excluding) the discharge summary, indicating
a setting where the model could be used to assist
in the writing of the discharge summary itself. For
comparison, we also report performance on the full
sequence which includes the discharge summary,
although this setting is retrospective and would not
provide any predictive benefit. In line with widely
used approaches to ICD coding (Mullenbach et al.,
2018), we focus on Micro-F1, Micro-AUC and Pre-
cision@5 metrics, with additional metrics provided
in the appendix.
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Percentile Days elapsed # notes

25% 1.8 112,594
50% 5.2 225,160
75% 12.8 337,726

Table 2: Percentiles of the total volume of notes present
in the training dataset. The number of days correspond-
ing to the 25th, 50th, and 75th percentiles will be used as
temporal evaluation points throughout this project.

# chunks / patient # patients

2 days 17.9±22.1 1,559
5 days 27.6±33.9 1,559
13 days 35.8±42.4 1,559
excl. DS 40.4±47.7 1,559
last day 48.4±48.1 1,573

Table 3: Length of EHR in number of chunks per patient
(average and standard deviation) and count of patients
of our dataset at different temporal cut-offs (dev set).

5.2 Preprocessing

We use the MIMIC-III dataset (Johnson et al., 2016)
for evaluation, as it contains a collection of Elec-
tronic Health Records with timestamped free-text
reports by nurses and doctors, together with the cor-
responding ICD-9 labels. First, we follow the pre-
processing steps outlined by the CAML approach
(Mullenbach et al., 2018) to obtain a dataset of
free-text clinical notes paired with ICD diagnoses
and procedure codes, and we also extract their pro-
posed train/dev/test splits. The label space is vast,
so following their method, we focus on predicting
the top 50 codes.

For our novel task, we perform some additional
preprocessing steps. First, we extract the times-
tamps of each note and, in cases where the spe-
cific time is missing, assign it to 12:00:00 of that
day. Moreover, we found that some patients had
additional notes beyond the discharge summary
document, such as other discharge summaries or
nursing notes. We exclude these additional notes
to ensure that our EHR sequence always concludes
with a single discharge summary document. We
also exclude 14 patients as their EHR contains no
other notes besides the discharge summary. Table
3 displays the statistics of our dataset at various
temporal cut-offs.

5.3 Implementation details

The model is implemented in Pytorch and it was
trained on an Nvidia GeForce GTX Titan Xp
(12GB RAM) GPU, utilizing an average mem-
ory of 11.22 GB. The model processed 5 sam-
ples per second and training took an average
time of 11 hours and 50 minutes. We used a
super-convergence learning rate scheduler (Smith
and Topin, 2019), based on its use in HTDS
(Ng et al., 2023), and an early-stopping strat-
egy with a 3 epoch patience and a maximum
of 20 epochs. Chunk size T was set to 512
tokens as that is the largest size supported by
RoBERTa-base-PM-M3-Voc. For the main exper-
iments, a limit of Nmax = 16 was used during
training, while the entire sequence (with up to 181
chunks) was used for inference. The tuning ranges
and chosen hyperparameter values are included in
Appendix A.

6 Results

In addition to the LAHST framework described in
Sections 3 and 4, we also evaluate PubMedBert-
Hier (Ji et al., 2021) and HTDS (Ng et al., 2023)
on the early prediction task. HTDS was trained to
consider earlier notes in the context while making
decisions about the discharge summary, making it
the most likely existing model to also perform well
on the early prediction task. In addition, HTDS
results are very close to the state-of-the-art on the
MIMIC-III dataset, making it a very strong base-
line. However, HTDS is a larger model and re-
quires considerably more GPU resources compared
to LAHST. Therefore, we also report a modified
version (HTDS*) which has a comparable number
of parameters. We also include the performance of
TrLDC (Dai et al., 2022) from the respective paper
as an additional strong baseline on classification of
the discharge reports.

In Table 4 we report the performance of these
systems at increasingly challenging temporal cut-
offs. LAHST shows strong performance at any
time point, outperforming all the other models at
every early prediction task. The results indicate
that some of the diagnosis and treatment codes for
the whole hospital stay can be predicted already
within the first few days of admission. While the
performance of all systems is expectedly lower in
the more challenging settings, they are still able to
reach 46% F1 and 82.9% AUC with only 2 days
of information, which could provide useful pre-
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Last day 0-13 days 0-5 days 0-2 days

Model F1 AUC P@5 F1 AUC P@5 F1 AUC P@5 F1 AUC P@5

TrLDC 70.1 93.7 65.9 - - - - - - - - -
PMB-H 67.2 91.5 63.0 30.7 68.0 30.2 31.3 68.4 31.0 31.7 68.7 31.5
HTDS 73.3 95.2 68.1 49.7 82.1 47.6 47.5 80.6 45.9 44.5 78.7 43.6
HTDS* 70.7 93.8 66.2 48.6 82.0 47.0 46.7 80.7 45.5 43.6 78.7 43.3
LAHST 70.3 94.6 67.5 52.9 87.0 53.0 50.3 85.4 50.7 46.0 82.9 47.1

Table 4: Evaluation on the early ICD code prediction task at increasingly challenging temporal cut-offs. TrLDC
(Dai et al., 2022) result is from the respective paper. We evaluated PubMedBERT-Hier (PMB-H; Ji et al., 2021) and
HTDS (Ng et al., 2023) at different early prediction points. HTDS* is a version of HTDS that is more comparable
to LAHST in terms of computation requirements. LAHST is the model described in Sections 3 and 4. Results for
PMB-H, HTDS, HTDS* and LAHST are averaged over 3 runs with different random seeds.

dictions to the hospital staff. In all the early pre-
diction settings, LAHST achieves the best results
according to all metrics. While HTDS is trained to
look at earlier documents and is also able to make
competitive predictions, it is reliant on information
in the discharge summary and therefore underper-
forms when this is not available. In contrast, the
LAHST model is trained to make predictions based
on varying amounts of evidence and achieves the
best performance.

In the "Last day" setting, which includes the
discharge summary, HTDS slightly outperforms
LAHST – this is expected, as HTDS is a larger
model and specifically trained for discharge sum-
maries. However, when compared to the similarly-
sized HTDS*, LAHST delivers comparable F1
along with improved AUC and P@5. Even though
LAHST is not trained for this particular setting,
the supervision on earlier time points helps it
achieve good results also when classifying dis-
charge summaries. In addition, it outperforms both
PubMedBERT-Hier and TrLDC according to all
metrics. We include larger results tables with addi-
tional metrics in Appendix B.

7 Analyzing the Extended Context

Selection of context during inference. The Ex-
tended Context Algorithm (ECA) allows the model
to include much longer EHR sequences in the con-
text during inference (with a generous 181 chunk
cap applied in our experiments). We evaluate the
effect of this algorithm compared to alternative
strategies used in other hierarchical models. The
"Last" setting uses the most recent 16 chunks of
text, illustrating the setting where the sequence is
truncated from the beginning in order to fit into the

Last Random ECA

0-2 days 33.5 ±0.6 29.2 ±0.5 46.2 ±0.1
0-5 days 37.6 ±0.3 35.1 ±0.4 50.9 ±0.1
0-13 days 38.2 ±0.1 37.7 ±0.5 53.6 ±0.2
Excl.DS 37.9 ±0.2 38.4 ±0.4 54.3 ±0.2
Last day 71.0 ±0.3 71.3±0.2 71.1 ±0.1

Table 5: Micro-F1 score on the development set, using
the LAHST model with alternative strategies for context
inclusion.

model. The "Random" setting samples a random
subset of chunks from the sequence instead. The
results in Table 5 show that processing the entire
sequence with ECA yields substantial performance
improvements (+12.7, +13.3 and +15.4 Micro-F1
score for 2 days, 5 days and 13 days) compared
to truncating or sampling the sequence. This re-
sult highlights the importance of including all the
available notes in the input. Only when the dis-
charge note is available (in the ‘Last day’ setting)
the previous notes become less important and all
the strategies give the same performance.

Selection of context during training. We in-
vestigate the effect of randomly sampling different
sub-sequences of notes during training. We train an
alternative version of LAHST by truncating the se-
quence to the most recent notes instead of sampling
them randomly. During inference, both versions
still receive all the notes as input, as described in Al-
gorithm 2. The results in Table 6 show how training
without random sampling substantially decreases
performance across all evaluation points (-8.4, -8.4,
-8.2, -8.0, -0.9, F1 respectively). This indicates that
randomly sampling different sub-sequences dur-
ing optimization augments the training data with
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Last Random/ECA
0-2 days 37.8 ±0.2 46.2 ±0.1
0-5 days 42.5 ±0.1 50.9 ±0.1
0-13 days 45.4 ±0.1 53.6 ±0.2
Excl. DS 46.3 ±0.1 54.3 ±0.2
Last day 70.2 ±0.2 71.1 ±0.1

Table 6: Micro-F1 of LAHST on the development set,
using alternative sampling strategies during training.

different variations which helps the model better
generalize to different temporal cut-offs, without
increasing memory or computation requirements.

8 Model Interpretability

The attention weights in the label-attention layer of
LAHST can potentially be used as an importance
indicator of different input notes. A higher weight
is associated with an increased relevance of the
particular document to predicting a specific code.
For an initial visualization, we average the weights
across all the codes to find which document types
are most important at different temporal cut-offs.

The results are shown in Fig. 2. Within the
2-day cut-off, all the reports that have diagnostic
characteristics have received the highest attention
weights. For example, the echocardiography report
is the description of an ultrasound test to identify
abnormalities in the heart structure and is used by
cardiologists to diagnose heart diseases (Van et al.,
2023). The radiology reports detail the results of
imaging procedures such as X-rays and MRIs to
diagnose diseases (Alarifi et al., 2021). All of such
reports are highly technical and are specifically cre-
ated to assist physicians with diagnostic practices.
In the absence of the discharge summary, they are
the most valuable document types for making early
predictions of ICD-9 codes and the network has
correctly focused more attention on them. In the
"Last day" setting, the discharge summary becomes
available, containing an overview of the entire hos-
pital stay, and the same model is able to switch
most of its attention to it.

9 Conclusions

In this study, we investigated the potential of pre-
dicting ICD codes for the whole patient stay at
different time points during their stay. Being able
to predict likely diagnoses and treatments in ad-
vance would have important applications for predic-
tive medicine, by enabling early diagnosis, sugges-

(a) 2-days cut-off

(b) Last day cut-off

Figure 2: Average attention weight per document type
at different temporal cut-offs. The LAHST model pro-
cesses the complete EHR sequence and focuses more on
reports of diagnostic tests for early prediction, switching
to the discharge summary when it is available.

tions for treatments, and optimization of resource
allocation. We designed a specialized architecture
(LAHST) for this task, which uses a hierarchical
structure combined with label attention and causal
attention to efficiently make predictions at any pos-
sible time points in the EHR sequence. The Ex-
tended Context Algorithm was further proposed
to allow the model to better handle very long se-
quences of notes. The system is trained by sam-
pling different sub-sequences of notes, which al-
lows the model to fit into memory while also aug-
menting the data with variations of available ex-
amples. During inference, the whole sequence is
then processed separately in batches and combined
together with a single attention layer, allowing for
lossless representations of very long context to be
calculated.

Our experiments showed that useful predictions
regarding the final ICD codes for a patient can
be made already soon after the hospital admis-
sion. The LAHST model substantially outper-
formed existing approaches on the early prediction
task, while also achieving competitive results on
the standard task of assigning codes to discharge
summaries. The model achieved 82.9% AUC al-
ready 2 days after admission, indicating that it is
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able to rank and suggest relevant ICD codes based
on limited information very early into a hospital
stay.

10 Limitations

The primary focus of this project was to investigate
the feasibility of this novel task and explore a novel
architecture for the early prediction of ICD codes.
Even though this could open up new avenues for
early disease detection and procedure forecasting,
our work has some limitations that should be con-
sidered in future work.

Firstly, our study is limited to the MIMIC dataset
as it is one of the largest and most established avail-
able datasets containing electronic health records
and ICD codes. However, the findings based on this
dataset may not generalise equally to every clinical
setting. Therefore, new experiments would need to
be conducted on representative data samples before
considering applying such technology in practice.

Our experiments focused on PubMedBERT-Hier
(Ji et al., 2021), HTDS (Ng et al., 2023) and
LAHST. However, there are many other architec-
tures and pre-trained models available which could
be investigated in this setting.

Our model is based on a hierarchical transformer
architecture which achieves good performance but
is also quite computationally expensive compared
to LSTM or CNN-based approaches (training the
model took roughly 12 hours on a 12GB GPU).
With our computational resources, we were limited
to running experiments using the [CLS]-token rep-
resentation and a maximum of 16 chunks in a batch.
However, with additional resources this work could
be further scaled up by retaining all token represen-
tations and increasing the model size to allow for
the allocation of additional chunks.

Finally, our evaluation of the temporal ICD cod-
ing task is focused on reporting the aggregate met-
rics for the top 50 ICD-9 coding labels. Future
work could investigate a larger number of labels,
along with analysing the performance separately
on individual labels and label types.

11 Ethics Statement

After careful consideration, we have determined
that no ethical conflicts apply to this project. While
clinical data is inherently sensitive, it is important
to note that the MIMIC-III dataset has undergone
a rigorous de-identification process, following the
guidelines outlined by the Health Insurance Porta-

bility and Accountability Act (HIPAA). This de-
identification process ensures that the dataset can
be used for research purposes on an international
scale (Johnson et al., 2016).

While no conflicts were identified, machine
learning systems for ICD coding carry certain risks
when deployed in hospitals. Firstly, automated ap-
proaches are trained in a supervised manner using
data from hospitals, and therefore, they are suscep-
tible to reproducing manual coding errors. These er-
rors may include miscoding due to misunderstand-
ings of abbreviations and synonyms or overbilling
due to unbundling errors (Sonabend W et al., 2020).
Moreover, automated systems may also suffer from
distribution shifts, potentially affecting their porta-
bility across various EHR systems in different hos-
pitals (Sonabend W et al., 2020). To address these
concerns, it is important to build interpretable mod-
els and develop tools that enable human coders
to supervise the decisions made by ICD coding
models.
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Appendix A

Hyper-parameter Range
Num. Layers (Mask. Transf.) 1,2,3
Num. Heads (Mask. Transf.) 1,2,3
Num. Heads (Label Atten.) 1,2,3
Peak LR 1e-5, 5e-5, 1e-4

Table 7: The range of hyperparameters searched for
tuning the model. The chosen value is shown in bold.

Appendix B

Detailed results tables using different time cut-offs.

0-2 days

Micro-F1 Macro-F1 Micro-AUC Macro-AUC P@5

PubMedBERT-Hier (Ji et al., 2021) - - - - -
TrLDC (Dai et al., 2022) - - - - -
HTDS (Ng et al., 2023) 44.5 39.7 78.7 77.5 43.6
HTDS* 43.6 40.0 78.7 76.1 43.3
LAHST 46.0 40.1 82.9 79.5 47.1

0-5 days

Micro-F1 Macro-F1 Micro-AUC Macro-AUC P@5

PubMedBERT-Hier (Ji et al., 2021) - - - - -
TrLDC (Dai et al., 2022) - - - - -
HTDS (Ng et al., 2023) 47.5 42.5 80.6 79.5 45.9
HTDS* 46.7 42.5 80.7 78.2 45.5
LAHST 50.3 44.6 85.4 82.2 50.7
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0-13 days

Micro-F1 Macro-F1 Micro-AUC Macro-AUC P@5

PubMedBERT-Hier (Ji et al., 2021) - - - - -
TrLDC (Dai et al., 2022) - - - - -
HTDS (Ng et al., 2023) 49.7 44.6 82.1 81.2 47.6
HTDS* 48.6 44.6 82.0 79.7 47.0
LAHST 52.9 47.3 87.0 83.8 53.0

Excl DS

Micro-F1 Macro-F1 Micro-AUC Macro-AUC P@5

PubMedBERT-Hier (Ji et al., 2021) - - - - -
TrLDC (Dai et al., 2022) - - - - -
HTDS (Ng et al., 2023) 50.2 45.2 82.3 81.5 47.8
HTDS* 49.0 45.1 82.4 80.2 47.5
LAHST 53.5 47.8 87.3 84.1 53.7

Last Day

Micro-F1 Macro-F1 Micro-AUC Macro-AUC P@5

PubMedBERT-Hier (Ji et al., 2021) 68.1 63.3 90.8 88.6 64.4
TrLDC (Dai et al., 2022) 70.1 63.8 93.7 91.4 65.9
HTDS (Ng et al., 2023) 73.3 67.7 95.2 93.6 68.1
HTDS* 70.7 64.9 93.8 91.6 66.2
LAHST 70.3 64.3 94.6 92.6 67.5
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Abstract

Large language models (LLMs) have shown
remarkable performance on many tasks in dif-
ferent domains. However, their performance in
contextual biomedical machine reading com-
prehension (MRC) has not been evaluated in
depth. In this work, we evaluate GPT on four
contextual biomedical MRC benchmarks. We
experiment with different conventional prompt-
ing techniques as well as introduce our own
novel prompting method. To solve some of
the retrieval problems inherent to LLMs, we
propose a prompting strategy named Implicit
Retrieval Augmented Generation (RAG) that
alleviates the need for using vector databases
to retrieve important chunks in traditional RAG
setups. Moreover, we report qualitative assess-
ments on the natural language generation out-
puts from our approach. The results show that
our new prompting technique is able to get the
best performance in two out of four datasets
and ranks second in rest of them. Experiments
show that modern-day LLMs like GPT even in
a zero-shot setting can outperform supervised
models, leading to new state-of-the-art (SoTA)
results on two of the benchmarks.

1 Introduction

Machine Reading Comprehension (MRC) is de-
fined as a task where a system tries to answer a
question based on a given context. The context
could be anything ranging from a couple of pas-
sages to a list of documents. Even though much
research has been conducted on MRC, several chal-
lenges remain when dealing with MRC tasks (Sug-
awara et al., 2022), such as the inability to handle
long-range dependencies when trying to do reason-
ing and domain adaptation. Recent improvements
in large language modeling has alleviated a lot of
the aforementioned issues.

MRC in the biomedical domain (Hermann et al.,
2015; Baradaran et al., 2022) has always been a

key area of research. Solving a biomedical MRC
task faces various challenges including large intri-
cate in-domain vocabulary, dependency on global
knowledge, etc. Due to these challenges, there is
a wide gap between the performance of conven-
tional methods in the general domain and that of
the biomedical domain. Although, traditional ma-
chine learning models did show some improvement,
they have never been any close to human baselines
or gold standards. Contrary to this preconceived
notion, modern-day LLMs have shown remarkable
performance on many biomedical tasks (Nori et al.,
2023; Yang et al., 2023; Cheng et al., 2023).

MRC can have different variations in itself. A
contextual MRC requires the LLMs to answer a
query solely by relying on a given context. In
contrast, a context-free MRC relies on model’s em-
bedded knowledge base or any open-source knowl-
edge base, such as Wikipedia, to answer a query
instead of using only the context provided. Some
of the datasets corresponding to context-free MRC
are Zhang et al. (2018); Pal et al. (2022). These
datasets are classified under context-free MRC be-
cause the given context is not sufficient to answer
the questions. There is a definite need to explore
the LLM’s inherent knowledge base or any other
source of knowledge to answer these queries. Sim-
ilarly, Berant et al. (2014b); Pappas et al. (2018);
Zhu et al. (2020) comprise of the datasets for con-
textual MRC. Again, these datasets have been cate-
gorized under contextual MRC because the queries
asked can be correctly answered just by looking at
the provided context. There is no need to induce
any kind of external knowledge in order to answer
these questions.

Recent LLMs have attained unprecedented per-
formance in a wide array of natural language pro-
cessing (NLP) tasks (Chang et al., 2023). Although
their performance have been evaluated on a multi-
tude of MRC benchmarks in a context-free setting,
their performance in a contextual setting has been
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Dataset ProcessBank BioMRC MASH-QA CliCR

# QA Pairs 150 6250 3493 7184
Avg Context Length 85 255 863 1461
Max Context Length 266 510 2911 3952

Table 1: Corpus Level Statistics

understudied. In this work, we fill out this missing
gap by evaluating GPT (OpenAI, 2023) on standard
contextual MRC benchmarks of the biomedical do-
main. The key contributions are:

1. We evaluate different prompting techniques
with GPT on four contextual biomedical MRC
benchmarks and report new SoTA results.

2. We propose a novel prompting method Im-
plicit RAG. In this method, the LLM is asked to
first retrieve the sections or textual extracts from
the context that may be relevant to the query and
then answer the given query. This technique shows
that unlike conventional RAG we no longer need
vector databases to store the embeddings of the en-
tire corpus. It further emphasizes that LLMs are
capable enough to do the retrieval in one go. Exper-
iments show that this technique is able to achieve
the best results in two out of four discussed datasets
and ranks second in rest of them.

3. Although machine evaluation is a good mea-
sure of performance, it falls short when evaluating
artificially generated text (Schluter, 2017), where
actual human preferences are significantly superior.
Therefore, we report qualitative preference metrics
by human experts on the output of our proposed
approach Implicit RAG. We find that humans agree
with the generated outputs most of the time.

2 Related Work

MRC evaluates a system’s ability to comprehend
and then reason to answer questions over the natu-
ral language present in a passage or context. Over
the years, quite a few variations of this task have
been devised to address and evaluate various as-
pects of a MRC system namely cloze-style (Her-
mann et al., 2015; Yagcioglu et al., 2018; Pappas
et al., 2018, 2020), multiple-choice (Richardson
et al., 2013; Lai et al., 2017; Berant et al., 2014a),
extractive (Yang et al., 2015; Trischler et al., 2016;
Zhu et al., 2020) and generative QA (Nguyen et al.,
2016; Kočiskỳ et al., 2018). In this study, we strive
to evaluate three of the above discussed forms of
MRC in the biomedical domain which are cloze-
style, extractive and multiple-choice using GPT.

In order to elicit an answer from an LLM like
GPT, one needs to prompt it in natural language
in an optimal manner to retrieve the intended an-
swer. To that end, there has been tremendous de-
velopment in finding optimal methods for prompt-
ing LLMs. The maximum performance boost
has been seen from the Chain-of-Thought (CoT)
Reasoning (Wei et al., 2022) prompting strategy
which asks the LLM to explain how it arrived at
the answer. More recently, Analogical Reason-
ing (AR) (Yasunaga et al., 2023a) has been pro-
posed that achieves drastically better performance
than CoT and other prompting techniques. AR
works by asking the LLM to reason about a prob-
lem by giving analogies which in return forces
the model to leverage the global knowledge en-
coded in it. While prompting methods like CoT
and AR improve LLM’s performance by exploit-
ing the model’s global knowledge embedded in it,
there has been an increase in developing novel tech-
niques, especially for cases where the context that
needs to be searched through to answer the asked
query is huge. The context could be one huge
document or a combination of multiple short/long
documents. In such scenarios, it is very important
to identify only the relevant chunks of the context
required for the underlying task and pay attention
to them. These emerging methods come under
the umbrella of Retrieval Augmented Generation
(RAG) (Lewis et al., 2020), which has been shown
to improve the performance of LLMs by retriev-
ing contextually relevant information from corpora.
The basic methodology behind RAG is to use, em-
bed, and store context in a vector database. These
embeddings can then be retrieved based on their
semantic similarity to the query.

All the aforementioned prompting methods help
interface and contextualize inputs in a better man-
ner for LLMs. While the efficacy of these methods
has been seen on several large benchmarks in dif-
ferent domains, however, the degree to which they
help in contextual biomedical MRC has been un-
derstudied. Mahbub et al. (2022) presented an ad-
versarial learning-based domain adaptation frame-
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You are a {profession} who is given a {context_type} and a corresponding {query_type}. Your job is
to read the given {context_type} and then select the best option from a list of options to answer the
{query_type}.

The {query_type} that needs to be answered is listed below.

{query_type}: {query_text}
List of options: {options}

Here is the {context_type} that needs to be read to select the best option from a given list of options for
the {query_type}.

### {context_text} ###

Figure 1: Basic Prompt Template

work for the biomedical MRC task to address the
discrepancies in the marginal distributions between
the datasets of the general and biomedical domains.
Nori et al. (2023) evaluated GPT on medical compe-
tency examinations and benchmark datasets. Even
though their work talks about biomedical MRC,
it concentrates only on context-free MRC bench-
marks. Similarly, Singhal et al. (2023) evaluated
Med-PaLM 2 on medical competency examina-
tions and thus focuses on context-free biomedical
MRC.

3 Datasets

The four datasets from the biomedical and health-
care domain we choose to explore and analyze the
performance of GPT are ProcessBank (Berant et al.,
2014b), BioMRC (Pappas et al., 2020), MASH-QA
(Zhu et al., 2020) and CliCR (Šuster and Daele-
mans, 2018). There are a multiple reasons for
selecting these four datasets. First, we want to
focus on datasets that have not yet been evaluated
by modern-day LLMs like GPT. Next, we want
to pick up datasets that vary in their statistics and
nature. Finally, based on our understanding, these
4 datasets covered the majority of research around
contextual MRC in the biomedical field.

ProcessBank contains descriptions of biologi-
cal processes as context accompanied by multiple-
choice questions. BioMRC, an improved version
of BioREAD (Pappas et al., 2018) is a large-scale
cloze-style dataset. It contains abstracts and titles
of biomedical articles and the task of any MRC
system is to predict the missing entity in a title
using the corresponding abstract as context. In
BioMRC, all the biomedical entities mentioned in

the abstract are considered as candidate answers
and thus one option needs to be chosen from them.
MASH-QA is associated with consumer health do-
main where the answers can consist of sentences
from multiple spans of the long context. The can-
didate answers include every single sentence of the
given context. CliCR is again a cloze-style dataset.
It contains cloze queries from clinical case reports.
Unlike BioMRC, CliCR doesn’t really have a list
of candidate answers with one of them being the
correct answer. Rather, CliCR contains a ground-
truth answer set which consists of different lexical
and semantic variations of the ground-truth answer,
and thus all of them are correct. We use only the
test sets of these datasets for all our prompting ex-
periments in a zero-shot setting. We use BioMRC
LITE version of BioMRC. The statistics of the four
datasets are listed in Table 1.

4 Prompting Techniques

While an exhaustive study of all prior prompting
strategies could have been a better experimental
setup but due to the cost-prohibitive nature of run-
ning large-scale experiments on GPT, we only se-
lect the techniques that have shown to perform well
in the general domain. Along with these strategies,
we also introduce a novel prompting method named
Implicit RAG. We elaborate on all of these different
prompts and their corresponding templates. There
may be slight differences in prompt templates of the
same prompting strategy across different datasets
in order to adhere to the syntactic and semantic
rules of English grammar as well as align with the
dataset characteristics.
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Figure 2: Implicit RAG Technique

Basic The prompt template used for this tech-
nique is shown in Figure 1. The Basic prompting
approach asks GPT to answer the query in the sim-
plest way possible. The profession placeholder
specifies the role that GPT has to take in order to
answer the asked question. Based on the source
of the dataset, this placeholder takes the value of
biologist in the case of ProcessBank, biomedical re-
searcher in the case of BioMRC, consumer health-
care expert in case of MASH-QA and medical ex-
pert in the case of CliCR dataset. Again, based
on the source of the dataset, the placeholder con-
text_type takes the value of paragraph for Process-
Bank, abstract of the paper for BioMRC, health-
care article for MASH-QA and clinical case report
for CliCR. The placeholder query_type takes the
value of query for ProcessBank, title containing
the missing entity for BioMRC, query for MASH-
QA and query containing the missing entity for
CliCR. The query_text placeholder contains the
actual text of the query and similarly context_text
contains the actual text of the context. The options
placeholder is present only for ProcessBank and
BioMRC datasets and contains the choices to select
from while answering the asked query.

Chain-of-Thought Reasoning (CoT) The ratio-
nale behind using the CoT technique is that there
may be multiple smaller questions that need to be
answered first in order to conclude the answer of
the final asked question. For example, one of the
questions asked to GPT is Has there been at least 6
weeks of provider-directed conservative treatment?.

This question can easily be divided into 3 smaller
questions Has there been any conservative treat-
ment?, Was the treatment provider-directed? and
What was the duration of conservative treatment?.
The prompt template used for this technique is ex-
actly same to that of Figure 1 with an additional
line instructing the model to Think step by step.

Analogical Reasoning (AR) Inspired by Ya-
sunaga et al. (2023b), we design our own analogical
reasoning strategy by tweaking the prompt to fit
our problem statement. We do this because, un-
like the general domain, GPT would not be able to
recall specific dataset-level knowledge, as we are
not sure if it was ever trained on the datasets being
used in our study. Rather, we frame the prompt so
that GPT does not need to rely on a lot on global
knowledge. To that end, instead of asking GPT to
generate any kind of relevant QA pairs based on
its global knowledge, we ask GPT to generate QA
pairs from the given context and then answer the
initial question. There is one hyperparameter for
this technique which is the number of QA pairs to
generate.

Implicit Retrieval Augmented Generation
(RAG) Most of the work on RAG talks about
data retrieval based on an accepted relevancy score
and then using LLM prompts to answer the given
query. The data retrieval is done by storing the
embeddings from some encoder of the entire cor-
pus (a datapoint’s context in our case) in a vector
database index and then retrieving the most match-
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You are a {profession} who is given a {context_type} and a corresponding {query_type}. Your job is
to read the given {context_type} and then select the best option from a list of options to answer the
{query_type}.

The {query_type} that needs to be answered is listed below.

{query_type}: {query_text}
List of options: options

Identify {number_of_sections} most relevant sections or text extracts from the given {context_type} that
may help in selecting the best option to answer the given {query_type}. The identified sections or text
extracts should be distinct from each other. The identified sections or text extracts must be between
{lower_limit_length} to {upper_limit_length} words long.

Now, choose the best option to answer the given {query_type} using the identified sections or text
extracts.

Here is the {context_type} that needs to be read to select the best option from a given list of options for
the {query_type}.

### {context_text} ###

Figure 3: Implicit RAG Prompt Template

ing data points (text extracts or sections from a
datapoint’s context) for a given query. The key
idea behind using RAG is that it helps in saving a
lot of computational cost and improves the LLM’s
performance as now it has to look in a smaller
knowledge space to answer the asked question. In
our proposed novel prompting technique Implicit
RAG, we completely ignore the overhead involved
in getting the embeddings of the entire corpus and
storing them in a vector database. Instead, we ask
the LLM itself to find the most relevant text ex-
tracts or sections in the given context which may
help in answering the asked question, and then
later use these extracted sections to conclude the
answer to the original question. The general work-
ing of our proposed prompting technique is shown
in Figure 2. There are two hyper-parameters for
this technique. First is, the number of sections to
extract, and the next one is the number of words
in each section or text extract. The prompt tem-
plate used for this technique is shown in Figure
3. The hyper-parameter values for the number of
sections and number of words in each section is
provided in the placeholders number_of_sections
and lower_limit_length and upper_limit_length.

5 Results & Analysis
1We use the 32k context window version of GPT-4
to conduct all our experiments. We set the tem-
perature, frequency penalty, and presence penalty
to 0 and max tokens to 1000 for GPT-4. The re-
sults for all the datasets have been discussed in-
dividually below. Based on different iterations
of experiments, we choose the hyper-parameter
number of QA pairs to generate for AR to be 3
for all the datasets. Similarly, for Implicit RAG,
we choose the hyper-parameter lower_limit_length
and upper_limit_length values as 50 and 200 re-
spectively for all the datasets except MASH-QA.
For MASH-QA, we choose lower_limit_length
as 0 and upper_limit_length as 300. We choose
number_of_sections for Implicit RAG to be 1 for
MASH-QA, 2 for ProcessBank and 3 for BioMRC
and CliCR.

ProcessBank The results for ProcessBank are
shown in Table 2. We ran all 4 prompting strategies
on the entire test set of 150 datapoints in a zero-shot
setup. Every single prompting method outperforms
the previously proposed methods, thus giving us

1We will release the relevant sections identified by the
Implicit RAG technique as well as the question-answer pairs
generated by the AR method upon acceptance for all the dis-
cussed datasets which can prove useful for other researchers.
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Method Accuracy

Basic (Full) 0.96
CoT (Full) 0.96
AR (Full) 0.96
Implicit RAG (Full) 0.97

Implicit RAG (Full) 0.97
Gold Structure 0.77
ProRead 0.67
SyntProx 0.60
TextProx 0.55
Bow 0.47

Table 2: Results on ProcessBank. The results for Gold
Structure, ProRead, SyntProx, TextProx and Bow have
been discussed in Berant et al. (2014b)

a new SoTA on this dataset. Among the different
prompting strategies, Implicit RAG gets the best
results. The important observations are:

1. The only 4 to 5 datapoints that GPT got
wrong either are very confusing for even humans
to answer or had some typo or extra punctuation in
ground-truth answers which GPT was not able to
mimic during its generation.

2. It is observed that all the GPT prompting
strategies work more or less the same if the ques-
tion can be answered from a small span in the pro-
vided context. The reason why Implicit RAG is
able to outperform other techniques is because this
dataset includes around 30% of temporal and true-
false type questions which require extensive analy-
sis of the entire context and that the answer can be
spread in different segments of the context. There-
fore, reducing the knowledge space by extracting
relevant sections to answer the asked question helps
in improving the performance.

BioMRC The results for BioMRC are listed in
Table 3. Due to cost-related reasons, we first com-
pare different prompting methods by running them
on a randomly selected 15% (1000 datapoints) sub-
set of the test set and then choosing the best prompt-
ing technique to run on the entire test set. All
these experiments are done in a zero-shot setting.
Amongst the different prompting techniques, Basic
prompting gets the best results and Implicit RAG
ranks second. The important observations are:

1. Even though BioMRC is a cleaner version of
BioREAD, there are still elements of lack of struc-
ture in the dataset. For example, there is no 1-1
mapping between entity IDs and entities. So, this

Method Accuracy

Basic (1000) 0.87
CoT (1000) 0.81
AR (1000) 0.82
Implicit RAG (1000) 0.83

Basic (Full) 0.87
MLP-based Weighting 0.88
AoA-Reader with BioBERT 0.87
SciBERT-Max-Reader 0.80
AoA-Reader 0.70
AS-Reader 0.62

Table 3: Results on BioMRC. The results for models
MLP-based Weighting and AoA-Reader with BioBERT
are discussed in Lu et al. (2022) whereas the results for
SciBERT-Max-Reader, AoA-Reader and AS-Reader are
explained in Pappas et al. (2020)

means the same entity can be mapped to multiple
entity IDs and vice versa which causes a lot of con-
fusion when quantifying performance. The authors
of BioMRC claim that for any query, the abstract
or the context contains all the candidate options
including the correct answer but this is not always
true leading to more confusion during evaluation.

2. Quite a few times GPT is able to generate an
acronym answer instead of its corresponding full
form. Ideally, both acronyms and their full forms
must be considered as correct answers.

3. There are instances where GPT being a gener-
ative model is able to produce semantically similar
answers but still they are marked wrong as they
do not exactly match with the correct answer. An
embedding based metric can be helpful here.

4. There are a lot of entities which are semanti-
cally and syntactically the same but still belong to
different ontologies and thus have different entity
IDs. For example, in one case, GPT generates the
answer amino acids where the correct answer is
amino acid but since both of these entities have
different IDs, this answer had to be marked wrong.

Another important aspect to note here apart from
the lack of structure in the dataset is the overall sys-
tem design of supervised models which are being
compared to GPT when talking about SoTA. Super-
vised models use 70%-80% of the available data
as their training set which allows their parameters
to get a good idea about the nuances of the dataset
whereas in case of GPT, all our experiments are
being conducted in a zero-shot setting. Also since
GPT is a generative model, the chances of GPT
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Method EM F1 P R

Basic (600) 0.12 0.53 0.50 0.56
Analogical (600) 0.11 0.50 0.53 0.47

CoT (600) 0.11 0.52 0.50 0.55
Implicit RAG (600) 0.10 0.52 0.51 0.52

Basic (Full) 0.14 0.53 0.50 0.57
Bert 0.9 0.25 0.56 0.16

RoBERTa 0.9 0.29 0.58 0.19
XLNet 0.9 0.29 0.56 0.20

MultiCo 0.22 0.57 0.58 0.56
Tanda 0.9 0.25 0.56 0.16

Table 4: Results on MASH-QA dataset. The results for
Bert, RoBERTa, XLNet, MultiCo and Tanda have been
talked about in Zhu et al. (2020)

generating an answer not present in the candidate
answer list despite the final answer being seman-
tically and syntactically the same is really high.
But a supervised model is never going to face this
problem as it makes its prediction based on the con-
fidence score for each candidate answer and thus
the final answer is always going to be present in
the candidate answer list.

MASH-QA The results for MASH-QA are
shown in Table 4. We start by conducting a com-
parison between different prompting strategies by
evaluating them on a randomly selected 15% (600
datapoints) subset of the test set. These experi-
ments are undertaken in a zero-shot setting. As
we can see in Table 4, Basic prompting performs
the best while Implicit RAG ranks second. The
important points to discuss here are:

1. The answers in QA pairs of MASH-QA are
very subjective. The authors of this dataset have not
specified any structured process that was followed
by the healthcare experts when trying to answer
the questions asked on a website from where this
dataset was sourced in the first place. An in-depth
analysis shows that even though GPT is able to ex-
tract better answers a lot of times, since it does not
match with the ground truth answers, the evaluation
metrics do not reflect it’s true capabilities.

2. There is a correlation observed between in-
crease in the number of sections and decreasing
performance of Implicit RAG. The reason is that
the answers in this dataset are long span and thus
with increasing number of sections, there is a loss
of contextual continuity as the ground truth answers
can get split across multiple sections. This ends up

Method EM F1

Basic (1100) 0.37 0.53
Analogical (1100) 0.39 0.54
CoT (1100) 0.36 0.51
Implicit RAG (1100) 0.38 0.54

Analogical (Full) 0.34 0.52
Human Novice 0.31 0.45
Human Expert 0.35 0.54
GA-Anonym 0.25 0.33
GA-Ent 0.22 0.30
GA-NoEnt 0.15 0.34
SA-Anonym 0.20 0.27
Sim-Entity 0.21 0.29

Table 5: Results on CliCR dataset. The results for
Human Novice, Human Expert, GA-Anonym, GA-Ent,
GA-NoEnt, SA-Anonym and Sim-Entity are explained
in Šuster and Daelemans (2018)

confusing the LLM making it difficult to choose
the right set of sentences from different sections.
Hence, it performs the best when asked to extract
just one section from the context. But because
MASH-QA contains answers which can be present
in disjoint spans of the context, extracting just one
section is not able to make Implicit RAG the best
performing prompting method.

3. One question which may arise is whether ex-
tracting one section or having the hyper-parameter
number of sections set to 1 for Implicit RAG makes
it same as that of Basic prompting. Implicit RAG
and Basic prompting become the same only when
we are not only extracting just one section from the
context but also when the hyper-parameter number
of words for Implicit RAG is set equal to the length
of the entire given context. But for MASH-QA,
the hyper-parameter number of words is set to 300
with the lower limit being 0 and upper limit being
300 and hence they are different.

Again, we need to reiterate that GPT’s perfor-
mance in case of MASH-QA is being compared to
supervised models which use 70%-80% of the total
data as their training set allowing their parameters
to capture granular details better than a generic
LLM like GPT in a zero-shot setting.

CliCR The results for CliCR can be seen in Ta-
ble 5. Again, due to cost-related reasons, we first
compare different prompting techniques by running
them on randomly selected 15% (1100 datapoints)
subset of the test set and then choosing the best
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Dataset ProcessBank (50) BioMRC (50) MASH-QA (50) CliCR (50)

Pattern ✓(46) ✗(4) ✓(41) ✗(9) ✓(7) ✗(43) ✓(31) ✗(19)

Right Section 100% 100% 95% 56% 100% 93% 81% 32%
Wrong Section 0% 0% 5% 44% 0% 7% 19% 68%

Table 6: Qualitative Analysis of Implicit RAG on ProcessBank, BioMRC, MASH-QA and CliCR

prompting method to run on the entire test set. All
these experiments are done in a zero-shot setting.
Amongst the different prompting strategies, Im-
plicit RAG and AR get the best results in terms
of F1 metric. AR minutely performs better than
Implicit RAG when compared in terms of the Exact
Match (EM) metric. However, EM is a very harsh
metric for a generative model as there can be so
many possible variations of semantically similar
output which are not wrong. Since AR is computa-
tionally faster with respect to Implicit RAG, we ran
AR on the entire dataset. All the prompting meth-
ods outperform the previously proposed methods.
Not only does GPT surpass the performance of pre-
vious models, but it also comes close to Human
Expert performance while beating Human Novice
results. The important observations are:

1. The authors of CliCR mention that for the
training of supervised models, only those instances
are used for which at least one ground-truth an-
swer from the set of ground-truth answers occurs
in the clinical case report or the context. But for
the evaluation part, for both validation and test sets
even those datapoints are included where there is
no intersection between ground-truth set and the
entities mentioned in the context. This favors super-
vised learning settings as supervised models have a
separate training and development set which can al-
low the parameters of the model to learn such cues.
GPT is still able to perform better possibly because
the global knowledge embedded in its parameters
gives it enough evidence to perform well.

2. The authors of CliCR compare various skills
in their work between the previous SoTA (GPT
is the new SoTA) model GA-NoEnt and Human
Expert and show that there still exists a huge gap
between them. Since GPT is able to achieve almost
Human Expert level performance, we can expect it
to show similar capabilities in other MRC tasks.

3. There are multiple reasons why Implicit RAG
performs well on this dataset. First, the mean
length of context in this dataset is 1461 words
which indicates that with increasing size of con-

text, the chances of analysis of different sections of
the context simultaneously to answer a question is
high and that is the core idea behind Implicit RAG.
Next, the authors of CliCR list out that 70% of the
queries in this dataset require the bridging skill,
40% require the skill of tracking and around 25%
demand the spatiotemporal skill. All these three
skills indicate that answering queries in this dataset
require deriving cues from different segments of
the context and that is what we propose as the key
rationale behind Implicit RAG.

Implicit RAG Out of the four datasets that we
use in this study, Implicit RAG is able to achieve
the best results for two of them when compared
with other prompting techniques. It ranks at the
second place for the other two datasets. One of
the questions which may arise is whether Implicit
RAG can be applicable to contexts which cannot
fit in LLM’s 32k token limit. Implicit RAG will es-
pecially perform better than other prompting tech-
niques in cases where the context size is more than
32k. In such cases, we can chunk the context and
make multiple calls to Implicit RAG to retrieve
relevant sections given the query. Once all the rel-
evant sections have been retrieved, the last call to
Implicit RAG can use these sections to arrive to an
answer. But all other prompting techniques require
analysis of the entire context (greater than 32k in
this case) at the same time to arrive to an answer.
We further do a qualitative analysis on 50 randomly
picked datapoints for all four datasets. We check
how many times the extracted sections are relevant
to the question or not. Even if 1 out of all the ex-
tracted sections are relevant, we consider that to
be a valid retrieval irrespective of whether the final
answer was correct or incorrect. The results are
shown in Table 6. As we can see, Implicit RAG is
able to extract relevant sections in most cases.

6 Conclusion

In this work, we show that even in a zero-shot set-
ting, GPT surpasses the performance of supervised
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models for two out of four benchmarks. Further-
more, GPT’s performance comes close to that of
Human Expert for one of the benchmarks. Our
study corroborates that LLMs indeed have sur-
passed preconceived techniques even on difficult to
model domains like biomedicine. We also come up
with a novel prompting method Implicit RAG which
gets the best results in two out of four datasets and
ends up at rank two in others. This opens a new
research direction for the RAG domain allowing
other researchers to experiment with this technique
on other domain datasets.

7 Limitations

Due to cost associated with running large-scale ex-
periments with GPT, we did a comparison of differ-
ent prompting techniques on a subset of about 15%
of the entire test set for three out of four datasets we
discuss in this work. It could be possible that there
may be a slight difference in the distribution of the
random subset we chose in comparison to the entire
test set and this could potentially change the final
results obtained by a given prompting technique
although we expect the difference to be small. As
discussed earlier, in cases where the answer to a
query can be found in a small span of the context,
there is not a huge difference between different
prompting techniques. Thus, running the Basic
prompting method will be computationally more
inexpensive than running heavier prompting strate-
gies like AR or Implicit RAG.
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Abstract

While the popularity of large, versatile lan-
guage models like ChatGPT continues to rise,
the landscape shifts when considering open-
source models tailored to specific domains.
Moreover, many areas, such as clinical doc-
uments, suffer from a scarcity of training data,
often amounting to only a few hundred in-
stances. Additionally, in certain settings, such
as hospitals, cloud-based solutions pose privacy
concerns, necessitating the deployment of lan-
guage models on traditional hardware, such as
single GPUs or powerful CPUs. To address
these complexities, we conduct extensive ex-
periments on both clinical entity detection and
relation extraction in clinical documents using
1B parameter models. Our study delves into
traditional fine-tuning, continuous pre-training
in the medical domain, and instruction-tuning
methods, providing valuable insights into their
effectiveness in a multilingual setting. Our
results underscore the importance of domain-
specific models and pre-training for clinical nat-
ural language processing tasks. Furthermore,
data augmentation using cross-lingual informa-
tion improves performance in most cases, high-
lighting the potential for multilingual enhance-
ments.

1 Introduction

In the last few years the deep learning revolution
has produced significant changes in information
extraction (IE) from clinical text. Pre-trained large
language models (LLMs) based on attention and
transformer architectures (e.g., BERT, T5, etc.)
have become popular mainly due to their superior
performance with respect to traditional machine
learning approaches. Fine-tuning on downstream
tasks has been the standard approach used to trans-
fer general pre-trained knowledge to specific tasks
of interest, including information extraction from

*These authors contributed equally to this work.

clinical documents. In addition to fine-tuning, con-
tinuous pre-training (Gururangan et al., 2020) has
shown to be effective to adapt a LLM to the medical
domain or to a specific set of languages. Recently,
very large language models have further increased
both the amount of data used in the pre-training
phase, and the complexity of the model parameters.
The resulting models (e.g., GPT-4) achieve high
performance with few-shot or even zero-shot in-
context learning techniques (i.e., prompting) (Liu
et al., 2023). Finally, instruction-tuning (Zhang
et al., 2023) has emerged as a powerful approach to
align pre-trained LLMs to human expectations for a
number of natural language processing (NLP) and
conversational tasks, further improving usability
and performance of LLMs.

Although there is a clear trend towards large
language models with general purpose conversa-
tional abilities (e.g., ChatGPT), when the choice is
constrained to open source models for a domain-
specific downstream task (more than often in a low-
resource setting), the current landscape of solutions
is rather restricted. In addition, there are good rea-
sons to constraint application solutions to small
models, particularly because they are computation-
ally manageable, avoiding the need of expensive
hardware or to move sensitive data on the cloud.
Given the above considerations, there is a lack of
consensus on what would be the best solution.

With the aim of shedding light in the current
LLM landscape, in this paper we investigate how
available small LLMs perform on fine-tuning, con-
tinuous pre-training and instruction-tuning on in-
formation extraction from clinical documents. We
consider LLMs that are available open source, are
within the range of 1B parameters, and that are
available in several versions, allowing to investi-
gate the impact of multilinguality and instruction-
tuning. Our experiments encompass English and
Italian datasets for clinical entity detection, and Ital-
ian and Spanish for relation extraction, addressing
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two primary research questions:

• Is continuous pre-training, both on languages
and domain, effective on our tasks and do-
mains? Does it allow to reduce the need of
fine-tuning data in our low-resource setting?

• Is general purpose instruction-tuning effec-
tive? Is it competitive with continuous pre-
training, both on domain and languages?

In addition to core experiments on small LLMs,
we conducted additional experiments aiming at as-
sessing the role of data augmentation on the same
models and tasks. Data augmentation is a common
practice to boost performance, and we are inter-
ested in either merging or translating datasets of
different languages, as they are becoming more and
more available, although in limited amounts.

The primary contributions of the paper include:
(i) comparing fine-tuning, continuous pre-training,
and instruction-tuning of the same pre-trained
model on two NLP tasks, a novel comparison to our
knowledge; (ii) investigating the relations between
continuous pre-training on languages and continu-
ous pre-training on a specialized domain, suggest-
ing a promising research direction; (iii) demonstrat-
ing that, through accurate parameter optimization,
language models with 1B parameters remain com-
petitive, although absolute performance was not the
primary focus; and (iv) indicating that language-
based data augmentation enhances performance in
our low-resource setting.

2 Background

2.1 Pre-trained Language Models

In recent years, there has been extensive research
on LLMs owing to their capacity for pre-training,
allowing them to learn from vast amounts of data
in a self-supervised manner. These models have
demonstrated remarkable performance across vari-
ous NLP tasks (Howard and Ruder, 2018; Radford
et al., 2019). Scaling LLMs, either by increasing
model size or training data, often enhances their ca-
pacity for downstream tasks. Several studies have
explored the performance limits through scaling,
primarily focusing on enlarging model size while
maintaining similar architectures and pre-training
tasks. Continuous pre-training has emerged as a
method to enhance LLM performance in specific
domains (Gururangan et al., 2020).

2.1.1 Instruction Tuning
A significant issue with LLMs is the discrepancy
between their training objective and users’ needs:
while LLMs are typically trained to minimize con-
textual word prediction errors on large datasets,
users expect the model to "follow their instructions
helpfully and safely". Instruction tuning (Khashabi
et al., 2020; McCann et al., 2018) is proposed as
a technique to enhance the capabilities and con-
trollability of LLMs. It consists in training LLMs
using (INSTRUCTION, OUTPUT) pairs, where
INSTRUCTION denotes the human instruction for
the model, and OUTPUT the desired output that
follows the INSTRUCTION. Instruction tuning
bridges the gap between the next-word prediction
objective of LLMs and users’ objectives of instruc-
tion following, thereby increasing controllability
and predictability. Additionally, it is computation-
ally efficient and aids LLM adaptation to specific
domains.

2.2 LLMs and Information Extraction
Named Entity Recognition (NER) is a key NLP
task involving the identification and classification
of entities within text. Early methods relied on
rule-based systems and manual dictionaries for en-
tity identification (Petasis et al., 2001; Ruokolainen
et al., 2020). A significant advancement in NER
came with the introduction of Conditional Ran-
dom Fields (CRFs), which effectively addressed
sequence labeling tasks (Lafferty et al., 2001). The
emergence of transformer-based models such as
BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020), and their specialized variants has revolu-
tionized NER by capturing contextual information
adeptly. These models exhibit remarkable perfor-
mance across various domains. Furthermore, NER
extends to multilingual and cross-lingual scenarios
(Zanoli et al., 2023), where models like XLM-R
have proven effective (Conneau et al., 2020).

Relation extraction (RE) is concerned with the
identification and categorization of relationships
between entities mentioned in text (Mintz et al.,
2009). In this paper our focus is on the extraction
of relationships from clinical documents.

2.3 IE from Clinical Documents
Historically, medical concept extraction began with
rule-based systems like MetaMap (Aronson and
Lang, 2010) or hybrid systems (rule-based and ML)
cTAKES (Savova et al., 2010) but faced challenges
with the complexity of clinical text. Dictionary
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Lookup, another popular approach (Doğan et al.,
2014), relied on exact matching with predefined
clinical terms but lacked robustness to term vari-
ability. BANNER, an open-source biomedical NER
system (Leaman and Gonzalez, 2008), emerged as
a domain-independent solution, surpassing base-
line systems and serving as a benchmark. Deep
learning models, notably CNN-based architectures
(Zhu and Wang, 2019), have enhanced NER by
leveraging neural networks’ sequential insight.

Transformer-based models like BERT (Devlin
et al., 2019) have further improved NER per-
formance in clinical documents, adapted by re-
searchers for biomedical NER (Michalopoulos
et al., 2021; Lamproudis et al., 2022). XLM-
RoBERTa model experimentation on the E3C cor-
pus (Zanoli et al., 2023) showcased its efficacy
in various setups. Recent trends show a shift to-
wards employing transformer models in diverse
roles, including pipeline systems and Seq2Seq
models (Wang and Lu, 2020; Yamada et al., 2020).

The specialized nature of medical texts requires
tailored research and model adaptation. Our work
addresses this need by focusing on small generative
language models, particularly T5 and its variants
(Raffel et al., 2020), for NER and RE tasks within
clinical documents. These models offer a resource-
efficient alternative, aligning with the practical re-
quirements of the medical domain.

3 Core Experiments

In this section, we present core experiments com-
paring four model versions across two information
extraction tasks (NER and RE) in clinical docu-
ments with limited training data and across three
different languages.

3.1 Experimental Design

We address the relations among fine-tuning, con-
tinuous pre-training and instruction-tuning using
models with “1B parameters”. The experimental
design includes: (i) four versions of a “1B param-
eters” generative model: a base version (T5), a
version with continuous pre-training on several
languages (mT5), a version with continuous pre-
training on the medical domain (MedMT5), and a
version which has been instruction-tuned on gen-
eral NLP tasks (FLAN-T5). Full fine-tuning ap-
proaches have been employed to train the language
models to tackle NER and RE tasks whereas for
Flan-T5, the prompt fine-tuning approach has been

adopted. We run the four models on two IE tasks on
clinical documents, NER and RE. For each task we
provide results both on a dataset with low-resource
data and on a dataset with high-resource data. Fi-
nally, experiments cover three languages: English,
Italian and Spanish.

A core question behind our experiments on small
models is the following: does instruction-tuning
overcome the need for continuous pre-training (on
languages and domain) on our core models applied
to our experimental setting?

3.2 Task 1: Clinical Entity Detection
This task consists in identifying relevant clinical
entities from clinical texts, such as patient records,
medical reports, and clinical notes. Unlike scien-
tific publications, which focus on research findings,
clinical notes encompass documents that report var-
ious aspects of clinical practice, including the ra-
tionale for a clinical visit, descriptions of physical
examinations, assessments of the patient’s condi-
tion, diagnosis, and subsequent treatment plans.
For instance, consider a clinical note:

“Patient John Doe, a 45-year-old male, was admitted on July

15, 2023, with complaints of chest pain. He has a medical

history of hypertension and diabetes. During the examination,

his blood pressure measured 150/90 mm Hg, and his blood

glucose level was 180 mg/dL.”

Entity detection here targets essential information,
including:

• Patient Information: “John Doe”, “45-year-
old male”

• Admission Date: “July 15, 2023”
• Chief Complaint: “Chest pain”
• Medical History: “hypertension”, “diabetes”
• Vital Signs: “blood pressure 150/90 mm Hg”,

“blood glucose 180 mg/dL”
We frame the Clinical Entity Detection task as a

text-to-text generation task, emphasizing the iden-
tification and labeling of textual spans as named
entities within a context. We use the following two
datasets.

European Clinical Case Corpus (E3C). This is
a dataset of clinical cases already published in jour-
nals, covering Spanish, Basque, English, French,
and Italian (Magnini et al., 2021, 2022). The an-
notations focus on both clinical entities, specifi-
cally disorders, as classified in UMLS taxonomy,
and temporal expressions following the THYME
standard. For our experiments, we utilize the pre-
processed E3C corpus from (Zanoli et al., 2023),
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conducting experiments on the English (E3C_En)
and Italian (E3C_It) datasets, as outlined in Table 1.
We acknowledge that the E3C clinical notes are an
idealized version of real-world notes, but they offer
a privacy-compliant alternative.

NCBI Disease Corpus. NCBI (Doğan et al.,
2014) includes 6,892 mentions of disease names
and their corresponding identifiers in 793 PubMed
abstracts. Categorized mentions allow flexible
matching to MeSH and OMIM concepts, while
preserving intended meaning. High inter-annotator
agreement and low ambiguity make NCBI a strong
foundation for machine learning systems, bene-
fiting biomedical knowledge discovery. Table 3
presents the distribution of disease mentions in the
NCBI dataset over the training, dev and test sets.

3.3 Task 2: Test-Result Relation Extraction

This task consists of identifying the relations
between laboratory tests and their measurements
within a clinical note. Building on recent ad-
vancements in the field, we approach test-result
relation extraction as a form of text summarization,
leveraging text-to-text transformer-based models.
The key idea is to represent relations as summa-
rized text of a given input as illustrated in Table 2.
For the given clinical note, the summarized
text is “<EVENT>creatininemia<RESULT>
pari o inferiori a 1.5 mg/dl and
<EVENT>ipercolesterolemia<RESULT> 280
mg/dl”. We use the following datasets.

CLinkaRT and TESTLINK datasets. We rely
on data sourced from the Italian and Spanish sec-
tions of the E3C Corpus, respectively, CLinkaRT
(Altuna et al., 2023b) and TESTLINK (Altuna
et al., 2023a), which introduce relation extraction
in the context of clinical cases. Table 2 reports
an example extracted from the CLinkaRT dataset
(Altuna et al., 2023b), along with its associated rela-

Training Test
Language Gold Pre-processed Gold Pre-processed
English 463 437 561 516
French 596 569 731 695
Italian 361 345 508 461*

Spanish 525 509 820 800
Basque 846 835 1064 1054

Table 1: Entity distribution over E3C languages. [*] We
found 460 entities in the GitHub link instead of 481 as
reported in (Zanoli et al., 2023).

tions between medical laboratory tests and their re-
spective results. Each relation comprises an event,
the associated result, and their corresponding po-
sitions within the text. For example, in the first
relation, “creatininemia” is found within positions
[286 - 281], with value “pari o inferiori a 1.5 mg/dl.”
Table 4 reports some statistics about the CLinkaRT
and TESTLINK datasets.

3.4 Models

We focus on “1B parameters” models, because: (i)
fine-tuning is manageable with limited computa-
tional infrastructure, often available in industry and
academy; (ii) inference can be performed without
need of dedicated hardware, which is a great ad-
vantage when data can not be transferred on the
cloud (e.g., hospitals). Although there might be
several options (e.g., BERT models), for our ex-
periments we used T5 models (Raffel et al., 2020),
because there are several versions available and
they show competitive performance. We report the
main characteristics of the T5 models in Table 5.

3.4.1 T5
T5 (Text-to-Text Transfer Transformer) (Raffel
et al., 2020) employs a transformer architecture
with shared encoder-decoder parameters and un-
dergoes pretraining on extensive text data followed
by fine-tuning for specific tasks, ensuring versatil-
ity across NLP tasks. Unlike BERT (Devlin et al.,
2019), which predicts masked words, T5 formu-
lates tasks as text-to-text problems, leading to su-
perior performance across various benchmarks.

3.4.2 mT5
mT5, or "Multilingual Text-to-Text Transfer Trans-
former" (Xue et al., 2021), is a multilingual variant
of the T5 model pretrained in an unsupervised man-
ner on a diverse multilingual corpus, supporting
101 languages. Demonstrating impressive perfor-
mance on tasks like translation (Patel et al., 2022),
lemmatization (Ulčar and Robnik-Šikonja, 2023),
and text simplification (Gonzalez-Dios et al., 2022),
mT5 showcases its versatility and effectiveness
across different language tasks.

3.4.3 MedMT5
MedMT5 (García-Ferrero et al., 2024) is an
encoder-decoder model developed by continuing
the training of the mT5 (Xue et al., 2021) check-
points on a medical domain corpus that includes 3B
words in four languages (English, Spanish, French,
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Example Clinical Note: II decorso clinico era stato caratterizzato da un rigetto acuto nel primo mese post-trapianto e da alcuni episodi di tachicardia
parossistica sopraventricolare negli anni successivi. La funzionalità renale, dopo l’episodio di rigetto, si era stabilizzata su valori di creatininemia

pari 0 inferiori a 1.5 mg/dl. L’esame delle urine non aveva mai evidenziato proteinuria. Era presente da anni ipercolesterolemia (280 mg/dl).

Position of Result Result Position of Event Event
Relation 1 282-310 pari o inferiori a 1.5 mg/dl 286-281 creatininemia
Relation 2 414-422 280 mg/dl 393-411 ipercolesterolemia

Table 2: An example from the CLinkaRT dataset.

Training Development Test Total
5145 787 960 6892

Table 3: Disease mentions distribution in NCBI.

Datasets Docs Relations Unique Events Unique Results

CLinkaRT-Train (IT) 83 619 344 410
CLinkaRT-Test (IT) 80 612 332 407

TESTLINK-Train (SP) 81 597 317 332
TESTLINK-Test (SP) 80 668 340 421

Table 4: Statistics about the CLinkaRT dataset. IT:
Italian, SP: Spanish

and Italian). It is the first open-source text-to-text
multilingual model for the medical domain.

3.4.4 FLAN-T5
FLAN-T5 (Chung et al., 2022) is an instruction-
tuned language model that excels in NLP tasks by
training on diverse instructions, enabling it to han-
dle a wide range of tasks. Mixing zero-shot, few-
shot, and chain of thought prompts during training
enhances FLAN-T5’s performance, even on tasks
not seen during fine-tuning, making it excel in both
held-in and held-out tasks.

3.5 Experimental Setup
Both for Named Entity Recognition and Relation
Extraction the core approach is based on text-to-
text generation using the T5 models. The loss func-
tions utilized for both tasks are the standard cross-
entropy losses associated with T5 models.

3.5.1 NER Task
We maintained consistent hyperparameters for all
models, including a batch size of 4, a maximum
token length of 256 for input and output, epochs
30, 0.05 dropout, a warmup ratio of 0.06, and an
epsilon of 1e-8 for Adam optimization. The re-
maining parameters used default values from the
SimpleTransformers1 library, and a seed2 value of

1https://simpletransformers.ai/
2We chose a single seed to ensure consistent results and

simplify model comparisons. We plan to conduct additional

32 ensured result reproducibility. While hyperpa-
rameter tuning was not exhaustive, we explored
varying learning rates (1e-4, 2e-4, 3e-4, 2e-5, and,
3e-5). The most suitable learning rate (for all mod-
els) was observed to be 1e-4.

3.5.2 RE Task
We adhered to consistent hyper-parameters across
all models during training, including a batch size
of 2, a maximum token length of 128 for both input
and output sequences, a training duration of up to
100 epochs with early stopping, a learning rate of
4e-5, a gradient accumulation step of 4, a dropout
rate of 0.1, a warm-up step count of 500, and an
epsilon value of 1e-8 for the Adam optimization.
Default values from the Hugging Face library were
used for the remaining parameters, and a seed value
of 42 was employed to ensure result reproducibility.

All models were trained on an NVIDIA A40
GPU with 48 GB GDDR6 memory.

4 Results and Discussion

In this section we present the results of the core
experiments on the two tasks, NER and RE.

4.1 Results on NER

Table 6 illustrated the results of our experiments
with various T5 models for the NER task on the
E3C and NCBI datasets. The performance of T5,
mT5, MedMT5, and FLAN-T5 models on various
datasets highlights key insights. The base T5 model
shows a relatively high recall on E3C-English, in-
dicating it can identify a large number of relevant
entities, but its precision is lower, leading to a mod-
erate F1 score. For E3C-Italian, the precision is
higher than recall, but the F1 score remains bal-
anced. On the NCBI dataset, T5 achieves strong
precision and recall, resulting in a high F1 score.
The multilingual mT5 model performs slightly bet-
ter than T5 in terms of precision on E3C-English,
but its recall is lower, leading to a slightly lower

experiments with different random seeds.
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Model Architecture Parameters # languages Data Source
T5 (Raffel et al., 2020) encoder-decoder 770M 1 (English) Colossal Clean Crawled Corpus (C4)
mT5 (Xue et al., 2021) encoder-decoder 1.2B 101 Multilingual C4 (mC4)

MedMT5 (García-Ferrero et al., 2024) encoder-decoder 738M 4 Multilingual
FLAN-T5 (Chung et al., 2022) encoder-decoder 780M 60 473 datasets (SQuAD, MNLI, WMT-16, etc.)

Table 5: Comparison of T5 models.

E3C NCBI
Models English Italian English

P R F1 P R F1 P R F1

Baselines

DLU (Zanoli et al., 2023; Doğan et al., 2014) 37.08 60.08 45.86 48.46 61.52 54.21 21.3 71.8 31.6
CRF (Lafferty et al., 2001) 51.81 30.43 38.34 65.88 42.39 51.59 - - -

Inference Method (Doğan et al., 2014) - - - - - - 59.7 73.1 63.7

State-of-the-art

BANNER (Leaman and Gonzalez, 2008) - - - - - - 83.8 80.00 81.8
XLM-RoBERTa-PL (Zanoli et al., 2023) 45.67 60.66 52.12 60.31 67.39 63.65 - - -
XLM-RoBERTa-CL (Zanoli et al., 2023) 40.81 60.27 48.67 43.28 70.00 53.49 - - -

T5-Large Family (ours)

T5 51.50 66.47 58.04 63.22 58.91 61.04 85.65 82.88 84.24
mT5 53.68 57.95 55.73 62.53 60.22 61.35 83.72 78.39 80.97

MedMT5 53.94 66.28 59.48 64.74 70.00 67.29 86.70 82.99 84.80
FLAN-T5 53.44 69.19 60.30 60.79 63.70 62.21 86.80 83.09 84.91

mT5 (data augmented) 54.94 51.74 53.29 58.68 61.74 60.17 - - -
MedMT5 (data augmented) 55.65 63.95 59.51 64.24 71.09 67.49 - - -

Table 6: Results for Entity Recognition task. DLU: Dictionary look-up. Highest obtained scores among the T5
variants are highlighted in bold.

CLinkaRT TESTLINK
Models Italian Spanish

P R F1 P R F1

Baselines
voc. tran. (Altuna et al., 2023b,a) 29.95 31.86 30.88 17.41 30.24 22.10

GPT (Altuna et al., 2023b,a) 29.55 48.73 36.79 25.24 38.29 30.43
mBERT (Altuna et al., 2023b,a) 61.37 64.37 62.83 61.13 60.03 60.57

State-of-the-art
ExtremITA-T5 (Hromei et al., 2023) 46.82 26.47 33.82 - - -

Simple Ideas-BERT (Micluta-Campeanu and Dinu, 2023a) 65.55 60.62 62.99 - - -
LinkMed6 (Muñoz-Castro et al., 2023) - - - 46.99 43.26 45.05

Simple Ideas (Micluta-Campeanu and Dinu, 2023b) - - - 71.45 65.57 68.38
T5-Large Family (ours)

T5 53.20 48.03 50.51 58.66 36.97 45.36
mT5 65.72 53.26 58.84 55.96 50.59 53.14

MedMT5 65.22 59.15 62.03 62.28 54.64 58.21
FLAN-T5 52.99 49.18 51.01 58.03 41.61 48.47

mT5 (data augmented) 69.56 49.67 57.95 66.22 51.94 58.22
MedMT5 (data augmented) 71.72 56.37 63.12 70.76 52.54 60.30

Table 7: Results on the Relation Extraction task on clinical data, both core and augmented models.
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F1 score. For E3C-Italian, mT5 has a more bal-
anced precision and recall, resulting in a similar
F1 score to T5. On the NCBI dataset, mT5’s
performance is slightly lower than T5 in all met-
rics. The MedMT5 model, pre-trained on medical
data, shows improvements over both T5 and mT5.
On E3C-English, it achieves higher recall and F1
scores. For E3C-Italian, MedMT5 significantly im-
proves both precision and recall, resulting in the
highest F1 score among the models. The perfor-
mance on the NCBI dataset is also slightly better
than T5. The instruction-tuned FLAN-T5 model
achieves the highest F1 score on E3C-English,
suggesting its effectiveness for this dataset. For
E3C-Italian, its performance is slightly lower than
MedMT5 but still strong. On the NCBI dataset,
FLAN-T5 performs similarly to MedMT5, main-
taining high precision and recall.

4.1.1 Discussion
Dataset size is indeed the primary reason behind
the observed performance gap between the E3C
and NCBI datasets. Additionally, considering our
understanding of the two corpora and their anno-
tation strategies, we comprehend that the E3C cor-
pus is much more complex than the NCBI dataset.
This complexity arises from the diverse range of
medical concepts annotated in the E3C corpus, in-
cluding disorders such as diseases or syndromes,
findings, injuries or poisoning, and signs or symp-
toms, whereas the NCBI dataset primarily focuses
on disease terms.

Fine-tuning, as traditionally done with models
like T5 and mT5, continues to be a reliable ap-
proach and may yield superior results when abun-
dant data and computing resources are available.
The lagging performance of mT5 compared to T5
on English-only datasets can be attributed to T5’s
specialization and optimization specifically for the
English language, which provides it with a distinct
advantage.

MedMT5, designed for the medical domain, per-
forms competitively in general NER tasks, suggest-
ing the potential for domain-specific pre-training in
specialized areas. Additionally, model versatility,
as seen in FLAN-T5 and specialized models like
MedMT5, is a key consideration in selecting the
most suitable LLM for a particular NLP task.

The observed difference in performance between
instruction-tuning and domain-specific pre-training
may indeed stem from the size of the inherent
pre-training or instruction-tuning datasets used for

the models. Specifically, the domain-specific pre-
trained model (MedMT5) is trained on a larger cor-
pus of Italian data compared to English. In contrast,
the instruction-tuned model (FLAN-T5) may have
a higher representation of English. This discrep-
ancy in dataset composition could explain the supe-
rior performance of the domain-specific pretrained
model on the Italian dataset, while the instruction-
tuned model excels on the English datasets.

4.1.2 Error Analysis
Our error analysis revealed two key observations:
Firstly, models struggle with interpreting abbrevia-
tions like "TAO", "NSIAD", "MIC", etc., often mis-
labeling them as entities or non-entities, indicating
challenges in accurately recognizing and interpret-
ing abbreviations. Secondly, the model erroneously
labels "metastasis from adenocarcinoma" as a sin-
gle entity, failing to recognize "metastasis" and
"adenocarcinoma" as separate entities, suggesting
a lack of contextual understanding and a tendency
to group consecutive tokens into a single entity.
This tendency to include stop words within entities
contributes to a decrement in overall precision. To
address these issues, we propose fine-tuning the
model on a larger dataset to enhance abbreviation
recognition and contextual understanding, along
with improving the accuracy of identifying entity
boundaries for enhanced precision.

4.2 Results on RE

As reported in Table 7, within the T5 family,
MedMT5 models demonstrate a clear superiority
over other family members in both languages, with
the exception of Italian, where mT5 exhibits a
slightly advantage in terms of precision.

4.2.1 Discussion
When comparing MedMT5 with other models, in-
cluding baselines and state-of-the-art approaches,
it is evident that MedMT5 achieves compara-
ble results in terms of F1 score across both lan-
guages. Notably, most models employ data aug-
mentation, including the mBERT-based approach
by Altuna et al. (2023b), which utilizes oversam-
pling techniques for relation classification. In con-
trast, MedMT5 does not employ additional data.
ExtremITA-T5, based on IT5 trained on Italian text
from the public domain, performs well in certain
NLP tasks (Hromei et al., 2023), but falls short
compared to MedMT5, especially in the medical
domain.
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In terms of system complexity, all models follow
a dual-model approach, with one model dedicated
to named entity recognition and the other to rela-
tion classification in a pipeline manner. In contrast,
MedMT5 functions as a generative model in an end-
to-end manner. Notably, for mention-level relation
extraction tasks such as CLinkaRT and TESTLINK,
pipeline approaches do not necessitate position de-
termination during post-processing, underscoring a
strength of pipeline systems over generative models
in these scenarios.

4.2.2 Error Analysis
Analysis of errors in the relation extraction system
reveals two primary sources of errors. Firstly, er-
rors stem from relation positioning, where event
and result positions are calculated during post-
processing. This involves gathering all input
sentences and corresponding model-generated re-
sponses, determining sentence length, locating
event and result positions, and selecting the closest
occurrences if multiple exist. Finally, we compute
the precise positions of the events and results.

Secondly, errors arise from partially accurate re-
lations, wherein accurate relations contain one or
two erroneously generated letters by the model in
either the result or event. For instance, in a gener-
ated relation: “7,1 mg/dle <– bilirrubina”, the letter
“e” is generated unnecessarily (the correct relation
is “7,1 mg/dl <– bilirrubina”). These types of er-
rors, rooted in data sparsity, significantly impact on
system performance. Partially accurate relations
are typically encountered in the context of infre-
quent or rare events or results. As we compare the
MedMT5 and mT5 models outputs, it is evident
that MedMT5 exhibits a notably lower count of
partially accurate relations compared to mT5 mod-
els. This implies that the unsupervised learning
approach employed by MedMT5 equips the model
with certain in-domain lexicons.

Another notable observation in the outputs con-
cerns the impact of input length on performance.
Longer input sentences containing numerous rela-
tions tend to result in poor performance for most
models, with MedMT5 notably outperforming the
others. Our experiments involved exploring both
longer sentences and sentences split into shorter
ones, revealing a significant enhancement in results
with shorter sentences. To mitigate this challenge,
a potential solution is to implement a sliding win-
dow approach on the input to reduce its length.
However, the choice of window size becomes a cru-

cial factor, which we plan to investigate in future
research efforts.

5 Data Augmentation Experiments

Here we present additional results on two tasks
obtained through data augmentation on the core
models discussed in section 3. Our aim is to ex-
plore potential correlations between the core and
augmented models.

5.1 Data Augmentation on NER
To examine how the T5 model’s performance is
influenced by cross-lingual data augmentation, we
trained the mT5 and MedMT5 models on datasets
that included both the English and Italian E3C train-
ing sets and subsequently evaluated their perfor-
mance on the English and Italian E3C test sets. We
present the results in Table 6.

Data augmentation for mT5 increases precision
on E3C-English but reduces recall, resulting in a
lower F1 score compared to the non-augmented
mT5. For E3C-Italian, the recall improves, and the
F1 score remains comparable. Data augmentation
enhances precision for MedMT5 on E3C-English
and improves recall on E3C-Italian. However, the
overall improvement in F1 scores is marginal in
both E3C datasets. While data augmentation can
improve certain metrics, its impact is mixed and
dataset-dependent. It is most beneficial when it en-
hances recall without significantly compromising
precision, as seen with MedMT5 on E3C-Italian.

5.2 Data Augmentation on RE
Using translation data augmentation is indeed a
common technique to leverage cross-lingual infor-
mation and improve the performance of NLP mod-
els, including those used in specific domains such
as medical. This approach allows models to gener-
alize across languages and learn from diverse mul-
tilingual datasets. To expand the training dataset
through translation-based data augmentation, the
Spanish training data is translated into Italian using
Google Translate then it is utilized as augmented
data for an Italian task, and vice versa. Table 7
demonstrates a substantial performance boost in
terms of precision for both languages. Specifically,
there is an enhancement of almost 6 points for Ital-
ian and around 8 points for Spanish. This is influ-
enced by two crucial aspects of the datasets. Firstly,
the presence of numerous identical relations in both
datasets enhances precision. Secondly, the intro-
duction of translation errors in the training data
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hampers the model’s capability to generate rare
relations. In summary, the abundance of similar
relations contributes to improved precision, while
translation errors negatively impact the model’s
ability to produce less common relations

6 Conclusions

In a world dominated by large language mod-
els, this work delves into the efficacy of smaller,
domain-specific models in the context of fine-
tuning, continuous pre-training, and instruction-
tuning on clinical information extraction tasks.
Our findings suggest that, while general-purpose
instruction-tuning offers versatility, it may not al-
ways be as effective as continuous pre-training
in domain-specific tasks. We observed instances
where instruction-tuning (FLAN-T5) yielded com-
petitive results, but its performance varied across
languages and domains. While models like
MedMT5 designed for the medical domain out-
perform general-purpose counterparts in NER and
RE, we find that instruction-tuning varies in effec-
tiveness across languages and domains, emphasiz-
ing the importance of domain-specific continuous
pre-training. This highlights the need for careful
consideration when selecting the most suitable ap-
proach for a particular NLP task, weighting factors
such as data availability, domain specificity, and
computational resources. In a landscape where big-
ger is often seen as better, our work emphasizes
the value of smaller, versatile models in scenarios
prioritizing data privacy and traditional hardware.

In our future work, we plan to assess parameter-
optimized strategies such as PEFT, LORA,
QLORA, and LLAMA-Adapter for training larger
models on traditional hardware efficiently. This ex-
ploration aims to advance model scalability while
considering computational constraints, particularly
in resource-limited environments.

Limitations of the Study

Concerning relation extraction, our focus was on
the CLinkaRT and TESTLINK tasks, which in-
volve identifying test results and measurements
and linking them to corresponding textual men-
tions of clinical laboratory tests. We specifically
concentrated on discovering relations between clin-
ical laboratory tests and their results. To the best of
our knowledge, there is currently no relation extrac-
tion dataset derived from E3C that encompasses a
wider variety of relation types.

Regarding the entity detection results, it is impor-
tant to note that our experimental datasets contain
only one type of entity, and thus the reported scores
pertain specifically to that entity type. We acknowl-
edge the value of providing results for individual
entity types and will consider incorporating this in
future iterations of our work.

Furthermore, we agree that variations in T5 mod-
els, such as instruction-tuned and domain-specific
pre-trained versions, could potentially influence
results due to differences in language coverage.
While our current evaluation focuses on overall en-
tity detection performance, we acknowledge the
potential impact of these variations on the results.
In our future work, we plan to conduct a more com-
prehensive analysis to explore how different T5
models, including instruction-tuned and domain-
specific pre-trained variants, perform across vari-
ous entity types.

Ethical Considerations

The datasets employed in this study, while residing
within the clinical domain, do not contain sensi-
tive or personally identifiable information. These
datasets are publicly accessible and openly avail-
able for research purposes.
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Abstract

Ensuring the accuracy of responses provided
by large language models (LLMs) is crucial,
particularly in clinical settings where incorrect
information may directly impact patient health.
To address this challenge, we construct K-QA,
a dataset containing 1,212 patient questions
originating from real-world conversations held
on K Health (an AI-driven clinical platform).
We employ a panel of in-house physicians to
answer and manually decompose a subset of
K-QA into self-contained statements. Addi-
tionally, we formulate two NLI-based evalu-
ation metrics approximating recall and preci-
sion: (1) comprehensiveness, measuring the
percentage of essential clinical information in
the generated answer and (2) hallucination rate,
measuring the number of statements from the
physician-curated response contradicted by the
LLM answer. Finally, we use K-QA along with
these metrics to evaluate several state-of-the-
art models, as well as the effect of in-context
learning and medically-oriented augmented re-
trieval schemes developed by the authors. Our
findings indicate that in-context learning im-
proves the comprehensiveness of the models,
and augmented retrieval is effective in reducing
hallucinations. We will make K-QA available
to to the community to spur research into medi-
cally accurate NLP applications.1

1 Introduction

Recent advancements in large language models
(LLMs) have led to a growing interest in their use
in the medical domain in patient-facing applica-
tions, where LLMs hold the promise of providing
laypersons with high-quality advice at a relatively
low cost (Singhal et al., 2023; Han et al., 2023).
For instance, in response to the question “What’s

1The data and the evaluation script are available at
https://github.com/Itaymanes/K-QA. Results and model
comparisons can be viewed at https://huggingface.co/
spaces/Itaykhealth/K-QA

good for muscular pain?”, a good patient-facing
response may include, in addition to medical infor-
mation (the name of a muscle relaxant), also the
advice “Seek medical attention if you have numb-
ness or tingling in limbs”.

However, there is a lack of benchmarks re-
flecting user needs and corresponding medically-
accurate answers to test these models under real-
world conditions. Most existing benchmarks as-
sume textbook questions with multiple-choice or
span-based answers (Tsatsaronis et al., 2015; Ben
Abacha et al., 2017; Jin et al., 2019). In contrast,
real-world questions, like “Is there any way I can
get some medicine for cold sore and ulcer that
is killing me?”, often include various interacting
medical conditions (“cold sore”, “ulcer”), use am-
biguous, non-medical jargon (“that is killing me”),
and require long-form, nuanced answers.

In this work, we present K-QA, a medical QA
benchmark containing 1,212 deidentified questions
asked by real users on K Health,2 an AI-driven
clinical platform with over 8 million unique users.
The questions in K-QA were curated from K
Health’s vast database of patient-physician interac-
tions, aiming to capture stand-alone medical ques-
tions. These can be answered solely based on the
information provided in the question, and do not
require any prior knowledge about the patient’s
history or demographics. The resulting corpus is
diverse and challenging, spanning over 100 differ-
ent medical conditions (see examples in Figure 1).

To evaluate state-of-the-art models against K-
QA, a team of 12 in-house medical doctors invested
more than 400 person hours rigorously answering
201 questions from the dataset in a free-text format.
Doctors consulted credible medical sources, such
as UpToDate3 and PubMed4 to provide accurate
and scientifically-backed answers. Their answers

2https://khealth.com
3https://www.wolterskluwer.com/en/solutions/uptodate
4https://pubmed.ncbi.nlm.nih.gov/

277



Figure 1: Visualization of K-QA, with box sizes indicating the distribution of patients’ reported chief complaints
across a wide range of healthcare topics. The questions are open-ended and diverse.

were further reviewed by an experienced oversee-
ing physician. The remaining portion of roughly
1K questions present opportunities for expanding
the benchmark through various augmentation tech-
niques, as already demonstrated by Cherian et al.
(2024).

To allow fine-grained evaluation, doctors decom-
posed each answer into an average of roughly 8
minimal semantic content units (Nenkova et al.,
2007), resulting in over 1.5K individual statements.
In addition, the importance of each statement was
manually marked as either (1) Must Have, indi-
cating that a model must include this statement in
order to be medically accurate (e.g., providing all
contraindications for a drug) , or (2) Nice to Have,
indicating the statement is supplemental in nature
(e.g., providing additional conditions where this
drug may be helpful).

Following recent work on evaluation of text gen-
eration, we use the decomposed ground-truth an-
swers in a natural language inference (NLI)-based
evaluation of predicted answers (Honovich et al.,
2021; Laban et al., 2022; Aharoni et al., 2023).
Concretely, we define two complementing evalu-
ation metrics. First, comprehensiveness, which
is similar to recall, measures the percentage of
ground-truth statements conveyed in the predicted
answer. In order to excel in this metric, a model
must cover all of the Must Have statements an-
notated by doctors. Second, hallucination rate,
which is similar to precision, measures how many
of all ground-truth statements (either Must Have
or Nice to Have) contradict the predicted answer.
To excel in this metric models must not produce
any medically-inaccurate statements. We find that
recent LLMs, like GPT-4, are able to approxi-

mate both comprehensiveness and hallucination
rate, nearing human assessment of both metrics.

Finally, we evaluate various state-of-the-art
LLM-based architectures on K-QA, spanning a
wide range of families, including open- and closed-
source models, zero-shot vs. in-context learning,
and retrieval-augmented generation. We find that
all models struggle on comprehensiveness, with
the best performing model covering only 67.7% of
medically-important statements, and while hallu-
cinations seem to decrease with model size and
augmented generation, all models still provide
medically-dangerous advice in subtle ways which
are especially risky for lay users.

We hope that future work adopts K-QA and
accompanying metrics as a valuable benchmark
to produce medically-accurate NLP applications
which can be safely deployed in real-world scenar-
ios.

2 Background

We review existing medical NLP datasets and other
recent challenging benchmarks. We highlight key
comparisons with K-QA in Table 1.

Medical QA benchmarks. Several diverse
health-related question-answering datasets have
been compiled, including over biomedical scien-
tific literature (Tsatsaronis et al., 2015; Jin et al.,
2019) and medical examinations (Zhang et al.,
2018; Pal et al., 2022). The majority of these
datasets rely on multiple-choice or span extrac-
tion (Jin et al., 2022), which simplify the evaluation
process but do not reflect complexity of free-form
responses which are often needed in real-world
situations (Gehrmann et al., 2023).
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Dataset Consumer
Health

Open
Domain

Patient-Physician
Interaction

Answer
Decomposition

Answer
Format

BioASQ (Tsatsaronis et al., 2015) ✗ ✗ ✗ ✗
span-based
& binary

MedQA (Jin et al., 2021) ✗ ✓ ✗ ✗
multiple
choice

LiveMedQA (Ben Abacha et al., 2017) ✓ ✗ ✗ ✓ retrieval

MedicationQA (Abacha et al., 2017) ✓ ✗ ✗ ✗ retrieval

MedQuAD (Ben Abacha et al., 2019) ✓ ✗ ✗ ✗ retrieval

MEDIQA-AnS (Savery et al., 2020) ✓ ✗ ✗ ✗ ranking

HealthSearchQA (Singhal et al., 2023) ✓ ✓ ✗ ✗ -

K-QA (Ours) ✓ ✓ ✓ ✓
long-form
generation

Table 1: Comparison between K-QA and previous benchmarks in the field of medical question-answering.

In the context of consumer health questions, our
dataset is different from existing benchmarks like
MEDIQA-AnS (Savery et al., 2020), LiveMedQA
(Ben Abacha et al., 2017) and MedicationQA (Ben
Abacha et al., 2019) in several additional key ways.
While these datasets source their questions from
users searching healthcare websites via the ChiQA
system (Demner-Fushman et al., 2020) and retrieve
answers through keyword matching, ours originates
from authentic patient-physician interactions, en-
suring genuine medical inquiries. Furthermore, our
dataset includes free-form open-domain responses
carefully curated by medical professionals. In ad-
dition, the answers in K-QA are segmented into
finer atomic statements, enabling fine-grained eval-
uation.

Challenging LLM benchmarks. Our work joins
a recent line of test sets which are challenging
for state-of-the-art LLMs, thus enabling further
development and experimentation. For example,
the Bamboogle benchmark consists of 125 multi-
hop questions which stump popular search en-
gines (Press et al., 2022), while the GPQA bench-
mark contains 445 graduate-level questions in vari-
ous domains (Rein et al., 2023). K-QA consists of
1,212 questions, as well as a subset of 201 answers,
specially curated by in-house physicians.

3 The K-QA Benchmark

In this section, we describe curation and annotation
the K-QA dataset, depicted in Figure 2. K-QA
consists of two portions - a medium-scale corpus
of diverse real-world medical inquiries written by
patients on an online platform (Section 3.1) and a

subset of rigorous and granular answers, annotated
by a team of in-house medical experts (Section 3.2).
In Section 3.3, we present an analysis of the dataset,
illustrating its medical and linguistic diversity.

3.1 Curating Questions from Real-World
Patient-Physician Conversations

All of the questions in K-QA originate from de-
identified real-world text-based conversations in
English held on a proprietary online medical plat-
form. These conversations contain a wide variety
of user intents, such as billing inquiries or prescrip-
tion renewals, alongside a wealth of queries on
varied medical subjects (see Figure 1).

Our goal in creating K-QA is to extract from this
large and noisy corpus a diverse dataset of medical
questions which can be used to test automated mod-
els’ ability to provide factual and comprehensive
medical answers. In particular, we aim for the ex-
tracted questions to be as stand-alone as possible,
without relying on the patient’s medical record or
the context of the medical discourse. For example,
K-QA includes questions such as “How do Genital
herpes and HPV differ?” (adapted from Figure 1),
while we omit questions such as “Can this allergic
reaction be related to my age?” which assumes
prior knowledge about the patient and their previ-
ous symptoms.

To achieve this, we performed a rigorous man-
ual annotation, aided by a preliminary automatic
preprocessing step. First, we used an open-source
BERT-based classifier (Devlin et al., 2018), fine-
tuned for distinguishing questions from statements,
such as “sounds like hives to me”.5 Next, we ap-

5https://huggingface.co/mrsinghania/
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Figure 2: High-level description of the annotation of the K-QA dataset, starting with a physician’s considered offline
response to an actual patient query obtained from patient-physician interactions. We then use LLMs to decompose
the response into self-contained statements, subsequently reviewed and categorized by a panel of medical experts as
Must Have or Nice to Have. The example was simplified for presentation purposes.

plied regular expressions to filter questions about
logistics (e.g., billing or delivery instructions). This
preprocessing yielded roughly 26K questions, each
individually assessed by a medical professional
to identify those suitable as stand-alone questions.
The dataset comprises diverse questions, each
paired with the medical condition diagnosed by
the physician at the end of their interaction with the
patient, according to ICD-10 conventions (WHO,
1993). For example, the question in Figure 1 is
classified as “Dermatitis, unspecified”.

3.2 Annotating Granular Physician Answers
We provide comprehensive and granular answers
for a diverse subset of K-QA questions, annotated
in three steps by a team of 12 in-house medical
doctors. This subset enables us to automatically
compare different LLMs against high-quality ex-
pert answers.

Step 1: Long-form answer annotation. In the
first annotation step, exemplified in Figure 2(A), six
medical physicians were tasked with providing free-
form responses to different sets of questions from
K-QA, while an additional physician reviewed
their answers and advised where needed. Overall,
the first step required roughly 400 skilled person
hours (at a cost of roughly 26K USD, based on aver-
age physician hourly pay in the U.S.), during which
201 questions from K-QA were answered. Each

asr-question-detection

physician was granted unlimited time and access to
reputable medical resources such as UpToDate and
PubMed for referencing purposes. Figure 3 depicts
the distribution of used sources. Notably, they were
explicitly instructed to avoid using any generative
language models or services. To best emulate the
requirements from a user-facing model in the med-
ical domain, annotators were further instructed to
write answers tailored for a lay audience seeking
consumer-health information. For example, note
how the answer in Figure 2 regarding ringworm
strays from medical jargon.

Step 2: Answer decomposition into self-
contained statements. Following literature on
the evaluation of text generation via minimal se-
mantic content units (Nenkova et al., 2007; Liu,
2022), we guided annotators to decompose answers
into self-contained statements. Each statement is
expected to capture a distinct fact and include suffi-
cient context for independent evaluation. Answer
decomposition is presented in Figure 2(B), illus-
trating the decomposition of a natural answer into
atomic statements.

This step was carried out by a panel of 6 medi-
cal doctors (distinct from the annotators in the first
step) who deconstructed each answer into individ-
ual statements. To assist in this process, the panel
utilized GPT-4 with a few-shot prompt suggesting
potential answer decompositions. The full prompt
is provided in Appendix D.1. The annotators could
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Figure 3: The 15 most used medical resources by the
annotators during the curation of the long-form answers.

amend or remove noisy statements, as well as add
any missing statements, which they did for 6.86%
of the automatically generated statements. In total,
this process yielded 1,589 annotated statements,
averaging roughly 7.9 statements per answer. The
completion of this phase required a total of approx-
imately 30 hours at the cost of approximately 2K
USD.

Step 3: Categorizing statements as Must Have
or Nice to Have. At the last step, we asked the
same group of medical professionals from step 2 to
classify each statement into one of two categories:
(1) Must Have – facets of the answer which are cru-
cial to convey to a patient when providing medical
advice; or (2) Nice to Have – statements which are
supplemental or informative, but not clinically cru-
cial. For example, as can be seen in Figure 2(C), the
long-form answer regarding the itchiness of ring-
worm was decomposed into four statements, three
of which were deemed as Must Have, while a state-
ment which provided information about ringworm
which is not related to its itchiness was deemed as
Nice to Have.

A more complex example of medically oriented
statement decomposition is presented below. In re-
sponse to a question about treating hypertension in
diabetic patients, the physician recommends ACE
inhibitors or ARBs, either alone or in combination
with other drugs like calcium channel blockers and
thiazides. This scenario illustrates an exclusive OR
relation often observed in medical contexts, where

Count # Words (avg.)

Questions 1,212 10.06
Answers 201 88.52
Statements

Must Have 892 14.9
Nice to Have 697 13.74

Table 2: Statistics of the K-QA benchmark.

multiple treatments are optional but not advised
together. To address the dependency between treat-
ment options, we use our statement classification
into Must Have and Nice to Have to preserve the
physician’s intention, emphasizing the importance
of taking either ACE or ARBs and suggesting an ad-
ditional optional treatment for each. This results in
one Must Have statement: “A recommended treat-
ment includes either ACE or ARBs, but not both.”,
and two Nice to Have statements: (1) “ARBs can
be taken alone or with other medications, such as
calcium channel blockers and thiazides.”; and (2)

“ACE can be taken alone or with other medications,
such as calcium channel blockers and thiazides.”
The full annotation guidelines and more examples
are provided in Appendix B.1.

This process was carried out collaboratively, fa-
cilitating discussions within the medical group to
collectively assess and reach consensus regard-
ing the perceived levels of importance, amounting
to approximately 20 person hours, at the cost of
roughly 1.5K USD.

The categorization into Must Have and Nice to
Have represents a discrete approach to assigning
importance to statements. However, in a broader
context, this method can be extended to assign var-
ious weighted scores to each statement and each
metric.

3.3 Dataset Statistics
K-QA is derived from a diverse group of 1,055
unique users featuring 1,212 questions, including
201 answers meticulously curated by physicians.
Table 2 shows detailed statistics on statements and
word counts, while information on the distribution
of age and biological sex among users can be found
in Table 3.

The questions in our dataset address a wide array
of health concerns, as evidenced in Figure 1, cov-
ering 172 different medical conditions, according
to the ICD-10 system. The diversity in questions
is highlighted in Figure 4, showing the top five
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Figure 4: Distribution of the top 5 most prevalent medical conditions, the types of questions related to each condition,
and the frequencies of clinical entities within those questions. On the far right, the text most frequently matched
with the clinical entities is displayed.

Age Group
Sex (% of users)

Female Male

18-25 9.09 6.67
26-45 36.97 30.30
46-60 9.70 3.64
60+ 2.42 1.21

Table 3: Distribution of the users in K-QA by age group
and biological sex.

most prevalent medical conditions and their distri-
butions across various question types, such as Be,
WH-questions and other forms, as well as various
clinical categories (problem, treatment, and test)
classified by an open-source, fine-tuned named en-
tity recognition BERT-based model.6 For example,
a question like “Is it usually normal for someone
to have side effects when first starting vitamins?”
is labeled with both problem (“side effects”) and
treatment (“vitamins”).

4 Evaluation Metrics for K-QA

To evaluate models against K-QA, we propose
a natural language inference (NLI; Dagan et al.,
2005; Bowman et al., 2015) framework, following
recent text generation evaluation (Honovich et al.,
2021; Laban et al., 2022; Aharoni et al., 2023).

Our evaluation framework is inspired by
FActScore (Min et al., 2023), a metric that mea-
sures factual precision by computing the percent-
age of atomic facts in a generated answer supported
by a reliable external source. Unlike FActScore,
which automatically generates statements and as-

6https://huggingface.co/samrawal/
bert-base-uncased_clinical-ner

signs them equal importance, our approach in-
volves predefined medical statements with vary-
ing clinical significance. This modification enables
us to extend the framework and establish a proxy
metric for factual recall as well.

We consider a predicted answer as a premise and
each ground-truth statement derived from an anno-
tated answer as an hypothesis. Intuitively, a cor-
rectly predicted answer should entail every ground-
truth statement. This formulation aims to quantify
the extent to which the model’s answer captures the
meaning of the gold answer, abstracting over the
wording chosen by a particular expert annotator.

As formulated below, we devise two NLI-based
metrics: comprehensiveness and hallucination rate.
These adapt the evaluation of text generation to the
medical domain by taking into account K-QA’s an-
notation of Must Have, i.e., clinically crucial facets
of information, and Nice to Have statements, which
are supplemental in nature. Both metrics were
aggregated across all assessed questions, where
higher values of the comprehensiveness metric and
lower values of hallucination rates indicate bet-
ter performance. Figure 5 provides an example
illustrating the complete process of evaluating a
generated answer and deriving these metrics.

Formally, let P̂ denote the model’s predicted an-
swer, Must Have represents the set of ground-truth
statements marked as crucial, Nice to Have repre-
sents the set of ground-truth statements marked as
supplemental, and S = Must Have∪Nice to Have
is the set of all statements in the gold reference
answer.

Comprehensiveness metric. This metric mea-
sures how many of the clinically crucial claims are

282



Figure 5: An example of the evaluation procedure, starting with a patient’s question and a generated answer from a
language model. Each statement is then automatically tested in an NLI framework to determine its relationship
to the generated answer. Finally, our metrics are computed, where Hall(P̂ ) counts the number of contraditions
(1), and Comp(P̂ ) is equal to 0, because none of the Must Have statements were entailed. Different robot symbols
signify different models, and the example was simplified for presentation.

included in the predicted answer.

Comp(P̂ ) =
|{x ∈Must_Have|P̂ entails x}|

|Must_Have|
(1)

I.e., similarly to recall, 0 ≤ Comp(P̂ ) ≤ 1
measures how many ground-truth statements were
conveyed in the predicted answer. We particularly
focus on those statements marked as crucial by
medical experts and do not penalize models for not
covering supplemental statements, as these may be
somewhat open-ended and arbitrary.

Hallucination rate. This metric measures how
many of the ground-truth statements contradict the
model’s answer.

Hall(P̂ ) = |{x ∈ S|P̂ contradicts x}| (2)

I.e., Hall(P̂ ) ∈ {0, 1, ..., |S|} penalizes an-
swers that contradict any of the ground-truth state-
ments and hence discourages models from making
any sort of false medical statements. Similar to
precision, a model can trivially achieve a perfect
hallucination score by generating an empty answer
P̂ = ∅ since, by definition, no hypothesis contra-
dicts an empty premise.

Automatic evaluation. Following work on NLI-
based evaluation, we approximate the metrics
above via an automated NLI model. We used
GPT-4 in conjunction with few-shot Chain-of-
Thought (CoT; Wei et al., 2022) prompt that gen-
erates sequential intermediary text representations.
The full prompt can be found in Appendix D.2. To
assess the quality of the evaluation framework, we

randomly selected 50 pairs of questions and their
corresponding generated answers from the models
described in Section 5.1. This process yielded 398
unique statements pertaining to the specified set of
50 questions.

Three physicians received instructions on how
to classify the logical relationship for each triplet
(question, answer, statement) into one of three NLI
categories. The inter-agreement among annotators
was assessed using Fleiss’ kappa (κ; Fleiss, 1971)
and pairwise agreement. For the three human an-
notators, the pairwise agreement was 83.2%, and
the κ was calculated to be 0.70, signifying mod-
erate to substantial agreement among raters. The
agreement with the majority vote of the annotators
and the automated model was 83.0%, indicating
that the model can perform at a level comparable
to human annotators for this complex task.

5 Evaluating State-of-the Art Models

Following the creation of K-QA and the formula-
tion of evaluation metrics, we turn to evaluate the
current state of the art in this challenging task.

5.1 Experimental Setup

Models. We use K-QA to evaluate the medi-
cal capabilities of 7 recent LLM-based models
from diverse families and model sizes. Specifi-
cally, we evaluate two 7B instruction-tuned open
access models: Mistral (Jiang et al., 2023), and
MedAlpaca (Han et al., 2023) which was built upon
LLaMA (Touvron et al., 2023) and trained specif-
ically for biomedical tasks, three recent closed

283



instruction-tuned LLMs: Open AI’s GPT-3.5 and
GPT-4 (Brown et al., 2020; OpenAI, 2023), and
Google’s PALM-2 (Anil et al., 2023), and finally
two recent commercial closed generation search
engines: BARD,7 and Bing Chat.8 We use zero
temperature sampling for all models, except for
BARD and Bing Chat, which do not allow setting
temperature.

Retrieval augmented generation (RAG). We
note that BARD and Bing Chat differ from the
other 5 models in our evaluation in that they can
reportedly augment their prompt with content re-
trieved from external sources, albeit in an undis-
closed manner. To examine the effect that retrieved
content may have on the performance of the other
models, we implement Retrieval Augmented Gen-
eration approach (RAG; Lewis et al., 2020), which
produces responses by conditioning the language
model on both the input query and retrieved con-
tent. To achieve this, we index publicly available
medical documents aimed at the lay audience (such
as MayoClinic9 and NHS10) aiming for medical-
specific RAG. All the documents in this RAG are
publicly available, which is distinct from the pri-
mary sources that the physician annotators used to
create their answers (Figure 3).

Prompts. Most of our evaluations use the same
vanilla zero-shot prompt without prompt engineer-
ing which only presents the question, without any
additional instructions. In addition, for some mod-
els we also report results on another empirically
engineered prompt which includes three in-context
examples, to explore some of the effect that in con-
text learning (ICL) may have on performance. We
did not extensively explore ICL across all models
due to various constraints, including MedAlpaca’s
limited context window, and determining optimal
prompts for specific tasks and models remains an
open research question (Sclar et al., 2023; Mizrahi
et al., 2024). Consequently, we focused on the mod-
els that demonstrated the best performance, which
are GPT-3.5 and GPT-4. Further exploration of
prompt optimization in our case presents an inter-
esting avenue for future work.

7https://bard.google.com/
8https://www.bing.com
9https://www.mayoclinic.org/

10https://www.nhs.uk/

Model Comp ↑ Hall ↓ %resp

MedAlpaca 7B 31.4 56.7 100
Mistral 7B 47.6 28.4 100
PALM-2 50.8 31.3 100
BARD† 62.5 28.4 95.0
Bing Chat† 57.3 25.9 99.5
GPT-3.5 56.2 27.9 100
GPT-3.5+ICL 59.5 23.4 99.5
GPT-3.5+RAG† 50.5 17.9 89.0
GPT-3.5+ICL+RAG† 62.9 15.4 96.0
GPT-4 57.5 23.9 100
GPT-4+ICL 67.7 25.4 100
GPT-4+RAG† 52.2 22.9 91.5
GPT-4+ICL+RAG† 65.2 24.4 100

Table 4: Model performance on K-QA according to the
comprehensiveness and hallucination rate metrics. ICL
represents the addition of three in-context examples, and
RAG is a medical retrieval augmented setup, as detailed
in Section 5.1. The performance of the highest scoring
model appears in bold for each metric. %resp indicates
the percentage of questions answered by each model.
†Marks models which have a retrieval component.

5.2 Results

The results for all models are shown in Table 4,
in terms of the comprehensiveness and hallucina-
tion rate metrics defined in Section 4. Below, we
highlight key observations based on these results.

Attaining high comprehensiveness is challeng-
ing even for state-of-the-art models. Across all
models and prompts, the comprehensiveness met-
ric (Comp) consistently remains below 68%. This
is evident even in cases where models generated
longer texts, as seen in the BARD model, which
emitted nearly three times as many words per an-
swer (242.1) compared to the physician’s response
(88.36 words). This underscores the models’ dif-
ficulty in capturing what physicians consider criti-
cally important. Additionally, ICL improves com-
prehensiveness by instructing the model to include
elements beyond a direct response to the question,
such as assuming underlying medical concerns in
patient inquiries.

While hallucinations seem rare, they could po-
tentially lead to unintended and unsafe medical
recommendations. The minimal hallucination
rate, achieved by GPT-3.5+ICL+RAG, represents a
contradiction of roughly 30 statements out of 1500
annotated examples. Some of the hallucinations
may lead to subtle yet dangerous advice. For exam-
ple, in Figure 5, the physician’s statement asserts
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that “Combining Buspar and Zoloft may increase
the risk of serotonin syndrome”, in contrast, the
model claims that “there are no known major inter-
actions between Buspar and Zoloft”. Finding cause
of error in such cases is hard, and physicians are
also prone to making dangerous errors. This par-
ticular error can be attributed to a combination of
missing information within publicly available med-
ical sources and by the LLM assuming that their
omission implies the drug combination is safe.

For the GPT models in our evaluation, it seems
that larger models lead to improved comprehen-
siveness, yet the larger the GPT model, the more
it seems to introduce new hallucinations. In Ta-
ble 4, we observe that GPT-4 outperforms GPT-3.5
under every comparable setting. However, the im-
proved comprehensiveness comes at the cost of an
increase in the hallucination rate.

Domain-specific RAG reduces hallucinations.
Among all configurations, GPT-3.5+ICL+RAG
demonstrates the fewest hallucinations while main-
taining a comparatively good comprehensiveness
score. We found that the tradeoff with comprehen-
siveness is partly thanks to its tendency to abstain
from answering in certain questions, e.g., respond-
ing “I’m unable to help, and don’t have the ability
to process and understand that.” (see %resp col-
umn in Table 4), which may be desired over misin-
formation in a patient-facing application. Comput-
ing the metrics only over the answered questions,
this model receives a Comp score of 65.5% and
a Hall score of 16.1, which is still lower than all
other models, with the second-highest comprehen-
siveness score. However, Bing Chat and BARD,
which also abstain, appear to underperform com-
pared to their base models. This discrepancy might
stem from our prompts lacking task optimization
and their generic web retrieval, especially failing to
focus on consumer health inquiries in the medical
domain from reliable sources.

MedAlpaca performs poorly on K-QA. Even
though MedAlpaca was fine-tuned specifically for
the biomedical domain and intended for use as
medical conversational AI, it exhibites the poorest
results on both metrics, with an especially high hal-
lucination rate. These findings indicate a mismatch
between closed-QA (e.g., medical exams and short
answers) and real-world patient questions which
require the generation of long medical answers.

6 Conclusion

We introduce K-QA, a question-answering bench-
mark with real-world patients’ questions and care-
fully curated physician answers. We formulate
metrics that quantify how well a predicted answer
covers important information and to what extent it
contradicts gold answers. LLMs improve with size
and augmented generation, but there is still a lot of
room for improvement in both comprehensiveness
and hallucination rate.

Limitations

One of the major limitations of our evaluation ap-
proach is its reliance on LLMs for approximating
the entailment relation between ground-truth and
predicted answers. In addition, the model which is
used for the evaluation (GPT-4) is also then tested
on the QA task, which may further confound our
findings. While this was done in various recent
works, it may propagate noise into the evaluation
process, and yield a costly evaluation protocol. To
mitigate this concern, we measure the agreement
between human annotators and predicted labels,
finding overall good agreement, while reducing
evaluation costs an important avenue for future
work (Perlitz et al., 2023). For the closed models,
GPT-3.5, GPT-4, PALM-2, BARD and Bing, the
responses are based on API calls, which are subject
to changes in model versions, making reproducibil-
ity difficult.

Ethics Statement

The data in K-QA originates from deidentified real-
world patient conversations that have been manu-
ally reviewed to ensure there it contains no personal
information and revolves around general medical
questions. The answers in K-QA were manually
written by medical doctors, who did not use any au-
tomated writing assistance and wrote their answers
with a general audience in mind. Our legal team
has reviewed and approved the methodology used.
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A General Scoring Framework

In order to expand upon the definitions pro-
vided in 4, we define w ∈ W as the weight
assigned to a specific statement s ∈ S for a
given question. Additionally, we consider an NLI
model N (premise, hypothesis) designed to clas-
sify each pair of (premise, hypothesis) into one of
three labels: l ∈ {entail, contradict, neutral}.
Within this framework, we view the hypothesis
as the statement, and the generated response (P̂ )
as the premise, denoted as N (P̂ , s). We define
f(N (P̂ , s), l) as a function that takes the output of
the NLI model and a predefined logical relation,
such as "does not contradict," and returns a boolean
value. The formula representing this process is as
follows:

∑

s∈S
w(s) · f(N (P̂ , s), l)

This mathematical expression quantifies how well
the generated response aligns with a predefined
logical condition, while taking into account the
weights assigned to individual statement. The for-
mulation of this equation is aligned with the metrics
presented at section 4. For Hall computation, w(s)
is set to 1, whereas for Comp, w(s) takes the value
of 1 if s is in Must Have and 0 if s falls within Nice
to Have.
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B Annotators’ Guidelines

B.1 Decomposition to Self-Contained
Statements

We aim to evaluate the medical accuracy of re-
sponses generated by language models, specifically
concerning stand-alone questions within medical
conversations initiated by users. Given the poten-
tial for these answers to be open-ended, the eval-
uation task presents inherent challenges. To ad-
dress this, we’ve devised a set of guidelines that
break down answers into two components: "Must-
have" statements, deemed essential for inclusion,
and "Nice-to-have" statements, which, while ben-
eficial, are not obligatory. Our objective is to for-
mulate statements that are concise, accurate, defini-
tive, and self-contained. It is imperative to ensure
that the curated statements are medically correct
and logically well-structured. The evaluation pro-
cess is conducted independently for each statement,
emphasizing the importance of avoiding overlap
between statements to maintain clarity.

Guidelines for Various Scenarios
Below, a specific explanation is provided for differ-
ent scenarios, accompanied by examples of good
and bad options for decomposing an answer.

• List of Unrelated Crucial Entities: If the an-
swer comprises a list of entities (e.g., red flags,
vaccines, symptoms), and each entity is indepen-
dently significant, consider treating each entity
as a separate and distinct statement. However,
if the list of entities is not critical to include in
its entirety (e.g., suggestions for weekly menu
options), these entities should be combined into
a single statement and categorized as Nice to
Have. The validation for these statements should
ensure non-contradiction with the physician’s in-
put.

Question Must Have -
Good

Must Have - Bad

I am a young
healthy adult, fly-
ing to Brazil next
month. What vac-
cination should I
take?

-Vaccination for
Yellow Fever is
recommended be-
fore traveling to
Brazil.
-Vaccination
for Typhoid is
recommended
before traveling
to Brazil.

Since you are
traveling to Brazil
next month, it is
recommended to
get fully vacci-
nated for several
vaccines, includ-
ing Typhoid and
yellow fever.

Why is this example considered suboptimal?

- Single Answer Instead of Two: Instead of pre-
senting two separate statements, the response

combines both vaccines into a single answer.
To enhance clarity and evaluation, it is recom-
mended to break down such responses into dis-
tinct and independent statements, especially
when the mentioned vaccines are not interde-
pendent.

- Excessive Length: The response is too long
and contains unnecessary information, particu-
larly with the inclusion of prefixes like "Since
you. . . ". The focus should be on keeping the
information concise and relevant.

- Overly Specific: The mention of the time-
frame "next month" is overly specific and po-
tentially misleading. It is crucial to provide
information that is essential and directly re-
lated to the question.

• AND/OR statements: When entities have a
logical relationship (e.g., treatment options), ex-
press them in statements following their logical
connection rather than separating them. Entity 1
AND/OR Entity 2.

Question Must Have -
Good

Must Have - Bad

What is the best
hypertension
treatment for
patients who are
also diabetic?

Either
angiotensin-
converting
enzyme (ACE)
inhibitors OR an-
giotensin receptor
blockers (ARBs),
but not both.

-Angiotensin-
converting
enzyme (ACE)
inhibitors
-Angiotensin
receptor blockers
(ARBs)

Nice to Have -
Good

Nice to Have -
Bad

-angiotensin
receptor blockers
(ARBs) can be
taken alone or
with the follow-
ing medications
(thiazide and/or
ccb).
-angiotensin-
converting
enzyme (ACE)
can be taken
alone or with the
following medi-
cations (thiazide
and/or ccb)

Why is this example considered suboptimal?

- Misleading statements: The entities ACE and
the ARB are dependent on each other. If the
language model (LLM) provides an answer
recommending the patient take both ACE and
ARB, it would be medically incorrect but
might receive a high score in our evaluation
method. In such cases, as ACE and ARB are
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distinct treatment options, we need to com-
bine them in a statement to emphasize that
only one of them can be prescribed, not both.

- Lack of inclusivity: Besides ACEs and ARBs,
the treatment plan may involve other medica-
tions. We want to ensure that the response
does not contradict the LLM’s answer.

Moreover, if there are additional medications that
can be prescribed alongside ACE or ARB, they
should be listed in parentheses next to thiazide
and/or CCB.

• IF Statements: Similar to AND/OR statements,
maintain the coherence of "IF statements" if the
cause is not a stand-alone factor.

Nice to Have -
Good

Nice to Have -
Bad

What is the best
hypertension
treatment for
patients who are
also diabetic?

If lifestyle modifi-
cations alone are
not effective in re-
ducing blood pres-
sure, medications
may be necessary;

-Medications are
needed to reduce
the blood pres-
sure.
-Sometimes life
modifications are
not enough to
reduce the blood
pressure.

Why is this example considered suboptimal?

- Misleading statements: Splitting the IF state-
ment leads to misleading statements. Even if
the "bad examples" are medically correct, we
might deviate from the intended verification
of the IF statement.

• Drugs Inclusion: Include both the family drug
name (generic) and trade name when dealing
with drugs. For instance, "Low-risk drugs dur-
ing pregnancy include aminosalicylates, such
as sulfasalazine (Azulfidine) and mesalamine
(Asacol, Pentasa).

C Annotators’ Interface

Figures 6 display the annotation interface used for
human evaluation during dataset creation. In this
interface, annotators executed the second and third
steps (described in 3.2 & 3.2). They were pre-
sented with the patient question, the free-form an-
swer written by the physician, and the suggested
decomposition of statements provided by GPT-4.
Annotators were tasked with confirming, modify-
ing, or removing the suggested decomposition to
ensure relevance and self-containment. Addition-
ally, they categorized the statement into one of the
categories: Must Have, Nice to Have, or deemed it
irrelevant.
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Figure 6: An example of the annotator’s interface.
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D Prompt Templates

D.1 Decomposition Free-Form to Statements
# OVERALL INSTRUCTIONS
You are an expert in understanding logical relationships. This is a Semantic Content Unit (SCU) extraction task. Given a pair of
Question and Answer, your goal is to create a list of self-contained and concise claims. Each claim should be able to stand alone
and be independent of other claims. Your claims should encompass all the information present in the answer.

# TASK INSTRUCTIONS
- List of Possible Causes: For scenarios involving multiple entities like red flags, vaccines, symptoms, etc., generate separate
claims for each entity. This increases the number of claims.
- OR Claims: When medical entities are presented in an "OR" context, treat them as distinct claims.
- IF Claims: When an "if statement" is present, preserve the "if statement" context while creating the claim.
- XOR Claims: When entities have an XOR logical relationship (e.g., treatment options), create separate claims for each option.

# EXAMPLE CLAIM FORMAT - List Format: "Possible cause for [CONDITION] in [DEMOGRAPHIC] can be [ENTITY]."
- OR Format: "Possible causes include: [ENTITY X], [ENTITY Y], and [ENTITY Z]."
- OR Format: "The [CONTEXT] of treatments such as [TREATMENT X], [TREATMENT Y], and [TREATMENT Z], is not well established." - IF
Format: "[CONTEXT], please seek medical attention if [CONDITIONS]."
- XOR Format: "Either take [TREATMENT X] or [TREATMENT Y], but not both."
—–
{format_instructions}
——

# TASK EXAMPLE
Question: I am a 33-year-old female with right lower abdominal pain, what could it be? Answer: Possible causes for right lower
abdominal pain in a young female are Appendicitis, Inflammatory bowel disease, Diverticulitis, Kidney stone, urinary tract infection,
Ovarian cyst or torsion, Ectopic pregnancy, Pelvic inflammatory disease, endometriosis. Please seek medical attention if the pain
is sudden and severe, does not go away, or gets worse, is accompanied by fever, nausea and vomiting, or if you have noticed blood
in urine or in stool.
Claims: [ Possible cause for right lower abdominal pain in a young female: Appendicitis, Possible cause for right lower abdominal
pain in a young female: Ovarian cyst or torsion, Possible cause for right lower abdominal pain in a young female: Ectopic pregnancy,
Possible cause for right lower abdominal pain in a young female: Pelvic inflammatory disease, Possible cause for right lower
abdominal pain in a young female: Kidney stone, Possible cause for right lower abdominal pain in a young female: Urinary tract
infection, Possible cause for right lower abdominal pain in a young female: Diverticulitis, Possible cause for right lower abdominal
pain in a young female: Inflammatory bowel disease, Possible cause for right lower abdominal pain in a young female: Endometriosis,
Please seek medical attention if the pain is sudden and severe, Please seek medical attention if the pain is accompanied by fever,
Please seek medical attention if the pain is accompanied by nausea and vomiting, Please seek medical attention if the pain is
accompanied by blood in urine, Please seek medical attention if the pain is accompanied by blood in stool, Possible cause for right
lower abdominal pain in a young female: Emotional stress ]

# TASK EXAMPLE
Question: So what does the non reactive mean for the hep a igm Answer: Hep A IgM refers to a specific type of antibody called
Immunoglobulin M (IgM) against the virus hepatitis A. When infected with hepatitis A, these antibodies are detectable at symptom
onset and remain detectable for approximately three to six months. These antibodies might also be detectable in the first month
after hepatitis A vaccination. A negative or non-reactive result means no IgM antibodies against hepatitis A found in your serum,
meaning the absence of an acute or recent hepatitis A virus infection.
Claims: [ A negative or non-reactive result means that there were no IgM antibodies against hepatitis A found in your serum, The
absence of IgM antibodies against hepatitis A in your serum indicates the absence of an acute or recent hepatitis A virus infection,
Hep A IgM refers to a specific type of antibodies called Immunoglobulin M (IgM) against the virus hepatitis A, These antibodies
might also be detectable in the first month after hepatitis A vaccination, These antibodies remain detectable for approximately
three to six months after infection, When infected with hepatitis A, these antibodies are detectable at the time of symptom onset ]

# TASK EXAMPLE
Question: What medications are contraindicated for a pregnant woman with ulcerative colitis? Answer: methotrexate (Otrexup, Rasuvo,
RediTrex) and thalidomide (Contergan, Thalomid) are both considered contraindicated for treatment of UC in pregnancy. possible
treatment for UC during pregnancy include low-risk drugs such as aminosalicylates (sulfasalazine and mesalamine), immunomodulators
(azathioprine, cyclosporine A ,6-mercaptopurine) and corticosteroids. Biological agents such as Infliximabl, Adalimumab, Vedolizumab
and Ustekinumab is generally avoided during pregnancy as their safety in pregnancy is not well established yet.
Claims: [ Methotrexate (Otrexup, Rasuvo, RediTrex) is contraindicated for treatment of ulcerative colitis in pregnancy, Thalidomide
(Contergan, Thalomid) is contraindicated for treatment of ulcerative colitis in pregnancy, Aminosalicylates (sulfasalazine and
mesalamine) are considered low-risk drugs for treatment of ulcerative colitis during pregnancy, Immunomodulators (azathioprine,
cyclosporine A, 6-mercaptopurine) are considered low-risk drugs for treatment of ulcerative colitis during pregnancy, Corticosteroids
are considered low-risk drugs for treatment of ulcerative colitis during pregnancy, Treatment for ulcerative colitis during pregnancy
with biological agents such as Adalimumab is generally avoided during pregnancy as their safety in pregnancy is not well established
yet, Treatment for ulcerative colitis during pregnancy with biological agents such as Vedolizumab is generally avoided during
pregnancy as their safety in pregnancy is not well established yet, Treatment for ulcerative colitis during pregnancy with biological
agents such as Infliximab is generally avoided during pregnancy as their safety in pregnancy is not well established yet, Treatment
for ulcerative colitis during pregnancy with biological agents such as Ustekinumab is generally avoided during pregnancy as their
safety in pregnancy is not well established yet, ]

# YOUR TASK
Question: {question}
Answer: {answer}
Claims:
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D.2 Automatic Evaluation
# OVERALL INSTRUCTIONS
- You have a deep understanding of logical relationships, such as entailment and contradiction, to evaluate given triplets of
(question, premise, hypothesis).

# TASK INSTRUCTIONS
Your goal is to determine whether the Premise effectively contradicts the corresponding Hypothesis. Carefully analyze each triplet,
focusing on details. - If the premise and the hypothesis are unrelated or lack sufficient evidence to ascertain their truthfulness,
label your answer as False. - be vigilant in identifying cases where the premise doesn’t rule out the possibility of an entity (e.g.,
vaccine, symptom) appearing in the hypothesis. In such cases, classify the answer as False. - Approach each question methodically,
considering the step-by-step process outlined below.

# INPUT DATA
Question: What does trich test for? Let’s think step by step.
Premise: The term "trich test" can refer to two different medical tests, depending on the context. Here are the two possibilities:
Trichomoniasis Test: Trichomoniasis is a sexually transmitted infection (STI) caused by the parasite Trichomonas vaginalis. The
trichomoniasis test, also known as a trich test or trichomonas test, is used to detect the presence of this parasite in the body.
The test is typically performed on a sample of vaginal discharge in women or urine in men. Trichogram: A trichogram is a diagnostic
test used to evaluate hair loss and assess the health and condition of hair follicles. It involves plucking a small number of hairs
from the scalp and examining them under a microscope. It’s important to note that without additional context, it’s difficult to
determine which specific test you are referring to. Hypothesis: Trichamoniasis- a parasitic infection that can cause your symptoms.
Answer: According to the premise "trich test" refer to two different medical tests. A Trichamoniasis test is one of them, which is
used to detect this parasite’s presence. As stated in the hypothesis, the trich test is used to diagnose parasitic infections. Ths
premise entails the hypothesis. The answer is False.
###
Question: Can diabetics eat sweets? Let’s think step by step.
Premise: Individuals with diabetes are recommended to limit their consumption of sweets to one or two times per week. It is also
suggested being selective with desserts and to focus on foods with a low glycemic index, such as high fiber foods like whole grains
and legumes, as well as certain lower sugar fruits like berries, melons, and apples.
Hypothesis: It is recommended that diabetics avoid sweets.
Answer: The premise suggests that diabetics can eat sweets but limit their consumption. According to the hypothesis diabetics
should avoid sweets. Diabetics are allowed to consume sweets according to the premise, but they are prohibited according to the
hypothesis. There is a contradiction between the premise and the hypothesis. The answer is True.
###
Question: 25 yo female with right lower abdominal pain, what might be causing it? Let’s think step by step.
Premise: Right lower abdominal pain in a 25-year-old female could be caused by a variety of medical conditions.
Some potential causes include: Ovarian cyst: a fluid-filled sac on the ovary - Ectopic pregnancy: a pregnancy that occurs outside
the uterus.
Hypothesis: possible cause for right lower abdominal pain in a young female can be Appendicitis.
Answer: The premise lists several potential causes of right lower abdominal pain in a 25-year-old female, not including appendicitis.
The hypothesis states that Appendicitis could be a cause of right lower abdominal pain in a young female. There is no direct
contradiction between the premise and the hypothesis, as the premise does not exclude the possibility of appendicitis as the cause
of the pain. The answer is False.
###
Question: Can a headache last longer than a few days? Let’s think step by step.
Premise: Yes, it is possible. If you are experiencing a headache that lasts longer than a few days, it is important to see a doctor
to get the appropriate treatment.
This will help to relieve the pain and prevent any further complications.
Hypothesis: It is not a cause for concern if a headache lasts longer than a few days.
Answer: This premise acknowledges that a headache can last for several days, but emphasizes that seeing a doctor to prevent further
complications is important. According to this hypothesis, headaches lasting longer than a few days are not cause of concern. There
is a contradiction between the premise and hypothesis due to the premise emphasizing the importance of seeking medical consultation,
while the hypothesis posits that there is no cause for concern. The answer is True.
###

Question: {question} Let’s think step by step.
Premise: {llm_answer}
Hypothesis: {physician_answer}
Answer:
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D.3 Question-Answering
vanilla prompt
Question: {question}
Answer:

vanilla prompt for RAG
# TASK:
Answering question.

# INSTRUCTIONS:
- Use ONLY our verified sources to answer the question.
- If the answer is not in our sources, answer ONLY "I don’t know".

# VERIFIED SOURCES
Our verified sources: {context}

# INPUT
Question: {question}

# OUTPUT
Answer:

engineered prompt
# TASK:
You are a medical expert and your task is to write a helpful human-like text and answer to the point.

# INSTRUCTIONS:
- Identify and address the patient’s focus of interest, but include relevant information even if the patient didn’t directly ask it.
- If relevant, provide information about specific cases, including children, pregnant women, allergies, or chronic conditions.
- If you don’t know the answer, answer ONLY ’I don’t know’.
- If the answer contains enumeration of factors/symptoms/conditions use bullet points to organize the information.

# EXAMPLES:
Question: Is it safe to take Macrobid?
Answer: Macrobid is generally considered safe to take when prescribed by a doctor and used according to their instructions.
Rationale: The answer is good, but it is missing important information regarding special cases, such as pregnant women, kids and
comorbidities.
A better answer would include that Macrobid is not recommended for use in the last 2 to 4 weeks of pregnancy
###
Question: Ok Do I need any antibiotics or something for yeast infection?
Answer: Over-the-counter antifungal creams or suppositories applied internally to the vagina can effectively treat vaginal yeast
infections, while a single oral dose of prescription fluconazole (Diflucan) may also be an option.
Rationale: the answer is good however it does not include relevant explanation about the condition such as Yeast infections are
commonly caused by fungi, particularly Candida albicans, which is a natural inhabitant of the body but can cause infections in
different areas such as the skin, mouth, and vagina. In addition, it assumes the patient is asking about vaginal yeast infection
and excludes information about other possible infections caused by yeast.
###
Question: the vomiting, tight abdomen pain and burning pain may just be result of pcos?
Vomiting and tight abdominal pain are not common clinical presentations of PCOS. Vomiting and abdominal pain are nonspecific symptoms
which could be an indication for a variety of illnesses. In case of this presentation, you should be evaluated by a physician, and
treated accordingly.
Rationale: the answer is good, but it does not emphasize enough that the patient’s symptoms are most likely caused by something
else and what is the differential diagnosis in this case.

# INPUT
Question: {question}
Answer:
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engineered prompt for RAG
# TASK:
You are a medical expert whose task is to provide a helpful, concise, human-like response to a patient’s question based on verified
medical sources.

# INSTRUCTIONS:
- Use our verified sources to answer the question at the end.
- If the answer is not in our sources, answer ONLY ’I don’t know’.
- It is important to assume that there may be a medical concern underlying the patient’s questions.
- If relevant, provide information about specific cases, including children, pregnant women, allergies, or chronic conditions.
- If the answer contains enumeration of factors/symptoms/conditions use bullet points to organize the information.
- Avoid repetition of details.

# EXAMPLES
Question: Is it safe to take Macrobid?
Answer: Macrobid is generally considered safe to take when prescribed by a doctor and used according to their instructions.
Rationale: The answer is good, but it is missing important information regarding special cases, such as pregnant women, kids and
comorbidities.
A better answer would include that Macrobid is not recommended for use in the last 2 to 4 weeks of pregnancy
###
Question: I had my gallbladder removed in 2015, so that rules out gallstones, right?
Answer: Yes, as gallstones are stones that form inside the gallbladder, if the gallbladder is removed, gallstones cannot be the
cause of future symptoms.
Rationale: The answer is correct however it does not provide the patient with an important clinical tie as even without a gallbladder,
stones can develop anywhere in the biliary system and cause similar symptoms to gallstone disease.
###
Question: the vomiting, tight abdomen pain and burning pain may just be result of pcos?
Answer: Polycystic ovary syndrome (PCOS) is an endocrine (hormonal) insufficiency which is characterized by polycystic ovaries
and has a variety of effects including anovulation and irregular menstrual cycles which in turn could causes fertility issues,
hyperandrogenism (high levels of androgens causing coarse body hair growth in a male pattern and acne) and insulin resistance causing
type 2 diabetes mellitus, obesity, and hypertension.
Vomiting and tight abdominal pain are not common clinical presentations of PCOS. Vomiting and abdominal pain are nonspecific symptoms
which could be an indication for a variety of illnesses. In case of this presentation, you should be evaluated by a physician, and
treated accordingly.
Rationale: The answer is good, but it does not emphasize enough that the patient’s symptoms are most likely caused by something
else and what is the differential diagnosis in this case.

# CONTEXT
Our verified sources: {context}

# INPUT
Question: {question}
Answer:
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Abstract

The automatic construction of knowledge
graphs (KGs) is an important research area in
medicine, with far-reaching applications span-
ning drug discovery and clinical trial design.
These applications hinge on the accurate iden-
tification of interactions among medical and
biological entities. In this study, we propose an
end-to-end machine learning solution based on
large language models (LLMs) that utilize elec-
tronic medical record notes to construct KGs.
The entities used in the KG construction pro-
cess are diseases, factors, treatments, as well
as manifestations that coexist with the patient
while experiencing the disease. Given the criti-
cal need for high-quality performance in med-
ical applications, we embark on a comprehen-
sive assessment of 12 LLMs of various architec-
tures, evaluating their performance and safety
attributes. To gauge the quantitative efficacy of
our approach by assessing both precision and
recall, we manually annotate a dataset provided
by the Macula and Retina Institute. We also
assess the qualitative performance of LLMs,
such as the ability to generate structured out-
puts or the tendency to hallucinate. The results
illustrate that in contrast to encoder-only and
encoder-decoder, decoder-only LLMs require
further investigation. Additionally, we provide
guided prompt design to utilize such LLMs.
The application of the proposed methodology
is demonstrated on age-related macular degen-
eration.

Data and Code Availability The dataset utilized
in this study is provided by the Macula and Retina
Institute and is not accessible to the public.

Institutional Review Board (IRB) This research
does not require IRB approval.

1 Introduction

There are several biomedical data corpora avail-
able that provide valuable knowledge, and one

such source is PubMed (Kilicoglu et al., 2012).
PubMed is a search engine that accesses MED-
LINE (Kilicoglu et al., 2012), which is a database
of abstracts of medical publications and references.
Moreover, the widespread adoption of electronic
medical records (EMR) has brought various oppor-
tunities for medical knowledge discovery. Knowl-
edge graphs (KG) are often used for knowledge
discovery, because graph-based abstraction offers
numerous benefits when compared with traditional
representations. They have been applied to various
areas of healthcare, including identifying protein
functions (Santos et al., 2022), drug repurposing
(Drancé et al., 2021), and detecting healthcare mis-
information (Cui et al., 2020). Another application
may be a clinical trial design (Skelly et al., 2012),
during which identification of confounding vari-
ables is an important step. Confounding variables
may mask an actual association, or, more com-
monly falsely demonstrate an apparent association
between the treatment and outcome when no real
association between them exists.

KGs are a powerful tool for organizing and rep-
resenting knowledge in a graph structure, where
nodes represent entities within a specific domain,
while edges symbolize relationships between these
entities. The type of relationships may vary de-
pending on the domain, allowing for the use of
directed or undirected graphs. For example, in
(Nordon et al., 2019), they employed a directed
graph to encode causal relationships between dis-
eases. Other KGs may utilize both symmetric and
asymmetric relationships. In our work, we specif-
ically focus on using directed graphs to represent
relationships between diseases and various factors,
treatments, and manifestations that coexist with a
patient while experiencing the disease (referred to
as ’coexists_with’).

Recent advancements in large language models
(LLM) offer an opportunity to think about their abil-
ity to learn valuable representations from the knowl-
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edge encoded in medical corpora. Effectively an-
alyzing textual data and KG construction requires
extensive domain knowledge and is often a time-
consuming process for medical experts. To address
this challenge, we propose an end-to-end method
for automatically constructing knowledge graphs
from electronic medical record (EMR) notes using
LLMs, specifically through relation extraction.

Previous studies have suggested the utilization
of specific LLMs for clinical relation extraction
(Agrawal et al., 2022; Sushil et al., 2022). How-
ever, due to the inherent safety-critical nature of
healthcare, we conducted a comprehensive anal-
ysis of the performance and safety attributes of
LLMs with varying architectures. To evaluate and
assess their potential for medical applications and
to address potential safety concerns, we introduced
a manually annotated, private dataset and bench-
marked the performance of 12 distinct LLMs. We
have not performed an analysis on publicly avail-
able EMR datasets, such as MIMIC-III (Johnson
et al., 2016), because some of the models have
used these datasets for training or fine-tuning. Our
analysis revealed that in contrast with encoder-only
and encoder-decoder models, decoder-only mod-
els need further guidance to output in a structured
manner, which is required for relation extraction
to construct the KG. We, therefore, introduced a
guided prompt design that helped to utilize some
of such LLMs for our task and analyzed issues that
are making others unsuitable. This rigorous assess-
ment forms a critical foundation for the safe and
effective deployment of LLMs in the healthcare
domain. Our work takes the form of the following
contributions:

• We present a end-to-end method leveraging
LLMs for the automatic construction of KGs
from EMR notes

• We conduct an extensive and rigorous evalua-
tion of the performance of 12 LLMs of various
architectures specifically tailored for clinical
relation extraction

• We provide guided prompt design to utilize
decoder-only LLMs for relation extraction to
construct KG between aforementioned medi-
cal entities

2 Related Work

One notable success in the construction of knowl-
edge bases (KBs) from biomedical textual data is

SemRep (Rindflesch and Fiszman, 2003). SemRep
is a rule-based system that combines syntax and
semantics with biomedical domain knowledge con-
tained in the Unified Medical Language System
(UMLS) (Bodenreider, 2004) for semantic relation
extraction. The range of predicates in SemRep is
diverse, including molecular interactions, disease
etiology, and static relations. Shalit et al. (Nor-
don et al., 2019) further improve the precision of
SemRep by adding three additional filtration steps.

As one may observe, SemRep utilizes various
levels of language modeling. It has been exper-
imentally demonstrated that LLMs intrinsically
learn these levels of language specification, without
explicit programming (Søgaard, 2021). In (Sung
et al., 2021), BERT-based models with probing are
used to extract relations between biomedical en-
tities. The authors observe that, although LLMs
can extract biomedical knowledge, they are biased
towards frequently occurring entities present in
prompts. We do not argue about the bias of LLMs,
but rather the complexity of extracting relations
via probing. We propose providing larger context
information than that which is solely present in the
prompt.

(Rotmensch et al., 2017) utilizes both struc-
tured and unstructured data from EMR to con-
struct knowledge graphs. The structured data in-
cludes ICD-9 (International Classification of Dis-
eases) diagnosis codes, while the unstructured data
comprises various notes written by physicians and
nurses to track a patient’s course. On the other
hand, (Chandak et al., 2023) employs 20 multi-
modal data resources to describe a disease with var-
ious relationships representing different biological
scales. However, in this work, we solely concen-
trate on clinical notes for information extraction
and KG construction.

(Trajanoska et al., 2023) makes connection be-
tween LLMs and semantic reasoning to automati-
cally generate a KG on the topic of sustainability.
It further populates it with concrete instances us-
ing news articles from the internet. It experiments
with REBEL (Huguet Cabot and Navigli, 2021) and
ChatGPT and shows that ChatGPT (OpenAI, 2023)
is able to automatically create KGs from unstruc-
tured text, if reinforced with detailed instructions.

The paper on few-shot clinical extraction using
LLMs (Agrawal et al., 2022) discusses the chal-
lenge of extracting important variables from clin-
ical data and presents an approach that leverages
large language models, specifically InstructGPT
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(Ouyang et al., 2022), for zero-shot and few-shot
information extraction from clinical text. The au-
thors demonstrate the effectiveness of this approach
in several NLP tasks that require structured outputs,
such as span identification, token-level sequence
classification, and relation extraction. To evaluate
the performance of the system, the authors intro-
duce new datasets based on a manual reannotation
of the CASI dataset (Moon et al., 2014).

We argue that our setup is more complex as we
do not consider clean, well-written, academic cor-
pora such as PubMed (Kilicoglu et al., 2012) and
CASI (Moon et al., 2014). The EMR corpus con-
tains a significant amount of grammatical errors
("there is some heme OD .. ?"). Practitioners use
abbreviations and notations ("RTO") not defined
in the context, obfuscating the underlying informa-
tion even further. Our study benchmarks different
LLMs of varying architectures and training proce-
dures on this challenging dataset.

3 Dataset

For this cohort study, data was obtained from the
EMR of the Macula & Retina Institute, an indepen-
dent health system in Glendale, California, USA.
The dataset included approximately 10,000 patient
records of individuals with retina-related eye dis-
eases who had visited the institute between 2008
and 2023. The study focused on extracting knowl-
edge from the clinical notes, which are records
of observations, plans, and other activities related
to patient care. These notes contain a patient’s
medical history and reasoning and can be used to
identify complex disease-related patterns such as
potential treatments, causes, and symptoms. In to-
tal, the study analyzed 360,000 notes relating to
122 unique eye diseases.

3.1 Dataset preprocessing

Clinical notes often include repetitive segments
following a standardized template used by med-
ical practitioners, resulting in unnecessary com-
putational overhead during the analysis. To ad-
dress this issue, cosine similarity is computed be-
tween the embeddings of notes generated by Sen-
tence T5 XXL (Ni et al., 2022). If the similarity
score exceeds the threshold (referred to as thresh-
old_preprocessing, detailed in Appendix F), prior-
ity is given to the note with a higher word count
to retain more informative content. Additionally,
notes containing fewer than 5 words are excluded

from further analysis.

4 Proposed method

Our proposed method constructs a KG of diseases
and their factors, treatments, and manifestations
that the patient exhibits while undergoing the dis-
ease. To achieve this, the system initially identifies
disease-specific notes as described in Subsection
4.1. Next, for each category of medical entity, we
design set of questions (Subsection 4.5). We lever-
age an LLM to answer a pre-designed set of ques-
tions, taking into consideration the aforementioned
disease-specific notes as contexts as described in
Subsections 4.3 and 4.6. The list of LLMs that
we experimented with are available in Subsection
4.2. All the experiments are performed on 8xV100
(32GB VRAM) GPUs which are widely accessible
nowdays. The Subsection 4.7 discuss postprocess-
ing techniques utilized to get the final relations to
construct the KG.

4.1 Disease-specific notes identification
In clinical records, a single disease, denoted as
dinput, may have multiple textual representations.
The set of such expressions is denoted as Dinput.
These expressions may vary between clinics as well.
To identify all instances of dinput in the records,
we employ the Unified Medical Language Sys-
tem (UMLS) Metathesaurus (Bodenreider, 2004),
a comprehensive repository of biomedical termi-
nologies and ontologies containing over 3 million
concepts and their corresponding aliases, such as
diseases, drugs, and procedures. We first check if
any of the expressions in di ∈ Dinput appear in the
records within our dataset, and if so, we add the
record to a list of disease-specific records for dinput.
Sometimes, clinicians may make typographical er-
rors when recording the condition in the notes.
To account for this, we use the BioBERT NER
model to extract a list of diseases, denoted as Dnote,
present in the record. We then calculate the cosine
similarity between each expression dnotei ∈ Dnote

and di ∈ Dinput. If the similarity is above thresh-
old (denoted threshold_notes_identification, more
in Appendix F) for at least one dnotei , we add the
record to the list of relevant notes for the disease
di. Refer to Appendix C for more details on the
algorithm.

4.2 Models
Table 1 shows all the models that we used in this
paper. Our main objective revolves around exper-
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Table 1: We show all the models used in this paper, as
well as their size, architecture and the number of pre-
training tokens. We focus only on pretraining data, and
ignore any finetuning data. PTT stands for pretraining
tokens.

Architecture Model Size PTT

Encoder-only BioBERT-SQuAD-v2 110M 137B

BERT-SQuAD-v2 110M 137B

RoBERTa-SQuAD-v2 125M 2.2T

Decoder-only BioGPT 349M -

OPT 30B 180B

OPT-IML-MAX 30B 180B

Llama 2 70B 2T

Vicuna 33B 2T

BLOOM 176B 366B

WizardLM 70B 2T

Encoder-decoder FLAN-T5-XXL 11B 34B

FLAN-UL2 20B 1T

imenting with various architectures of LLMs and
analyzing their performance through a comprehen-
sive evaluation that brings forward potential edge
cases and safety attributes. To accomplish this, we
conducted experiments using different LLM mod-
els categorized under three architectures: encoder-
only, decoder-only, and encoder-decoder. Our next
objective was to include as much diverse LLMs as
possible encompassing variations in size as well
as the number of pretraining tokens. For more de-
tailed insights into each individual model, please
refer to Appendix A.

4.3 Aligning LLMs for relation extraction
In this work, we assume only query access to a
large language model (i.e., no gradients). The task
is to identify relations by finding answers to spe-
cific queries. We explore two distinct approaches
for aligning large language models to the task:
open-book QA (Gholami and Noori, 2021) and
in-context learning (Brown et al., 2020).

QA aims to find an answer to a given query. In
open-book QA, a query comprises a question and
a context. The system attempts to find an answer
to the question from the context. It utilizes various
variations of BERT (Devlin et al., 2019) language
models, as described in Table 1. The model con-
sists of two sets of dense layers with sigmoid acti-
vation in addition to the based BERT model. The
first layer seeks the start of the answer sequences,
while the second layer seeks the end of the answer

sequences. For decoder-only and encoder-decoder
models, we employ in-context learning (Brown
et al., 2020), providing the LLM with a prompt
consisting of a list of input-output pairs that answer
a given query using the context. In this study, we
focused on zero-shot (Wei et al., 2022), few-shot
(Brown et al., 2020), and instruction-based prompt-
ing (Ye et al., 2023).

4.4 Prompt design
We follow a systematic and task-agnostic process
to construct prompts as outlined in (Jimenez Gutier-
rez et al., 2022). As depicted in the examples in
Figure 1, this method identifies three key compo-
nents of a prompt: overall task instructions, a sen-
tence introduction, and a retrieval message. In the
case of zero-shot and few-shot approaches, sim-
ply entity-related questions are appended to the
input (Figure 1 left-top). Additionally, for the few-
shot approach, we provide an example input/out-
put. For instruction-based prompting (Figure 1 left-
bottom), overall task instructions are comprised of
broad instructions for the task as it is described in
(Jimenez Gutierrez et al., 2022).

Furthermore, we are introducing a prompt struc-
ture by defining a stringent input and response
format. The primary focus is on extracting infor-
mation exclusively from the provided context, ac-
companied by explicit instructions to incorporate
specific entity types in the response. We have delin-
eated a well-defined format for both the question
and the response, promoting concise answers with-
out explanations. Moreover, we have introduced
a systematic approach to address situations where
information is absent or questions are irrelevant,
ensuring a consistent ’I do not know’ response. In
essence, these modifications contribute to enhanc-
ing the clarity and precision of the model’s perfor-
mance within this specific scientific context. For a
comprehensive visualization of the refined prompt
structure and its components, kindly consult the
right block of Figure 1.

4.5 Question design
We define template questions like "What treats %s".
The "%s" in the questions represents a placeholder
for a disease. All the predicates (e.g. treats, affect,
cause, factor) are taken from SemRep (Rindflesch
and Fiszman, 2003). The questions are catego-
rized into three types: treatment-related, factor-
related, and coexists_with-related questions. The
treatment-related questions inquire about methods
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Figure 1: Each design element in the prompt is distinguished by a specific color annotation: orange represents
overall task instructions, red indicates sentence introduction, purple signifies the retrieval message, and green is
used for the LLM response. In the top-left corner, a basic prompt structure is outlined, which includes a sentence
introduction and a retrieval message. The bottom-left section features an instruction prompt, encompassing overall
task instructions as well. On the right, a newly introduced prompt structure is presented, encompassing all three
components and incorporating input-output structure instructions.

to slow down the progression, decrease the chance,
or reduce the risk of a specific condition. The
factor-related questions aim to identify the causes,
factors, or risks associated with a condition. The
coexists_with-related questions explore any symp-
toms, effects, diseases, clinical tests, or behaviors
that may manifest in the patient while experiencing
the disease. The full list of questions for the LLM
queries is available in Appendix B.

4.6 Relation extraction

We query an LLM for each disease d ∈ D with
a question q(d) and a related context c ∈ C(d)
(refer to Appendix C for more details). The LLM
returns a list of answers with their corresponding
probabilities for each query quartet ⟨d, q(d), c, t⟩
where t identifies the question type, i.e. treatment,
factor, and coexists with. As a single probability
estimate may be unreliable (Nordon et al., 2019),
we keep the relation triplet ⟨e, t, d⟩ if the LLM has
returned e as an answer to any question of category
t more than relation_occurrence_number times and
that the average probability over of the triplet is
greater than relation_probability. For details on
the choice of relation_occurrence_number and re-

lation_probability please refer to Appendix F. Fi-
nally, the category t with the highest probability is
chosen as the final relation between e and d. Refer
to Appendix C for more details.

4.7 Postprocessing

To map the model’s output to a list of values for
each medical entity, we initially filtered out the pre-
dictions with a probability score lower than thresh-
old (denoted prediction_probability, more in Ap-
pendix F). Subsequently, to remove meaningless
information, stop words and punctuation were ex-
cised from each predicted text.

Furthermore, our approach involved addressing
instances where the model conveyed uncertainty or
lacked adequate context. When the large language
model (LLM) produced responses such as "I do
not know" due to ambiguity or insufficiency, we
systematically filtered out these outputs.

Further analysis revealed that models tend to gen-
erate the same answers in various forms depending
on the given context. For instance, predictions such
as "areds" and "areds-2 vitamins" essentially refer
to the same value for a specific medical entity, but
are expressed differently. To address these varia-
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Treatment Factor Coexists_with

Architecture Model Precision Recall Precision Recall Precision Recall

Encoder-only RoBERTa-SQuAD-v2 0.25 0.54 0.21 0.75 0.3 0.14

BioBERT-SQuAD-v2 0.13 0.9 0.25 0.75 0.45 0.71

BERT-SQuAD-v2 0.17 0.45 0.17 0.45 0.17 0.57

Encoder-decoder FLAN-T5-XXL: 0-shot 0.55 0.75 0.54 0.69 0.64 0.89

FLAN-T5-XXL: few-shot 0.45 0.9 0.66 0.8 0.72 0.88

FLAN-T5-XXL: instruct 0.86 0.9 0.8 0.8 0.83 0.97

FLAN-T5-XXL: guided 0.88 1 0.82 0.875 0.76 0.875

FLAN-UL2: 0-shot 0.43 0.9 0.16 0.62 0.74 0.85

FLAN-UL2: few-shot 0.55 0.9 0.36 0.75 0.78 0.89

FLAN-UL2: instruct 0.98 1 0.8 0.8 0.98 1
FLAN-UL2: guided 0.98 1 0.84 0.875 0.98 1

Decoder-only Vicuna-33B: guided 0.63 1 0.5 0.75 0.46 0.75

Llama-2-70B: guided 0.65 1 0.38 0.75 0.4 0.875

WizardLM-70B: guided 0.78 1 0.61 0.875 0.5 0.875

Table 2: We are comparing the performance of LLMs with various architectures across all three medical entities.
The evaluation is based on precision and recall measurements for each medical entity within the final KG. The
baseline for comparison are the entity values available in the notes. ’guided’ refers to the guided instruction-based
prompting described in Subsection 4.4.

tions, we employed normalized cosine similarity
for the tokens in the model’s predictions. Specif-
ically, for each medical entity, we calculated the
cosine similarity between each pair of predictions.
Predictions which exceed the similarity threshold
(denoted similarity_postprocessing, more in Ap-
pendix F) were considered equivalent and subse-
quently grouped together. From each group, the
prediction with the highest initial probability score
assigned by the model was selected. Finally, the
refined output was converted into a list of values,
selecting spans of text directly from the LLM out-
put. A qualitative example illustrating this process
is provided in Appendix D.

5 Results

We now describe our experimental study over our
techniques for constructing the KG.

Setup We construct a KG for age-related macular
degeneration (AMD), a progressive eye disease pre-
dominantly affecting older individuals with a high
incidence rate. Since KGs are typically too large
to display directly, we provide their tabular repre-
sentation instead. To reconstruct KGs from Tables
3 and 4, connect treatments listed in the Treatment
column to AMD (the target entity) using arrows.

Similarly, connect factors from the Factor column
to AMD, and establish connections to AMD with
undirected edges for entities in the Coexists_with
column.

The evaluation is based on precision and recall,
which represent the ratio of correctly extracted
terms by the model to all terms extracted by the
model, and the ratio of correctly extracted terms by
the model to all actual terms available in the clinical
notes. The same metrics have been calculated for
each entity (Treatment, Factor, and Coexists_with)
separately. Therefore, the ground truth for compar-
ison has been the entity values available in the clin-
ical notes. Thus, we needed to review all clinical
notes related to AMD and extract all factors, treat-
ments, and ’coexists_with’ terms. You can find the
explanation of these terms in Subsection 4.5. The
AMD-related notes have been identified according
to Subsection 4.1 and preprocessed as described
in Subsection 3.1. These steps leave us with 320
clinical notes.We refer to the process of extracting
terms as annotation. This annotation was carried
out by two of the authors, a retina specialist, and
a clinical research coordinator. To establish a con-
sistent annotation schema, a set of examples was
jointly annotated. Following this, each annotator
independently annotated the same set of examples,

300



and the two sets of annotations were then combined
via a joint manual adjudication process. As a result,
we extracted 11 different treatments, 8 different fac-
tors, and 8 ’Coexists_with’ terms from the clinical
notes.

Precision and recall results Table 2 shows the
precision and recall results of different LLMs of
various architectures. The best performance is con-
sistently achieved with encoder-decoder LLMs for
most medical entities. Specifically, FLAN-UL2,
when used with our proposed prompt design, out-
performs the other models. Furthermore, we ob-
serve that encoder-decoder models using 0-shot
and few-shot prompting techniques are comparable
to decoder-only models in some cases. However,
when instruction-based or our proposed guided
prompting is employed for encoder-decoder mod-
els, they significantly outperform the others.

Quantitative results for decoder-only models us-
ing 0-shot, few-shot, and instruction-based prompt-
ing techniques are not available. These models
did not produce structured outputs, rendering them
unsuitable for our task. Additional information
can be found in Decoder-only models. Unlike
other prompting techniques, guided instruction-
based prompting (as described in Subsection 4.4)
has demonstrated significant improvements. This
prompt design allowed us to utilize only three
decoder-only models for this task, out of the seven
we experimented with. These models include
Llama 2 (Touvron et al., 2023), Vicuna-33B (Zheng
et al., 2023), and WizardLM-70B (Xu et al., 2023).
The other four did not produce structured outputs
with this prompt design, similar to the results ob-
tained with the other three prompting techniques.

Notably, WizardLM-70B achieves the highest re-
call for factors and treatments, demonstrating that
the incorporation of additional guidance has en-
hanced the understanding of the task by some of the
decoder-only models, resulting in more precise and
accurate answers. We believe that further research
is required to explore the potential of decoder-only
models for challenging relation extraction tasks,
and future investigations may enhance their relia-
bility. See prediction examples in Appendix E.

Decoder-only models Here we describe the chal-
lenges that make some of these models (BioGPT
(Luo et al., 2022), OPT (Zhang et al., 2022), OPT-
IML-MAX (Iyer et al., 2022), Bloom (Scao et al.,
2022)) with any of the prompting techniques were
unsuitable for clinical relation extraction, thus KG

construction. Some of the models are prone to
"hallucinating", a term commonly used to refer to
the models generating responses that are factually
incorrect or nonsensical. See such examples in
Appendix E.2.1.

Furthermore, we observed cases where some
models generated correct responses, but these re-
sponses did not originate from the given context.
Another concern was the generation of excessively
verbose or repetitive responses. Despite being con-
textually correct, the lengthy and redundant nature
of these outputs complicated the postprocessing
phase, making the integration of such responses
into our KG construction pipeline impossible. See
such examples in Appendix E.2.2.

Qualitative Example: AMD We continue using
AMD as a qualitative example. AMD is a progres-
sive eye disease affecting the retina, specifically
the macula. The risk factors for AMD have been
studied extensively and have widely been known
to include age, race, smoking status, diet, and ge-
netics (Holz et al., 2014; Heesterbeek et al., 2020).
The exact reasons and mechanisms behind AMD
are not yet fully researched. There are multiple
pathways and factors for drusen formation and
AMD progression, so it is hard to disentangle them.
Large and numerous drusen are associated with
an increased risk of developing advanced AMD
(Schlanitz et al., 2019). The pathophysiologic land-
scape of AMD potentially involves degenerative
transformations within several ocular components,
including the outer retinal layers, the photorecep-
tors, retinal pigment epithelium (RPE) character-
ized by the loss of the ellipsoid zone (EZ) and
atrophic changes, accumulation of subretinal/sub-
macular fluids, perturbations in Bruch’s membrane
leading to choroidal neovascularization (CNVM),
and areas of choriocapillaris nonperfusion resulting
in macular atrophy and fibrosis (Holz et al., 2014;
Boyer et al., 2017). Medical evaluators annotated
drusen, genetics, CNVM, smoking, RPE irregu-
larities, submacular/subretinal fluid, fibrosis, and
loss of EZ zone as risk factors for AMD. The KG
constructed with the utilization of FLAN-UL2 with
guided instruction-based prompting that have rela-
tively the best quantitative performance, is visually
presented in Table 3.

Notably, besides factors, the graph also high-
lights a spectrum of terms that are linked to po-
tential treatments and symptoms associated with
AMD. Among the treatment entities are ARED-
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Table 3: KG for AMD constructed using FLAN-UL2
model with guided instruction-based prompting. Red
color indicates an incorrect values. Orange color indi-
cates a values missed by the model.

Treatment Factor Coexists_with

AREDS vitamins Drusen Poor visual acuity
Avastin Genetics / Family history Metamorphopsia
Lucentis Peripheral CNVM/CNVM Visual changes
PDT Smoking Macula Risk genetic testing
WACS vitamins RPE irregularity Wet AMD
Amsler grid testing Submacular fibrosis and fluid Dry AMD/GA
Spinach Loss of EZ zone ForeseeHome
Fish Glaucoma Drusen
Omega-3 fatty acids Subretinal fluid Amblyopia
Anti-VEGF
Green Leafy Vegetables
Lack drusen

S/WACS vitamins, dietary interventions, and Anti-
VEGF treatments including Avastin and Lucentis.
Other treatments indicated include PDT (Photody-
namic Therapy), the utilization of Amsler grid, sup-
plementation of Omega-3 fatty acids, and consump-
tion of specific foods such as fish, spinach, and
green leafy vegetables. The symptomatic aspects
of AMD encompass a range of visual impairments
and clinical manifestations. Patients afflicted with
AMD often experience poor visual acuity, metamor-
phopsia (distorted vision), and can be diagnosed
with either dry or wet AMD. Additionally, the man-
agement of the condition often involves undergo-
ing assessments such as ForeseeHome and Macula
Risk genetic testing, which play a pivotal role in
monitoring the progression and development of
AMD. Each of these terms is identified as values
to the ’Coexists_with’ entity within the graph.

Table 4: KG for AMD constructed using SemMedDB.

Treatment Factor Coexists_with

Injection procedure Blind Vision Visual impairment
Photochemotherapy Antioxidants Massive hemorrhage
Antioxidants Oxidative Stress Autofluorescence
Bevacizumab Blindness
Eye care Legal, Disability NOS
Homocysteine thiolactone
Operative Surgical Procedures

We also show the KG constructed by
SemMedDB (Kilicoglu et al., 2012) in Ta-
ble 4. SemMedDB is a repository of semantic
predictions extracted from the titles and abstracts
of all PubMed citations. It is evident that our
approach has identified terms not found in the
SemMedDB. Our method may not forge new
terms where none existed in the original medical
literature repository. However, the feedback from
our medical evaluators underscores its potential

to contribute to novel discoveries by highlighting
existing but overlooked information.

6 Conclusion

In this paper, we propose an end-to-end approach
that harnesses LLMs for the automatic generation
of KGs from EMR notes. KGs hold significant
value in numerous healthcare domains, including
drug discovery and clinical trial design. The en-
tities involved in the KG construction process en-
compass diseases, factors, treatments, and man-
ifestations that co-occur with patients experienc-
ing these diseases. Through extensive evaluation
across various LLM architectures, we have demon-
strated that encoder-decoder models outperform
others in clinical relation extraction. Additionally,
we emphasize the need for additional investiga-
tion into the suitability of decoder-only models for
medical applications, particularly given their criti-
cal safety implications. Furthermore, we provide
guided prompt design to utilize these models. We
believe that an automated knowledge extraction
method may deliver substantial benefits to the med-
ical community and facilitate further research in
the field.

7 Limitations

The findings of the research are subject to several
limitations. The primary one is that our experi-
ments were conducted on a single dataset focused
on one specific disease. This limitation arises from
the necessity of annotations by medical practition-
ers, a process that is highly time-consuming. Fur-
thermore, due to the private nature of our dataset,
we opted to use only open-source models to en-
sure data privacy and security. While this approach
safeguards patient information, it may limit the per-
formance benefits that could be gained from propri-
etary models. Additionally, we assumed only query
access to large language models (i.e., no gradients).
Fine-tuning LLMs on a relevant corpus could po-
tentially enhance their performance and accuracy,
and this remains an area for future exploration.
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Appendix

A Models

Encoder-only models Our approach utilizes a
fine-tuned question-answering model based on
BERT (Devlin et al., 2019), specifically fine-tuned
on the SQuAD v2 dataset (Rajpurkar et al., 2016).
This model, which we refer to as BERT-SQuAD-v2,
benefits from the core principles of BERT, includ-
ing random token masking during pretraining to
encourage contextual understanding.

Inspired by advancements in the BERT family,
we also incorporate RoBERTa (Liu et al., 2019),
which is improved upon Bert by introducing a new
pretraining recipe that includes training for longer
and on larger batches, randomly masking tokens
at each epoch instead of just once during prepro-
cessing, and removing the next-sentence prediction
objective. We also consider BioBERT (Lee et al.,
2020), which is a pre-trained BERT model which
is trained on different combinations of general &
biomedical domain corpora.

Decoder-only models BioGPT (Luo et al., 2022),
a generative Transformer model tailored for
biomedical literature, has shown remarkable results
on several biomedical NLP benchmarks, includ-
ing an impressive 78.2% accuracy on PubMedQA
(Jin et al., 2019). However, our efforts to employ
BioGPT for relation extraction were met with chal-
lenges. The model frequently hallucinated during
inference, making it unsuitable for our specific ap-
plication in relation extraction.

Open Pretrained Transformers (OPT) (Zhang
et al., 2022) represents a comprehensive suite of

decoder-only transformers designed for large-scale
research. OPT-30B, a particular model from this
suite, has been pre-trained predominantly on En-
glish text with some multilingual data from Com-
monCrawl. Sharing similarities with GPT-3, it uses
a causal language modeling (CLM) objective. OPT-
IML (Iyer et al., 2022) represents an advanced ver-
sion of the OPT model, enhanced with Instruction
Meta-Learning. It’s been trained on an extensive
collection known as the OPT-IML Bench, com-
prising roughly 2000 NLP tasks from 8 different
benchmarks. Two variations exist: the standard
OPT-IML trained on 1500 tasks, and OPT-IML-
Max that covers all 2000 tasks.

BLOOM (Scao et al., 2022) stands as a so-
phisticated autoregressive Large Language Model
(LLM), designed to produce coherent text across
46 languages and 13 programming languages, repli-
cating human-like text generation capabilities.

Llama 2 (Touvron et al., 2023) is a distinguished
collection of generative text models, with models
ranging from 7 billion to 70 billion parameters. Pre-
sented by Meta, this repository encompasses the
70B variant, made compatible with the Hugging
Face Transformers framework. Within the Llama 2
family lies a specialized series called Llama-2-70B-
Chat, meticulously fine-tuned for dialogue-centric
applications. This model excels, outstripping many
open-source chat models in benchmarks and ri-
valling prominent closed-source counterparts like
ChatGPT and PaLM in terms of helpfulness and
safety.

Emerging from the wave of advanced chat-
bots, Vicuna-33B (Zheng et al., 2023) stands out
as an open-source contribution, fine-tuned using
the LLaMA framework based on dialogues from
ShareGPT. Notably, when evaluated using GPT-4,
Vicuna-33B not only showcased a commendable
performance, rivaling the likes of OpenAI’s Chat-
GPT and Google Bard (achieving over 90%* qual-
ity), but also surpassed counterparts like LLaMA
and Stanford Alpaca (Taori et al., 2023) in over
90%* of the tests. This exceptional achievement
comes at a modest training cost of around $300,
making Vicuna-33B an attractive proposition. Ad-
ditionally, its code, weights, and a live demo are
accessible for the research community, albeit re-
stricted to non-commercial applications.

WizardLM-70B (Xu et al., 2023) is a Large Lan-
guage Model (LLM) built on the foundation of
LLaMA, incorporating a novel training approach
known as Evol-Instruct. This method involves
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leveraging artificial intelligence to evolve com-
plex instruction data, setting WizardLM apart from
LLaMA-based LLMs trained on simpler instruc-
tions. As a result it outperforms counterparts in
tasks that demand intricate understanding and exe-
cution of instructions.

Encoder-decoder models FLAN-T5-XXL
(Chung et al., 2022) is a encoder-decoder model
that has been pre-trained on a multi-task mixture of
unsupervised and supervised tasks and for which
each task is converted into a text-to-text format. It
performs well on multiple tasks including question
answering.

FLAN-UL2 (Yitayew, 2023) is an encoder-
decoder model based on the T5 architecture. It
uses the same configuration as the UL2 (Tay et al.,
2022) model released earlier last year and was fine-
tuned using the “Flan” prompt tuning and dataset
collection (Wei et al., 2022). According to the orig-
inal blog, there are some notable improvements
over the original UL2 model. The Flan-UL2 check-
point uses a receptive field of 2048 which makes it
more usable for few-shot in-context learning. This
Flan-UL2 checkpoint does not require mode tokens
anymore.

In comparison to FLAN-T5, FLAN-UL2 outper-
forms FLAN-T5 XXL on all four setups with an
overall decent performance lift of +3.2% relative
improvement. Most of the gains seem to come
from the CoT setup while performance on direct
prompting (MMLU and BBH) seems to be modest
at best.

B Question list

Table 5: List of questions categorized by the medical en-
tity. The "%s" in the questions represents a placeholder
for a disease.

Medical entity Question

Treatment What can slow the progression of %s? (T1)

What can decrease the chance of %s? (T2)

What can reduce the risk of %s? (T3)

What is a treatment for %s? (T4)

What treats %s? (T5)

Factor What does cause %s? (F1)

What is the cause of %s? (F2)

What is the factor for %s? (F3)

What can increase the risk of %s? (F4)

What can convert to %s? (F5)

Effect What can %s convert to? (E1)

What is the effect of %s? (E2)

What does %s lead to? (E3)

What can %s become? (E4)

What does %s affect? (E5)
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Algorithm 1 Disease-specific notes identification

Ensure: result
result := {}
Dinput = UMLS_Metathesaurus_API(dinput)
for note in clinical_notes do

Dnote = BioBERT_NER(note)
for di ∈ Dinput do

for dnotei ∈ Dnote do
if note contains di then

result.append(note)
else

similarity_score := calculate_cosine_similarity(dinput, dnotei)
end if
if similarity_score > threshold then

result.append(note)
end if

end for
end for

end for

Algorithm 2 Querying LLM

Ensure: result
result := {}
for d ∈ D do

for c ∈ C(d) do
for t ∈ {treatment, factor, coexists_with} do

for q(d) ∈ Qt(d) do
tmp := ⟨LM(⟨c, q(d)⟩), d, t⟩ ▷ Where LM returns a list of possible answers

▷ with their probabilities.
result.insert(tmp)

end for
end for

end for
end for

Algorithm 3 Relation extraction
Require: result from Algorithm 2

relation := {}
Ensure: relations

for unique ⟨e, d, t⟩ in result do
temp := ⟨average(result[e, d, t].score), count(result[e, d, t])⟩
if temp.average ≥ 0.1 and temp.count ≥ 10 then

stat← ⟨temp.average, e, d, t⟩
end if

end for
for unique e, d in stat do

relations← ⟨d, argmaxt stat[e, d], e⟩
end for
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D Postprocessing

Figure 2: Qualitative example of the postprocessing
steps. Every orange node illustrates the predictions
made by an LLM, along with an associated probability
enclosed in parentheses.

Raw

new clinical trial (0.01)

areds (0.56)

areds+wacs (0.6)

areds-2 vitamins (0.14)

eating spinach and fish (0.24)

healthy diet (0.48)

spinach and fish (0.25)

areds vitamins,
fish, spinach (0.67)

Filtered

areds (0.56)

areds+wacs (0.6)

areds-2 vitamins (0.14)

eating spinach and fish (0.24)

healthy diet (0.48)

spinach and fish (0.25)

areds vitamins,
fish, spinach (0.67)

Grouped

healthy diet (0.48)

areds vitamins,
fish, spinach (0.67)

Final

healthy diet (0.48)

areds vitamins (0.67)

fish (0.67)

spinach (0.67)
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E Prompts and sample outputs

E.1 Encoder-only models
E.1.1 Examples of wrong predictions

Listing 1: BERT-SQuAD-v2: wrong prediction
Question: What can slow the progression of

macular degeneration?
Context: Macular Degeneration: Discussed the

nature of dry macular degeneration.
Discussed Age Related Eye Disease Study and
recommended AREDs vitamins for prevention
purposes. Patient given Amsler grid to
monitor for metamorphopsias or changes in
central vision.

Answer:
dry macular degeneration

Listing 2: RoBERTa-SQuAD-v2: wrong prediction
Question: What does cause Macular Degeneration?
Context: Macular Degeneration: Discussed the

nature of dry macular degeneration.
Discussed Age Related Eye Disease Study and
recommended AREDs vitamins for prevention
purposes. Patient given Amsler grid to
monitor for metamorphopsias or changes in
central vision.

Answer:
dry macular degeneration

E.1.2 Examples of correct predictions

Listing 3: BERT-SQuAD-v2: correct prediction
Question: What can slow the progression of

myopic macular degeneration?
Context: Myopic Macular Degeneration - Explained

that there is no specific treatment at this
time. AREDS and WACS vitamins MAY help slow
down the progression of the degeneration.

Monitor closely. All questions were answered
to the patient's satisfaction.

Answer:
AREDS and WACS vitamins

Listing 4: BioBERT-SQuAD-v2: correct prediction
Question: What does cause ARMD?
Context: Macular Degeneration: Discussed the

nature of dry macular degeneration. Patient
encouraged to use an Amsler grid to monitor
macular function by looking for
metamorphopsias or visual changes.

Answer:
metamorphopsias or visual changes

Listing 5: RoBERTa-SQuAD-v2: correct prediction
Question: What does cause amd?
Context: Smoking is the largest `modifiable'

risk factor for AMD - by stopping smoking a
patient can reduce the chance of getting AMD
and of AMD progressing.There is a very

strong association between smoking and
macular disease. Smokers are up to four

times more likely than non-smokers to
develop age-related macular degeneration (
AMD) and smokers with a genetic
predisposition to AMD are eight times more
likely to get the condition. Some research
suggests people with certain genes can be 20
times more likely to get macular
degeneration if they smoke.

Answer:
Smoking

E.2 Decoder-only models
E.2.1 Examples of hallucinations

Listing 6: BLOOM with instruction-based prompting:
hallucination
I want you to act as a question answering

machine. I will provide you with a questions
and a context and you will reply with the
answers.

Question: What can slow the progression of armd?
Instruction: If the answer is not in context

answer "i do not know".
Context: Wet ARMD- Patient educated on condition.

Discussed diet and use of Macular
Degeneration vitamins. All questions were
answered to the patient's satisfaction.

Answer:
i do not know

a:

i think the question is a bit vague. it is
not clear what the question is about. it is
not clear what the context is. it is not
clear what the answers are. it is not clear
what the question is asking. it is not clear
what the question is asking the answerer to
do. it is not clear what the question is
asking the answerer to do. it is not clear
what the question is asking the answerer to
do. it is not clear what the

Listing 7: BLOOM with guided instruction-based
prompting: hallucination

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for
that type.
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### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not

contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input

question_type: coexists_with
question: What does armd lead to?
context: Acute Exudative ARMD OU - chronic

leakage OU. No significant changes OU.
Recommend treating with Anti-VEGF injections
. Discussed with patient the gravity of this
disease, including the potential for vision
loss and guarded recovery. Reviewed

treatment options - Avastin, Lucentis, Eylea
, PDT.

### Response
effect:

If the question contains multiple entities,
extract all of them, separated with commas.
For example, if you have following question

Question 1:

Listing 8: BioGPT with guided instruction-based
prompting: hallucination

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for

that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not
contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input

question_type: factor
question: What is the factor for armd?
context: 2 small Druse OD- clinically does not

look like ARMD. Patient has a family history
of ARMD, recommend starting on AREDS + WACS
vitamins. Eat green leafy vegetables like
Spinach 5 times a week and fish at least 2
times a week.

### Response
I do not include any other entities to answer the

question.

Listing 9: OPT-30B with guided instruction-based
prompting: hallucination

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for
that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not
contain the answer to the question, answer
with the following format

### Response
I do not know.
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### Input

question_type: coexists_with
question: What can amd convert to?
context: Explained to patient that he does have

AMD but it is mild and not the cause of his
blurred vision.

### Response
effect: [ENTITY_1], [ENTITY_2], [ENTITY_3]...

If the question is not related to the
context, or if the context contains a
missing information to answer to the
question, answer Ï do not know.änd nothing
more. No explanations. If the context does
not contain the answer to the question,
answer with the following format

### Response

I do not know.

### Input

question_type: factor

question: What can amd convert to?

context: Explained to patient that he does
have AMD but it is mild and not the cause of
his blurred vision.

### Response

factor: [ENTITY_1], [ENTITY_2],
[ENTITY_3]...

If the question is not related to the
context, or if the context contains a
missing information to answer to the
question, answer Ï do not know.änd nothing
more. No explanations. If the context does
not contain the answer to the question,
answer with the following format

### Response

I do not know.

### Input

question_type: treat

question: What can amd convert to?

context: Explained to patient that he does
have AMD but it is mild and not the cause of
his blurred vision.

### Response

treat: [ENTITY_1], [ENTITY_2], [ENTITY_3]...

If the question is not related to the
context, or if the context contains a missing
information to answer to the question,
answer Ï do not know.änd nothing more.

No explanations.

If the context does not contain the answer
to the question, answer with the following
format

### Response

I do not know.

### Input

question_type: factor

question: What can amd convert to?

context: Explained to patient that he does
have AMD but it is mild and

E.2.2 Examples of wrong predictions

Listing 10: OPT-IML-MAX-30B with guided
instruction-based prompting: wrong prediction

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for
that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not
contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input

question_type: coexists_with
question: What can armd convert to?
context: Dry ARMD - Explained that there is no

specific treatment at this time. Can convert
to wet ARMD, which is treatable. Eating a
healthy diet that includes green leafy
vegetables, fish, taking AREDS + WACS eye
vitamins and Omega-3 fatty acids has been
shown to significantly decrease the
progression of the disease. Monitor closely,
daily use of amsler grid. All questions
were answered to the patient's satisfaction

### Response
I do not know

Listing 11: OPT-IML-MAX-30B with guided
instruction-based prompting: wrong prediction

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated

312



with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for

that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not

contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input

question_type: coexists_with
question: What does armd lead to?
context: Acute Exudative ARMD OU - chronic

leakage OU. No significant changes OU.
Recommend treating with Anti-VEGF injections
. Discussed with patient the gravity of this
disease, including the potential for vision
loss and guarded recovery. Reviewed

treatment options - Avastin, Lucentis, Eylea
, PDT.

### Response
I do not know

Listing 12: Vicuna-33B with instruction-based prompt-
ing: wrong prediction

Instruction: I want you to act as a medical
question answering machine. I will provide
you with

questions and a context, and you will reply with
the answers. If the answer is not in

context, answer "I do not know."
question: What can decrease the chance of armd?
context: Acute Exudative ARMD OS - Subertinal

blood/exudates OU-Discussed with patient the
gravity of this disease, including the

potential for vision loss and guarded
recovery. Reviewed treatment options -
Avastin, Lucentis, Eylea, PDT.

Answer:
In the context provided, the question is about

decreasing the chance of ARMD (Age-Related
Macular Degeneration). While I am not a

doctor, I can provide some general
information on this topic.There are certain
risk factors for ARMD that you may not be
able to change, such as age, family history,
and genetics. However, there are some
lifestyle changes that may help decrease the
risk of ARMD or slow its
progression:Maintain a healthy diet rich in
fruits, vegetables, and whole grains. Foods
high in antioxidants, such as vitamins C and
E, zinc, and lutein, may be particularly
beneficial.Exercise regularly, as studies
have shown that physical activity may reduce
the risk of ARMD.Maintain a healthy weight,
as obesity has been linked to a higher risk
of ARMD.Quit smoking, as smoking is a risk
factor for ARMD and can exacerbate the
condition.Regularly check your vision and
have annual eye exams, especially if you
have a family history of ARMD or other risk
factors. Early detection and treatment can
help manage the condition more
effectively.It is important to discuss these
options with a healthcare professional to
determine the best course of action for your
specific situation.

Listing 13: LLama-2-70B-chat with instruction-based
prompting: wrong prediction
Instruction: I want you to act as a medical

question answering machine. I will provide
you with

questions and a context, and you will reply with
the answers. If the answer is not in
context, answer "I do not know."

question: What can heal amd? # TODO change heal
to our question

context: Wet ARMD (Inactive) OD - Improved, no
active leakage was seen during dilated eye
exam and diagnostic testing. Patient is
advised to continue AREDS + WACS vitamins.
Eat green leafy vegetables like Spinach 5
times a week and fish at least 2 times a
week.Recommend close monitoring and
treatment as indicated. Patient will return
to office in 1 month for IVFA to monitor AMD
.

Answer:
I cannot provide medical advice or recommend

treatments for specific individuals. However,
I can provide some general information about
age-related macular degeneration (AMD) and
its treatment options.AMD is a chronic eye
condition that affects the macula, the part
of the retina responsible for central vision.
There are two main types of AMD: dry and wet.
Wet AMD is characterized by the growth of
new blood vessels under the retina, which
can leak fluid and cause vision loss.While
there is no cure for AMD, there are several
treatment options available to slow down its
progression and manage its symptoms. For wet
AMD, anti-vascular endothelial growth factor
(VEGF) injections are commonly used to
prevent further vision loss. These
medications work by blocking the growth of
new blood vessels and reducing the amount of
fluid in the retina.In addition to
medication, a healthy lifestyle can also
help manage AMD. A diet rich in fruits,
vegetables, and omega-3 fatty acids, along
with regular exercise and not smoking, can
reduce the risk of AMD progression.It’s
important to note that the best course of
treatment for AMD will depend on the
individual patient and the severity of their
condition. Regular eye exams and
consultations with an eye care professional
are necessary to determine the most
appropriate treatment plan.In the context of
the patient you described, the recommended
treatment plan includes continuing AREDS +
WACS vitamins, eating a healthy diet, and
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close monitoring with regular eye exams.
IVFA (intravitreal fusion) may also be
recommended to monitor the progression of
AMD and determine if additional treatment is
needed. However, it’s important to consult
with an eye care professional for
personalized medical advice.

Listing 14: LLama-2-70B-chat with instruction-based
prompting: wrong prediction

Instruction: I want you to act as a medical
question answering machine. I will provide
you with

questions and a context, and you will reply with
the answers. If the answer is not in

context, answer "I do not know."
question: What can reduce the risk of armd?
context: Acute Exudative ARMD OS - ICG/IVFA

shows active bleeding. Discussed with
patient the gravity of this disease,
including the potential for vision loss and
guarded recovery. Reviewed treatment options
- Avastin, Lucentis, Eylea, PDT.

Answer:
I do not know.The question asked is not in

context with the given situation. The
patient has acute exudative age-related
macular degeneration (ARMD) with active
bleeding, and the doctor has already
discussed the severity of the disease and
the potential treatment options with the
patient. The question about what can reduce
the risk of ARMD is not relevant to the
current situation.

E.2.3 Examples of correct predictions

Listing 15: WizardLM-70B with guided instruction-
based prompting: correct prediction

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for

that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not
contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input

question_type: factor
question: What can increase the risk of armd?
context: 2 small Druse OD- clinically does not

look like ARMD. Patient has a family history
of ARMD, recommend starting on AREDS + WACS
vitamins. Eat green leafy vegetables like
Spinach 5 times a week and fish at least 2
times a week.

### Response
factor: factor: family history, diet, lifestyle

Listing 16: Vicuna-33B with guided instruction-based
prompting: correct prediction

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for
that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not
contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input
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question_type: treat
question: What can decrease the chance of armd?
context: Acute Exudative ARMD OS - Subertinal

blood/exudates OU-Discussed with patient the
gravity of this disease, including the

potential for vision loss and guarded
recovery. Reviewed treatment options -
Avastin, Lucentis, Eylea, PDT.

### Response
treat: Avastin, Lucentis, Eylea, PDT

Listing 17: LLama-2-70B-chat with guided instruction-
based prompting: correct prediction

You are a helpful medical knowledge extractor
assistant. Your task is to answer to the
question, using only and only the provided
context. Do not use any other sources. Do
not use your knowledge. Answer to the
question using the context. Do not write
explanation. Do not write long sentences.
Answer with extracted entities, separated
with commas. I will provide the inputs in
the following format

### Input
question_type: treat/coexists_with/factor
question: [QUESTION]
context: [CONTEXT]

I want you to answer to the question in the
following format, depending on the [
ENTITY_TYPE] which can be either [TREAT], [
COEXISTS_WITH], [FACTOR]. Do not include
other entity types. Do not include treatment
if not asked. Only extract entities for

that type.

### Response

[ENTITY_TYPE]: [ENTITY_1], [ENTITY_2], [ENTITY_3
]...

If the question is not related to the context,
or if the context contains a missing
information to answer to the question,
answer "I do not know." and nothing more. No
explanations. If the context does not

contain the answer to the question, answer
with the following format

### Response
I do not know.

### Input

question_type: treat
question: What can slow the progression of armd?
context: Dry ARMD OU- Explained that there is no

specific treatment at this time. Can
convert to wet ARMD, which is treatable.
Eating a healthy diet that includes green
leafy vegetables, fish, taking AREDS + WACS
eye vitamins and Omega-3 fatty acids has
been shown to significantly decrease the
progression of the disease. Monitor closely.
All questions were answered to the patient'

s satisfaction.

### Response
treat: AREDS + WACS eye vitamins, Omega-3 fatty

acids, healthy diet including green leafy
vegetables, fish

E.3 Encoder-decoder models
E.3.1 Examples of wrong predictions

Listing 18: FLAN-UL2 with instruction-based few-shot
prompting: wrong prediction
Instruction: I want you to act as a question

answering machine. I will provide you with a
question and a context, and you will reply
with the answers.

Question: What can slow the progression of AMD?
Context: Macular Dystrophy vs. Early Dry AMD OU -

Explained that there is no specific
treatment at this time. Patient educated on
condition. Eating a healthy diet that
includes green leafy vegetables, fish,
taking AREDS + WACS eye vitamins and Omega-3
fatty acids has been shown to significantly
decrease the progression of the disease.

Answer: Eating a healthy diet that includes
green leafy vegetables.

Question: What can slow the progression of
myopic macular degeneration?

Context: Myopic Macular Degeneration - Explained
that there is no specific treatment at this
time. AREDS and WACS vitamins MAY help slow
down the progression of the degeneration.
Monitor closely. All questions were answered
to the patient's satisfaction.

Answer: AREDS and WACS vitamins

Question: What can myopic macular degeneration
convert to?

Context: Myopic Macular Degeneration - Explained
that there is no specific treatment at this
time. AREDS and WACS vitamins MAY help slow
down the progression of the degeneration.
Monitor closely. All questions were answered
to the patient's satisfaction.

Answer: AREDS + WACS eye vitamins

E.3.2 Examples of correct predictions

Listing 19: FLAN-T5-XXL with instruction-based
prompting: correct prediction
I want you to act as a question answering

machine. I will provide you with a questions
and a context and you will reply with the
answers.

Question: What can slow the progression of armd?
Instruction: If the answer is not in context

answer "i do not know".
Context: Wet ARMD- Patient educated on condition.

Discussed diet and use of Macular
Degeneration vitamins. All questions were
answered to the patient's satisfaction.

Answer:
vitamins
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Listing 20: FLAN-T5-XXL with few-shot prompting:
correct prediction
question: What can slow the progression of

macular disease?
context: very strong association between smoking

and macular disease. Smokers are up to four
times more likely than non-smokers to

develop age-related macular degeneration (
AMD) and smokers with a genetic
predisposition to AMD are eight times more
likely to get the condition. Some research
suggests people with certain genes can be 20
times more likely to get macular

degeneration if they smoke.
target: the answer to the question given the

context is smoking.

question: What can slow the progression of amd?
context: Macular Dystrophy vs. Early Dry AMD OU -

Explained that there is no specific
treatment at this time. Patient educated on
condition. Eating a healthy diet that
includes green leafy vegetables, fish,
taking AREDS + WACS eye vitamins and Omega-3
fatty acids has been shown to significantly
decrease the progression of the disease.

Stressed the need for follow up exams. All
questions were answered to the patient's
satisfaction.

target: the answer to the question given the
context is Eating a healthy diet that
includes green leafy vegetables.

question: What can slow the progression of
myopic macular degeneration?

context: D/w pt: Myopic macular degeneration.
Diagnosis discussed with patient. Possible
treatments explained including glasses,
refractive surgery, contact lenses or doing
nothing. All questions were answered to
patients satisfaction.

target: the answer to the question given the
context is glasses

Listing 21: FLAN-UL2 with few-shot prompting: cor-
rect prediction
very strong association between smoking and

macular disease. Smokers are up to four
times more likely than non-smokers to
develop age-related macular degeneration (
AMD) and smokers with a genetic
predisposition to AMD are eight times more
likely to get the condition. Some research
suggests people with certain genes can be 20
times more likely to get macular

degeneration if they smoke.
Create a bulleted list of what can slow the

progression of macular disease?
- not smoking

Macular Dystrophy vs. Early Dry AMD OU -
Explained that there is no specific
treatment at this time. Patient educated on
condition. Eating a healthy diet that
includes green leafy vegetables, fish,
taking AREDS + WACS eye vitamins and Omega-3
fatty acids has been shown to significantly
decrease the progression of the disease.

Stressed the need for follow up exams. All
questions were answered to the patient's
satisfaction. target: the answer to the
question given the context is Eating a
healthy diet that includes green leafy
vegetables.

Create a bulleted list of what can slow the
progression of amd?

- Eating a healthy diet
- Green leafy vegetables

Myopic Macular Degeneration - Explained that
there is no specific treatment at this time.
AREDS and WACS vitamins MAY help slow down
the progression of the degeneration. Monitor
closely. All questions were answered to the
patient's satisfacti

Create a bulleted list of What can slow the
progression of myopic macular degeneration?.

- AREDS
- WACS vitamins

Listing 22: FLAN-UL2 with instruction prompting: cor-
rect prediction
Instruction: I want you to act as a medical

question answering machine. I will provide
you with

questions and a context, and you will reply with
the answers.

Question: What does armd affect?
Instruction: If the answer is not in context,

answer "I do not know."
Context: Acute Exudative ARMD/ CSCR OD - appears

slightly worse on OCT and exam. Reviewed
treatment options - Avastin, Lucentis, Eylea
, PDT.

Answer: I do not know
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F Implementation Details

Hyperparameter Suggested Value Intuition

threshold_preprocessing 0.8 Aims to accurately identify and include only those clinical notes that are directly
relevant to the diseases being studied. Higher thresholds excluded valuable
information, so we ensured a comprehensive dataset without compromising on
relevance.

threshold_notes_identification 0.8 A disease may have multiple textual representations in general and it may be
written in different ways by different clinicians (some terms may be abbreviated,
some may contain typos). This threshold is used to understand if a disease entry
written by a clinician matched with a set of standard forms of the disease by
computing their cosine similarity and if the value is above this threshold that
it is considered to be the same disease and the note to be containing relevant
information about the disease.

similarity_postprocessing 0.8 Applied to address variations in how models express the same medical entities,
such as "areds" versus "areds-2 vitamins". By calculating the normalized cosine
similarity between each pair of predictions and grouping those with a similarity
score exceeding 0.8, we effectively identify and consolidate equivalent predic-
tions. This threshold not only enhances the consistency but also maintains its
comprehensiveness by filtering out responses that indicate uncertainty or lack
sufficient context.

relation_occurrence_number 10 Balances between reliability and inclusivity. This threshold ensures that the
relation is not an outlier or a random occurrence, contributing to the robustness
of the KG. It is chosen to filter out infrequent relations that might be anomalies
or errors, while still allowing less common but valid relations to be included.

relation_probability 0.1 Ensures to capture a wide array of potential relationships within the biomedical
context. This inclusivity is essential for identifying both prominent and subtle
relations that may not be immediately apparent in the data but are nevertheless
significant.

prediction_probability 0.08 Balances the removal of low-confidence predictions, which might represent noise
or uncertain information, while retaining those with a reasonable likelihood of
accuracy.

Table 6: Hyperparameters of the system.

All the method’s hyperparameters have been se-
lected through experimentation with the data and
may be adjusted for the specific dataset being uti-
lized. Further explanation on the rationale behind
the selection of each hyperparameter is provided in
Table 6.
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Abstract

Generative pre-trained transformer (GPT) mod-
els have shown promise in clinical entity and
relation extraction tasks because of their pre-
cise extraction and contextual understanding
capability. In this work, we further leverage
the Unified Medical Language System (UMLS)
knowledge base to accurately identify medical
concepts and improve clinical entity and re-
lation extraction at the document level. Our
framework selects UMLS concepts relevant to
the text and combines them with prompts to
guide language models in extracting entities.
Our experiments demonstrate that this initial
concept mapping and the inclusion of these
mapped concepts in the prompts improves ex-
traction results compared to few-shot extraction
tasks on generic language models that do not
leverage UMLS. Further, our results show that
this approach is more effective than the stan-
dard Retrieval Augmented Generation (RAG)
technique, where retrieved data is compared
with prompt embeddings to generate results.
Overall, we find that integrating UMLS con-
cepts with GPT models significantly improves
entity and relation identification, outperform-
ing the baseline and RAG models. By com-
bining the precise concept mapping capability
of knowledge-based approaches like UMLS
with the contextual understanding capability
of GPT, our method highlights the potential of
these approaches in specialized domains like
healthcare.

1 Introduction
Generative pre-trained transformer (GPT) models
have shown significant potential across various clin-
ical tasks, including information extraction, sum-
marization, and question-answering (Agrawal et al.,
2022; Tang et al., 2023a; Yang et al., 2022, Sing-
hal et al., 2023). Generative models are able to
generate contextually relevant text given a prompt.
However, for real-world clinical use, in tasks that
require high precision, it is equally important to

understand the context and minimize the errors
that come from GPT models. However, accuracy
of these models is limited to their training data.
While GPT models are great at capturing nuanced
contextual information, they often fall short in ac-
curately identifying all medical concepts, possibly
due to limited or outdated domain-specific data
(Tang et al., 2023b, Singhal et al., 2023).

Knowledge bases store domain-specific data.
Medical knowledge bases, such as, Unified Med-
ical Language System (UMLS) knowledge base
(Bodenreider, 2004), include comprehensive infor-
mation about medical concepts. Integrating knowl-
edge bases with language models is an open re-
search area with multiple works exploring different
ways of integrating them with language models,
such as BERT (Devlin et al., 2019). There are
limited studies on the integration of medical knowl-
edge bases, particularly UMLS, with most recent
large language models (LLMs), such as GPT.

To address this limitation, we introduce an ap-
proach for clinical entity extraction that lever-
ages UMLS for knowledge augmentation. While
GPT can identify nuanced contextual information,
UMLS includes a comprehensive repository of
domain-specific clinical concepts that GPT may
not recognize, such as brand names for drugs, ab-
breviations, acronyms, and aliases (Agrawal et al.,
2022).

Our contributions in this paper are summarized
as follows:
(1) we introduce a framework to integrate UMLS
concepts into the default generative models to facil-
itate few-shot information extraction of biomedical
entities and relations.
(2) we explore current state-of-the-art knowledge
augmentation techniques, such as Retrieval Aug-
mented Generation (RAG) aimed at improving ex-
traction, and
(3) we conduct evaluation of our framework, com-
paring the performance of models augmented with
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UMLS knowledge with and without RAG, and
against those without augmentation.

2 Related Work
2.1 Few-shot in-context learning

With the introduction of GPT models, there
have been several works around few-shot in-
context learning for clinical entity extraction where
prompts guide information extraction in a contex-
tually relevant manner (Agrawal et al., 2022; Hu
et al., 2024; Shyr et al., 2024, Brown et al., 2020).
Generative models can provide nuanced contextual
understanding to extract clinical concepts, but can-
not identify all domain-specific terminologies, es-
pecially in the clinical domain (Tang et al., 2023b).
While recent language models have demonstrated
improvement over prior language models (Guevara
et al., 2024), there remains room for performance
improvement.

2.2 Knowledge base-guided models

Previous research has explored the integration of
knowledge bases to enhance information extrac-
tion tasks. (Sastre et al., 2020) proposed a Bi-
LSTM model to identify drug-related information
and integrate it into knowledge graph embeddings
to evaluate drug identification accuracy. (Gilbert
et al., 2024) addressed how knowledge bases com-
plement language models for medical information
identification tasks. Recently, a RAG model, Al-
manac, demonstrated significant performance im-
provements compared to the standard LLMs across
various metrics (Zakka et al., 2024), further show-
ing the benefits of access to domain-specific cor-
pora for information extraction.

3 Methods
3.1 Overview of the Framework

Our approach leverages the context-capturing capa-
bility of GPT and knowledge-capturing capability
of UMLS. UMLS contains a comprehensive list
of more than 1 million biomedical concepts from
over 100 source vocabularies. By using the con-
cepts in the prompts in a few-shot learning setting,
we attempt to improve GPT’s ability to identify
entities with the specified context that it may other-
wise fail to extract independently. We map UMLS
concepts to each text instance to create dynamic
prompts unique to the specific context of the clini-
cal text.The overview of the proposed framework
is displayed in Figure 1.

Figure 1: (A) Step-by-step approach to integrating
UMLS and extracting relation pairs. (B) Example of
UMLS concepts mapped from the text. Some of the
concepts, such as Prednisone, are recognized by GPT,
as they are concepts GPT model is inherently trained on.
However, concepts such as ASA, Cipro, Plavix are not
recognized by GPT; UMLS facilitates their recognition.

3.2 UMLS Integration in Large Language
Model

UMLS Concept Mapping
We first map UMLS concepts from clinical text
using MetaMap (Aronson, 2001). Given clinical
text X = {x1, x2, . . . , xn} where xi represents the
ith clinical text, we map Ci = {ci1, ci2, . . . , cin},
where Ci denote the set of concepts identified by
MetaMap from xi. n denotes the number of con-
cepts identified from xi. These concepts are ex-
tracted leveraging MetaMap’s lexical parsing, syn-
tactic analysis, semantic mapping, and concept
mapping techniques.

Next, we filter the mapped concepts to include
only those categorized as ’organic chemical’, ’an-
tibiotic’, or ’pharmacologic substance’ within the
UMLS concept hierarchy as these groups contains
the medications. For this work, we only target and
filter medication-related concepts for augmentation
and for further analysis. Let’s denote the filtered
set of concepts for the ith input clinical text xi as
Cfiltered, such that Cfiltered,i = {cij ∈ Ci|cij ∈
filtered groups}.
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Figure 2: An example of a prompt used to extract dosage
information from the text using the UMLS concepts.
The ‘note_text’ represents each text instance from ADE
or n2c2 corpus. The ‘medication_list’ represents the
UMLS concepts extracted from MetaMap.

Prompt Strategy and Large Language Model
Implementation
Next, we prompt the GPT model to extract
entity-relation pairs from the text, leveraging
the mapped UMLS concepts from MetaMap,
and employing a few-shot prompt strategy. Let
Pi represent the prompt generated for each
input text xi, incorporating the relevant UMLS
concepts Cfiltered,i. The final prompt Pi is
constructed as the concatenation of the initial
prompt and the set of UMLS concepts, i.e.,
Pi = Concat(P,Cfiltered,i). We use OpenAI’s
GPT-4-32k (Version 0613) and GPT-3.5-turbo

(Version 0301) via HIPPA-compliant Microsoft
Azure’s OpenAI REST API1endpoint. A sample
prompt and hyperparameters used by the models
for this task are available in Figure 2 and A.2
respectively. As our goal for the project was
not to explore different prompting strategies, we
tested a few prompts and selected the prompt that
generated more specific result. We used the same
format for all relation pairs replacing only the
entity type for every run.

Retrieval Augmented Generation
We also explored another approach-RAG to

leverage UMLS in a language model, which is a
more conventional method involving the use of
external data. RAG was chosen for its potential to
enhance the generation process by incorporating
domain-specific knowledge from sources like the
UMLS knowledge base. Appendix A.4 includes
details on our RAG implementation.

3.3 Datasets Description

We used the n2c2 and ADE datasets for our experi-
ments.
n2c2 Dataset

We used a curated National NLP Clinical
Challenges (n2c2) dataset (Henry et al., 2019)
consisting of 303 deidentified discharge sum-
maries obtained from the MIMIC-III (Medical
Information Mart for Intensive Care-III) critical
care database (Table 1A) (Johnson et al., 2016).
The data also contained annotations of medication-
related entities and their relationship to other
entities. Annotations conducted by 3 subject
matter experts served as a gold standard to evaluate
model performance.

ADE Dataset
The Adverse Drug Events (ADE) dataset anno-

tated by 5 individuals consists of MEDLINE2 case
reports with information on medications, dosages
and adverse effects associated with the medications
(Gurulingappa et al., 2012) (Table 1B). It also con-
tains relationships between medications, dosages,
and adverse effects. For our experiments, we used
the second version of the dataset downloaded from

1https://learn.microsoft.com/en-us/azure/
ai-services/openai/quickstart?tabs=command-line%
2Cpython-new&pivots=programming-language-python

2https://www.nlm.nih.gov/medline/medline_home.
html
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prompt = [ 
{"role": "system", "content": 
"List all medications and its dosage from the text below. Specifically identify medication names
(generic/brand names included), including abbreviations (cipro, chemo, asa), and look into different
context in which medications are mentioned (e.g., history, current prescriptions, medications on
admission, discharge medications etc.). Don't include the medication if dosage is not mentioned. Here
is a specific list of medications present in this text for extraction.
List:"+medication_list+"Text:"+note_text},
 
{"role":"system","content":
"Here is an example of the text: Medications on Admission:\n - Oxycodone-Acetaminophen 5-325 mg
q4h prn torn ACL pain \n - Cipro 250 mg tid prn pain. \n albuterol sulfate 2.5 mg /3 mL (0.083 %) -
For this example, the model should extract this output: Medication 1: Oxycodone-Acetaminophen -
Medication Strength: 5-325 mg \n Medication 2: Cipro - Medication Strength: 250 mg \n Medication
3: albuterol sulfate-Medication Strength: 2.5 mg /3 mL (0.083 %)"},

{"role":"user","content":
"Only use the following template to output results. Template: \n Medication Number (1,2,3..,n):
[MedicationName]-Medication Strength: [MedicationStrength] . Following are similar examples for
reference. Example: Medication 1: azithromycin - Medication Strength: 25 \n. \n Medication 2:
fluticasone-salmeterol - Medication Strength:250-50 mcg/dose. \n Medication 3: cholecalciferol -
Medication Strength:400 unit. \n Medication 4: ASA - Medication Strength: 200 mg. \n Medication 5:
ASA - Medication Strength: 200 mg. Keep the output template same for all outputs."}]
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prompt = [
{"role":"system","content": "Extract initial treatment information from the
following text"}

prompt = [
{"role":"system","content": "Extract initial stage information from the following
text"}

prompt = [
{"role":"system","content": "Extract cancer relapse information from following
text"}
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Drug

prompt = [ 
{"role": "system", "content": 
"List all medications and its dosage from the text below. Specifically identify
medication names (generic/brand names included), including abbreviations
(cipro, chemo, asa), and look into different context in which medications are
mentioned (e.g., history, current prescriptions, medications on admission,
discharge medications etc.). Don't include the medication if dosage is not
mentioned. +"Text:"+note_text},
 
{"role":"system","content":
"Here is an example of the text: Medications on Admission:\n - Oxycodone-
Acetaminophen 5-325 mg q4h prn torn ACL pain \n - Cipro 250 mg tid prn pain.
\n albuterol sulfate 2.5 mg /3 mL (0.083 %) - For this example, the model should
extract this output: Medication 1: Oxycodone-Acetaminophen - Medication
Strength: 5-325 mg \n Medication 2: Cipro - Medication Strength: 250 mg \n
Medication 3: albuterol sulfate-Medication Strength: 2.5 mg /3 mL (0.083 %)"},

{"role":"user","content":
"Only use the following template to output results. Template: \n Medication
Number (1,2,3..,n):[MedicationName]-Medication Strength:
[MedicationStrength] . Following are similar examples for reference. Example:
Medication 1: azithromycin - Medication Strength: 25 \n. \n Medication 2:
fluticasone-salmeterol - Medication Strength:250-50 mcg/dose. \n Medication 3:
cholecalciferol - Medication Strength:400 unit. \n Medication 4: ASA -
Medication Strength: 200 mg. \n Medication 5: ASA - Medication Strength: 200
mg. Keep the output template same for all outputs."}]

Text

prompt = [ 
{"role": "system", "content": 
"List all medications and its dosage from the text below. Specifically identify
medication names (generic/brand names included), including abbreviations (cipro,
chemo, asa), and look into different context in which medications are mentioned
(e.g., history, current prescriptions, medications on admission, discharge
medications etc.). Don't include the medication if dosage is not mentioned.
Text:"+note_text+

"Here is some possible medications present in this text for extraction.
List:"+medication_list},
 
{"role":"system","content":
"Here is an example of the text: Medications on Admission:\n - Oxycodone-
Acetaminophen 5-325 mg q4h prn torn ACL pain \n - Cipro 250 mg tid prn pain. \n
albuterol sulfate 2.5 mg /3 mL (0.083 %) - For this example, the model should
extract this output: Medication 1: Oxycodone-Acetaminophen - Medication
Strength: 5-325 mg \n Medication 2: Cipro - Medication Strength: 250 mg \n
Medication 3: albuterol sulfate-Medication Strength: 2.5 mg /3 mL (0.083 %)"},

{"role":"user","content":
"Only use the following template to output results. Template: \n Medication
Number (1,2,3..,n):[MedicationName]-Medication Strength: [MedicationStrength]
. Following are similar examples for reference. Example: Medication 1:
azithromycin - Medication Strength: 25 \n. \n Medication 2: fluticasone-salmeterol
- Medication Strength:250-50 mcg/dose. \n Medication 3: cholecalciferol -
Medication Strength:400 unit. \n Medication 4: ASA - Medication Strength: 200
mg. \n Medication 5: ASA - Medication Strength: 200 mg. Keep the output
template same for all outputs."}]
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prompt = [ 
{"role": "system", "content": 
"List all medications and its dosage from the text below. Specifically identify medication names (generic/brand names
included), including abbreviations (cipro, chemo, asa), and look into different context in which medications are mentioned
(e.g., history, current prescriptions, medications on admission, discharge medications etc.). Don't include the medication if
dosage is not mentioned. Text:"+note_text+

"Here is some possible medications present in this text for extraction. List:"+medication_list},
 
{"role":"system","content":
"Here is an example of the text: Medications on Admission:\n - Oxycodone-Acetaminophen 5-325 mg q4h prn torn ACL pain
\n - Cipro 250 mg tid prn pain. \n albuterol sulfate 2.5 mg /3 mL (0.083 %) - For this example, the model should extract this
output: Medication 1: Oxycodone-Acetaminophen - Medication Strength: 5-325 mg \n Medication 2: Cipro - Medication
Strength: 250 mg \n Medication 3: albuterol sulfate-Medication Strength: 2.5 mg /3 mL (0.083 %)"},

{"role":"user","content":
"Only use the following template to output results. Template: \n Medication Number (1,2,3..,n):[MedicationName]-
Medication Strength: [MedicationStrength] . Following are similar examples for reference. Example: Medication 1:
azithromycin - Medication Strength: 25 \n. \n Medication 2: fluticasone-salmeterol - Medication Strength:250-50 mcg/dose.
\n Medication 3: cholecalciferol - Medication Strength:400 unit. \n Medication 4: ASA - Medication Strength: 200 mg. \n
Medication 5: ASA - Medication Strength: 200 mg. Keep the output template same for all outputs."}]
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prompt = [
{"role":"system","content":"As an AI assistant, I extract patient lung cancer treatment information from clinical text."},
{"role":"user","content":"Extract the initial treatment information from the following text:"+document},
{"role":"user","content":"If treatment information is not available, only output: 'Not Available'."},
{"role":"user","content":"If treatment is available, categorize into treatment types: radiation, chemotherapy, chemoradiation, surgery.
Output: Treatment Type"}
] 

prompt = [
{"role":"system","content":"As an AI assistant, I extract patient lung cancer stage information from clinical text."},
{"role":"user","content":"Extract the initial lung cancer stage information from the following text:"+document},
{"role":"user","content":"If stage information is not available, only output: 'Not Available'."},
] 

prompt = [
{"role":"system","content":"As an AI assistant, I extract patient lung cancer relapse/recurrence information from clinical text."},
{"role":"user","content":"Identify whether a patient had cancer recurrence/relapse after first treatment completion from the following
text:"+document},
{"role":"user","content":"Output:Relapse: 'Yes' or 'No' and Relapse/Recurrence Date"},
{"role":"user","content":"If relapse/recurrence information is not available, only output: 'Not Available' "}
] 

prompt = [
{"role":"system","content":"As an AI assistant, I extract patient lung cancer relapse/recurrence information from clinical text."},
{"role":"user","content":"Extract only the organ names that patient had recurrence in after initial lung cancer diagnosis. Text:"+document},
{"role":"user","content":"If recurrence organ information is not available, only output 'Not Available' and nothing else."},
] 

gfg

The results suggest that olanzapine may be useful in treating patients with clozapine-
induced granulocytopenia without the risk of recurrence of hematologic side effects.
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Figure 3: Sample text of discharge summaries in the (A)
n2c2 dataset and (B) ADE Corpus. The text highlighted
in red are the targeted entities for extraction

Table 1: Statistics on the relation pairs in the (A) n2c2
dataset and the (B) ADE dataset

A. n2c2 Dataset

Entity-Entity Relation Total instances

Strength-Drug 13338
Duration-Drug 643
Route-Drug 11038
Form-Drug 6636
ADE-Drug 2214
Dosage-Drug 4207
Reason-Drug 5160
Frequency-Drug 6288

B. ADE Dataset

Entity-Entity Relation Total instances

Drug-ADE 6821
Drug-Dosage 279

4 Results
4.1 Experimental Setup
We evaluated two generative models, GPT-4-32k
and GPT-3.5-turbo, with and without UMLS inte-
gration, and the RAG model to access the quality
of generated outputs. All models were evaluated
against the gold-standard annotations using preci-
sion, recall, and micro-F1 score.

4.2 Dataset
We identified 8 different entity-entity relation pairs
within the n2c2 dataset, and 2 entity-entity relation
pairs within the ADE corpus, each with varying

3https://huggingface.co/datasets/ade_corpus_v2

instances of the relation pairs (Table 1, Figure 3).
Token length distributions of the text, and example
of individual entities in n2c2 and ADE dataset are
available in A.1, A.3.

4.3 Performance Results

Results on n2c2 and ADE Dataset
Our results suggests that integrating prior knowl-
edge from UMLS in the prompts have significant
performance improvement as demonstrated by the
higher average F-1 scores across both n2c2 and
ADE datasets (Table 4). The reported results are
average across all entity-entity relation pairs across
models and for 2 datasets. GPT-4-32k model with
UMLS show 4% improvement of F-1 score on
the n2c2 dataset, and 12% improvement on the
ADE dataset from the F-1 score of GPT-4-32k
model without knowledge integration. For every
entity-entity relation pairs, there was a perfor-
mance improvement by a few percentages for
both models and across both datasets. Additional
detailed results for each entity-entity relation pairs
can be found in Appendices A.6 through A.11.

Upon a closer look at the results, we identified
that prompts with UMLS resulted in additional
concepts verifying that UMLS is able to identify
medications from the text that GPT may not
identify independently(Appendix A.5).

Comparison with Retrieval Augmented Generation
RAG model and GPT-3.5-turbo had low F-1

score and it improved with UMLS for both models,
but it did not have higher score compared to the
GPT-4-32k+UMLS.

We observed performance variations across
entity-entity relation pairs with retrieval augmented
generation (A.8, A.11). While some entity pairs
showed performance enhancements, others did not
show significant improvements. This discrepancy
might arise from the limitations of RAG, particu-
larly its inability to utilize entire UMLS thesaurarus
in the generation process. Since UMLS data is par-
titioned into chunks for indexing and embedding
and embedding models can only take 8192 tokens
per index, some concepts may not be in the top-k
extracted documents used for generation, poten-
tially limiting the scope of augmentation and its
impact on final relation pairs. Further experiments
are required to confirm this hypothesis.
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Table 2: Comparison of models on n2c2 Dataset and ADE Corpus. The reported results are micro-averaged
precision, recall, and F-1 scores across all entity-entity relation pairs within the datasets.

Model
n2c2 Dataset ADE Corpus

Precision Recall F1 Precision Recall F1

GPT-3.5-turbo 0.73 0.74 0.73 0.625 0.57 0.596

GPT-3.5-turbo + UMLS 0.77 0.77 0.77 0.83 0.70 0.75

RAG w/ GPT-3.5-turbo 0.73 0.74 0.74 0.65 0.63 0.64

GPT-4-32k 0.75 0.76 0.76 1.0 0.70 0.82

GPT-4-32k + UMLS 0.79 0.80 0.80 1.0 0.89 0.94

RAG w/ GPT-4-32k 0.77 0.76 0.76 1.0 0.74 0.85

5 Discussion and Conclusion
Our study highlights the significance of merging
the strengths of domain-specific knowledge bases,
such as UMLS, with the contextual understanding
capabilities of LLMs, such as GPT. Our hybrid ap-
proach, integrating mapped UMLS concepts with
GPT, shows improvement in the model’s ability to
identify specific entities not inherently within its
training data.

Our results on entity and relation extraction task
indicated that leveraging mapped UMLS concepts
as additional guidance to the GPT model, helps
create focused and unique prompts that signif-
icantly enhances GPT’s performance. This ap-
proach proves more effective than the standard
RAG technique.

In conclusion, the ability to generate tailored
prompts based on UMLS concepts offers a promis-
ing avenue for improving accuracy and relevance of
extracted entities, ultimately enhancing the utility
of LLMs in biomedical text analysis tasks.

6 Limitations and Future Work
While our framework has shown significant im-
provements, we acknowledge several limitations in
this study. Firstly, our work focused solely on med-
ication concepts, which may restrict the generaliz-
ability of our findings to other concepts. However,
our approach is adaptable to incorporate additional
UMLS entities through prompt adjustments. Fu-
ture research will explore harnessing UMLS’s rich
semantic metadata to leverage additional concept
relationships, enabling the extraction of a broader
spectrum of entity groups beyond medications.

Secondly, our comparison was limited to two
generative models, GPT-4-32k and GPT-3.5-turbo.

Though they have good performance, we have not
included recent models that could have comparable
performance. Future work will explore additional
models, such as BioGPT, and LAMA for compre-
hensive comparison and evaluation. This expanded
comparison will provide a more nuanced under-
standing of the performance and capabilities of
various generative models in relation to UMLS in-
tegration and RAG techniques.

These future tasks will advance our understand-
ing of the role of domain-specific knowledge in
enhancing LLM capabilities and facilitating more
effective clinical information extraction.

7 Ethics Statement
IRB approval was not required for this task. To
input our text data into the language models, we
use Microsoft’s Azure OpenAI REST API Service
within the Washington University tenant to access
OpenAI’s language models . We are on a HIPPA-
compliant subscription and exempted from content
filtering, data review and human review for our use
of the Azure OpenAI service.
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A Appendix

A.1 Token length of the text in (A) n2c2 and
(B) ADE dataset

A

B

A.2 Hyperparameters for the GPT models

Hyperparameters Value
Tokenization and Context
Window

200 tokens

Temperature (Randomness of the
model output)

0

Top p (Top-K Sampling
Technique)

0.95

Presence Penalty (Penalty to
discourage model from
generating responses that contain
certain specified tokens)

-1.0

A.3 Example of the individual entities within
the n2c2 and ADE dataset

Table 3: Example of the individual entities within the
n2c2 and ADE dataset

Entities Examples

Drug Morphine, ibuprofen, antibi-
otics (abx), chemotherapy (car-
boplatin)

ADE/Reason Nausea, rash, seizures, vitamin K
deficiency

Strength 10 mg, 60 mg
Form Capsule, syringe, tablet, topical

(apply topical)
Dosage 60 mg/0.6 mL
Frequency Daily, twice a day, Q4H (every 4

hours)
Route Transfusion, oral, intravenous

(IV)
Duration For 10 days, 2 cycles, for a week
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A.4 Retrieval Augmented Generation
Method:
1. Split UMLS data (MRCONSO.RRF4) into
manageable chunks (8192 tokens) to facilitate
processing. MRCONSO.RRF file contains the
UMLS concepts.
2. Generate embeddings for each chunk, capturing
its semantic represetations
2. Store the embeddings in a vector database for
efficient retrieval
3. Compare each prompt with the stored data in
the vector database.
4. Extract the top 30 results with the highest
similarity scores between the query and the UMLS
data.
5. Concatenate the retrieved results with the
prompt to generate the final extraction output.

A.5 Qualitative Results

Table 4: Some of the qualitative results for the Strength-
Drug Pair. (A) Without UMLS integration. (B) With
UMLS integration

Examples

A [(‘aspirin’, ‘81 mg’) (‘atorvas-
tatin’, ‘20 mg’), (‘amiodarone’,
‘200 mg’), (‘metoprolol tartrate’,
‘50 mg’), (‘spironolactone’, ‘25
mg’), (‘acetaminophen’, ‘325
mg’), (‘ranitidine HCl’, ‘150
mg’), (‘prednisone’, ‘60 mg’)]

B [(‘aspirin’, ‘81 mg’), (‘atorvas-
tatin’, ‘20 mg’), (‘amiodarone’,
‘200 mg’), (‘metoprolol tartrate’,
‘50 mg’), (‘spironolactone’, ‘25
mg’), (‘acetaminophen’, ‘325
mg’), (‘ranitidine HCl’, ‘150
mg’), (‘prednisone’, ‘60 mg’),
(‘Plavix’, ‘75 mg’), (‘ASA’,
‘325’), (‘Cipro’, ‘250 mg’)]

4https://www.ncbi.nlm.nih.gov/books/NBK9685/
table/ch03.T.concept_names_and_sources_file_mr/
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A.6 Comparison of GPT-3.5-turbo for all
Entity-Entity Relation pairs with and
without UMLS Integration for the n2c2
dataset

Entity-Entity GPT-3.5-turbo GPT-3.5-turbo+UMLS
P R Micro F-1 P R F-1

Dosage-Drug 0.75 0.75 0.75 0.80 0.80 0.80
Duration-Drug 0.76 0.76 0.76 0.81 0.81 0.81
Route-Drug 0.74 0.73 0.73 0.76 0.75 0.75
Form-Drug 0.72 0.73 0.72 0.75 0.76 0.75
ADE-Drug 0.69 0.71 0.70 0.74 0.75 0.75
Reason-Drug 0.73 0.74 0.74 0.76 0.77 0.777
Frequency-Drug 0.73 0.74 0.73 0.75 0.76 0.77
Average 0.73 0.74 0.73 0.77 0.77 0.77

A.7 Comparison of GPT-4-32k for all
Entity-Entity Relation pairs without
UMLS Integration for the n2c2 dataset

Entity-Entity GPT-4-32k GPT-4-32k+UMLS
P R Micro F-1 P R F-1

Dosage-Drug 0.77 0.77 0.77 0.82 0.82 0.82
Duration-Drug 0.78 0.77 0.78 0.83 0.82 0.83
Route-Drug 0.79 0.77 0.78 0.81 0.78 0.79
Form-Drug 0.74 0.76 0.74 0.77 0.79 0.77
ADE-Drug 0.69 0.73 0.71 0.75 0.78 0.77
Reason-Drug 0.74 0.75 0.735 0.77 0.78 0.76
Frequency-Drug 0.78 0.77 0.78 0.80 0.79 0.79
Average 0.75 0.76 0.76 0.79 0.79 0.79

A.8 Comparison of Models for all
Entity-Entity Relation pairs with UMLS
for RAG on the n2c2 dataset

Entity-Entity GPT-4-32k GPT-3.5-turbo
P R F-1 P R F-1

Dosage-Drug 0.77 0.77 0.77 0.75 0.75 0.75
Duration-Drug 0.79 0.78 0.78 0.76 0.77 0.77
Route-Drug 0.79 0.77 0.78 0.74 0.73 0.73
Form-Drug 0.74 0.73 0.74 0.73 0.74 0.74
ADE-Drug 0.72 0.73 0.72 0.70 0.70 0.70
Reason-Drug 0.76 0.76 0.76 0.75 0.78 0.76
Frequency-Drug 0.81 0.80 0.80 0.70 0.71 0.71
Average 0.77 0.76 0.76 0.73 0.74 0.74
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A.9 Comparison of GPT-4-32k for all
Entity-Entity Relation pairs with and
without UMLS on the ADE dataset

Entity-Entity GPT-4-32k GPT-4-32k+UMLS
P R F-1 P R F-1

Dosage-Drug 1.0 0.66 0.795 1.00 0.85 0.91
ADE-Drug 1.0 0.73 0.84 1.00 0.93 0.97
Average 1.0 0.70 0.82 1.0 0.89 0.94

A.10 Comparison of GPT-3.5-turbo for all
Entity-Entity Relation pairs with and
without UMLS on the ADE dataset

Entity-Entity GPT-3.5-turbo GPT-3.5-turbo+UMLS
P R F-1 P R F-1

ADE-Drug 0.57 0.53 0.55 0.60 0.65 0.62
Dosage-Drug 0.68 0.61 0.64 0.70 0.75 0.72
Average 0.625 0.57 0.596 0.83 0.70 0.75

A.11 Comparison of the models for all
Entity-Entity Relation pairs with UMLS
for RAG on the ADE dataset

Entity-Entity GPT-4-32k GPT-3.5-turbo
P R F-1 P R F-1

ADE-Drug 1.0 0.73 0.84 0.62 0.61 0.60
Dosage-Drug 1.0 0.75 0.86 0.68 0.65 0.66
Average 1.0 0.74 0.85 0.65 0.63 0.64
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Abstract

State-of-the-art performance by large pre-
trained models in computer vision (CV) and
natural language processing (NLP) suggests
their potential for domain-specific tasks. How-
ever, training these models requires vast
amounts of labelled data, a challenge in many
domains due to the cost and expertise required
for data labelling. Active Learning (AL) can
mitigate this by selecting minimal yet informa-
tive data for model training. While AL has
been mainly applied to single-modal tasks in
the fields of NLP and CV, its application in
multi-modal tasks remains underexplored. In
this work, we proposed a novel AL strategy,
Bidirectional Contrastive Active Learning strat-
egy (BiCAL), that used both image and text
latent spaces to identify contrastive samples
to select batches to query for labels. BiCAL
was robust to class imbalance data problems
by its design, which is a problem that is com-
monly seen in training domain-specific models.
We assessed BiCAL’s performance in domain-
specific learning on the clinical report genera-
tion tasks from chest X-ray images. Our exper-
iments showed that BiCAL outperforms State-
of-the-art methods in clinical efficacy metrics,
improving recall by 2.4% and F1 score by 9.5%,
showcasing its effectiveness in actively training
domain-specific multi-modal models.

1 Introduction

Active Learning (AL) is a branch of machine learn-
ing that aims to select a small set of the most infor-
mative data to annotate for model training (Settles,
2009). This technique allows the model to achieve
optimal performance while lowering the cost of
annotation. Moreover, by actively selecting data to
train on, a model trained under active learning can
sometimes surpass the performance that is trained
on the full dataset. AL has shown its great potential
in the field of natural language processing (NLP)
(Shelmanov et al., 2021; Dor et al., 2020; Shen

Figure 1: Flowchart of the querying process of BiCAL:
Image is passed to imaged encoder to obtain image em-
beddings, and the underlying training model to generate
reports. Reports generated are passed to a text encoder
to generate text embeddings. Together two embeddings
are compared and the contrastiveness of each data point
is calculated and queried. Refer detail to Algorithm 1.

et al., 2017; Margatina et al., 2021a) and computer
vision (CV) (Slade and Branson, 2022; Takezoe
et al., 2023). However, relatively few have explored
the application of active learning in a multi-modal
setting.

In addition, as the capabilities of general large-
pretrained models arise (Bai et al., 2023; OpenAI,
2023), a rising interest has been seen in fine-tuning
them to become domain-specific models. However,
when training models in specific domains, obtain-
ing quality labelled data is challenging due to the
domain expertise required for accurate annotation,
which is costly in both time and money. This mo-
tivates us to explore active learning’s application
in the domain-specific setting. We identify that in
domain-specific active learning, there exists one
key challenge – class imbalance in datasets is of-
ten seen in domain-specific settings, existing AL
methods struggle to actively select samples that
have less population but may be more important –
in medicine, common (healthy) samples often out
populate rare (unhealthy) samples. Models trained
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under such active learning strategies converge on
the commonly seen samples and perform poorly in
identifying rare sickness cases.

In this study, we introduce a novel AL strategy
Bidirectional Contrastive Active Learning strategy
(BiCAL) that is tailored to address the challenge in
domain-specific active learning. We assess BiCAL
and other established AL methods on clinical re-
port generation from chest X-ray images. Our key
contributions are:

1. We propose a novel AL strategy BiCAL that
is able to select rare but important cases inher-
ently to be robust against the class imbalance
limitations, which is a common problem in
clinical setting.

2. We present an in-depth analysis of existing
AL strategies for multi-modal task – clinical
report generation.

2 Related Work

This section provides the background of our pro-
posed AL strategy BiCAL. We first formalize the
active learning problem under the image-to-text
generation task and set up the notation for the rest
of the paper. Given a modelM, unlabelled image
data pool Xpool. We denote an unlabelled input
image as x ∈ Xpool, and the labelled text report
as y ∈ Y , where y = (y1, ..., yn), n is the number
of tokens in the generated report. We define the
labelled data pool Xlabel to contain image-report
pairs, where Xlabel ∩ Xpool = ∅ . The whole data
pool is Xall := Xlabel ∪ Xpool. The model is parame-
terized by vector w, as follows:

M = pw(y | x) = pw(y1, ..., yn | x) (1)

An acquisition function representing the query
heuristic in the AL setting is denoted as a(x,M).
At each active learning iteration, we acquire the
label of a batch Q of b number of unlabelled in-
stances from Xpool and add to the labelled data pool
Xlabel using a(x,M). The updated labelled data
pool Xlabel is used to train the underlying model
every iteration. This process iterates until a pre-
defined budget B is depleted. Sampling from the
pool is determined by the acquisition function as
follows :

x∗ = argmaxx∈Xpool
a(x,M) (2)

2.1 Uncertainty-based and Diversity-based
Active Learning

Uncertainty-based AL strategies often use a heuris-
tic that can measure the model’s uncertainty toward
unlabelled data and choose the unlabelled data with
the highest uncertainty (Lewis, 1995; Wang et al.,
2019; Shannon, 2001). Gal et al. (2017) demon-
strated the idea of measuring model uncertainty
by combining Bayesian Active Learning by Dis-
agreement (BALD) (Houlsby et al., 2011) with
Bayesian formulation of Neural Networks such as
Bayesian by Backprop (Blundell et al., 2015) and
MC dropout (Gal and Ghahramani, 2016). How-
ever, uncertainty-based active learning typically
depends on the underlying training model’s pre-
dictions for uncertainty measurements. This de-
pendence results in the “cold-start” problem (Yuan
et al., 2020; Ash and Adams, 2020), where these
methods are ineffective early in training due to the
initial model’s naivety.

On the other side, diversity-based Active Learning
aims to select a subset of the data that can best
represent the whole dataset, such that the model
achieves similar performance to full-tuning when
trained on the selected subset. There has been
much previous work in this stream of designing AL
strategies (Kim et al., 2006; Citovsky et al., 2021;
Sener and Savarese, 2018).

2.2 Hybrid Active Learning

There have also been some hybrid AL methods that
combine diversity and uncertainty in their design
(Ash et al., 2019; Yuan et al., 2020). Approaches
that infuse reinforcement learning into AL strate-
gies which learn the selection heuristic from scratch
were also seen (Fang et al., 2017; Liu et al., 2018;
Vu et al., 2019). There has been close work on
active learning to ours in natural language gen-
eration and abstractive text summarization, how-
ever, they focused on the single modal generation
task (Tsvigun et al., 2023; Gidiotis and Tsoumakas,
2021a; Perlitz et al., 2023; Gidiotis and Tsoumakas,
2021b).

The closest work to ours is Contrastive Active
Learning (CAL) proposed by (Margatina et al.,
2021b). They hypothesized that if two data points
are close in the underlying model feature space but
result in very different underlying model predictive
likelihood, then they may be lying on the model’s
decision boundary and therefore are a good can-
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didate to query. CAL uses K-Nearest Neighbors
(KNN) (Cover and Hart, 1967) to find and record
the top k neighbouring points by their model repre-
sentation encodings from the input. Then it com-
putes the KL divergence (Kullback and Leibler,
1951) between the model’s output probability of
each unlabelled instance with their recorded k
neighbours. The contrastive score of each unla-
belled instance is then calculated by the average of
all KL-divergence values of the neighbours. Ulti-
mately, the data point with the highest contrastive
score is selected to be queried.

3 Bidirectional Contrastive Active
Learning

We identify the following limitations that existing
AL methods have when training models in a clini-
cal setting. In clinical settings, data for healthy or
common sicknesses is often seen, while unhealthy
or rare sicknesses are rare in the population, lead-
ing to an imbalanced dataset. This leads to models
trained on such datasets that can converge easily
on the common cases, and have poor performance
on rare but important cases. Previous AL methods
have not yet addressed this problem, as they are not
able to explicitly identify important cases within
the dataset automatically. The original CAL would
identify two data points are neighbours if two data
points have the same sickness, and if the model
predicts differently for the two data points, they
are considered as ’contrastive’ and queried. Such
a heuristic cannot locate the positive (unhealthy)
cases efficiently, because negative (healthy) neigh-
bour pairs would outweigh the positive (unhealthy)
neighbour pair in the population, leading to the
sampling process suffering from class imbalance
and queries too many negative instances. There-
fore, models trained using CAL achieve a bad per-
formance in clinical efficacy and recalling positive
cases, as revealed by our experiments in Table 1.

3.1 BiCAL Algorithm

BiCAL is robust to class imbalance datasets by
its design and can automatically select rare but
valuable cases within a dataset for the model to
learn. This is done by bi-directionally augmenting
the contrastive definition and measuring the con-
trastiveness in pre-trained embedding space, em-
powering the algorithm to select rare samples in
domain datasets inherently.

We redefine two types of contrastive samples. For

BiCAL, contrastive examples have to satisfy one
of the following definitions:

1. Two data points with similar pre-trained em-
beddings but different pre-trained embed-
dings of their model generation outputs.

2. Two data points with different pre-trained em-
beddings but similar pre-trained embeddings
of their model generation outputs.

The intuition behind the second augmented defi-
nition is that common cases and rare cases will
most likely have the most different representations
of each other within the dataset. Therefore, if a
model generates similar outputs for two data points
that have different representations, this means it
is highly possible that at least one rare sample is
within the two data points, and the current model
hasn’t trained enough on at least one of the two
data points. Hence by augmenting the contrastive
definition in BiCAL, we have increased the chance
of querying a rare case, compared to CAL. More-
over, by leveraging pre-trained encoders, we isolate
the underlying model in generating the uncertainty
measure, alleviating the Cold-Start Learning prob-
lem (Yuan et al., 2020; Ash and Adams, 2020) – in
the initial stage of training, the underlying model is
naive due to the absence of domain knowledge, if
we use the underlying model’s encoder to generate
uncertainty measure it would result in a decrease
in the ineffectiveness of such uncertainty-based AL
strategies.

Formally, each data point xi should obtain k num-
ber of similar neighbours Xclose and k number of
dissimilar neighbours X f ar.

Xclose := f
(
Φ(xi),Φ(x j)) < ϵ

X f ar := f
(
Φ(xi),Φ(x j)) > γ

(3)

For the first contrastive sample, the data point
should satisfy the following condition:

f
(
Ω(M(xi)),Ω(M(xm

close))
)
> γ (4)

For the second contrastive sample, the data point
should satisfy the following conditions:

f
(
Ω(M(xi)),Ω(M(xm

f ar))
)
< ϵ (5)

Where Φ(.) ∈ Rd′ is a selected pre-trained image
encoder that maps input xi and x j to its feature
space. Ω(.) ∈ Rd′′ is the selected pre-trained text en-
coder that maps the predicted output of underlying
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Algorithm 1 Single iteration of BiCAL
Input: all data Xall, unlabeled data Xpool, acquisition size b, modelM, number of neighbours k, distance metric function f (.), pre-trained image

(encoding) function Φ(.), pre-trained text (encoding) function Ω(.), contrastive ratio c ∈ [0, 1], Total number of unlabelled data N, .
1 S close := ∅ ; S f ar := ∅
2 for i in 1, . . . ,N do
3 d j ← f

(
Φ(xi),Φ(x j)

)
▷ x j ∈ Xall, j = 1, ...,N

4 Xclose ← Select k number of x∈ Xall with lowest d j ▷ Xclose = {x1
close, ..., x

k
close}; j , i

5 X f ar ← Select k number of x∈ Xall with highest d j ▷ X f ar = {x1
f ar , ..., x

k
f ar}

6 Ŷclose ←M(Xclose)
7 Ŷ f ar ←M(X f ar)
8 ŷi ←M(xi)

9 si
close ← 1

k

k∑
m=1

f
(
Ω(ŷi),Ω(ŷ m

close)
)

10 si
f ar ← 1

k

k∑
m=1

f
(
Ω(ŷi),Ω(ŷ m

f ar)
)

11 S close := S close ∪ {si
close} ; S f ar := S f ar ∪ {si

f ar}
12 end
13 Q1 ← Select b × c number of x ∈ Xpool with the highest sclose ▷ sclose ∈ S close
14 Q2 ← Select b × (1 − c) number of x ∈ Xpool with the lowest s f ar ▷ s f ar ∈ S f ar

Output: Q1 ∪ Q2

model ŷi to its feature space. f(.) is a distance met-
ric, such as Euclidean distance or cosine similarity.
ϵ and γ represent the threshold for a very small and
a very large distance value respectively, although in
practice we adopt ranking instead of using a thresh-
old. M(.) is the underlying training model of the
active learning loop, such that ŷi ← M(xi). We
detail the single iteration of BiCAL’s algorithm as
follows:

Compute Neighbours We use the encoding func-
tion from the pre-trained model Φ(.) to map all the
data points to its pre-trained embedding space. For
each unlabelled instance xi, we use cosine simi-
larity f (.) to measure the distances between the
embeddings of xi and all the other data points in
the Xall (line 3). We record xi’s nearest (top k) and
furthest (bottom k) neighbours in the embedding
space by the distance calculated (lines 4-5).

Compute Contrastive Scores The unlabelled in-
stance xi and all its neighbours Xclose and X f ar will
be passed to the underlying modelM to generate
their text outputs ŷ (lines 6-8). The generated text
from the model is then encoded by the selected pre-
trained language model Ω(.) to obtain text embed-
ding of the generated text. Using these embeddings,
we can calculate two different contrastive scores
for the unlabelled instance xi (lines 9-10). The first
contrastive score si

close is calculated by the average
distance between the embedding of generated out-
put of the unlabelled instances with their nearest
neighbours, and the second one si

f ar is calculated
with its furthest neighbours.

Query Two Contrastive Batches For each unla-
belled instance xi, we obtain two lists of contrastive
scores S close and S f ar. We select the unlabelled in-
stances using the two contrastive scores separately.
For S close, we select the top b × c number of in-
stances, where b is the total intended batch size
for query, and c is a hyperparameter “contrastive
ratio” that controls the ratios of samples sampled
from the two contrastive definitions. This gives
us a batch of instances Q1 of the first contrastive
definition (line 13). For S f ar, we select the bottom
b × (1 − c) number of instances. This gives us a
batch of instances Q2 of the second contrastive def-
inition (line 12). Ultimately, two batches Q1 and
Q2 combines to give the output of BiCAL.

4 Experiment Settings

We assess BiCAL and other established AL meth-
ods’ performance in training general multi-modal
models to specify on the task of clinical report
generation from chest X-ray images. In every ac-
tive learning loop, the underlying model denoted
as M, was fine-tuned twice on the labelled pool
Xlabel. Subsequently, we evaluated the model on
the test dataset using various NLG metrics. Each
experiment was run in 3 folds with different ran-
dom seeds, each fold containing 10 active learning
iterations, where 100 data points were queried per
iteration, i.e. 1000 data points were queried in
total. This choice of 1000 data points reflects real-
world scenarios where active learning is applied
when labelled data is not available. Our goal was
to examine the efficiency and performance of ac-
tive learning methods under constrained labelling
budgets in a medical setting. In real-world AL sce-
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narios, labelling a large size of unlabelled data is
often impractical due to the significant expertise la-
belling effort required. Therefore, 1000 data points
were deemed sufficient to assess the performance
of the AL methods in our focus while mimicking
a real-world AL situation. Future work could ex-
plore varying the number of training examples (e.g.,
1500, 2000) to understand further the impact of la-
belled data quantity on active learning strategies in
training medical models.

4.1 Baselines
We evaluate our proposed BiCAL against various
literature Active Learning strategies:

1. Random Sampling (RS): Unlabelled in-
stances are drawn at random.

2. Normalized Sequence Probability (NSP):
Uses the probability of the generated sequence
by the model as a measure of uncertainty.

NSP = 1−exp


1
n

n∑

i=1

logP(yi | y1 . . . , yn, x)



(Tsvigun et al., 2023; Wang et al., 2019).

3. Expected Normalised Sentence Probability
(ENSP): Bayesian AL method where it has
the same intuition as NSP.

ENSP = 1 − Ew∼qθ̂ p̄w(y|x)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;
Wang et al., 2019).

4. Expected Normalised Sentence Variance
(ENSV): Similar to ENSP but uses variance
instead of expectation between the sequence
probability.

ENSV = Varw∼qθ p̄w(y|x)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;
Wang et al., 2019).

5. Contrastive Active Learning (CAL): SOTA
AL method described in section 3 (Margatina
et al., 2021b).

In addition, for BiCAL, we implemented two vari-
ants by varying the choice of pre-trained image
encoder Φ(.) in the BiCAL algorithm. We have
experimented with two types of pre-trained models,
Dinov2 and CheSS, to examine the effect of differ-
ent types of pre-trained image encoders in our algo-
rithm. Dinov2 is an image model that is pre-trained

on a general image dataset (Oquab et al., 2023),
whereas CheSS is pre-trained on a CXR dataset
(Cho et al., 2023). For the pre-trained text encoder
Ω(.), we have fixed the selection to GatorTron
(Yang et al., 2022) based on its SOTA performance
in clinical NLP tasks (that outperforms BioBERT
(Lee et al., 2019), ClinicalBERT (Huang et al.,
2020), BioMegatron (Shin et al., 2020)).

4.2 Datasets
We used the labelled datasets MIMIC-CXR (John-
son et al., 2019a) and IU X-Ray (Demner-Fushman
et al., 2015) for our simulation of active learning
conditions. The IU X-Ray dataset contains 3,955
radiology reports with 7,470 associated chest X-
ray images, while MIMIC-CXR includes 227,835
radiology reports with 377,110 associated chest
X-ray images. Following the methodology from
Chen et al. (2022), we excluded samples without
accompanying reports. We partitioned the IU X-
Ray dataset into training and testing sets using an
85%:15% ratio and used the official train-test split
for MIMIC-CXR.

In our simulated active learning experiments, we
queried only 1,000 data points. As it was imprac-
tical in terms of running time to run the experi-
ment on the entire MIMIC-CXR dataset of 377,110
images, we leveraged the structured labels from
MIMIC-CXR-JPG (Johnson et al., 2019b) and con-
ducted stratified sampling to obtain a 10% subset of
the training split (34,463 data points). This ensured
that the subset closely mirrored the label distribu-
tion of the full MIMIC-CXR dataset. We used this
stratified subset for training and the official test set
for evaluation. We release the processed reports
with their image IDs for both datasets in CSV files
in the repository and provide the data distribution
of MIMIC-CXR before and after subset sampling
in Table 5 and 6 in the Appendix.

4.3 Setup
Experiments were conducted on a single NVIDIA
RTX6000 GPU. We adopted the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 3e-5 and a weight decay of 3e-7. A warm-up
scheduler was applied to the learning rate for the
initial 200 steps. Due to computational constraints,
we used a training batch size of 8 and limited the
maximum number of tokens for generation to 100.

In our experiment, we fine-tuned a vision encoder-
decoder model initialized with pre-trained Vision
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Precision Recall F-1 Score Amount of training data
RS 0.450 0.252 0.168 1000

NSP 0.436 0.241 0.194 1000
ENSP 0.558 0.266 0.200 1000
ENSV 0.451 0.268 0.195 1000
CAL 0.326 0.221 0.187 1000

BiCAL Dinov2 0.403 0.255 0.191 1000
BiCAL CheSS 0.429 0.274 0.219 1000

Full Tune 0.309 0.273 0.259 34,463 (full subset)
R2Gen 0.333 0.274 0.276 377,110 (full data)
CCR 0.586 0.237 <0.300* 377,110 (full data)

Table 1: Clinical Efficacy Metrics across AL Strategies after 1000 data queried on MIMIC-CXR Dataset. * stared
entries are estimated as the result is not found in the original paper. The best results over AL strategies of each
metric are highlighted in blue. The performance of all models is averaged from three runs.

Methods Example Outputs BLEU 1-4

Reference

The NG tube extends inferiorly beyond the diaphragm into the fundus of the stomach. Again
seen is moderate cardiomegaly. The pulmonary vascular congestion is stable. There are no new
focal consolidations. The fissural loculation of pleural fluid along the left chest wall has not
changed compared to the prior exam. There is no pneumothorax.

–

RS The lungs are well expanded and clear. There is no pleural effusion or pneumothorax. The
cardiomediastinal silhouette is within normal limits. There is no acute osseous abnormality. [0.42, 0.36, 0.30, 0.24]

NSP
The heart is normal in size. The mediastinal and hilar contours appear within normal limits.
The pulmonary vasculature is normal. There is no pleural effusion or pneumothorax. The lungs
appear clear. There is no pulmonary edema.

[0.60, 0.53, 0.43, 0.36]

CAL

The patient is status post median sternotomy, CABG, and mitral valve replacement. The
right-sided Port-A-Cath terminates in the low SVC. The right-sided pacemaker terminates in
the low SVC. The mediastinal and hilar contours are unchanged. There is no pleural effusion or
pneumothorax. The cardiac silhouette is top normal. There is no evidence of pneumothorax.

[0.85, 0.71, 0.56, 0.44]

BiCAL
CheSS

The lungs are clear without focal consolidation, effusion, or pneumothorax. The cardiac and
mediastinal silhouettes are within normal limits. No acute osseous abnormalities. [0.37, 0.31, 0.24, 0.19]

Table 2: Case study of Generation Result on Negative Cases using Different AL Methods.

Transformers (ViT) (Dosovitskiy et al., 2020) and
GPT-2 (Radford et al., 2019). These models were
chosen for their popularity and strong performance
in computer vision and natural language process-
ing, respectively. Our primary focus was to inves-
tigate active learning strategies in a multi-modal
task, so we did not explore other model choices.
We utilized HuggingFace (Wolf et al., 2020) and
Deepspeed (Rasley et al., 2020) to facilitate our
experiment setup.

5 Results and Analysis

We used two types of evaluation metrics: natural
language generation (NLG) metrics and domain-
specific (clinical efficacy) metrics. This provided
a comprehensive evaluation of the generated re-
ports in terms of general and domain-specific per-
formance. For NLG metrics, we reported BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
scores at each active learning iteration. For clini-
cal efficacy metrics, we used the CheXpert (Irvin
et al., 2019) model to label the generated and refer-
ence reports. We reported precision, recall, and F1
scores for the labeled categories of the generated
and reference reports. This evaluation approach
is widely used in chest X-ray clinical report gen-

eration tasks (Chen et al., 2022; Liu et al., 2019,
2021).

5.1 Clinical Efficacy Metrics

We first assessed the baseline methods and our
strategy after 1000 queries on MIMIC-CXR us-
ing domain-specific metrics to examine the perfor-
mance of active learning (AL) strategies, which
is crucial for training clinical models. Table 1
displays the clinical efficacy metrics of various
AL strategies based on 1000 data queries from
a MIMIC-CXR dataset subset. The table’s last
three rows show the performance of our underlying
model after fine-tuning for 10 epochs on the full
MIMIC-CXR dataset subset, R2Gen (Chen et al.,
2022), and the model (CCR) from Liu et al. (2019).
These latter two are fully supervised models trained
on the full MIMIC-CXR dataset, designed to ex-
cel in chest radiology report generation tasks, with
their performance referenced directly from their
published papers.

A notable observation is that BiCAL CheSS sur-
passed baseline methods in recall and F1 scores
while maintaining a competitive average precision
score. This suggests that the BiCAL CheSS ap-
proach effectively recognizes more rare cases (un-
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
CAL 0.4978 0.4177 0.3313 0.2685 0.3115 0.0996 0.2143
RS 0.4487 0.3762 0.3008 0.2456 0.3040 0.0979 0.2138
NSP 0.4832 0.3997 0.3160 0.2563 0.2994 0.1026 0.2178
ENSP 0.4238 0.3569 0.2868 0.2355 0.3066 0.1013 0.2205
ENSV 0.3588 0.3060 0.2477 0.2047 0.2939 0.0969 0.2119
BiCAL Dinov2 0.5025 0.4200 0.3343 0.2726 0.3096 0.1001 0.2183
BiCAL CheSS 0.3930 0.3299 0.2636 0.2153 0.2870 0.0905 0.2078

Table 3: Average NLG performance of different AL strategies after 1000 queries on MIMIC-CXR

Figure 2: Average NLG Performance of AL Strategies and Best-performing Baselines on MIMIC-CXR

healthy scenarios) than other AL strategies, though
it may occasionally increase false positives, as in-
dicated by the precision score. In medical diagnos-
tics, catching every potential disease case (reducing
false negatives) is crucial. Therefore, high recall
is preferable to high precision, making BiCAL’s
performance desirable in our context and demon-
strating BiCAL CheSS’s superiority in generating
clinically accurate reports.

Remarkably, the BiCAL CheSS method achieved
a recall score that surpasses models fine-tuned on
the entire MIMIC-CXR subset (Full Tune). Addi-
tionally, it achieved competitive performance with
fully supervised models R2Gen and CCR, with a
better recall score and an F1 score not much lower.
This is noteworthy, considering this performance
was achieved with only 1000 data points (less than
0.3% of the whole MIMIC-CXR).

An interesting observation is that although CAL
performed well in the NLG metrics on the MIMIC-
CXR dataset (Figure 3), its clinical precision and
recall scores were the least impressive among all
methods. This suggests that while CAL trains mod-
els to produce seemingly accurate reports, these
might not be clinically sound. By augmenting the
contrastive bidirectionally and utilizing pre-trained
encoders, the domain-specific performance of this
contrastive active learning approach is largely en-
hanced, demonstrating the success of our approach.
We include a case study of generation performance
on rare cases using various AL methods in Table 7

in the Appendix.

Furthermore, evidence of the task’s complexity is
seen in the last three rows of Table 1. These rows in-
clude results from R2Gen and CCR, models specif-
ically tailored for chest X-ray report generation and
comprehensively trained on the full MIMIC-CXR
dataset. Despite their specialized design, their clini-
cal performance remains relatively low. This under-
scores the inherent challenge of our downstream
task—clinical report generation. The intricacies in
medical images may be difficult for the underlying
model’s capability to learn, suggesting that to truly
elevate clinical accuracy, superior clinical models
adept at the task may need to be designed.

5.2 Natural Language Generation Metrics

We found that for the IU X-ray dataset, no sin-
gle strategy consistently outperformed the others.
Notably, RS and NSP showed marginally better per-
formance during the initial four iterations in both
BLEU and ROUGE metrics. For the MIMIC-CXR
dataset, CAL performed slightly better in ROUGE
scores, while BiCAL was competitive with CAL in
BLEU scores, as shown in Figure 3.

The varying performance of CAL across the
MIMIC-CXR and IU X-ray datasets suggests that
CAL’s superiority did not extend to the IU X-ray
dataset. This may be due to the different data vol-
umes. Smaller datasets result in a limited unlabeled
data pool, potentially narrowing batch sample vari-
ance and minimizing observable performance vari-
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ance. Consequently, the queried batches of differ-
ent AL strategies on the IU X-ray dataset have more
overlap than on MIMIC-CXR, leading to similar
performance across strategies.

For the BLEU score, BiCAL Dinov2 performed
better than all strategies before 500 queries but was
surpassed by CAL afterwards (≥ 500), though it
remained competitive. For ROUGE scores, CAL
consistently retained slightly better performance
starting from 300 queried data. This comparison
demonstrates BiCAL’s competitiveness in NLG
metrics. As shown in Table 3, after 1000 queries,
BiCAL Dinov2 achieved the best performance in
all BLEU scores and the second-best performance
in all ROUGE scores.

Although BiCAL only surpassed other literature
AL methods in some NLG metrics, it remained
competitive with the best-performing baseline
methods. However, language models have been
criticized for producing hallucinated text (Ouyang
et al., 2022; Stiennon et al., 2020; Ziegler et al.,
2019). In a medical setting, our priority is creat-
ing accurate clinical reports, not just authoritative-
sounding ones. We believe the relatively worse
performance of BiCAL CheSS is due to the hallu-
cination problem of LLMs.

CAL and other methods suffer from class imbal-
ance data and may select more healthy cases for
training, leading to hallucinated models, that are
good at generating good negative (healthy) reports
containing many common phrases. In contrast,
BiCAL may have a higher proportion of positive
cases, training a model with higher clinical efficacy.
However, this model’s ability to write comprehen-
sive healthy reports that match the reference deteri-
orates. This results in worse performance on NLG
metrics due to the class imbalance problem (more
negative cases than positive in the test set, caus-
ing the model to generate negative reports more
often). This hypothesis is supported by our anal-
ysis of the generation results of the models under
different active learning methods, including a case
study in Table 2. It can be seen that although all
reports are saying the candidate contains no signif-
icant diseases, but other methods learn to give a
more comprehensive healthy report, which results
in a higher BLEU score. Thus due to the imbal-
anced dataset problem, the average NLG score of
the other methods may exceed BiCAL despite be-
ing less clinically accurate in positive cases (shown

c Precision Recall F-1 Score
0 0.381 0.254 0.177

0.25 0.376 0.241 0.170
0.50 0.430 0.274 0.219
0.75 0.516 0.250 0.188

1 0.417 0.264 0.199

Table 4: Micro Average of Precision, Recall, and F-1
Score on CheXpert classification Result of BiCAL using
different contrastive ratio c after 1000 data queried on
MIMIC-CXR Dataset

in clinical efficacy metrics in Table 1). We also
include a positive case study from our analysis to
show BiCAL’s ability to train clinically accurate
models in Table 7.

5.3 Ablation Study
In Sections 5.1 and 5.2, we discussed the impact
of different image encoders on the BiCAL algo-
rithm, comparing those pre-trained on a general
image dataset (Dinov2) and a Chest X-ray dataset
(CheSS). Additionally, a crucial component of the
BiCAL algorithm is the contrastive ratio, denoted
as c, which determines the sampling ratio between
two contrastive definitions in a batch. Our previous
experiments used a default c value of 0.5, meaning
an equal split between the two contrastive defini-
tions. As shown in Table 4, for clinical efficacy
metrics, BiCAL performs best when c is 0.5 in
terms of clinical recall and F1 scores. For clinical
precision, a c value of 0.75 seems optimal. The
poorest performance in terms of clinical recall is
observed at c = 0.25. This suggests that while a c
value of 0.5 may not be the best for NLG metrics,
it ensures the generation of higher clinical quality
reports by achieving the best recall of diseases in
the generated reports.

6 Conclusion

In this work, we present a study on the effective-
ness of current active learning methods for domain-
specific multi-modal learning, specifically on the
task of clinical report generation from chest X-
ray images. We identified the challenge of class
imbalance in domain-specific active learning and
addressed it by introducing BiCAL, a new active
learning technique. BiCAL excelled in both NLG
and domain-specific (clinical efficacy) metrics, no-
tably outperforming baselines in clinical recall and
F1-score.

We found that existing AL strategies demonstrate
similar performance in NLG metrics for the task
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of clinical report generation from chest X-ray im-
ages. This may be due to the complexity of our
task, which requires training the model to acquire
clinical expertise to generate accurate and clinically
sound reports. Interestingly, our tests revealed that
an AL strategy’s high performance in NLG metrics
does not ensure equal success in domain-specific
(clinical) performance, possibly due to the hallu-
cination properties of language models. We hope
this work provides valuable insights and can act
as a starting point for researchers in the future on
the task of active learning in multi-modal clinical
tasks.

Ethical Consideration and Limitations

We note that despite the success of BiCAL in our
study of clinical report generation, in practice, its
performance is yet to be confirmed. We have simu-
lated our experiments based on a labelled dataset
where the radiology report was collected under a
monitored condition such that their format may
achieve a certain level of consistency (Johnson
et al., 2019a; Demner-Fushman et al., 2015). How-
ever, in practice, the queried data’s label report may
vary based on different radiologist labellers, which
may cause noise in the training dataset, which may
affect the effectiveness of BiCAL.

We identify that for this work have used sensitive
personal data that is related to the health sector. We
used MIMIC-CXR (Johnson et al., 2019a) and IU
X-Ray (Demner-Fushman et al., 2015) datasets in
this project. We note that both datasets have been
de-identified, where they have removed all personal
health information (PHI). This has ensured the pri-
vacy and confidentiality of the individuals. During
this project, we handled the data responsibility and
used it only for the purpose of research. No at-
tempt at re-identification of the datasets is made.
We have also signed the data use agreement for
MIMIC-CXR before we use the data. We note that
MIMIC-CXR and IU X-rays, just like all datasets,
may contain inherent biases based on patient infor-
mation such as where the data is collected. More-
over, active learning is a technique that samples
data based on a certain heuristic, which therefore
may introduce additional bias in the sampling and
training of the model. This work researches the
effectiveness of active learning in clinical report
generation, we recognize this potential bias that
may be introduced by our research, and this also
comes along with our work’s contribution to the

improvement of the field of active learning in the
clinical sector.

Due to the difficulties in acquiring publicly avail-
able domain-specific image-report pair data, we
chose to work with the task of clinical report gen-
eration from chest X-rays. As we designed the
BiCAL algorithm, it was not tailored to the clin-
ical report generation task that we conducted our
experiments. Moreover, we believe that with the
intricacies and high level of expertise required in
the medical domain, we believe experiments con-
ducted in this domain can provide valuable insight
and act as a good reference for AL’s performance
on domain-specific learning in general. However,
further work should be done in the future to test
the performance of BiCAL in other domains, given
that the data is available.
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7 Appendix
Table 5: Label Distribution for Full MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.53% 0.67% 20.11% 74.69%
Cardiomegaly 2.65% 6.98% 19.68% 70.68%
Consolidation 1.90% 3.50% 4.73% 89.87%
Edema 5.78% 11.25% 11.86% 71.10%
Enlarged Cardiomediastinum 4.11% 2.32% 3.15% 90.42%
Fracture 0.24% 0.39% 1.93% 97.44%
Lung Lesion 0.50% 0.38% 2.76% 96.36%
Lung Opacity 1.68% 1.35% 22.62% 74.36%
No Finding 0.00% 0.00% 33.12% 66.88%
Pleural Effusion 2.55% 11.92% 23.83% 61.69%
Pleural Other 0.34% 0.06% 0.88% 98.73%
Pneumonia 8.03% 10.68% 7.27% 74.02%
Pneumothorax 0.50% 18.59% 4.55% 76.36%
Support Devices 0.10% 1.53% 29.21% 69.15%

Table 6: Label Distribution for Stratified Subset of MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.62% 0.72% 19.94% 74.72%
Cardiomegaly 2.62% 6.83% 19.82% 70.73%
Consolidation 1.83% 3.52% 4.62% 90.03%
Edema 5.79% 11.53% 11.51% 71.17%
Enlarged Cardiomediastinum 4.06% 2.29% 3.10% 90.55%
Fracture 0.24% 0.38% 1.93% 97.45%
Lung Lesion 0.55% 0.42% 2.64% 96.38%
Lung Opacity 1.68% 1.40% 22.71% 74.21%
No Finding 0.00% 0.00% 33.26% 66.74%
Pleural Effusion 2.57% 11.99% 23.54% 61.90%
Pleural Other 0.32% 0.06% 0.87% 98.75%
Pneumonia 8.09% 10.56% 7.39% 73.97%
Pneumothorax 0.50% 18.36% 4.65% 76.48%
Support Devices 0.09% 1.48% 29.43% 69.00%

Figure 3: Average NLG Performance of AL Strategies and Best-performing Baselines on IU X-ray
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Methods Example Outputs

Reference

Lung volumes are low. Mild to moderate enlargement cardiac silhouette is unchanged, accentuated by the presence of low lung volumes.
The aorta remains tortuous. Mediastinal and hilar contours are stable. There is continued mild pulmonary vascular congestion without
overt pulmonary edema. Patchy and linear opacities in the lung bases likely reflect areas of atelectasis. No pneumothorax or pleural
effusion is clearly evident. Percutaneous gastrostomy catheter is incompletely imaged.

RS The lungs are clear. There is no pleural effusion or pneumothorax. Cardiomediastinal silhouette is within normal limits. No acute
osseous abnormalities.

NSP The heart is normal in size. The mediastinal and hilar contours appear within normal limits. There is no pneumothorax. The pulmonary
vasculature is normal. There is no pleural effusion or pneumothorax. There is no pneumomediastinum.

CAL The heart is mildly enlarged. There is mild prominence of pulmonary vascularity with mild interstitial edema. There is no pleural
effusion or pneumothorax. The mediastinal and hilar contours are unremarkable. There is no evidence of pneumomediastinum.

BiCAL CheSS The cardiac silhouette is mildly enlarged. The aorta is tortuous. There is mild cardiomegaly. There is no pleural effusion or
pneumothorax. The hilar contours are normal. There is mild pulmonary vascular congestion.

Table 7: Case study of Generation Result on Positive Cases using Different AL Methods. Green: The generated
diagnosis is matched with reference. Red: The generated diagnosis is incorrect compared to the reference. Yellow:
The generated diagnosis is not mentioned in the reference.

Disease RS NSP ENSP ENSV CAL BiCAL Dinov2 BiCAL CheSS Full Tune
No Finding 0.0738 0.0799 0.0766 0.0843 0.0911 0.0750 0.1068 0.1507
Enlarged Cardiomediastinum 0.2183 0.2410 0.2378 0.2333 0.2462 0.2318 0.2386 0.2958
Cardiomegaly 0.2475 0.2592 0.1783 0.2354 0.2781 0.1829 0.4177 0.5113
Lung Lesion 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000
Lung Opacity 1.0000 0.6667 0.6667 1.0000 0.4333 0.3333 0.5000 0.3798
Edema 0.1781 0.1869 0.1555 0.1548 0.1757 0.1669 0.1584 0.2315
Consolidation 0.2879 0.4248 0.3455 0.3292 0.3029 0.3241 0.2981 0.3160
Pneumonia 0.2000 0.1221 1.0000 0.1176 0.0870 0.0000 0.1481 0.0887
Atelectasis 0.3846 0.3509 0.3636 0.3333 0.2773 0.5000 0.3333 0.2739
Pneumothorax 0.5621 0.6102 0.5876 0.5701 0.5569 0.5713 0.5917 0.5949
Pleural Effusion 0.4567 0.5131 0.4949 0.4945 0.4558 0.4906 0.4876 0.6016
Pleural Other 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
Fracture 0.0000 0.0000 1.0000 1.0000 0.0323 0.0000 0.0000 0.1667
Support Devices 0.6939 0.6418 0.6986 0.7545 0.6253 0.7610 0.7282 0.7096
Macro Average 0.4502 0.4355 0.5575 0.4505 0.3258 0.4026 0.4292 0.3086

Table 8: Precision on CheXpert classification Result between reference and generated report across AL Strategies
after 1000 queries on MIMIC-CXR

Disease RS NSP ENSP ENSV CAL BiCAL Dinov2 BiCAL CheSS Full Tune
No Finding 0.9042 0.8314 0.9042 0.8391 0.7011 0.7893 0.6590 0.7356
Enlarged Cardiomediastinum 0.4196 0.3924 0.4030 0.3970 0.3587 0.4267 0.4237 0.3869
Cardiomegaly 0.1221 0.1512 0.1042 0.1753 0.2267 0.1945 0.4083 0.3757
Lung Lesion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lung Opacity 0.0005 0.0010 0.0010 0.0010 0.0199 0.0005 0.0005 0.1921
Edema 0.1357 0.1614 0.1801 0.1376 0.0752 0.1402 0.1961 0.1145
Consolidation 0.6344 0.1336 0.4760 0.5180 0.2395 0.4812 0.5120 0.2372
Pneumonia 0.0022 0.0229 0.0000 0.0022 0.0131 0.0000 0.0218 0.0196
Atelectasis 0.0041 0.0164 0.0296 0.0008 0.0961 0.0041 0.0008 0.0895
Pneumothorax 0.7024 0.8285 0.7880 0.8968 0.7810 0.7900 0.8297 0.5608
Pleural Effusion 0.5581 0.5395 0.5318 0.6064 0.4310 0.5322 0.5302 0.6205
Pleural Other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fracture 0.0000 0.0000 0.0000 0.0000 0.0034 0.0000 0.0000 0.0034
Support Devices 0.0400 0.2928 0.3039 0.1717 0.1452 0.2040 0.2551 0.4797
Macro Average 0.2517 0.2408 0.2658 0.2676 0.2208 0.2545 0.2741 0.2725

Table 9: Recall on CheXpert classification Result between reference and generated report across AL Strategies after
1000 queries on MIMIC-CXR

Disease RS NSP ENSP ENSV CAL BiCAL Dinov2 BiCAL CheSS Full Tune
No Finding 0.1365 0.1458 0.1412 0.1531 0.1612 0.1370 0.1838 0.2502
Enlarged Cardiomediastinum 0.2872 0.2986 0.2991 0.2939 0.2920 0.3004 0.3053 0.3353
Cardiomegaly 0.1635 0.1910 0.1315 0.2010 0.2498 0.1886 0.4129 0.4331
Lung Lesion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lung Opacity 0.0010 0.0020 0.0020 0.0020 0.0381 0.0010 0.0010 0.2552
Edema 0.1540 0.1732 0.1669 0.1457 0.1054 0.1524 0.1753 0.1532
Consolidation 0.3961 0.2033 0.4004 0.4026 0.2675 0.3873 0.3768 0.2710
Pneumonia 0.0043 0.0385 0.0000 0.0043 0.0227 0.0000 0.0380 0.0321
Atelectasis 0.0081 0.0314 0.0547 0.0016 0.1427 0.0081 0.0016 0.1349
Pneumothorax 0.6245 0.7028 0.6732 0.6971 0.6502 0.6631 0.6907 0.5773
Pleural Effusion 0.5023 0.5260 0.5127 0.5448 0.4431 0.5105 0.5080 0.6109
Pleural Other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fracture 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 0.0067
Support Devices 0.0756 0.4021 0.4236 0.2797 0.2357 0.3217 0.3779 0.5724
Macro Average 0.1681 0.1939 0.2004 0.1947 0.1868 0.1907 0.2194 0.2594

Table 10: F1 Score on CheXpert classification Result between reference and generated report across AL Strategies
after 1000 queries on MIMIC-CXR

341



Proceedings of the 23rd Workshop on Biomedical Language Processing, pages 342–362
August 16, 2024. ©2024 Association for Computational Linguistics

Generation and De-Identification of Indian Clinical Discharge Summaries
using LLMs

Sanjeet Singh‡* Shreya Gupta†* Niralee Gupta†

Naimish Sharma† Lokesh Srivastava† Vibhu Agarwal†

Ashutosh Modi‡

‡Indian Institute of Technology Kanpur (IIT Kanpur) †Miimansa
{sanjeet, ashutoshm}@cse.iitk.ac.in

{shreya.gupta,niralee.gupta,naimish.sharma}@miimansa.com
{lokesh.srivastava,vibhu}@miimansa.com

Abstract

The consequences of a healthcare data breach
can be devastating for the patients, providers,
and payers. The average financial impact of
a data breach in recent months has been esti-
mated to be close to USD 10 million. This
is especially significant for healthcare organi-
zations in India that are managing rapid dig-
itization while still establishing data gover-
nance procedures that align with the letter and
spirit of the law. Computer-based systems
for de-identification of personal information
are vulnerable to data drift, often rendering
them ineffective in cross-institution settings.
Therefore, a rigorous assessment of existing
de-identification against local health datasets is
imperative to support the safe adoption of digi-
tal health initiatives in India. Using a small set
of de-identified patient discharge summaries
provided by an Indian healthcare institution,
in this paper, we report the nominal perfor-
mance of de-identification algorithms (based
on language models) trained on publicly avail-
able non-Indian datasets, pointing towards a
lack of cross-institutional generalization. Sim-
ilarly, experimentation with off-the-shelf de-
identification systems reveals potential risks
associated with the approach. To overcome
data scarcity, we explore generating synthetic
clinical reports (using publicly available and
Indian summaries) by performing in-context
learning over Large Language Models (LLMs).
Our experiments demonstrate the use of gener-
ated reports as an effective strategy for creating
high-performing de-identification systems with
good generalization capabilities.

1 Introduction

Over 330 million patient records in India have al-
ready been linked with a unique central ID (PIB
Press Release). To put this in perspective, the
number roughly equals the total population of the
United States. Several federal initiatives aimed

*Equal Contribution

at establishing standards for medical information
exchange, adoption of controlled terminologies,
and promoting open architecture-based systems
for the management of patient records have seen
a steady rise in the adoption of electronic health
records within Indian healthcare institutions (Min-
istry of Health and Family Welfare (MoHFW), In-
dia; Srivastava, 2016). This data represents an
under-utilized resource that has profound impli-
cations for informing public policy, medical re-
search and patient care. At the same time, it also
poses some serious challenges. The risks of reveal-
ing patient identity even from data that has been
anonymized are well known (Sweeney, 2013). Pri-
vacy regulations such as GDPR 2016 (European
Parliament and Council of the European Union)
and the HIPAA Privacy Rule 2003 (U.S. Depart-
ment of Health and Human Services (HHS)) lay
down heavy penalties on non compliance with data
safety protocols. A robust data de-identification
pipeline is vital if we aim to unlock insights from
these electronic patient histories.
Natural Language Processing (NLP) methods for
de-identification are known to perform signifi-
cantly better than manual de-identification (Dou-
glass et al., 2004). However, these have been stud-
ied mostly in the single-institution setting. There
are limited studies that evaluate de-identification
performance of these methods across institutions
(Yang et al., 2019). These suggest that NLP meth-
ods for de-identification perform poorly when eval-
uated on data from a different institution compared
to the one that contributed the training data. This is
especially significant in the context of patient data
originating within Indian healthcare institutions.
To the best of our knowledge, studies evaluating
the performance of NLP based de-identification
systems on patient data from Indian healthcare in-
stitutions have not yet been carried out. One reason
for this might be that until recently there was no
regulatory framework for accessing patient data for
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research. The Indian Digital Personal Data Pro-
tection Act 2023 (DPDPA) (Ministry of Electron-
ics and Information Technology (MeitY), India)
is a landmark legislation that came into effect in
September 2023 and covers all organizations that
process the personal data of individuals in India.
Similar to GDPR 2016, the DPDPA defines respon-
sibilities for organizations that collect, store, and
process data from patients in India and holds them
legally accountable for safeguarding patient pri-
vacy. The DPDPA also highlights the need for a
data de-identification solution that has been vali-
dated on patient data from Indian healthcare insti-
tutions.
The present study takes a step towards answering
this imminent need. Using a dataset of fully de-
identified 99 discharge summaries obtained under
Institutional Review Board (IRB) approval from the
Sanjay Gandhi Post Graduate Institute of Medical
Sciences (SGPGIMS), Lucknow, India, the study
evaluates language models (LMs) for the task of
de-identification. Furthermore, commercially avail-
able de-identification solutions are also evaluated.
Hereafter, we refer to this dataset as the Indian
Clinical Discharge Summaries (ICDSR, subscript
R refers to real) dataset. Given the paucity of clini-
cal data, the study also evaluates Large Language
Models (LLMs) on the task of generating synthetic
clinical texts for training de-identification models.
Critically, the study highlights the existence of sev-
eral personal health information (PHI) elements in
the ICDSR dataset that are unique to the language
use and cultural practices in India. It is unlikely that
the existing de-identification solutions have been
trained to recognize these unique PHI elements,
and therefore, their detection may be unreliable. In
a nutshell, we make the following contributions:

• We introduce a new dataset (Indian Clin-
ical Discharge Summaries (ICDSR)) ob-
tained from an Indian hospital and evaluate
the performance of PI-RoBERTa model (PI-
RoBERTa) (fine-tuned on non-Indian clinical
summaries) on ICDSR for the task of De-
Identification. Our experiments show poor
cross-institutional performance. Experiments
with existing commercial off-the-shelf clinical
de-identification systems show similar trends.

• To overcome the paucity of Indian clinical
data, we generate synthetic summaries using
LLMs (Gemini (Team et al., 2023), Gemma
(Team et al., 2024), Mistral (Jiang et al., 2023),
and Llama3 (Touvron et al., 2023)) via In-

Context Learning (ICL). Further, the synthetic
summaries are used to train PI-RoBERTa for
de-identification on ICDSR. Results show sig-
nificant improvement in the performance of
the de-identification system.

• We release the model code and experiments
via GitHub: https://github.com/Explora
tion-Lab/llm-for-clinical-report-g
eneration-deidentification

2 Related Work
Automatic data de-identification methods for
biomedical texts have focused on leveraging ma-
chine learning techniques to ensure privacy while
maintaining data utility. Named Entity Recognition
(NER) systems have been tailored to identify and
anonymize personal health information/personal
identifiable information (PHI/PII) from clinical nar-
ratives. Earlier work explored Support Vector Ma-
chines (SVMs) for identifying PHI (Neamatullah
et al., 2008). Researchers have also explored deep
learning models, such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks
(RNNs) (Dernoncourt et al., 2017), which have
shown superior performance over the conventional
approach.
In recent years, there has been a growing inter-
est in the application of transformer-based models
like BERT (Devlin et al., 2018) for the clinical
NER and de-identification task (Chaudhry et al.,
2022; Alsentzer et al., 2019). LLMs have also
been explored for various clinical tasks such as
clinical NLI (Mandal and Modi, 2024). Hybrid
approaches that combine rule-based and machine
learning methods have also been developed to en-
hance the robustness of de-identification systems
(Meystre et al., 2010). A study by Yang et al. (2019)
used a hybrid model combining Long Short-Term
Memory (LSTM) networks with Conditional Ran-
dom Fields (CRFs) for the de-identification of clin-
ical notes. It demonstrated the effectiveness of
integrating local resources and diverse word em-
beddings, and achieved high F1 scores across var-
ious de-identification tasks. Furthermore, El Az-
zouzi et al. (2023) de-identified French electronic
health records using distant supervision and deep
learning techniques. The study utilized models like
Bi-LSTM+CRF and enhanced them with contex-
tualized word embeddings. It achieved remark-
able accuracy in removing identifiable informa-
tion while maintaining data utility. These inno-
vations underscore the continuous improvement
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Apollo Hospital Hospital Sector 11, Main Road, Faridabad - 121001,India Location

Discharge Summary CRNO: 9876543210 ID Name: Rahul Kumar Patient 35/ Y Age M Department: Ward C Hospital

Unit: UNIT-3 Ward/Bed: 1423 ICU Hospital Admission No: ADM- 5678901234 ID Admitted on: 15-08-2023 Date 09:30

Discharged on: 20-08-2023 Date 14:00 Patient Type: Normal Consultant: Dr. Smitha John Doctor Discharge Type: Normal

Discharge Correspond. Address:, Distt. State Haryana Location Pin No. Phone No +91- 9999999999 Contact Admission

Details: Patient was admitted to the hospital on 15-08-2023 Date at 09:30 with a chief complaint of chest pain. He was

diagnosed with acute myocardial infarction and was treated with thrombolysis and angioplasty.

Figure 1: A sample of annotated text from Discharge Summary

and adaptation of de-identification methods to ad-
dress the evolving challenges in data privacy. With
remarkable progress made in generative AI tech-
niques, researchers have started exploring generat-
ing synthetic clinical data. For example, medGAN
(Choi et al., 2017) has been proposed to gener-
ate high-dimensional discrete variables such as pa-
tient records. It shows that it can produce realistic
EHR data that preserves the statistical properties
of the original dataset. Researchers have also ex-
plored differential privacy techniques in conjunc-
tion with Generative Adversarial Networks (GANs)
to ensure that the synthetic data does not allow
re-identification of individuals. There is also on-
going research into hybrid models that combine
rule-based and machine learning techniques to gen-
erate data that not only looks realistic but also ad-
heres to known clinical correlations and constraints
(Isasa et al., 2024; Goncalves et al., 2020). Such
approaches ensure that the synthetic data is both
safe and scientifically valid for use in biomedical
modeling simulations. The trend highlights the po-
tential of synthetic data to address privacy and data
availability challenges in biomedical research. In
this paper, we explore LLMs for generating syn-
thetic clinical reports that closely resemble reports
in ICDSR, thus capturing the underlying data gen-
eration processes.

3 Clinical Discharge Summaries Datasets

n2c2: We make use of the 2006 and 2014 n2c2
datasets (Özlem Uzuner et al., 2008; Stubbs et al.,
2015). The 2006 challenge involved the devel-
opment of automated methods to de-identify dis-
charge summaries from patient medical records
(Özlem Uzuner et al., 2008). The total number
of summaries in the n2c2-2006 dataset are 888,
split between training and test sets. The 2014 chal-
lenge comprised of two tasks: de-identification and
heart disease risk factor identification (Stubbs et al.,
2015). For the de-identification task, the dataset
included a variety of clinical documents such as

progress notes, discharge summaries, and other nar-
rative texts that typically contain detailed patient
information.
Indian Clinical Discharge Summaries (ICDSR):
We obtained fully de-identified 99 discharge sum-
maries obtained under Institutional Review Board
(IRB) approval from the Sanjay Gandhi Post Grad-
uate Institute of Medical Sciences (SGPGIMS),
Lucknow, India. All discharge summaries in the
Indian Clinical Corpus were manually annotated
for de-identified entities by human annotators using
Doccanno (Nakayama et al., 2018), a data anno-
tation tool. Each document was annotated by one
annotator. The annotators had previous experience
in clinical text annotations. Following established
practice, we used the BIO scheme (Ramshaw and
Marcus, 1999) for annotating named entities. Our
PHI labels were defined by augmenting the PHI
entities defined in the HIPAA Privacy Rule 2003
along with adaptation to Indian clinical texts. After
annotation, we obtained 26 PHI unique entities in
the ICDSR dataset. Subsequently, due to privacy
concerns, PHI elements were replaced with fake
values through an automatic replacement tool devel-
oped using the Python library Faker (Faraglia and
Other Contributors, 2010) (example in Fig. 1). Re-
peated occurrences of an entity within a note were
tracked for consistent replacements. Moreover, set-
tings such as date/time offsets were parameterized
via a configurable file. The tool provides a scal-
able solution for de-identifying medical datasets
while ensuring secure data access. Table 1 provides
statistics of the datasets.

4 Generated Discharge Summaries
Datasets

Initial experimentation showed over-fitting in mod-
els on the ICDSR data due to its small size
(69, 10, 20 summaries for train, val, and test sets, re-
spectively). Consequently, we generated synthetic
summaries to augment ICDSR data. Synthetic pa-
tient data is being used increasingly for a variety
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Statistics Training dataset Test set

n2c2-2006 n2c2-2014 ICDSR ICDSg
G ICDSl

G n2c2-2006 n2c2-2014 ICDSR

# Summaries 668 790 79 1596 1043 220 514 20
# Unique Tokens 29218 55907 13542 56780 25184 15231 41066 6106

Max Length 3023 2984 9494 4256 2590 2687 2474 8511
Min Length 13 74 97 100 109 15 99 270

Avg. Summary Length 581.71 618.86 1005.94 373.80 392.34 748.22 615.19 1343.40
Original Tag Set 9 24 26 34 106 9 21 24
Mapped Tag set 9 9 9 9 9 9 9 9

Table 1: Statistics of various datasets

of in-silico biomedical experiments in addition to
training data augmentation (Chen et al., 2021). Us-
ing the samples from ICDSR we generated medi-
cal discharge summaries specific to Indian patients
using LLMs (Gemma, Llama-3-8B-Instruct, and
Mistral-7B-Instruct-v0.1) via In-Context Learning
(ICL). We experimented extensively with various
prompts and discharge summaries, as explained
below. Our choice of LLMs was driven by the fea-
sibility of instantiating these models on-premise.
Prompting is a key aspect of using LLMs. As
described below, we experimented with various
prompt designs.

Discharge Summaries Generation using the
n2c2-2006 dataset: Since the n2c2-2006 discharge
summaries are publicly accessible, we generated
synthetic discharge summaries based on these
along with PHI annotations using Gemini-pro-1.0.
We arrived at a functional prompt by iteratively
tuning and inspecting the synthesized outputs for
overall length, presence of key subsections, and
correct PHI annotation. While tuning our prompts,
we did not check for the medical validity of the
discharge summaries (see App. Table 12). The
prompt also contained an original n2c2-2006 sum-
mary as an exemplar. This way, we generated five
patient discharge summaries for each original dis-
charge summary in the n2c2-2006 dataset and a
total of 3000 discharge summaries. The generated
summaries were manually reviewed, and the ones
containing gibberish text and missing or incorrect
annotations were filtered out, resulting in 1596 syn-
thetic discharge summaries with PHI annotations.
Hereinafter, we refer to this dataset as ICDSg

G .

Discharge Summaries Generated using the
ICDSR dataset: The ICDSR dataset is accessi-
ble only under the Institutional Review Board’s
approval, and therefore, LLMs that can be inferred
only via public API endpoints cannot be used to
process these. Consequently, we generated syn-

thetic discharge summaries for the ICDSR dataset
only with LLMs that could be instantiated within
our secure compute infrastructure (Llama-3-8B-
Instruct, Gemma and Mistral-7B-Instruct-v0.1, re-
spectively). We evaluated various LLM and prompt
combinations to converge on Llama-3-8B-Instruct
(see App. Table 12 for the prompt). To evaluate the
performance of model-prompt combinations, we
calculated two metrics: BERT F1-Score and the av-
erage length of summaries (in words). The BERT
F1-Score was calculated on a sample of synthetic
annotated discharge summaries (target) and the 99
original ICDSR discharge summaries (see Table
2). The BERT F1-Score of Meta-Llama-3-8B-
Instruct and Mistral-7B-Instruct-v0.1 models with
prompt B surpass other model-prompt combina-
tions. We selected the Meta-Llama-3-8B-Instruct
model for synthetic discharge summary generation
and PHI annotation since, in addition to a high
BERT F1-score, the generated summaries are, on
average, longer. The ICDSR dataset was split so
that 79 summaries were used in the prompt to gen-
erate synthetic summaries while the remaining 20
were reserved for the test set. The temperature
parameter of Meta-Llama-3-8B-Instruct was set
to 0.9. Around 25 summaries were generated for
each of the 79 ICDSR discharge summaries by em-
bedding these one at a time as an exemplar in the
prompt. In total, 1831 discharge summaries, which
already had PHI annotations, were generated, yield-
ing 1043 generated discharge summaries after man-
ual review and filtration. Hereinafter, we refer to
this dataset as ICDSl

G. Further, we asked two an-
notators to annotate 50 generated summaries (after
removing the PHI tags) with PHI tags. The Cohen’s
kappa coefficient (Warrens, 2015), the measure of
inter-annotator agreement, was 0.921, showing a
high agreement.

Evaluation of the Quality of the Generated Sum-
maries: We assessed the face validity of the gen-
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Prompt Id Model Used BERT F1-Score Avg. Summary
Length (words)

B meta-llama/Meta-Llama-3-8B-Instruct 0.491 564
B mistralai/Mistral-7B-Instruct-v0.1 0.493 400
C meta-llama/Meta-Llama-3-8B-Instruct 0.486 503
C mistralai/Mistral-7B-Instruct-v0.1 0.468 267
C google/gemma-1.1-7b-it 0.478 268

Table 2: Comparison of model-prompt combinations

Training Set Test Set

n2c2-2006 n2c2-2014 ICDSR

n2c2-2006 ✓ ✓ ✓
n2c2-2014 ✓ ✓ ✓

n2c2-2006+ n2c2-2014 ✓ ✓ ✓
ICDSg

G
✓ ✓ ✓

ICDSlG ✓ ✓ ✓
ICDSg

G
+ ICDSlG ✓ ✓ ✓

ICDSg
G

+ ICDSlG+ n2c2-2014 ✓ ✓ ✓
ICDSg

G
+ ICDSlG+ n2c2-2014 ✓ ✓ ✓

Table 3: Experiments Matrix

erated summaries by asking physicians to review
a convenience sample of 30 real and 30 synthetic
discharge summaries with the real/synthetic labels
suppressed. The 60 discharge summaries were
shuffled and uploaded to a secure, online review
tool accessible only to the reviewers (physicians).
The reviewers were asked to review each summary
and then assign a single label (real or synthetic)
to each based on their experience. The review re-
sults were compiled, and the precision, recall, and
F1 scores were computed for each physician along
with Cohen’s Kappa to assess agreement between
the two physicians (details in §7).
As can be observed in Table 1, for the purpose of
uniformity and modeling, we mapped PHI entities
in each of the dataset to 9 tags (corresponding to
8 unique entities + 1 OTHERS). App. Table 15 pro-
vides details of tag mapping where the PHI entities
are mapped with to their superset and all non-PHI
entities are mapped to OTHERS Tag.

5 De-Identification Task

De-Identification Task: De-Identification is con-
ceptually similar to a Named Entity Recognition
task. Both ICDSg

G and ICDSl
G were pre-processed

and converted into BIO format as is customary
in Named Entity Recognition development (also
see App. Fig. 4). Formally, given some text,
S = (w1, w2, w3, ..., wn) containing n words, de-
identification requires labeling each of the word
wi with a tag tk coming from a NER tagset
t1, t2, ..., tT . Subsequently, the labeled entities can
be redacted or replaced with fake values for privacy
protection.
De-Identification Model: We fine-tuned
several different NER models, including

Attribute Dataset

Real Generated

Counts 3158684 5022667
Length (words) 560753 721886

Mean ± SE 4.64 ± 0.004 5.93 ± 0.005
Median 4.0 5.0

Min 1 1
Max 50 89

Jaccard Distance 0.83
BERTScore (F1) 0.64

BERTScore (Precision) 0.65
BERTScore (Recall) 0.63

Table 4: Comparison of n2c2-2006 and ICDSg
G Dataset

Attribute Dataset

Real Generated

Counts 636805 4789863
Length (words) 102604 508244

Mean ± SE 5.21 ± 0.01 7.77 ± 0.01
Median 4.0 5.0

Min 1 1
Max 72 472

Jaccard Distance 0.80
BERTScore (F1) 0.58

BERTScore (Precision) 0.60
BERTScore (Recall) 0.56

Table 5: Comparison of ICDSR and ICDSl
G Dataset

ghadeermobasher/BCHEM4-Modified-BioBERT-
v1 (BioBERT) and Clinical-AI-Apollo/Medical-
NER (Clinical AI Apollo). In each case, we
used a training partition of the data to train and
a validation partition for evaluation. However,
the Clinical NER models did not perform well
since they are designed to label medical entities
such as disease, drugs, procedures, and devices
(see App. D). RoBERTa-NER-Personal-Info
model (PI-RoBERTa) showed good performance
on n2c2-2006 and n2c2-2014 datasets. The
architecture for PI-RoBERTa is shown in App.
Fig. 13. PI-RoBERTa is a 24-layered transformer
model that predicts a label for each token.

6 Model Training Experiments

Initial experiments with ICDSR using a 69-10-20
(train-val-test) split resulted in overfitting given that
ICDSR is small, containing only 99 discharge sum-
maries. We also experimented with training the
model on n2c2-2006 and n2c2-2014 datasets and
testing on ICDSR to check for cross-institutional
generalization. We experimented with several com-
binations of real and synthetic datasets and evalu-
ated on the test set of n2c2-2006, n2c2-2014, and
ICDSR. Table 3 shows the experiments matrix, in
total we evaluated 24 different combinations. For
all the experiments, we reserved 20 summaries of
ICDSR for testing. Note that these summaries were
also not used for generation. For each experiment,
PI-RoBERTa was fine-tuned on each training set as
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Training Data n2c2-2006 n2c2-2014 n2c2-2006 + n2c2-2014

Testing Data n2c2-2006 n2c2-2014 ICDSR n2c2-2006 n2c2-2014 ICDSR n2c2-2006 n2c2-2014 ICDSR

CONTACT 0.98 0.66 0.18 0.73 0.95 0.20 0.96 0.93 0.24
PATIENT 0.95 0.65 0.81 0.82 0.98 0.85 0.91 0.96 0.77
DOCTOR 0.95 0.89 0.64 0.93 0.98 0.76 0.97 0.98 0.54
ID 0.99 0.55 0.64 0.96 0.97 0.65 1.00 0.96 0.93
DATE 0.98 0.43 0.16 0.70 0.99 0.97 0.97 0,98 0.97

LOCATION 0.89 0.80 0.71 0.78 0.95 0.80 0.81 0.94 0.75
HOSPITAL 0.94 0.79 0.34 0.87 0.94 0.36 0.94 0.93 0.40

AGE 0.80 0.00 0.00 0.02 0.99 0.48 0.12 0.94 0.53

Micro Avg 0.96 0.66 0.41 0.81 0.98 0.80 0.96 0.97 0.80
Macro Avg 0.93 0.60 0.43 0.72 0.97 0.63 0.83 0.95 0.64

Weighted Avg 0.96 0.61 0.31 0.84 0.98 0.78 0.96 0.97 0.78

Table 6: F1 scores for PHI entities with overall micro Avg F1 , macro Avg F1 , Weighted Avg F1

Training Data ICDSg
G ICDSl

G ICDSg
G+ ICDSl

G

Testing Data n2c2-2006 n2c2-2014 ICDSR n2c2-2006 n2c2-2014 ICDSR n2c2-2006 n2c2-2014 ICDSR

CONTACT 0.80 0.47 0.11 0.55 0.38 0.96 0.93 0.67 0.98
PATIENT 0.74 0.56 0.68 0.05 0.32 0.95 0.83 0.60 0.90
DOCTOR 0.86 0.78 0.88 0.35 0.71 0.98 0.86 0.76 0.98
ID 0.87 0.58 0.51 0.81 0.61 1.00 0.93 0.63 0.98
DATE 0.87 0.90 0.88 0.70 0.84 0.99 0.90 0.88 0.99

LOCATION 0.71 0.78 0.34 0.50 0.66 0.97 0.75 0.81 0.96
HOSPITAL 0.87 0.72 0.31 0.42 0.51 0.97 0.88 0.70 0.98

AGE 0.02 0.67 0.51 0.02 0.38 0.96 0.06 0.56 0.97

Micro Avg 0.85 0.77 0.68 0.55 0.67 0.98 0.88 0.76 0.98
Macro Avg 0.72 0.68 0.53 0.42 0.55 0.97 0.77 0.70 0.97

Weighted Avg 0.86 0.77 0.69 0.52 0.66 0.98 0.88 0.77 0.98

Table 7: F1 scores for PHI entities for the PI-RoBERTa trained on generated data.

given in Table 3 and tested on each corresponding
test set. Details about training are given in App. D
Comparison with Commercial De-Identification
Systems: We compared the performance of these
on the ICDSR test set. In particular, we evaluated
AWS’s (Amazon Web Services) Comprehend Med-
ical DetectPHI (Amazon Web Services) and GCP’s
(Google Cloud Platform) Data Loss Protection
(DLP) (Google Cloud) de-identification solutions.
For comparison and evaluation, ICDSR test set was
mapped to a common tag set, which includes DATE,
NAME, LOCATION, AGE, ID, and CONTACT. To ensure
consistency across the dataset, pre-processing steps
were applied. For instance, titles such as ‘Dr.’
and ‘Mr.’ were removed from NAME entities in the
ICDSR test set due to the solution’s inability to
recognize them. Certain tags and entities were ex-
cluded from the analysis to align with a common
tag set. The LOCATION entity was standardized by
merging all location-related entities (street, city,
state, zip) into a single LOCATION entity. Similarly,
HOSPITAL, ORGANISATION_NAME and ADDRESS en-
tities were consistently mapped to LOCATION.

De-identification using LLMs: We further evalu-
ated the performance of LLMs on ICDSR test set.
Meta-Llama-3-8B-Instruct was instantiated within
our secure compute infrastructure, and the prompt
was developed for medical text de-identification
using the iterative approaches described in the fore-
going sections.

7 Experiments, Results and Analysis

Comparison of datasets: The total number of
summaries in the n2c2-2006 dataset are 888, split
between training and test sets, as shown in Ta-
ble 1. The n-gram analysis of the n2c2-2006 and
ICDSR datasets reveals distinct linguistic patterns
reflecting their unique clinical foci. The n2c2-2006
dataset features unigrams like ‘patient,’ ‘discharge,’
and medication-related terms such as ‘mg’ and ‘po’
and bigrams like ‘mg po’ and ‘discharge date,’ high-
lighting a narrative centered on patient manage-
ment and clinical processes as shown in App. Fig.
14. In contrast, the ICDSR dataset (as shown in
App. Fig. 18) shows a marked presence of terms
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Training Data n2c2-2014+ ICDSl
G+ ICDSg

G n2c2-2014+ n2c2-2006+ ICDSg
G+ ICDSl

G

Testing Data n2c2-2006 n2c2-2014 ICDSR n2c2-2006 n2c2-2014 ICDSR

CONTACT 0.89 0.95 0.98 0.97 0.96 0.98
PATIENT 0.87 0.97 0.88 0.94 0.96 0.88
DOCTOR 0.95 0.97 0.98 0.98 0.98 0.99

ID 0.99 0.97 0.99 0.99 0.96 0.99
DATE 0.82 0.99 0.99 0.99 0.99 0.99

LOCATION 0.76 0.95 0.98 0.85 0.94 0.98
HOSPITAL 0.93 0.94 0.96 0.96 0.94 0.97

AGE 0.02 0.97 0.96 0.35 0.97 0.86

Micro Avg 0.88 0.97 0.97 0.97 0.97 0.97
Macro Avg 0.78 0.96 0.96 0.88 0.96 0.96

Weighted Avg 0.90 0.97 0.97 0.97 0.97 0.97

Table 8: F1 scores of PHI entities when PI-RoBERTa is fine-tuned on combination of datasets

Metric AWS GCP
F1 Score 0.37 0.47

Table 9: Results: AWS vs. GCP Solutions on ICDSR

test set
Entity AWS GCP
DATE 0.39 0.56
NAME 0.57 0.52

LOCATION 0.20 0.22
AGE 0.12 0.00
ID 0.17 0.17

CONTACT 0.63 0.36

Table 10: F1 scores for Entity-Wise Comparison of
AWS and GCP Solutions on ICDSR test set

such as ‘pm,’ ‘days,’ and ‘mgdl,’ and bigrams and
trigrams like ‘10 days,’ ‘daily 10,’ and ‘cr x ray,’
suggesting an orientation towards experimental or
lab-result oriented narratives, with a particular em-
phasis on procedural timelines and diagnostic pro-
cedures. Hence, ICDSR focuses on a broader scope
involving diagnostics and treatment monitoring.
Real versus Generated Datasets
ICDSg

G vs n2c2-2006: We analyzed the n2c2-2006
and the synthetic ICDSg

G discharge summaries
in terms of summary statistics, Jaccard distance,
and BERTScore (using the “dmis-lab/biobert-v1.1”
model) as shown in Table 4 (Lee et al., 2020; Zhang
et al., 2020). The Jaccard distance suggests a high
level of lexical dissimilarity between the datasets,
indicating that the synthetic dataset introduces a
significant degree of variation compared to the real
dataset. While indicating some differences, an F1
score of 0.6362 indicates the real and synthetic
datasets have semantic overlap. An n-gram analy-
sis of the top 10 unigrams, bigrams, and trigrams
unveils the differences between the two datasets,
yet also underscores their relevance to the task at
hand as shown in App. Fig.14, Fig.15, Fig.16, and
Fig.17. These metrics suggest that while the syn-

thetic dataset is designed to be distinct enough to
introduce useful variability, it retains a substantive
semantic similarity to the real dataset. This bal-
ance is crucial when synthetic data is used for tasks
such as model training, where the goal is to en-
sure that the model is not only trained on a diverse
set of data but also remains relevant and effective
when applied to real-world data. The high Jaccard
distance combined with the moderate BERTScore
indicates that the synthetic dataset achieves this ob-
jective by being similar enough to the real dataset
to be useful, yet different enough to enhance the
dataset’s diversity and robustness.

ICDSl
G vs ICDSR: Similar to the n2c2-2006

and ICDSg
G datasets, we analyzed the ICDSR and

ICDSl
G datasets with summary statistics, Jaccard

distance, and BERTScore, as shown in Table 5.
The Jaccard distance suggests lexical dissimilarity
implying injection of new vocabulary in the gener-
ated discharge summaries. The n-gram analysis of
the top 10 unigrams, bigrams, and trigrams shows
these differences (App. Fig.18, Fig.19, Fig.20, and
Fig.21). The BERTScore results indicate a mod-
erate level of semantic similarity between the real
and generated datasets. The metrics suggest that
the generated dataset has greater lexical variety and
incorporates some additional semantic constructs.

Evaluation of The Quality of Generated Sum-
maries: The confusion matrix on convenience sam-
ple of 60 discharge summaries evaluated by physi-
cian1 and physician2 are shown in Fig. 2 and Fig.
3 respectively. There are 10 summaries that were
originally synthetic but were labeled as real by
physician 1, and 19 summaries that were originally
synthetic but were labeled as real by physician 2.
Physician 1 is able to label summaries with higher
precision and recall, i.e., higher f1-score as com-
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Physician Precision Recall F1-score
Physician 1 0.714 0.833 0.769
Physician 2 0.537 0.733 0.620

Table 11: Evaluation metrics of 60 discharge summaries
annotated by physician 1 and physician 2

pared to physician 2 (Table 11). The Cohen’s kappa
coefficient, the measure of inter-annotator agree-
ment, is 0.290 showing a fair agreement between
the labels assigned by the physicians. Additionally,
physician 1 observed that many of the discharge
summaries that he labeled synthetic appeared to
have been translated from a non-English source.
Physician 2 reported some diagnosis and format-
ting issues among the summaries he labeled as
synthetic. Additionally, physician 2 reported some
errors in diagnoses, medications, and lab results,
but these were not limited to the summaries he
labeled as synthetic.
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Figure 2: Confusion matrix on convenience sample (60
discharge summaries) evaluated by physician 1
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Figure 3: Confusion matrix on convenience sample (60
discharge summaries) evaluated by physician 2

Model Performance: Table 6 shows the results
for intra- and inter-institutional performance. As
can be observed, the inter-institutional performance
of the model is very high (> 0.96 F1). However,
the cross-institutional performance suffers signif-
icantly. Table 7 shows the results of training on
generated datasets. The fine-tuned Model gives
68% F1 score on the ICDSR test set, 77% on the
n2c2-2014 test set, and 85% on the n2c2-2006.
Results on the ICDSR test set are not promising.
This might have happened because ICDSg

G was

generated using n2c2-2006. Fine-tuning on ICDSl
G

dataset results in 98% F1 score on the ICDSR test
set, 67% on n2c2-2014 test set, and 55% on the
n2c2-2006 test set. To further improve model gen-
eralization, we experimented with combinations
of datasets. Table 8 shows the training results on
a combination of real and synthetic datasets. We
get micro-F1 of 97% on n2c2-2014 and ICDSR

test set given that we have included n2c2-2014 and
ICDSl

G datasets in training, but the performance
of the model (88%) is also notable on n2c2-2006
dataset. These results indicate that fine-tuning on
the combination improves cross-institutional per-
formance.
Analysis: Our experiments indicate models have
poor cross-institutional generalization. We per-
formed several experiments with n2c2-2006, n2c2-
2014, ICDSg

G, and ICDSl
G datasets, and their com-

binations. The general trend is that fine-tuned
model performance degrades heavily in cross-
dataset settings. At the individual entity level, the
F1 score for the PATIENT entity is consistent for all
the fine-tuned models. For the DOCTOR and DATE
entities, the F1 scores of all the fine-tuned models
are also consistent, except for when the model is
trained on the n2c2-2006 dataset and tested on the
n2c2-2014 dataset and ICDSR test sets. For the
ID entity, all the fine-tuned models have consistent
F1 scores, except for when the model is trained
on ICDSg

G, and tested on n2c2-2014 and ICDSR

datasets. We noticed performance variance in the
LOCATION, AGE, and CONTACT entities. This could
be because the LOCATION can be any local address
without a specific format. AGE is either a number
like ‘78 Y’ or a word representation of that num-
ber like ‘Seventy-Eight year old’. In most cases
in the datasets, these types of words or tokens are
tagged as OTHERS, and they are highly prevalent.
This could be why the AGE tag was incorrectly pre-
dicted as OTHERS in cross-dataset settings. The
entity CONTACT includes email, IP address, phone
number, landline number, etc. However, their dis-
tribution is not uniform.
Our main aim was to develop a robust model that
could de-identify medical text from Indian Health-
care Institutes. This was done by fine-tuning PI-
RoBERTa on ICDSl

G where we are getting state-
of-the-art performance on ICDSR. Almost all the
entities were correctly identified, with a few excep-
tions. A few PHI entities were misidentified with
non-PHI entities (i.e., OTHERS ) and vice versa, as
can be seen in App. Fig. 26. However, the per-
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centage of incorrect prediction is significantly less
when considering the total support set of ICDSR

test set. However, this fine-tuned model was not
generalizable when we tested it on the n2c2-2006
and n2c2-2014 test sets, as seen in the Table 7. For
model generalizability, we fine-tuned PI-RoBERTa
on n2c2-2014 , ICDSg

G and ICDSl
G, tested on the

n2c2-2006 test set. The results shown in Table 8
indicate that models are generalizing when we fine-
tuned them on different combinations of datasets,
although the F1 score for all entities is not consis-
tent, as can be seen in App. Fig. 28a. Confusion
matrix for all the experiments are shown in App.
Fig. 22 Fig. 23 , Fig. 24 , Fig. 25 , Fig. 26 Fig. 27
, Fig. 28b.
Comparison with Commercial De-Identification
Systems: The results obtained using AWS and
GCP solutions are summarized in Table 9 and Ta-
ble 10. The results clearly indicate that AWS and
GCP do not perform well on ICDSR test set. This
could be because systems have been trained on
non-Indian specific clinical data. This underscores
the importance of ensuring that de-identification
caters to diverse demographics, which is essential
for ensuring the efficacy and ethical deployment of
these solutions.
The underperformance of commercial solutions
in classifying PHI in ICDSR can be attributed to
misidentification. Medical entities are mistaken
as NAME/ LOCATION, while Pin-codes as ID. Names
like ‘Alia’ and ‘Adah’ are not being consistently
recognized as NAME by AWS and GCP. Patient
IDs that start with CRNO: ########### or ADM-
########## are not identified as PHI; these solu-
tions probably aren’t sure what CRNO, ADM stand
for. ‘B/O Kanav Viswanathan’ is misidentified,
where ‘Kanav Viswanathan’ is a name and B/O
stands for Baby of but gets labeled as a LOCATION.
‘Urvi Bhamini Faiyaz Kakar’ is identified as Name
by GCP but not by AWS. ‘Wockhardt Hospitals,’
hospital name was not identified as PHI. Med-
ical terms like ‘BILIRUBIN,’ ‘MALLOY EVE-
LYN,’ ‘CR X Ray’ and ‘SERUM LIPASE’ are
misidentified as NAME when they describe medi-
cal tests. Similarly, ‘CREATININE (M - JAFFE
COMPENSATED)’ is a medical test and ‘JAFFE’
is misidentified as NAME. ‘Meropenem,’ an antibi-
otic, is misidentified as NAME. Even terms like
‘Ward’ from room names such as ‘Ward-B’ occa-
sionally get misidentified as NAME. Test results like
‘136/94mmHg’ or ‘TSH - 5.45’ are misidentified
as ID. Locations like ‘Subramaniam Chowk’ and

‘Yohannan Nagar,’ are also misidentified as NAME.
Additionally, using GCP or AWS for PHI detection
introduces variability, causing results to vary with
each execution. These factors underscore the need
for precision and consistency in data handling to
mitigate performance issues in medical contexts.
De-identification using LLMs: We also con-
ducted experiments of de-identifying clinical sum-
maries using LLMs directly. A precision score of
0.55 was obtained. However, the model faced chal-
lenges in terms of recall. The recall scores were
merely 0.11. We also evaluated the performance of
Mistral-7B-Instruct-346v0.1 and Gemma. Surpris-
ingly, the results obtained from these models were
far inferior to those of Meta-Llama-3-8B-Instruct.
Results suggest that the LLMs struggle to detect
PHI in Indian medical discharge summaries.

8 Conclusion and Future Directions

In this paper, we explored the task of de-
identification on Indian clinical discharge sum-
maries. Experiments indicate a poor generaliza-
tion of fine-tuned (on public datasets) models and
poor performance of the off-shelf commercial sys-
tems. Experiments with LLM generated summaries
look promising; the model fine-tuned on generated
summaries and public datasets shows good gener-
alization performance. Our results are based on a
small test set. Using the insights from our work,
we aim to set-up an active learning workflow that
combines our fine-tuned model and human anno-
tators to produce a larger test dataset on which we
may evaluate overall model performance as well as
by conditioning on a medical specialty. The aug-
mented (generated summaries with original data)
institution-specific dataset can be used to fine-tune
NER models that have been pre-trained on PHI
data cost-effectively. Achieving cross-institution
portability remains a topic of active research. How-
ever, many open-source large language models can
be deployed on-premise and, as described above,
fine-tuned to provide an immediate and effective
solution to personal data protection in Indian health-
care institutions.
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A Prompts and Synthetic Discharge
Summaries

In Table 12, we showcase the prompts which we
used to generate the ICDSg

G and ICDSl
G datasets.

We used Prompt A in Table 12 for generating
ICDSg

G from Gemini-pro-1.0. Table 13 gives a
sample discharge summary. Using prompt B in Ta-
ble 12, we generated ICDSl

G dataset using Llama-
3-8B-Instruct. Table 14 gives a sample discharge
summary.

B Tag Mapping across all the dataset and
tag Distribution after Mapping the
Tags

We have five datasets: n2c2-2006, n2c2-2014,
ICDSR, ICDSg

G, and ICDSl
G. Each dataset has its

own tag set. n2c2-2006 contains 9 tags, n2c2-2014
contains 24, ICDSR contains 26, ICDSg

G contains
34, and ICDSl

G contains 106 unique tags, includ-
ing the OTHERS tag. In the datasets n2c2-2006,
n2c2-2014, and ICDSR, all the tags are related to
PHI entities. However, in the ICDSl

G and ICDSg
G

datasets, a few annotated tags are not related to the
PHI entities due to LLM hallucinations. To train
models for a fair comparison, we need a uniform
tag set across all datasets.

Hence, we mapped the tag set of all the datasets
to the n2c2-2006 tag set. In all the datasets, we
mapped entities like street, city, country, zip, etc
to LOCATION. Similarly, we mapped phone number,
mobile number, email, landline, etc, to CONTACT.
Additionally, we mapped all the PHI-related enti-
ties to their super-set using mapping shown in Table
15. In the ICDSl

G and ICDSg
G datasets, we have

several tags unrelated to the PHI entities. Hence,
we mapped all non-PHI entities to the OTHERS tag.
After mapping the tag set of all the datasets to n2c2-
2006 tag set, we calculated the tag distribution of
all PHI entities across all datasets. The distribution
of tag sets of all the dataset when mapped with
n2c2-2006 dataset are shown in Fig. 5, Fig. 6, Fig.
7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, and Fig. 12.

C Corpus Statistics

The n-gram frequencies from the n2c2-2006 dataset
show a strong emphasis on clinical and procedu-
ral language, including terms like ‘mg,’ ‘po,’ and
‘hospital,’ as shown in Fig. 14. Notably, phrases
such as ‘discharge summary’ and ‘physical exami-
nation’ dominate, highlighting standard documen-
tation practices. Trigrams such as ‘dis report status’

and ‘report status unsigned’ indicate typical phras-
ing in medical reports. This is in contrast with the
ICDSR dataset in Fig. 18, where there is a pre-
dominance of time-related unigrams (‘pm,’ ‘days’)
and clinical terms (‘mgdl,’ ‘method’). The frequent
bigrams and trigrams revolve around treatment and
diagnosis descriptors, such as ‘daily 10 days’ and ‘x
ray chest,’ illustrating the detailed recording of pa-
tient care routines and diagnostic procedures com-
monly found in medical records. In the n2c2-2006
dataset, bigrams like ‘mg po’ and ‘discharge date,’
and trigrams like ‘mg po bid’ and ‘history present
illness,’ which reveal specific medication dosages
and detailed descriptions of patient conditions, are
found next to PHI elements, as shown in Fig. 16. In
the ICDSR dataset, specific trigrams like ‘discharge
summary crno’ and ‘normal discharge correspond’
are located near PHI elements (Fig. 20). The differ-
ences between the n2c2 2006 dataset and ICDSR

highlight how clinical documentation practices and
language differ between the US and India.

In the synthetic ICDSg
G dataset, the frequent oc-

currence of ‘phi’ in various n-grams highlights (in
Fig. 15) the inclusion of potentially identifiable
information. Trigrams such as ‘phi typehospital-
fihphi’ and ‘phi typeid7673299w3phi’ illustrate
the use of placeholders for personal identifiers, in-
dicative of the synthetic nature of the dataset and
its focus on mimicking real-world PHI data while
maintaining privacy. In the ICDSl

G dataset, the
frequent mention of basic terms like ‘patient,’ ‘dis-
charge,’ and ‘history’ reflects their regular usage
in clinical documents, as seen in Fig. 19. Phrases
such as ‘discharge summary’ and ‘medical history’
indicate standardized document formats. For n-
grams next to PHI elements in the synthetic ICDSg

G

dataset as seen in Fig. 17, we observe a mix of
clinical terminology (‘discharge,’ ‘patient,’ ‘his-
tory’) and documentation descriptors (‘text record,’
‘reportend text’). Bigrams and trigrams like ‘dis-
charge summary patient’ and ‘text record record’
suggest a replication of typical medical documen-
tation formats. Terms like ‘primary care physician’
and ‘history present illness’ reflect the comprehen-
sive nature of clinical narratives. In contrast, the
n-grams next to PHI elements in the ICDSl

G dataset,
as shown in Fig. 21, highlight the frequent use of
both temporal (‘pm’, ‘days’) and medical (‘mgdl,’
‘discharge’) terms. Common bigrams and trigrams
such as ‘discharge summary,’ ‘cr x ray,’ and ‘x
ray chest’ underscore the clinical focus on diag-
nostic imaging and summary documentation. The
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Apollo B-Hospital Hospital I-Hospital Sector B-Location 11, Main Road, Faridabad - 121001,India I-Location

Discharge Summary CRNO: 9876543210 B-ID Name: Rahul B-Patient Kumar I-Patient 35 B-Age / Y I-Age M Department: Ward C B-Hospital

Unit: UNIT-3 Ward/Bed: 1423 ICU I-Hospital Admission No: ADM- 5678901234 B-ID Admitted on: 15-08-2023 B-Date 09:30

Discharged on: 20-08-2023 B-Date 14:00 Patient Type: Normal Consultant: Dr. Smitha B-Doctor John I-Doctor Discharge Type: Normal

Discharge Correspond. Address:, Distt. State Haryana B-Location Pin No. Phone No +91- 9999999999 B-Contact Admission

Details: Patient was admitted to the hospital on 15-08-2023 B-Date at 09:30 with a chief complaint of chest pain. He was

diagnosed with acute myocardial infarction and was treated with thrombolysis and angioplasty.

Figure 4: Pre-processed Discharge Summary after adding B and I tags
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Figure 5: Tag Distribution in n2c2-2006 train dataset
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Figure 6: Tag Distribution in n2c2-2006 test dataset

trigrams involving ‘daily 10 days’ and ‘x ray chest
bed’ reflect specific medical interventions and pa-
tient care protocols typically documented in patient
records.

D Model Training Details

We fine-tuned dslim/bert-base-NER (Dslim
bert base NER), ghadeermobasher/BCHEM4-
Modified-BioBERT-v1 (BioBERT), and Clinical-
AI-Apollo/Medical-NER (Clinical AI Apollo).
We obtained a consistent train-set F1 Score for
PHI entities from these models after fine-tuning,
but the performance of these models decreased
significantly when we tested them on cross-dataset
settings. However, after fine-tuning, PI-RoBERTa
outperformed these models in the same and
cross-dataset settings, so we chose PI-RoBERTa
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Figure 7: Tag Distribution in n2c2-2014 train dataset
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Figure 8: Tag Distribution in n2c2-2014 test dataset

for further experiments. Fig. 13 shows the model
architecture.

PI-RoBERTa was fine-tuned on each training set as
given in Table 3 and tested on each corresponding
test set. We fixed the hyperparameters for all the
experiments. The model was fine-tuned at four
epochs in all the experiments with a batch size of
8; the learning rate was 5e-5. We used Weighted
Cross entropy loss to handle the data imbalance
problem because around 90 percent of the tokens
correspond to non-PHI entities in all datasets. After
several experiments, we devised a formula to assign
weights to different Entities. wt = log

(
4× n

nt

)
,

where wt is the weight assigned to the tthentity; nt

is the number of tokens in the tth entity; n is the
total number of tokens in the dataset
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Figure 9: Tag distribution in ICDSR train dataset
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Figure 10: Tag distribution in ICDSR test dataset

E Evaluation Metrics

Model was evaluated using various performance
metrics as described below.

• Macro Precision:

Precisionmacro =
1

n

n∑

i=1

TPi

TPi + FPi

• Macro Recall

Recallmacro =
1

n

n∑

i=1

TPi

TPi + FNi

• Macro F1-score

F1-scoremacro =
2× Precisionmacro × Recallmacro

Precisionmacro + Recallmacro

• Micro Precision:

Precisionmicro =

∑n
i=1 TPi∑n

i=1(TPi + FPi)

• Micro Recall

Recallmicro =

∑n
i=1 TPi∑n

i=1(TPi + FNi)
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Figure 11: Tag distribution in ICDSg
G dataset
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Figure 12: Tag distribution in ICDSl
G dataset

• Micro F1-score

F1-scoremicro =
2× Precisionmicro × Recallmicro

Precisionmicro + Recallmicro

Tokenizer

Transformer Layer

Transformer Layer

Embedding Layer

Classification Layer

Name : Rahul Singh, Admitted on : 20-09-2023

24x Layers

name : ra ##hul singh , admitted on : 20 - 09 - 202 ##3

O O B-Patient B-Patient I-Patient O O O O B-Date B-Date B-Date B-Date B-Date B-Date

Figure 13: Architecture of PI-RoBERTa
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Figure 15: ICDSg
G Top 10 N-grams
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Figure 18: ICDSR Top 10 N-grams
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Figure 22: Confusion matrix on ICDSR test set when
PI-RoBERTa finetuned on n2c2-2006
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Figure 23: Confusion matrix on ICDSR test set when
PI-RoBERTa finetuned on n2c2-2014
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Figure 24: Confusion matrix on ICDSR test set when
PI-RoBERTa finetuned on Combining n2c2-2006 and
n2c2-2014
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Figure 25: Confusion matrix on ICDSR test set when
PI-RoBERTa finetuned on ICDSg
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Figure 26: Confusion matrix on ICDSR test set when
PI-RoBERTa finetuned on ICDSl
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Prompt Id Prompt
A Generate discharge summaries for Indian patients, capturing the essence of healthcare in India. The summaries

should integrate conventional medical treatments with traditional remedies, reflecting the holistic approach embraced
by Indian healthcare systems. Incorporate prevalent Indian health conditions, treatments, and culturally relevant
follow-up care instructions. To ensure authenticity, each summary should include distinct patient details like name, age,
address, contact information, hospital, doctor, and ID. Include prevalent diseases in India such as Tuberculosis (TB),
Diabetes, Cardiovascular Diseases, Respiratory Infections, Hypertension, Dengue Fever, Malaria, Hepatitis, Chronic
Kidney Disease (CKD), Cancer, Typhoid Fever, Cholera, HIV/AIDS, Japanese Encephalitis, Leptospirosis, Rabies,
Tuberculosis of the Central Nervous System (CNS TB), Rheumatic Heart Disease, Iron-Deficiency Anemia, and
Chikungunya. Also, laboratory test reports of the chosen disease should be included. Ensure the format of generated
discharge summaries is similar to the summary given in the prompt, i.e., in XML format.
Example: Patient Summary: <discharge summary>
Generate the summaries that have a minimum of 2048 words. Ensure there is consistent consistency between the
doctor’s name, patient name, drug-disease, etc.

B Generate an extensive discharge summary of at least 2048 words tailored for Indian patients. To ensure authenticity,
the generated summary must include distinct patient-specific details like name, age, address, contact information,
hospital name, doctor name, and unique ID. Maintain coherence across all the elements, doctor’s name, patient’s
identity, medications, diseases, etc. Ensure all the PHI (personal health information) elements are properly annotated to
maintain privacy and authenticity.
The generated discharge summary should be XML-formatted with PHI annotations. The generated summaries should
include following sections: Admission Details, Diagnosis / Chief Complaints, Allergies, Physical Examination, Medical
History, Family Medical history, Treatment Plan, Investigations, Medications (List of medications prescribed at
discharge), Follow-up Instructions, Procedures/Lab Tests Conducted (List of procedures or tests conducted during
hospital stay, along with results if available), and Special Instructions.
Please ensure that these sections are incorporated into the generated summaries, but refrain from including them as tags
in the output. The generated summary should be properly enclosed within the <RECORD> and </RECORD> tags to
ensure it’s within the XML format.
Here’s an example patient summary:
Patient Summary: <discharge summary>

C Generate an extensive synthetic discharge summary of at least 2048 words tailored for Indian patients. Generated
summary must include distinct entities like name, age, address, contact information, hospital name, doctor name, and
unique ID. Maintain coherence across all the elements, doctor’s name, patient’s identity, medications, diseases, etc.
Identify all entities in the generated text and mark these with XML tags as in the following example:<TYPE=’Insurance
Number’>AB123456C</TYPE>
entities= [‘Patient Name’,‘Hospital_Name’,‘Staff_Name’,‘Doctor_Name’,‘Age’,‘Gaurdian_Name’,‘Gender’,
‘Patient_ID’,‘Misc_Medical_ID’,‘Aadhar’,‘Driver_License’,‘Voter_ID’,‘PAN_Card’,‘Patient_DOB’,
‘Treatment_Date’,‘Treatment_Time’,‘Phone_No’,‘Landline’,‘Email’,‘IP_Address’,‘Fax’,‘Doctor_Specialisation’,
‘Patient_Profession’,‘City’,‘Ward_Location’,‘Device_Number’,‘Other_Info’,‘State’,‘Street’,‘Zip’,‘Country’,
‘Other_Location’,‘Other_Govt_ID’,‘Insurance_Number’,‘Web_url’]
The generated summaries should include following sections: Admission Details, Diagnosis / Chief Complaints,
Allergies, Physical Examination, Medical History, Family Medical history, Treatment Plan, Investigations, Medications
(List of medications prescribed at discharge), Follow-up Instructions, Procedures/Lab Tests Conducted (List of
procedures or tests conducted during hospital stay, along with results if available), and Special Instructions. Please
ensure that these sections are incorporated into the generated summaries, but refrain from including them as tags in the
output.
The generated summary should be properly enclosed within the <RECORD> and </RECORD> tags to ensure it’s
within XML format.
Here’s an example synthetic patient summary:
<discharge summary>.

Table 12: Prompts used for synthetic discharge summary generation
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Model Name Generated Discharge Summary
Gemini-pro-1.0 829369 HODYEGE DISTRICT HOSPITAL 9151843 830690 408542 12/12/10/2023 23:59:00 PM

Discharge Summary Discharge Report Status : Signed DISCHARGE SUMMARY NAME : NIVEDITHA
CHETTY UNIT NUMBER : 393-29-55 ADMISSION DATE : 12/10/10/2023 DISCHARGE DATE
: 12/12/10/2023 PRINCIPAL DIAGNOSIS : Prolapsed intervertebral disc with radiculopathy of L4-
L5, L5-S1, L2-L3, with weakness of right lower limb. ASSOCIATED DIAGNOSIS : CVA (LEFT
SIDED HEMIPARESIS) ADVERSE DRUG REACTIONS : None . CLINICAL INFECTIONS : None .
PRINCIPAL PROCEDURE : Spinal surgery ASSOCIATED PROCEDURES : Physiotherapy . HISTORY
OF PRESENT ILLNESS : Mrs. NIVEDITHA CHETTY is a 58 years old female who presented to the
emergency department with complaints of low back pain for 1 year and weakness of right lower limb for
1 month . Weakness was insidious in onset and gradually increased to the present level . There was no
numbness of lower limbs . No urinary or bowel involvement . No fever , cough , gastrointestinal symptoms
or cardio-respiratory symptoms . PAST MEDICAL HISTORY : CVA (LEFT SIDED HEMIPARESIS)
. SOCIAL HISTORY : Non smoker and non alcoholic . PHYSICAL EXAMINATION : VITALS :
Temperature : 98.6\302\260 F, BP : 120/80 mmHg , SPO2 : 95% , Respiratory rate : 20/min , Pulse
rate : 80/min CNS : GCS 15/15 , Cranial nerves - Normal . Power - Right lower extremity grade - 4/5 .
Sensation - Intact . Motor system examination - Tone - Increased on the right side . Deep tendon reflexes
- Brisk on the right side . Plantar - Extensor on the right side . CVS : No pallor , icterus , clubbing ,
pedal edema , cyanosis , SPO2 - 99% . JVP not raised . Carotid pulsations are well felt and equal on
both the sides . No bruits audible . Heart sounds - Regular . No murmurs , gallops , rubs or extra sounds
. Respiratory system : Chest expansion - Symmetrical . Air entry reduced bilaterally but more on the
right side . No added sounds . Breath sounds decreased in right infrascapular area . Abdomen : Soft ,
non-tender , no mass or organomegaly . LABORATORY DATA : Hb - 12.0 gm/dl , TLC - 8,000/cmm
, Platelets - 2.5 lacs/cmm , ESR - 20 mm/hr . Blood sugar - 100 mg/dl , Urea - 30 mg/dl , Creatinine -
1.0 mg/dl , Uric acid - 5.0 mg/dl . Liver function tests - Normal . Lipid profile - Normal . Electrolytes -
Normal . X-RAY : LUMBAR SPINE AP LATERAL VIEW : There is narrowing of the L4-L5, L5-S1,
L2-L3 intervertebral spaces with sclerosis of the adjacent end plates . Loss of lumbar lordosis with mild
dextroscoliosis . CT SCAN : LUMBAR SPINE : There is a prolapsed intervertebral disc at L4-L5, L5-S1,
L2-L3 with foraminal stenosis on the right side at L4-L5 . Thecal sac is compressed at L4-L5, L5-S1 due
to central disc prolapse . MRI SCAN : LUMBAR SPINE : There is a prolapsed intervertebral disc at
L4-L5, L5-S1, L2-L3 with foraminal stenosis on the right side at L4-L5 . Thecal sac is compressed at
L4-L5, L5-S1 due to central disc prolapse . There is evidence of denervation of the right sciatic nerve and
cauda equina . HOSPITAL COURSE : The patient was admitted for surgical intervention . After proper
pre-operative evaluation the patient was taken up for surgery . During surgery , a decompression of the
thecal sac and foramina was done . Postoperatively , the patient was started on physiotherapy . The patient
was able to walk with the support of walker . MEDICATIONS ON DISCHARGE : Tramadol - 50 mg -
BD SOS - 7 days Aceclofenac - 100 mg - BD - 7 days Multivitamin and minerals - OD FOLLOW UP :
The patient will be reviewed in the clinic in 2 weeks . DR.GYANESHWARI JANGID MBBS, MD, MS
(Orthopedics) HODYEGE DISTRICT HOSPITAL Electronically Signed DR.GYANESHWARI JANGID
[ report_end ]

Table 13: Example summary generated using gemini-pro-1.0
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Model Name Generated Discharge Summary
Meta-Llama-3-8B-Instruct Max Super Specialty Hospital Sector 11, Dwarka, New Delhi - 110075,India Discharge Summary

CRNO: 1234567890 Name: Rahul Kumar 35/Y/M Department: Ward E Unit: UNIT-3 Ward/Bed:
5432 ICU Admission No: ADM-9012345678 Admitted on: 25-08-2023 14:30 Discharged on:
28-08-2023 10:00 Patient Type: Normal Consultant: Dr. Rohan Sharma Discharge Type: Normal
Discharge Correspond. Address:, Distt. State Uttar Pradesh Pin No. Phone No +91-9812345678
FOLLOW UP: Appointment on 15/10/2023 Morning Block-Upto 09:00 A.M.INVESTIGATION
RESULTS: 25/08/2023 09:30 AM Blood Urea 40 mg/dL 25/08/2023 09:30 AM Serum Creatinine
1.2 mg/dL 25/08/2023 09:30 AM Hb 12.5 g/dL
Admission Details: Patient was admitted to the hospital with a diagnosis of Acute Kidney Injury
(AKI) due to dehydration. He was a known hypertensive and diabetic patient. He presented with
symptoms of fatigue, weakness, and decreased urine output.
Diagnosis/Chief Complaints: Primary Diagnosis: Acute Kidney Injury (AKI) Secondary Diagnosis:
Hypertension, Diabetes Mellitus
Allergies: None reported
Physical Examination: The patient was conscious and oriented. He had a pulse rate of 100 beats
per minute, blood pressure of 160/100 mmHg, and respiratory rate of 20 breaths per minute. He
had bilateral pedal edema and decreased urine output.
Medical History: The patient had a history of hypertension and diabetes mellitus. He was taking
medications for these conditions, including metformin and lisinopril.
Family Medical History: The patient’s father had a history of hypertension and heart disease.
Treatment Plan: The patient was treated with intravenous fluids and medications to manage his
symptoms. He was also started on dialysis to manage his acute kidney injury.
Investigations: The patient underwent the following investigations: Blood Urea 40 mg/dL Serum
Creatinine 1.2 mg/dL Hb 12.5 g/dL
Medications: The patient was prescribed the following medications at discharge: Metformin 500
mg twice daily Lisinopril 10 mg daily Furosemide 20 mg daily Hydrochlorothiazide 25 mg daily
Aspirin 75 mg daily
Follow-up Instructions: The patient was advised to follow up with his primary care physician in
two weeks for a check-up and to monitor his blood sugar and blood pressure levels.
Procedures/Lab Tests Conducted: The patient underwent the following procedures and lab tests
during his hospital stay: Blood tests: Blood Urea 40 mg/dL, Serum Creatinine 1.2 mg/dL, Hb 12.5
g/dL Urine tests: Urine output decreased, proteinuria Dialysis: Three sessions of dialysis were
performed
Special Instructions: The patient was advised to follow a strict fluid intake and to monitor his urine
output closely. He was also advised to take his medications as prescribed and to follow up with his
primary care physician regularly.
Prepared by (Dr. Rakesh Kumar ) Signature of Consultant Printed on 29-08-2023 14:30:15 Temp
Employee Male @ 192.168.1.100 Page 2 / 2

Table 14: Example summary generated using llama-3-8B-Instruct

Original tags Mapped Tags

Treatment_Date, Patient_DOB, Investigation_Date, Admission Date,
Procedure_Date, Date DATE

Ward_Location, Hospital_Name, Department HOSPITAL
Patient_ID, Misc_Medical_ID, Employee_ID, Admission Number ID
Age AGE
Doctor_Name, Staff_Name, Prepared by, Signature, Doctor_Signature,
Signature of Consultant DOCTOR

Patient_Name, Gaurdian_Name, Patient_Signature, Patient_Spouse,
Family_Member_Name PATIENT

Zip, Phone_No, Landline, IP_Address, Phone, Contact_Info,
Contact_Number, Contact_No, Mobile, Phone Number, Patient_Phone,
Email, Email_ID, Contact Information, Phone No

CONTACT

City, State, Country, Street, Other_Location, Correspondence_Address,
Contact_Address, Contact Information, Pin, Pin Code, Pin_No,
Postal_Code, Address, Contact_Address

LOCATION

Table 15: Tag mapping from PHI entities in the different datasets to the PHI entity set of n2c2-2006 dataset, and
all other non-PHI entities are mapped with Others tag
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Abstract

Domain adaptation is a widely used method in
natural language processing (NLP) to improve
the performance of a language model within
a specific domain. This method is particularly
common in the biomedical domain, which sees
regular publication of numerous scientific arti-
cles. PubMed, a significant corpus of text, is
frequently used in the biomedical domain. The
primary objective of this study is to explore
whether refining a pre-training dataset using
specific quality metrics for scientific papers can
enhance the performance of the resulting model.
To accomplish this, we employ two straightfor-
ward journal impact metrics and conduct ex-
periments by continually pre-training BERT on
various subsets of the complete PubMed train-
ing set, we then evaluate the resulting models
on biomedical language understanding tasks
from the BLURB benchmark. Our results show
that pruning using journal impact metrics is not
efficient. But we also show that pre-training us-
ing fewer abstracts (but with the same number
of training steps) does not necessarily decrease
the resulting model’s performance.

1 Introduction

Advances in deep learning for natural language pro-
cessing (NLP) in recent years have enabled transfer
learning to develop (Ruder et al., 2019), particu-
larly since the creation of Transformers (Vaswani
et al., 2017).

One type of transfer learning aims to start with
a pre-training phase where the model learns the
general language structure and then a second phase
where the model can be fine-tuned for a specific
task. In the context of deep learning for NLP, this
method avoids re-training a model from scratch for
each new task, starting with a model that already
has general language knowledge. These pre-trained
models generally use a large corpus of text.

A specialized domain, such as finance or the
biomedical domain, may contain numerous tasks.

In the case of language, a specialized domain has
a specific vocabulary containing terms more rarely
found in general texts. We can observe this phe-
nomenon when looking at tokens produced by a
biomedical tokenizer against a general tokenizer
(Boukkouri et al., 2022). Moreover, tasks may
require domain-specific knowledge not found in
general sources. So, to improve the performance of
a model previously trained on a general domain to
a specific domain, it is interesting to use a corpus
specific to the domain to which we wish to adapt
our model.

Most of the data used for pre-training in the
biomedical field are research articles and papers
that can be either abstracts, full texts, or a com-
bination of both. This data generally originates
from large public databases such as PubMed or
PubMedCentral (for full-text articles). However, to
our knowledge, no study has examined the select-
ing subsets of these large databases for pre-training
using metrics specific to scientific papers. That
leads us to our research question: Can a language
model be adapted to the biomedical domain by
efficiently selecting scientific documents in the pre-
training data while maintaining or improving its
performance?

This paper presents our experiments on adapting
the pretrained BERT-base model to the biomedical
domain. We get the PubMed January 2024 baseline
corpus and define different subset configurations us-
ing journal impact metrics: h-index (Hirsch, 2005)
and Scimago Journal Rank or SJR (Guerrero-Bote
and Moya-Anegón, 2012). We then perform contin-
ual pre-training from the BERT-base model (Devlin
et al., 2019) and evaluate it on several tasks from
the BLURB benchmark (Gu et al., 2022).
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2 Related work

2.1 Domain-adaptive and domain-specific
pre-training for the biomedical domain

The adaptation of neural models to the biomedi-
cal domain has been extensively studied in recent
years, focusing on BERT-type models and, more
recently, large generative language models. We
distinguish two main categories regarding the pre-
training data:

• Mixed-domain pre-training, where the model
has seen data from different domains during
the pre-training: it can either be a model that
has been pre-trained on a general corpus and
then trained on in-domain data or a model
trained simultaneously on data from multiple
domains, such as biomedical and clinical for
example (Lee et al., 2019; Beltagy et al., 2019;
Peng et al., 2019).

• Domain-specific pre-training, where the
model only sees data from a single domain
during pre-training. The hypotheses are that
by using a domain-specific vocabulary, the
models learn more accurate representations
of specific in-domain terms (that would be
divided by the sub-word tokenization with a
general corpus) and that it reduces noise in-
troduced by text completely unrelated to the
domain (Beltagy et al., 2019; Boukkouri et al.,
2022; Lewis et al., 2020; Gu et al., 2022).

2.2 Pre-training data quality for large
language models

Several works focus on selecting sequences using
quality metrics for pre-training Transformer mod-
els in the general domain, particularly with the
advent of large language models and the evolution
of the size of pre-training datasets for these mod-
els (Zhou et al., 2023; Attendu and Corbeil, 2023;
Marion et al., 2023; Das and Khetan, 2023).

The adaptation of large language models using
scientific articles has been largely studied. How-
ever, only a few have emphasized the quality of
scientific articles used. For the Galactica model
(Taylor et al., 2022), they only mention applying
"several quality filters, including excluding papers
from journals with certain keywords and also ex-
cluding papers with a low journal impact factor".
Most other models that used PubMed or PubMed-
Central for pre-training do not mention any specific
selection of data at the document level; most focus

on preprocessing steps at the content level (bib-
liography references, authors, figures and tables,
etc.) when dealing with full-text articles (Luo et al.,
2022; Wu et al., 2023; Luo et al., 2023; Chen et al.,
2023).

3 Methods

We use the same methodology as Marion et al.
(2023), with some small modifications :

Let D be a large dataset containing documents
and ξ a metric assigning a score to a document. We
build a subset Pcξ by adding instances that fit our
selection criteria c :

Pcξ = {di ∈ D|c0ξ ≤ ξ(di)) ≤ c1ξ} (1)

Where c0ξ and c1ξ are the lower and upper bound
for the criteria c and the metric ξ. For each metric,
we consider two selection criteria: keeping top or
middle percentiles1 of D as the data to be kept.
This serves as verifying if the model learns better
with high quality documents (defined by the metric,
for our metrics, higher is better). We keep either
25% or 50% of the documents in D. So for in-
stance, if we take the 25 % middle for the metric
ξ, we should compute the 37.5 % and 62.5 % per-
centiles with respect to metric ξ, which corresponds
to c0ξ and c1ξ, and keep the documents between
these two percentiles.

Then, we tokenize each document in the subset,
and we concatenate them into sequences of length
equal to the model’s context length. This differs
from Marion et al. (2023) as we do the filtering
before tokenization (because our metrics are ap-
plied on a document, not on a sequence of tokens).
These sequences are then used to pre-train a model.
The goal is then to pre-train a model on a subset of
the whole training set while retaining or improving
the model’s performance.

3.1 Pre-training corpus

We use the PubMed Baseline corpus comprising all
article abstracts deposited on the PubMed database
until January 2024. Using PubMed metadata, we
filter out abstracts that are not in English, abstracts
whose text is not available, and abstracts whose
ISSN journal identifier is not present (we filter this
to have enough abstracts with a score as our prun-
ing metrics are based on journal impact). After

1we do not use the bottom percentiles because in our case,
for the SJR metric, more than 25% of the dataset had the same
value : 0
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filtering, the total corpus is comprised of 15.9B
tokens.

We did not perform a pre-training experiment
using the non-filtered PubMed set because we did
not have enough articles with journal identifiers
to obtain convenient metric percentiles. Still, we
expect this filtering to already impact the overall
quality of the corpus.

3.2 Quality metrics

The nature of the datasets used for general model
training (by which we mean models that are not
domain-specific) differs from those used in the
biomedical field. They are generally huge datasets
comprising texts extracted from the Internet on var-
ious sites. In our case, these are research articles
from the same database. This presupposes a text
quality that is adequate in certain respects (gen-
erally correct syntax and formal language, unlike
texts found on the Internet).

We wanted to use metrics specific to scientific
articles that have meaning for scientific article read-
ers. So, we decided to use journal impact met-
rics. We used the metadata available on PubMed.
This type of metric can provide insight into the
probable impact that a paper can have but does
not necessarily ensure scientific quality. However,
we believe filtering with impact metrics in a large
corpus can help reduce the noise, help the model
learn biomedical language, and learn biomedical
knowledge more efficiently. We use the h-index
(Hirsch, 2005) and the SJR (Guerrero-Bote and
Moya-Anegón, 2012) as the data is publicly avail-
able on the Scimago website2. For comparison, we
also perform a random score assignation on all pa-
pers from the dataset; we do not perform multiple
random assignations to limit the compute cost.

We computed the percentiles for SJR and h-
index and, as there were zero values for the SJR
index (for the 12.5% and 25% percentiles), we did
not perform all the pre-trainings for the mid cri-
teria, we only considered the 25 % subset. This
is also why we did not consider the bottom per-
centiles. We also did not perform the pre-training
on the complete set because of time and resource
constraints, but we plan to do it in future work.

3.3 Pre-processing

We define
We tokenize the whole dataset and concatenate
2https://www.scimagojr.com/journalrank.php

the text of the different abstracts into sequences of
length 512 tokens (maximum sequence length for
the model we use: BERT (Devlin et al., 2019)). .
We keep 5 % of this set as validation data.

3.4 Model and pre-training

We use the original BERT-base model (Devlin et al.,
2019), continue pre-training on the defined datasets
with masked language modeling, and compare the
resulting models. For each pre-training (on each
subset), we fix a shared global number of steps so
that each model sees the same quantity of tokens:
we select the number of steps as the total number
needed for one epoch on the entire PubMed corpus.
For the runs with the subsets, the model will run
multiple epochs until it reaches the total number
of steps, with data shuffling between epochs (for
example, two epochs for the run where we take
the top 50% of PubMed abstracts with respect to
h-index).

We train with a sequence length of 512 and a
batch size of 81923, which gives us a total of 3598
steps. We use a linear schedule with 10 % warmup
and a peak learning rate of 1e − 4. For the other
hyperparameters, we follow the original BERT pa-
per. We train our different models on 2 NVIDIA
A100 GPUs.

3.5 Evaluation and fine-tuning

We evaluate the produced pre-trained models on
some of the datasets from the BLURB benchmark
(Gu et al., 2022). We also re-evaluate the BERT-
based model to ensure a consistent evaluation with
our fine-tuning scripts. We excluded the PICO and
Sentence Similarity tasks (EBM-PICO (Nye et al.,
2018) and BIOSSES (Soğancıoğlu et al., 2017)),
for which we had trouble reproducing similar and
consistent results across runs to those obtained in
the BLURB paper, as they did not share any code
to perform the fine-tuning and evaluation. So, we
are left with the following evaluation tasks :

• Named entity recognition (NER) : BC5-chem
& BC5-disease (Li et al., 2016), BC2GM
(Smith et al., 2008), JNLPBA (Collier and
Kim, 2004) and NCBI-disease (Doğan et al.,
2014). We evaluate the models for NER tasks
using the entity-level F1 score. We model the
entities using BIO tags.

3We perform gradient accumulation and data parallelism
to get this batch size.
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base random
h-index sjr

mid top mid top

0% 25% 50% 25% 50% 25% 50% 25% 25% 50%

BC5-chem 87.31 90.03 90.24 89.40 89.93 89.51 89.52 89.72 89.61 89.89
BC5-disease 77.09 81.09 80.72 81.05 80.73 80.38 80.68 81.00 80.76 80.60
BC2GM 75.32 79.17 79.01 79.51 79.51 79.52 79.41 78.74 79.01 79.87
JNLPBA 76.77 78.02 77.85 77.51 77.95 78.13 78.41 78.13 78.28 77.90
NCBI-disease 81.59 84.89 84.45 85.09 84.84 84.63 84.71 84.97 84.30 84.98
HoC 79.22 84.41 84.74 84.72 84.56 84.83 84.71 84.54 85.07 84.76
ChemProt 77.07 79.25 78.83 78.94 79.72 79.00 79.92 78.77 79.62 78.96
DDI 89.11 87.54 87.70 87.91 88.27 86.46 86.80 87.05 85.92 87.76
GAD 76.82 78.09 78.24 78.31 77.38 77.34 78.39 77.42 78.35 77.00
BioASQ 72.19 75.93 75.63 75.63 75.24 74.84 76.07 75.85 75.50 75.22
PubMed QA 55.24 55.20 55.20 55.16 55.12 54.78 55.16 55.20 55.22 55.20
Micro avg. 77.07 79.42 79.33 79.38 79.39 79.04 79.43 79.22 79.24 79.29
Macro avg. 75.89 78.56 78.55 78.59 78.53 78.25 78.64 78.41 78.53 78.46

Table 1: Comparison of the performance of our pretrained models on the different evaluation tasks from the BLURB
benchmark (Gu et al., 2022). ’base’ model is the BERTBASE model (Devlin et al., 2019) from which we continue the
pre-training. For the macro average, we average the datasets from the same task and then average the performance on
each task. For each task or average, the best performance is in bold and the second best performance is underlined.

• Relation extraction : ChemProt(M. et al.,
2017), DDI (Herrero-Zazo et al., 2013), GAD
(Bravo et al., 2015). We evaluate the mod-
els for relation extraction using the micro F1
score. We use entity dummyfication with start
and end tags and use the [CLS] token to clas-
sify relations.

• Document classification : HoC (Baker et al.,
2016), for which we measure the micro F1
score.

• Question answering : PubMedQA (Jin et al.,
2019) and BioASQ Task 7b (Nentidis et al.,
2020). We evaluate these tasks using accu-
racy.

4 Results and Discussion

To limit random effects, we perform the fine-tuning
multiple times with different random seeds, as de-
scribed in the BLURB paper: using five seeds for
all datasets except for BioASQ and PubMedQA, for
which we use ten seeds (because they are smaller
in size). We then report the average performance
across the different seeds for each dataset in the
table 1.

4.1 Improvement against non biomedical
model

All models trained on biomedical data perform bet-
ter than the base model trained only on general-
domain data. However, for a fair comparison, we
should train it for the same amount of steps on
non-biomedical data.

4.2 Are journal impact metrics important for
the model ?

We obtain the best results in micro and macro av-
erages for the model trained on the top 50% of the
entire set with respect to the h-index of the journal
in which abstracts have been published. Overall,
the h-index metric performs better than SJR, which
may be because the SJR percentile values are very
close to each other, so the quality differences are
less important.

However, the performance differences are low
when we compare to the SJR metric or even when
selecting abstracts randomly, regardless of the pro-
portion of abstracts we keep. So, journal impact
metrics do not seem important when selecting pre-
training data from a corpus of scientific articles.
We then should find more appropriate metrics to
define the quality of a single abstract or test it on
a full-text article corpus (so that the impact of a
single document is higher).
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4.3 Is it better to pre-train a model using
more abstracts ?

If we compare the performance difference when
training with 25% of the data against 50%, we
globally have better performances (except for the
random selection), but these differences are not sig-
nificant. So, it would be interesting to perform fur-
ther pre-training experiments using different subset
sizes to investigate which number of documents is
optimal for the domain adaptation.

5 Conclusion

This paper presents our early experiments on select-
ing the pre-training data for the biomedical domain.
We show that the journal impact metrics are not
better than the random selection at a fixed number
of training steps. We also observe that reducing
the number of abstracts in the training set does not
necessarily decrease the final model performance
and show the need to investigate how many docu-
ments we need to pre-train a model without losing
performance.

Further directions include finding better metrics
(or combinations of metrics) to assess the quality of
a document in the pre-training corpus, investigating
metrics at a different level (at the corpus level us-
ing various mixtures of biomedical domains), and
using a corpus of full-text articles.
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Abstract

Building genetic tools to engineer microorgan-
isms is at the core of understanding and re-
designing natural biological systems for useful
purposes. Every project to build such a genetic
toolbox for an organism starts with a survey
of available tools. Despite a decade-long in-
vestment and advancement in the field, it is
still challenging to mine information about a
genetic tool published in the literature and con-
nect that information to microbial genomics
and other microbial databases. This informa-
tion gap not only limits our ability to iden-
tify and adopt available tools to a new chas-
sis but also conceals available opportunities
to engineer a new microbial host. Recent ad-
vances in natural language processing (NLP),
particularly large language models (LLMs),
offer solutions by enabling efficient extrac-
tion of genetic terms and biological entities
from a vast array of publications. This work
present a method to automate this process,
using text-mining to refine models with data
from bioRxiv and other databases. We evalu-
ated various LLMs to investigate their ability
to recognize bacterial host organisms and ge-
netic toolboxes for engineering. We demon-
strate our methodology with a web applica-
tion that integrates a conversational LLM and
visualization tool, connecting user inquiries
to genetic resources and literature findings,
thereby saving researchers time, money and
effort in their laboratory work. The code and
data are available at: https://github.com/
boxorange/LLM-GeneticTool-Extraction

1 Introduction

Our planet currently faces significant challenges
concerning biological resources, including limited
renewable energy sources, lack of innovative treat-
ments for endemic infectious diseases, water pollu-
tion, insufficient arable land resulting in food crises,
and the degradation of ecosystems (WEF, 2020;

Arkin et al., 2010), among other urgent issues. We
postulate – as others have – that the capacity to
domesticate and genetically engineer non-model
microorganisms from relevant environments could
facilitate the development of potential solutions to
many of these urgent global problems (Endy, 2005;
Stacey, 2017). Although recent technological ad-
vances have been made at a rapid pace to address
several of these challenges, the information needed
for each potential new model organism is dispersed
across the literature and is not readily accessible to
many practitioners. This situation complicates ev-
ery new synthetic biology, bioenergy, and bioman-
ufacturing project involving a non-model organism
(Mutalik et al., 2013; Council et al., 2015). The
disorganized nature of the information not only
impedes machine-readable approaches but also hin-
ders the assessment of the scope of work and iden-
tification of knowledge gaps, subsequently offering
limited guidance for investment to overcome tech-
nological barriers. For instance, despite decades of
progress in the field of synthetic biology, it remains
challenging to pinpoint suitable microbial targets
for specific applications and conditions, as well as
the genetic tools required for cultivating and engi-
neering non-model microorganisms (Arkin, 2008;
Council et al., 2015; Oberhardt et al., 2015; Price
and Arkin, 2017).

A comprehensive literature mining tool that
monitors emerging technologies and genetic tools
critical for biotechnology professionals would be
highly beneficial. This envisioned tool would allow
us to identify information gaps and detect opportu-
nities concealed within extensive literature. For in-
stance, the tool should efficiently ascertain whether
a chosen organism is suitable for laboratory domes-
tication and which genetic tools are available for
that organism, streamlining the search process and
conserving time, effort, and funding for numerous
lab-oriented projects.

Recent advancements in Natural Language Pro-
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Figure 1: The project objective and workflow: We propose to use NLP and machine learning models to process and
learn from literature data about growth characteristics, conditions, traits and available in silico models and genetic
tools to engineer microorganisms.

cessing (NLP) and Large Language Model (LLM)
have enabled the analysis of textual data at an un-
precedented scale (e.g., millions of documents),
allowing for the extraction of significant contextual
information in ways that were previously unachiev-
able. These innovative techniques offer consid-
erable potential to bridge the knowledge gap dis-
cussed earlier. In this study, we propose employing
NLP on biological literature to identify organism
traits (as depicted in Figure 1) and systematically
compiling this extracted knowledge. This approach
facilitates the development of automated, curated
centralized systems crucial for the cultivation and
engineering of microorganisms.

This work specifically focuses on the extraction
of information about bacterial organism hosts and
genetic toolbox for them from literature. As de-
tailed in this paper, our contribution is threefold:

1. We present a curated corpus of bacterial host
organisms and genetic toolboxes, classified
into 14 distinct labels derived from scientific
literature, including plasmids, promoters, re-
porters, and other entities of interest. The
selection of a bacterial host organism is deter-
mined by the accessibility and suitability of
genetic toolbox for efficient manipulation and
engineering. This, in turn, informs the fea-
sibility and ease of engineering the selected
host organism for targeted applications within
the synthetic biology field.

2. This paper provides an evaluation of various
publicly available LLMs for the task of rec-
ognizing organism hosts and genetic tools.
Our findings demonstrate the efficacy of fine-
tuning LLMs on an annotated dataset, which

enhances the models’ performance in those
entity recognition.

3. This work presents a chatbot interface de-
signed to facilitate discussions between users
and a specialized chatbot. The chatbot lever-
ages public biological resource such as NCBI
taxonomy, genetic tool databases, and publi-
cation information. Users can pose questions
regarding the genetic engineerability of bi-
ological entities and engage in informative
dialogues on the subject.

2 Related Work

LLMs demonstrated significant improvements in
addressing a multitude of NLP tasks that are
critical to the fields of biology and biomedicine
(Chen et al., 2023; Yu et al., 2024). Instructed
on a broad spectrum of text corpora, encompass-
ing web crawls, medical records, and rigorously
selected datasets, LLMs are equipped with the
proficiency to integrate information from diverse
sources. These sources range from scientific pub-
lications and databases to various other forms of
informational repositories. This integrative abil-
ity enables LLMs to identify complex intercon-
nections, nuanced contextual aspects, and insights
that may remain obscure to traditional methods.
The BioMistral model (Labrak et al., 2024), built
upon the Mistral foundational model and subse-
quently pre-trained on PubMed Central, underwent
evaluation on a benchmark encompassing 10 med-
ical question-answering (QA) tasks. This assess-
ment revealed superior performance compared to
the original model and existing open-source medi-
cal counterparts.
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Figure 2: An example of annotation through the Doccano web server.

McInnes et al. (2022) presents the development
of a synthetic biology knowledge system, wherein
a text processing pipeline utilizes NLP techniques
to extract and correlate information from the liter-
ature aimed at synthetic biology researchers. The
pipeline integrates named entity recognition, rela-
tion extraction, concept grounding, and topic mod-
eling methodologies to extract pertinent informa-
tion from published literature. Subsequently, this
extracted information is utilized to establish con-
nections between articles and elements within the
knowledge system. The findings demonstrate the
effectiveness of each component when applied to
synthetic biology literature and propose avenues
for further enhancing the pipeline’s capabilities.
Gong et al. (2023) explored the potential of various
LLMs such as GPT-4, GPT-3.5, PaLM2, Claude2,
and SenseNova in addressing conceptual biology
questions, including those related to synthetic biol-
ogy, such as principles of genetic circuit design and
CRISPR-based genome editing techniques. While
the findings revealed the adeptness of LLMs in log-
ical reasoning and their potential to support biology
research by facilitating tasks such as data analysis,
hypothesis formulation, and knowledge synthesis,
the authors underscored the necessity for further re-
finement and validation before fully harnessing the
potential of LLMs to expedite biological discovery.

In this study, we assessed the effectiveness of
LLMs in recognizing and extracting pertinent in-
formation regarding host organisms and their as-
sociated genetic engineering tools. Of particu-
lar emphasis was the evaluation of open-source
LLMs, chosen for their heightened adaptability
and transparency in contrast to proprietary coun-
terparts, thereby enabling users to exercise greater
customization and oversight over model operations.
The main objective was to gauge the efficacy of
these models in discerning insights from a collec-

tion of biological literature and resources, thereby
augmenting our comprehension of LLMs’ appli-
cability in biological inquiry and ability to inform
prospective applications within this domain.

3 Host Organisms and Genetic Toolbox
Curation

To the best of our knowledge, there are no pub-
licly available datasets specifically tailored for the
recognition task involving bacterial host organisms
and their associated genetic toolbox by machine
learning models. In order to enhance the profi-
ciency of machine learning models in identifying
such entities through training on labeled datasets,
we undertook an annotation endeavor aimed at la-
beling both organism hosts and genetic tool types
as depicted in biological literature. To facilitate
this annotation task, a comprehensive list of terms
describing the bacterial genetic toolbox was cu-
rated, which is provided in Appendix A. When con-
ducting a search using the genetic toolbox related
terms, numerous papers unrelated to our specific
focus emerge. These papers span topics ranging
from human genetics to plant research. While we
may consider including them at a later stage, our
current emphasis lies on bacteria. Therefore, we
incorporate the compound word “bacteria” along
with relevant keywords to refine our search results.

For the annotation process, a corpus comprising
434 PDF papers was assembled, meticulously se-
lected by two domain experts. Additionally, 376
XML articles containing any of the terms from the
curated list described in Appendix A were obtained
by querying the bioRxiv database within subject
areas encompassing Biochemistry, Bioengineering,
Bioinformatics, Microbiology, Molecular Biology,
Synthetic Biology, and Systems Biology. From this
corpus, a total of 795 text snippets were extracted
from abstracts and main body texts, each compris-
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Entity The number of entities
Plasmid 445
Organism Host 407
Promoter 181
Genome Engineering 169
Cloning Method 158
Reporter 122
Regulator 86
Antibiotic Marker 65
Genetic Screen 40
RBS† 35
Counter Selection 27
Terminator 23
DNA Transfer 14
Operator 5

Table 1: The statistics of 1,777 annotated labels for
organism hosts and genetic tools. †RBS stands for Ri-
bosome Binding Site.

ing a target sentence containing one of the bacterial
genetic toolbox terms, accompanied by two pre-
ceding and two succeeding sentences, all of which
are part of the same paragraph. To ensure non-
redundant annotation, we eliminated duplicate snip-
pets that contain multiple genetic toolbox terms.

To facilitate the annotation process, a Doccano
web server (Nakayama et al., 2018) was employed,
thereby streamlining the task of annotating textual
data. An annotation sample is depicted in Fig-
ure 2. In order to label entities within the text, a
framework comprising 14 distinct entity labels was
defined. Subsequently, a total of 1,777 annotated
entities were obtained across the entire corpus fol-
lowing the completion of the annotation process.
Table 1 presents the 14 labels along with the corre-
sponding number of entities.

4 Evaluation of LLMs for Recognizing
Host Organisms and Genetic Tool Types

Our study aimed to assess the potential of LLMs
for the task of entity type recognition, utilizing
annotated datasets. To this end, we employed a
selection of LLMs, namely Falcon (Almazrouei
et al., 2023), MPT (MosaicML-NLP-Team, 2023),
LLaMA 2 (Touvron et al., 2023), SOLAR (Kim
et al., 2023), Mistral (Jiang et al., 2023), Mixtral
(Jiang et al., 2024), and LLaMA 3 (Meta-AI, 2024).
Model evaluation was conducted utilizing a ques-
tion answering formatted prompt paired with text
snippets acquired from our annotation task. An

illustrative sample of such a prompt for the entity
type recognition task is provided below.

Question: Given the options: “plasmid”, “organ-
ism host”, “promoter”, “genome engineering”,
“cloning method”, “reporter”, “regulator”, “antibi-
otic marker”, “genetic screen”, “RBS”, “counter
selection”, “terminator”, “DNA transfer”, “opera-
tor”, which one is the entity type of J23108 in this
text?

Text: Plasmids were cloned using Gibson Assem-
bly or inverse PCR, propagated in E. coli TG1
competent cells in LB media, and isolated through
miniprep (Qiagen.) Reporter plasmids had a p15A
origin of replication, chloramphenicol resistance,
and the terminator trrnB downstream of the sfGFP
coding sequence. Plasmids for overexpressing ri-
bosomal proteins in vivo had a ColE1 origin of
replication, ampicillin resistance, the synthetic con-
stitutive E. coli promoter J23108 from the Registry
of Standard Biological Parts, and the terminator
trnnB after the protein expression gene.

Answer: promoter

The 1,777 text snippets underwent partition-
ing into distinct train, validation, and test sets,
maintaining an 8:1:1 ratio. A comparative anal-
ysis was then conducted between the original pre-
trained models and their fine-tuned counterparts.
To facilitate the fine-tuning process, we employed
the Low-Rank Adaptation (LoRA) technique (Hu
et al., 2021) coupled with quantization (QLoRA)
(Dettmers et al., 2024), aiming to enhance memory
efficiency and expedite training procedures. The
training was performed on all linear layers within
the models. The experiments were conducted on
4×NVIDIA A100 80GB GPUs. The configura-
tions for fine-tuning the models were established
as follows.

• Batch size: 2

• Training epochs: 5

• QLoRA target modules: all linear layers

• Quantization technique: BitsandBytes

• Quantization: 4-bit

• Learning rate: 1e-4 with AdamW

Table 2 presents the micro and macro F1-scores
derived from the evaluation of the original pre-
trained LLMs and those fine-tuned with QLoRA
adaptation for the entity type recognition task em-
ploying zero-shot prompting. The results indicate
that the LLaMA 3 (70B) model demonstrated su-
perior prediction capability compared to other orig-
inal LLMs. Notably, following adaptation to the
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Model Context Length Original QLoRA adapted
Micro F1 Macro F1 Micro F1 Macro F1

Falcon (7B) 2K 0.4213 0.1795 0.8933 0.7672
Falcon (40B) 2K 0.6966 0.4106 0.8820 0.6857
MPT-Chat (7B) 2K 0.5618 0.3814 0.8708 0.6503
MPT-Chat (30B) 8K 0.7697 0.6152 0.9213 0.8160
LLaMA-2-Chat (7B) 4K 0.5562 0.3703 0.8933 0.6810
LLaMA-2-Chat (70B) 4K 0.7584 0.5701 0.9157 0.8087
SOLAR-10.7B-Instruct (30B) 4K 0.7528 0.5815 0.9045 0.7252
Mistral-7B-Instruct (7B) 8K 0.7022 0.5565 0.9326 0.8351
Mixtral-8x7B-Instruct (46B) 32K 0.7135 0.5499 0.9607 0.7585
LLaMA-3 (8B) 8K 0.6573 0.4969 0.9270 0.6867
LLaMA-3 (70B) 8K 0.8708 0.6194 0.9551 0.8557

Table 2: The original pre-trained and QLoRA fine-tuned LLMs evaluation on the entity type recognition task with
zero-shot prompting.

QLoRA framework, the performance of the LLM
models exhibited a substantial improvement, with
the LLaMA 3 (70B) and Mixtral 8x7B model as
the top performer. The macro F1-scores, being
lower than the micro F1-scores, suggest challenges
encountered by the models in accurately identify-
ing certain classes, such as “RBS” and “genetic
screen”. The potential ambiguity or variability in
interpretation of these terms may arise particularly
in instances where the training data available to
the models lacks comprehensive examples of the
term’s utilization within the context of genetic tech-
niques. Moreover, the effective application and in-
terpretation of these terms can require specialized
knowledge, which may be acquired through ac-
cess to specific datasets within the respective field.
To enhance the models’ capacity to discern and
comprehend the intended meaning of such terms,
it might be necessary to integrate supplementary
sources of information, such as external knowledge
repositories, and to provide explicit contextual ex-
planations upon their introduction.

5 Preliminary Evaluation of a LLM for
Extracting Host Organisms and Genetic
Tools from Raw Articles

Our primary objective is to develop an automated
tool capable of extracting host organisms and ge-
netic tools for engineering purposes from unpro-
cessed textual data. Such a tool would offer prac-
titioners and domain experts a more streamlined
and convenient means of accessing this informa-
tion. As a preliminary phase, we initially evaluated
the performance of a plain LLM in identifying bio-

logical entities and genetic tools within scientific
literature. Employing a question-answering frame-
work, we devised a structured prompt using the full
text of each article. The following exemplifies a
sample prompt for this specific task, incorporating
the entire text of an article.

Question: Which biological entities and genetic
tools are mentioned in this paper, and what are
their types? Choose from the following options:
“plasmid”, “organism host”, “promoter”, “genome
engineering”, “cloning method”, “reporter”, “regula-
tor”, “antibiotic marker”, “genetic screen”, “RBS”,
“counter selection”, “terminator”, “DNA transfer”,
“operator”

Paper: Title: A BioBricks® toolbox for multi-
plexed metabolic engineering of central carbon
metabolism in the tetracenomycin pathway. Full-
Text: The tetracenomycins are aromatic anticancer
polyketides that inhibit peptide translation via bind-
ing to the large ribosomal subunit. Here, we ex-
pressed the elloramycin biosynthetic gene cluster ...

Answer: The biological entities and genetic
tools mentioned in this paper are: 1. Organism
host: "Streptomyces coelicolor M1146, Strep-
tomyces glaucescens GLA.0, Streptomyces oli-
vaceus TTü2353, Amycolatopsis sp. A23, E.
coli JM109, E. coli ET12567/pUZ8002 2. Pro-
moter: ermE*p promoter, sf14p promoter, LacI
promoter 3. Genome engineering: cos16F4iE
cluster, actinophage integrases (e.g. fC31, fBT1,
SV1, TG1, SAM2, VWB) 4. Cloning method: re-
striction digestion, ligation, 3A cloning, isocau-
domer cloning 5. Reporter: red fluorescent protein
(RFP) coding device 6. Regulator: LacI repres-
sor 7. Antibiotic marker: ampicillin, kanamycin,
apramycin, viomycin, hygromycin, nalidixic acid
8. Genetic screen: blue-white colony screening
9. RBS: B0034 strong ribosome binding site 10.
Counter selection: nalidixic acid 11. Terminator:
B0015 transcriptional terminator ....
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As a preliminary evaluation, we employed 233
articles used in our annotation task. Due to the
length of a full text, only the Mixtral 8x7B model
was adopted for this evaluation, which can have
up to 32K input length. The post-processing of
the model output generated a JSON formatted
data. The following illustrates an example of post-
processed model prediction.

T i t l e : "A B i o B r i c k s t o o l b o x f o r m u l t i p l e x e d m e t a b o l i c
e n g i n e e r i n g o f c e n t r a l c a r bo n metabo l i sm
i n t h e t e t r a c e n o m y c i n pathway "

{
" a n t i b i o t i c marker " : [

" a m p i c i l l i n , kanamycin , apramycin , viomycin ,
hygromycin , n a l i d i x i c a c i d "

] ,
" c l o n i n g method " : [

" r e s t r i c t i o n d i g e s t i o n , l i g a t i o n , 3A c l o n i n g ,
i socaudomer c l o n i n g "

] ,
" c o u n t e r s e l e c t i o n " : [

" n a l i d i x i c a c i d "
] ,
" dna t r a n s f e r " : [

" i n t e r g e n e r i c c o n j u g a t i o n , c o n j u g a l mat ings ,
e l e c t r o p o r a t i o n , . . . "

] ,
" g e n e t i c s c r e e n " : [

" b lue − w h i t e c o l on y s c r e e n i n g "
] ,
" genome e n g i n e e r i n g " : [

" cos16F4iE c l u s t e r , a c t i n o p h a g e i n t e g r a s e s
( e . g . fC31 , fBT1 , SV1 , TG1 , SAM2, VWB) "

] ,
" o p e r a t o r " : [

" a t t B s i t e , a t t P s i t e , o r iT , a t t P s i t e "
] ,
" o rgan i sm h o s t " : [

" S t r e p t o m y c e s c o e l i c o l o r M1146 ,
S t r e p t o m y c e s g l a u c e s c e n s GLA. 0 , . . . "

] ,
" p r o m o t e r " : [

" ermE*p promoter , s f 1 4 p promoter , LacI p r o m o t e r "
] ,
"RBS " : [

" B0034 s t r o n g r ibosome b i n d i n g s i t e "
] ,
" r e g u l a t o r " : [

" LacI r e p r e s s o r "
] ,
" r e p o r t e r " : [

" r e d f l u o r e s c e n t p r o t e i n ( RFP ) cod in g d e v i c e "
] ,
" t e r m i n a t o r " : [

" B0015 t r a n s c r i p t i o n a l t e r m i n a t o r "
]

}

Two domain experts vetted this model prediction
for species and tool names/types detection, and the
model’s performance is displayed in Table 3. The
result shows 0.8816 (micro F1) and 0.8734 (macro
F1) for 6,962 entities. The model displays inherent
uncertainty when encountering ambiguous termi-
nology. For example, the term “genetic screen” has
been utilized across diverse contexts, resulting in
confusion within the model. This assertion is sup-
ported by the individual accuracy measurements
presented in Table 4, where “genetic screen” ex-
hibited the lowest level of precision. A similar
observation was made in an earlier experiment, dur-
ing which the models encountered difficulties in
recognizing “genetic screen”.

Model Micro F1 Macro F1
Mixtral-8x7B-Instruct 0.8816 0.8734

Table 3: The Mixtral 8x7B model’s evaluation on the
host organism and genetic toolbox extraction task with
zero-shot prompting.

Entity Count Accuracy
Plasmid 1485 0.8936
Organism Host 716 0.8282
Promoter 656 0.8872
Genome Engineering 601 0.8602
Antibiotic Marker 525 0.9295
Regulator 501 0.9122
Cloning Method 498 0.8313
Reporter 434 0.8594
Operator 356 0.9719
DNA Transfer 356 0.9129
RBS 233 0.8670
Genetic Screen 221 0.8281
Terminator 197 0.8782
Counter Selection 183 0.8634

Table 4: Individual Entity Accuracy

6 Chatbot for Genetic Tool Engineering

Complementing the development of a LLM to as-
sist research in synthetic biology and biomanufac-
turing, KBase (Arkin et al., 2018) provides a web
application for users to interact with this model
through a chatbot interface. Starting from a sim-
ple question, users can ask for information about
bacteria and genetic tools of interest and receive re-
sponses from the trained model. Conversations are
logged, allowing users to provide feedback on the
efficacy of the chatbot’s responses, which serves
as valuable input for refining and enhancing the
system in future iterations (see Figure 3).

Using the "outlines" Python package (Willard
and Louf, 2023) for structured output generation,
we identify any biological entities and their asso-
ciated tools in the model’s response. The genus
of each entity is collected, and a pruned NCBI
taxonomy tree (Schoch et al., 2020) is rendered
that highlights these organisms in the context of
their genus-level neighbors. As a result of the con-
tinuous evolution of taxonomic nomenclature, the
information output by the model may not reflect
the current information in NCBI databases. There-
fore, this tool performs additional checks against
previous names and synonyms for organisms iden-
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Figure 3: A screen shot of the LLM-powered Chatbot in the web application.

tified in the model output. The web application
downloads the most current version of the NCBI
taxonomy database at container startup.

Users may select any organisms on the species
tree, and the selection will be summarized on the
right side of the visualizer. The top right provides
summary information from the BacDive database
(Reimer et al., 2022) to rapidly identify culture con-
ditions amenable to isolation and growth. The bot-
tom right section summarizes genetic tool database
information from the Phage-Host Daily (Albrycht
et al., 2022), Virus-Host (Mihara et al., 2016), and
Plasmid (Schmartz et al., 2022) databases. Addi-
tional information identified by the model is also
described here. This combination of prepackaged
curated databases in conjunction with information
extracted from the model’s large text corpora pro-
vides a comprehensive summary of the available
strains, tools, and publications describing the or-
ganism in question (see Figure 4).

To facilitate the identification of organisms that
do not have isolation or genetic tool informa-
tion, users may elect to visualize other relative
organisms without entries in the accompanying
databases. Similarly, while the tree visualization
is species-focused, users may also select to view

all strains for a given species in order to highlight
strain-level differences in isolation and genetic tool
usage.

The incorporation of this tool into the KBase
infrastructure serves as an additional avenue for
researchers to access pertinent information, estab-
lishing connections not only with biologically rel-
evant organisms for laboratory investigations but
also with the broader ecosystem of KBase, facil-
itating subsequent analyses and dissemination of
findings.

Integration with the KBase platform is under-
taken in adherence to established standards pertain-
ing to containerization, user-oriented tool develop-
ment, and deployment protocols. The tool is being
developed with the intent of serving as a reusable
proof-of-concept that caters to a diverse audience.

7 Conclusion

A significant bottleneck within the domains of syn-
thetic biology and biomanufacturing pertains to
the identification of suitable microbial targets tai-
lored to specific applications and environmental
conditions, alongside the selection of genetic tools
conducive to the cultivation and engineering of
non-model microorganisms. This bottleneck poses

376



Figure 4: A screen shot of the species tree view in the web application.

a direct hindrance to the progress of investigations
in synthetic biology and obstructs redesign efforts.
While peer-reviewed publications serve as the pri-
mary repository for biological experimental data,
manual curation proves insufficient for managing
the extensive volume of available literature. Con-
sequently, there arises a need for the automated
extraction of data related to environmental con-
ditions and genetic tools from literature sources.
Recent advancements in NLP and LLMs have pre-
sented promising avenues for addressing this chal-
lenge. This study aims to evaluate the potential
applicability of LLMs in alleviating this issue by
demonstrating the assessment of various LLMs in
recognizing bacterial host organisms and genetic
toolbox, and evaluating the efficacy of annotated
datasets for these entities derived from scientific
literature in enhancing the models’ predictive ca-
pabilities. Additionally, we introduce a web-based
interface through which users can interact with the
LLM and access answers augmented with exter-
nal biological resources. We anticipate that users
will utilize these tools to extract pertinent informa-
tion from literature sources concerning biological
entities and genetic tools and components, encom-
passing organism names and various tools such as

promoters, plasmids, and phages, which are essen-
tial for the engineering of microorganisms.
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Abstract

Large Language Models (LLMs) offer an ap-
pealing alternative to training dedicated models
for many Natural Language Processing (NLP)
tasks. However, outdated knowledge and hallu-
cination issues can be major obstacles in their
application in knowledge-intensive biomedi-
cal scenarios. In this study, we consider the
task of biomedical concept recognition (CR)
from unstructured scientific literature and ex-
plore the use of Retrieval Augmented Genera-
tion (RAG) to improve accuracy and reliabil-
ity of the LLM-based biomedical CR. Our ap-
proach, named REAL (Retrieval Augmented
Entity Linking), combines the generative ca-
pabilities of LLMs with curated knowledge
bases to automatically annotate natural lan-
guage texts with concepts from bio-ontologies.
By applying REAL to benchmark corpora on
phenotype concept recognition, we show its
effectiveness in improving LLM-based CR per-
formance. This research highlights the poten-
tial of combining LLMs with external knowl-
edge sources to advance biomedical text pro-
cessing. Source code is available at: https:
//github.com/dash-ka/REAL-BioCR.

1 Introduction

Biomedical Concept Recognition (CR) aims to
identify and link textual mentions of biomedical
concepts to entries in expert-curated knowledge
bases and ontologies. CR combines two subtasks
from the standard information extraction pipeline:
entity recognition (NER) and entity linking (EL),
sometimes referred to as named entity disambigua-
tion (NED) or grounding. NER aims to detect
strings in text that refer to classes of biomedical
entities, such as phenotypes, diseases, or genes. EL
maps those strings to terms in an ontology, such as
Human Phenotype Ontology (HPO) (Köhler et al.,
2014) for phenotypic features, Mondo (Vasilevsky
et al., 2020) for disease terms, and HGNC (Eyre

*Corresponding author: darya.shlyk@unimi.it

et al., 2006) for human genes. Automated CR meth-
ods represent an active research area and are essen-
tial for a range of downstream biomedical appli-
cations. In genomic medicine, for instance, accu-
rately recognizing phenotype concepts from free-
text medical notes is the starting point to improve
genetic disease diagnostics (Labbé et al., 2023).

State-of-the-art CR systems rely on fine-tuning
transformer-based language models pretrained on
biomedical texts, such as BioBERT (Lee et al.,
2020), and have restricted scope, targeting a sin-
gle or few application domains (Feng et al., 2022;
Luo et al., 2021). The major limitation of these
approaches is the need for domain-specific training
with expert-labeled corpora, which is not always
feasible due to the scarsity of annotated data in the
biomedical field (Fries et al., 2022). On the other
hand, general-purpose Large Language Models
(LLM), such as OpenAI’s Generative-Pretrained
Transformer (GPT), have demonstrated remarkable
zero and few-shot learning abilities, offering signif-
icant potential for biomedical NLP. Recent studies
have shown promising results when using LLMs
in clinical information extraction without domain-
specific training (Agrawal et al., 2022; Meoni et al.,
2023). However, challenges persist regarding fac-
tual accuracy in generated responses, hindering
their usability for knowledge-intensive tasks in spe-
cialized domains (Gao et al., 2023; Reese et al.,
2023). To address these challenges, Retrieval-
Augmented-Generation (RAG) (Lewis et al., 2020)
has been recently proposed as a technique to en-
hance LLMs with relevant information retrieved
from external knowledge bases through semantic
similarity calculation.

Our study aims to explore the application of
the RAG paradigm in the context of biomedical
CR. To this end, we developed REAL, a Retrieval-
Augmented Entity Linking approach for ontology-
based CR. To overcome the limitation of training
dedicated NER and EL models, our approach lever-

380



ages prompting techniques with general purpose
LLMs to handle both tasks in a unified pipeline.
Given a text, REAL first identifies mentions of
concepts belonging to some target biomedical do-
main through a zero-shot NER, and then associates
these mentions to terms in the domain ontology
using retrieval-enhanced Entity Linking. By em-
bedding the mention and ontology concepts into a
common dense space, the retrieval mechanism pro-
vides the LLM with a selection of candidates from
a bio-ontology identified through nearest neigh-
bor search. By synergistically combining the re-
trieval mechanism with prompt-engineering, REAL
aims to leverage up-to-date knowledge with exist-
ing knowledge bases, thereby improving the accu-
racy and reliability of LLM-based CR.

We summarize our contributions as follows:

• We propose a novel RAG-based approach
that leverages general-purpose LLMs for au-
tomatic annotation of unstructured scientific
literature with concepts from bio-ontologies.
Our approach is versatile and can be easily
adopted in various application domains with-
out requiring domain-specific training.

• We conduct experiments with two benchmark
corpora, studying the effectiveness of our ap-
proach on the phenotype concept recognition
task. The results show that REAL can achieve
competitive performance, indicating a great
promise for the RAG paradigm in the context
of biomedical concept recognition.

2 Related Work

2.1 Biomedical Concept Recognition
Biomedical CR tools predominantly rely on dic-
tionary-based methods, using lexical matching with
lookup tables. The OBO annotator (Taboada et al.,
2014), the NCBO annotator (Jonquet et al., 2009),
and the Monarch Initiative platform (Putman et al.,
2023) are examples of tools that achieve high pre-
cision, but often suffer from low recall.

To overcome the limitations of dictionary-based
methods, the recent research explored the use of
neural-based models, with significant performance
improvements. State-of-the-art approaches lever-
age pretrained BERT (Bidirectional Encoder Rep-
resentations from Transformers) architectures. For
instance, PhenoBert (Feng et al., 2022) implements
a complex pipeline exploiting convolutional neu-
ral networks (CNNs) with BERT to automatically

recognize HPO terms from free text. Phenotag-
ger (Luo et al., 2021) is a hybrid approach that
combines dictionary and deep learning methods.
Specifically, Phenotagger fine-tunes a pretrained
BioBERT model on weakly supervised datasets.
These solutions necessitate task-specific training,
requiring extensive computational resources and
significant human effort for the manual annotation
of large training corpora.

With the the advent of ChatGPT, researchers
started to consider prompt-based approaches that
leverage impressive language understanding capa-
bilities of instruction-based generative models to
address a wide spectrum of NLP tasks with no do-
main or task-specific training. One of the most
prominent examples is SPIRES (Structured Prompt
Interrogation and Recursive Extraction of Seman-
tics) (Caufield et al., 2024) that leverages LLMs
to assist the automatic construction of knowledge
bases. Given an input text and a user-defined con-
ceptual schema, the method recursively prompts
an LLM to extract structured knowledge conform-
ing with the schema’s classes relevant for a given
domain. The schema guides the LLM in extract-
ing named entities that meet specific property con-
straints. To map extracted entities to ontology iden-
tifiers, SPIRES adopts the Ontology Access Kit
library (OAKlib), which provides interfaces for
external annotation tools, including the OBO anno-
tator, and the Ontology Lookup Service.

2.2 Prompt-based Phenotyping
Several recent studies have employed prompt engi-
neering techniques with LLMs to evaluate their
capability in performing end-to-end phenotype
concept recognition. Labbé et al. (2023) prompt
GPT3.5 model to directly extract HPO term la-
bels alongside corresponding IDs from medical
texts. Their study highlights the limitations associ-
ated with purely prompt-based concept recognition,
suggesting that potential improvements could be
achieved by integrating factual knowledge from ref-
erence resources to aid in the generation process.

Groza et al. (2024) evaluated the OpenAI GPT-
3.5 and GPT-4.0 models on phenotype concept
recognition by testing alternative prompting strate-
gies, including pipelined and in-context learning
approaches. The former involves two sequential
prompts: one for phenotype extraction and another
for linking to HPO IDs. The latter approach incor-
porates the target subset of HPO label - ID pairs
from the reference ontology inside the prompt as
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Figure 1: A high-level overview of the REAL approach.

context. Their findings demonstrate that in-context
learning with pre-filtered ontology terms has the
potential to surpass state-of-the-art CR systems.

The idea to couple parametric knowledge of an
LLM with vast external knowledge repositories to
improve the factuality and accuracy of the LLM
responses forms the foundation of RAG. This tech-
nique involves chunking and embedding the knowl-
edge resource into a set of vectors, followed by
retrieving top-k relevant chunks based on seman-
tic similarity with the user query, which are then
incorporated into the LLM prompt. To the best of
our knowledge, ours is the first work to explore the
application of RAG in the field of biomedical con-
cept recognition (CR). In REAL, we employ RAG
to assist the LLM in linking textual mentions of
biomedical entities to terms in domain ontologies.

3 Methodology

The ontology-based CR problem can be formally
presented as two consecutive tasks, NER and
EL, as follows. Let O denote a set of concepts
{C1, . . . , Cn} defined in the domain ontology used
for text annotation. Given a text T , the NER task
identifies textual mentions of biomedical entities
from the target domain, m1, . . . ,mh. Then, the EL
task consists in assigning each entity mention mi

to a concept C ∈ O that best represents it.
As shown in Figure 1, REAL implements CR

in a pipeline consisting of three main phases: On-
tology Indexing, NER, and Retrieval-enhanced En-
tity Linking. The ontology indexing is executed
only once during the pre-processing to convert the

concepts in O into a searchable index. The main
workflow starts with the zero-shot NER (in the left
bottom of the figure), where we prompt the LLM to
extract instances of a specified entity type from T
and generate a short definition for each of them. In
the Retrieval-enhanced Entity Linking phase (right
bottom part of the figure), we search in the ontol-
ogy index the top-k most similar concepts to the
embedding of m. They are the candidates for en-
tity linking and the best matching is identified by
properly instructing an LLM prompt. Details of the
approach are provided in the remainder.

3.1 Ontology Indexing
To implement RAG for CR with the domain on-
tology O as a reference knowledge resource, we
create vector embeddings for concepts in O and in-
dex them inside a vector store. This process creates
an ontology index I, that we can query to retrieve
ontology concepts with the most similar embedding
vector to the embedding of a given query.

In this study, we used ChromaDB1, an open-
source vector database, to store concept embed-
dings and perform semantic similarity search in
the embedding space using the cosine similarity
function. However, the proposed method can em-
ploy any database that enables efficient vector
search capabilities. Unlike other vector stores,
ChromaDB provides interfaces to popular LLM
providers, and automatically computes the em-
bedding from text using the specified embedding
model. Specifically, this study uses the OpenAI

1https://www.trychroma.com/
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Figure 2: Prompt template for generating a definition
for a given concept name.

text-embedding-ada-002 model for concept em-
bedding. We store the computed embeddings along-
side the concept properties inside the index I. To
construct input texts for the embedding model, we
employ the concept name and its definition pro-
vided among concept properties in a given ontology.
This design choice stems from the need to create
a vector representation that captures the meaning
of a concept, with the concept name and definition
providing the minimal necessary information to
achieve this goal. Whenever a textual definition
is not available in the concept properties, we auto-
matically generate one from the concept name by
prompting an LLM using the prompt in Figure 2
(the variable part of the prompt is colored in green).

Example 1 Suppose we are interested in creating
an ontology index for the HPO. A vectorial repre-
sentation for each HPO concept is generated by
concatenating its name and definition and stored
into ChromaDB with other concept properties. For
instance, for the HPO term “Breast carcinoma”
(id: HP:0003002), the following text has been used
for generating the concept embedding:

name: Breast carcinoma

definition: Presence of carcinoma in breast

The prompt template in Figure 2 is used to gen-
erate a single sentence definition for 2,586 HPO
terms that do not have a definition in the ontology.

3.2 NER

Given the input text T and the specification of the
target biomedical entities to be extracted, the NER
step produces a set of pairs P = {(mi, di) | 0 ≤
i ≤ h}, where mi represents a mention of the
target entity extracted from T , and di denotes a
concise definition for that entity mention. This
step employs zero-shot prompting with LLMs us-
ing two consecutive prompts: the NER prompt
for entity extraction and the Describe prompt for
definition generation. The NER prompt in Fig-
ure 3 incorporates the input text T and directs the

Figure 3: Prompt template for NER.

LLM to extract spans in T that represent instances
of the target entity type defined for a given ap-
plication domain. The domain adaptation of the
NER task is performed by changing the type of
the target biomedical entity specified in the prompt,
e.g., genes, phenotypes. The Describe prompt in
Figure 4 operates on the list of entity mentions
m1, . . . ,mh, produced with the NER prompt, and
tasks the LLM to generate a definition for each ex-
tracted mention. Besides the list of entity mentions,
this prompt also includes the original text T to help
the LLM to compose contextually informed entity
definitions.

Figure 4: Prompt template for entity description.

Example 2 Let T be the following text:

The combination of either the skin tumours

or multiple odontogenic keratocysts.

Suppose we are interested in extracting mentions
of human phenotypes from T . Then, in the NER
prompt, we specify the following target entities:

“human phenotypes, including physical abnormali-
ties, symptoms of disease, and inherited disorders”.
Given T , the NER prompt extracts the entities:
skin tumors and odontogenic keratocysts.
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For each of them (and considering T ) a definition is
generated using the prompt in Figure 4 as follow:

skin tumors: Abnormal growths or masses

that occur in the skin and can be benign

or malignant.

odontogenic keratocysts: Cysts that

develop in the jawbones and are derived

from the remnants of dental tissue.

3.3 Retrieval Augmented Entity Linking
Given the Ontology index I, and a set P of pairs
(m, d) obtained as a result of the NER phase, for
each element in P , the EL phase is realized in two
steps: Candidate Retrieval and Entity Linking.

3.3.1 Candidate Retrieval
Given the entity mention m with its definition d
and a user-defined parameter k, we first embed
(m, d) into the same embedding space with ontol-
ogy concepts, and then retrieve top-k semantically
similar concepts {C ′

1, . . . C
′
k} from I by approxi-

mate k-nearest neighbor search. We adopt the same
embedding strategy for ontology concepts to enable
consistent representation of the entity mentions in
the common vector space (see Section 3.1).

Example 3 Consider the first entity mention iden-
tified in Example 2. The following text is used to
compute the mention embedding q:

name: skin tumors

definition: Abnormal growths or masses

that occur in the skin and can be benign

or malignant.

By querying I with q, we can retrieve the top-3
concepts in HPO with the highest similarity score,
according to cosine similarity function:

• ID: HP:0008069

name: Neoplasm of the skin

definition: A tumor (abnormal growth of tissue)

of the skin.

score: 0.9329

• ID: HP:0000951

name: Abnormality of the skin

definition: An abnormality of the skin.

score: 0.8974

• ID: HP:0012056,
name: Cutaneous melanoma

definition:The presence of a melanoma of skin.

score: 0.8937

Figure 5: Prompt template for EL.

3.3.2 Entity Linking
To ground m using the retrieved candidate set
{C ′

1, . . . C
′
k} ⊂ O, we re-frame the EL task as

a multiple-choice selection and prompt the LLM to
identify the ontology concept among the provided
candidates that best matches an entity description
(m, d). The candidate concepts are provided as
part of the prompt with their properties, including
concept ID, name and definition. When selecting
a concept for a given mention m, the LLM is in-
structed to associate a confidence level with its
answer (a value in {HIGH, MEDIUM, LOW}), which
we use as a filtering mechanism when parsing the
EL results. The EL prompt is generated according
to the template in Figure 5, and adopts a few-shot
learning technique, where the LLM learns to per-
form the EL task in-context by following a set of
examples provided as part of the prompt.

Examples are ontology-specific and present the
following structure: i) a list of concepts with the
ID, name, and definition; ii) a text describing the
entity mention to be grounded; iii) the expected
answer; and iv) the associated confidence level. In
the case of the HPO, Figure 6 shows the example
that can be included in the EL prompt for one-shot
Entity Linking. This negative example serves the
purpose of instructing the LLM to be conserva-
tive and refrain from mapping any entity mention
extracted with NER unless the matching concept
belongs to the provided candidates.
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Figure 6: An HPO-specific example for the EL task.

Example 4 Consider the mention and the set of
retrieved candidates in Example 3. The template
in Figure 5 is filled with: the name of the domain
ontology (HPO); the HPO-specific example in
Figure 6; the retrieved candidates and their
properties; the description of the entity to be
grounded. Invoking the LLM with EL prompt, the
following result is returned:

answer: HP:0008069

confidence: HIGH

4 Experiments

4.1 Benchmark Corpora
To validate our approach, we evaluate the per-
formance of REAL for clinical phenotyping and
phenotype annotation using two publicly available
benchmark datasets: the HPO GSC+ (Lobo et al.,
2017) and the dev component of the corpus pub-
lished by BioCreative VIII Track 3 (Weissenbacher
et al., 2023), referred to as BIOC-GS hereafter.
HPO GSC+ consists of 228 manually annotated
PubMed abstracts, with a total of 1933 annotations
that cover 497 unique HPO IDs. The BIOC GS
consists of 454 clinical observations manually an-
notated for phenotypes identified during dysmor-
phology physical examinations, that cover a total
of 358 unique HPO IDs. As a reference resource
for grounding, we use HPO, that provides a stan-
dardized vocabulary of phenotypic abnormalities
associated with human hereditary and other dis-
eases (Köhler et al., 2019). After preprocessing the
ontology file, we indexed a total of 18.536 HPO
concepts (See Section 3.1).

4.2 Experimental Setting

Currently, the REAL implementation relies on the
OpenAI GPT models and feeds the prompts to the
LLM by calling the OpenAI API. For evaluation,
we use the gpt-3.5-turbo-16k model accessed
through the GPT-3 completion endpoint, with de-
fault settings for temperature and max tokens. The
number of LLM calls per document is estimated
as follows: 2 requests sent to the OpenAI com-
pletion API endpoint2 in the NER step, one for
entity extraction and one for definition generation.
Followed by h calls in the EL step, one call for
each extracted mention. Additionally, for candi-
date retrieval, each entity mention requires a call
to the OpenAI embedding API endpoint3, which
is handled automatically by the ChromaDB vec-
tor store. Due to constraints on the context win-
dow size (16,385 tokens for gpt-3.5-turbo-16k
model), we limit the retrieved candidate set to a
small number. In our experiments, we set k = 3,
and included three candidate concepts in the EL
prompt, as we observed no substantial improve-
ments when using a larger number of candidates
(see Section 4.4 for further discussion). Moreover,
to ensure precise results in the EL phase, we opt
to consider only mention/concept pairs associated
with a HIGH confidence level, discarding less confi-
dent answers generated by the LLM.

To evaluate the effectiveness of the RAG
paradigm in the context of the LLM-based biomed-
ical concept recognition, we benchmark against a
base case, where we directly instruct the GPT-3.5
model to extract and align HPO concepts from the
input text using a single instructional prompt. The
baseline prompt used in the experiments is adopted
from Groza et al. and reported in Appendix 8.

In assessing the role of the LLM component
in the entity linking step, our evaluation involves
two distinct grounding strategies: one relies on
the LLM to select the appropriate candidate con-
cept for a given entity mention, while the other
always selects the first matching concept retrieved
by the embedding-based search. We refer to this
latter strategy, which does not utilize the LLM in
the linking phase, as REAL-1st HIT to differenti-
ate it from the strategy using GPT3.5 for ground-
ing, which we denote as REAL-GPT3.5. For a
fair comparison with existing unsupervised meth-
ods for concept recognition, our evaluation in-

2https://api.openai.com/v1/chat/completions
3https://api.openai.com/v1/embeddings
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Document level Mention level
System P R F1 P R F1
GPT-3.5 0.12 0.28 0.16 0.07 0.17 0.10
SPIRES 0.84 0.31 0.45 0.84 0.19 0.31
REAL-1st hit 0.40 0.49 0.44 0.33 0.36 0.39
REAL-GPT3.5 0.68 0.48 0.56 0.67 0.32 0.43

Table 1: Evaluation results on HPO GSC+

cludes SPIRES, a close prompt-based alternative
to the REAL approach, accessible with local in-
stallation of the OntoGPT Python package 4. For
entity linking, SPIRES uses the OBO annotator
(Taboada et al., 2014), a state-of-the-art dictionary-
based method, designed for automatic annotation
of biomedical literature with HPO terms. To exe-
cute HPO concept recognition with SPIRES, we
utilize a predefined template for extracting human
phenotypes, which is provided with the OntoGPT
installation.5 For phenotype extraction, SPIRES
uses the gpt-3.5-turbo-16k model.

We evaluate the results by computing standard
metrics for the concept recognition task: precision
(P), recall (R) and F1-score (F1). The evaluation is
performed at both document and mention levels. At
the document level, we compute true positives as a
set of target concepts that were found at least once
in a given document and assigned a correct HPO
identifier. At the mention-level, we account for all
occurrences of a target concept within a document.

4.3 Results

Tables 1 and 2 present the evaluation results for
the HPO concept recognition on HPO GSC+ and
BIOC GS datasets, respectively. To facilitate the
performance comparison across systems, Figure 7
illustrates the precision, recall, and F1 score values
considering the document level evaluation, which
closely reflects the pattern observable at the men-
tion level. Consistent results are also observed
when conducting testing on the two datasets, as
discussed in this section. Among other methods,
REAL-GPT3.5 can correctly recognize more HPO
concepts, achieving the best F1 scores at both men-
tion and document level. The dictionary match-
ing method used with the OBO annotator, allows
SPIRES to achieve the highest precision, which
does not compensate for poor recall rates. The re-
sults show that the retrieval mechanism integrated

4https://github.com/monarch-initiative
5https://github.com/monarch-initiative/

ontogpt/blob/main/src/ontogpt/templates/

Document level Mention level
System P R F1 P R F1
GPT-3.5 0.26 0.33 0.29 0.22 0.29 0.25
SPIRES 0.93 0.31 0.47 0.93 0.19 0.47
REAL-1st hit 0.59 0.49 0.42 0.59 0.48 0.41
REAL-GPT3.5 0.69 0.67 0.66 0.68 0.66 0.65

Table 2: Evaluation results on BIOC GS

in REAL significantly improves the recall, com-
pared to other methods. In fact, REAL-1st hit, that
uses the 1st retrieved concept for entity linking,
achieves similar F1 score as SPIRES while balanc-
ing the precision and recall rates. Comparing the
two grounding strategies, we observe that REAL-
GPT3.5 improves the precision over REAL-1st hit
at both mention and document level. Leveraging
the LLM for entity linking produces more precise
results as it enables reasoning over the best match
through multiple-choice selection and effectively
filters out spurious extractions, that is, entity men-
tions erroneously identified as phenotypes by NER.
In summary, the results on the GSC+ and BIOC GS
datasets demonstrate the effectiveness of the REAL
approach for phenotype concept recognition. Our
experiments here were limited to GPT-3.5, but it is
likely that GPT-4 will yield even better results.

4.4 Error analysis and discussions

The formulation of the NER prompt represents one
of the critical aspects for the success of the ap-
proach. Poor results on NER propagate down the
pipeline affecting the usefulness of the entity link-
ing step. We assess the completeness of the NER
results through a manual analysis of the generated
extractions. Our evaluation suggests that the NER
prompt achieves pertinent extractions providing a
comprehensive coverage of the phenotypic features
in both corpora. Some extractions from the HPO
GSC+ include concepts not covered in the HPO
ontology, such as mentions of diseases (Prader-
Willi syndrome, Angelman syndrome), or generic
phenotype-related concepts (human anomaly, ge-
netic abnormalities). Additionally, we observe
that a number of HPO terms extracted by REAL
lack annotation in HPO GSC+. For instance, the
phenotype “Uniparental disomy” is recognized 17
times in the corpus, but it is not present in the
gold standard annotations, despite the existence
of the exact match in the HPO: “Uniparental di-
somy” (HP:0032382). Such extractions represent
the main cause of false positives and frequently in-
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Figure 7: Document level evaluation results on HPO GSC+ and BIOC GS.

volve HPO terms close to the root of the taxonomic
tree, such as phenotypic abnormality (HP:0000118)
and mode of inheritance (HP:0000005).

Upon examining the frequently missed HPO
terms, we identified two main causes of false neg-
atives. The first issue is specific to HPO GSC+
and stems from the overlapping concepts, where
phrases contain multiple nested HPO terms. For in-
stance, the phrase “skin tumors” is annotated with
both “Neoplasm of the skin” (HP:0008069) and

“Neoplasm” (HP:0002664). By design, REAL, ex-
tracts mentions of entities as a whole and annotates
to the most specific HPO term, failing to produce
identifiers for nested concepts. This explains a
high number of omissions for generic terms such as,

“Nurofibroma”, “Schwannoma”, and “Meningoma”,
usually nested within more specific HPO concepts.

The second issue involves complex entity men-
tions, frequently found in clinical notes, that have
a form of compound and prepositional phrases,
such as, “scarring between 2 and 3” and “2,3 syn-
dactyly bilaterally in feet”. These extractions may
produce definitions where the meaning of the en-
tity is altered with respect to the target HPO term,
yielding a poor set of retrieved candidates. For
instance, the extracted mention, “scars on axil-
lary lines bilaterally” produces a definition (“Per-
manent marks or blemishes that have formed on
the skin in the areas of the armpits, appearing on
both sides of the body.”), that shifts the entity’s
meaning away from the target concept , “Scarring”
(HP:0100699), towards related HPO terms, such as

“Axillary freckling”, and “Axillary lymphadenopa-
thy”. Moreover, due to the high level of granu-
larity of the extracted mentions in the BIOC GS

dataset, entities are often grounded in HPO terms
that are more specific than those provided in the
annotations. For example, the mention “skins on
the right foot feet thickend” is mapped to “Hyper-
trophy of skin of soles”(HP:0007403) (i.e., “Thick
skin of soles”), instead of the target “Thickend skin”
(HP:0001072). These and similar issues can arise
as a consequence of annotation idiosyncrasies that
vary across benchmarks and could be addressed via
additional post-processing of the NER results.

By analyzing the retrieval results, we found that
around 65% of target concepts in HPO GCS+ (78%
in BIOC GS) were effectively retrieved among
candidates using approximate k-nearest neighbor
search with k = 3. Preliminary experiments with
greater values of k show no significant improve-
ment, suggesting that the effectiveness of the can-
didate retrieval step mostly depends on the abil-
ity of the LLM to produce entity descriptions that
are semantically close to target HPO terms. Our
approach relies on the LLM to produce factual
definitions for extracted mentions. However, fu-
ture research might explore alternative strategies to
ensure the factuality of the generated definitions.
(Remy and Demeester, 2023).

It is important to stress that the domain exper-
tise requirements vary across different phases of
the concept recognition pipeline. In the grounding
step using RAG, the domain knowledge is provided
from outside, significantly reducing the expertise
required by the LLM for entity normalization. In
contrast, the biomedical NER task relies on the
domain knowledge encoded within the model’s pa-
rameters, demanding greater familiarity with the
target domain to accurately recognize and define
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entities. This makes the NER task more knowledge-
intensive and crucial for the overall success of the
approach.

5 Concluding remarks

In this work, we introduced a novel approach for
ontology-based concept recognition, that leverages
RAG to harness general-purpose LLMs for auto-
matic annotation of biomedical texts with classes
from domain ontologies. The approach does not re-
quire domain specific training, but relies on prompt-
engineering for both NER and EL tasks, integrat-
ing a retrieval mechanism to dynamically source
domain knowledge from biomedical ontologies.
We discussed the effectiveness of our approach
on clinical phenotyping and phenotype annotation
with experiments conducted on HPO GSC+ and
BIOC GS benchmark corpora. Ongoing efforts
focus on refining the prompt design to enhance per-
formance and consider the integration with other
GenAI providers. Using GPT models through Ope-
nAI’s API hinders the reproducibility of the results,
which represents the main limitation of the current
implementation. We plan to address this issue using
a local installation of open-source LLMs. Further-
more, future research activities include conducting
a comprehensive cross-domain evaluation to assess
the generalizability of the proposed solution to di-
verse application domains.
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Abstract

Optimizing antibiotic dosing recommendations
is a vital aspect of antimicrobial stewardship
(AMS) programs aimed at combating antimi-
crobial resistance (AMR), a significant pub-
lic health concern, where inappropriate dosing
contributes to the selection of AMR pathogens.
A key challenge is the extraction of dosing in-
formation, which is embedded in free-text clin-
ical records and necessitates numerical trans-
formations. This paper assesses the utility of
Large Language Models (LLMs) in extracting
essential prescription attributes such as dose,
duration, active ingredient, and indication. We
evaluate methods to optimize LLMs on this
task against a baseline BERT-based ensemble
model. Our findings reveal that LLMs can
achieve exceptional accuracy by combining
probabilistic predictions with deterministic cal-
culations, enforced through functional prompt-
ing, to ensure data types and execute necessary
arithmetic. This research demonstrates new
prospects for automating aspects of AMS when
no training data is available.

1 Introduction
Antimicrobial resistance (AMR) has become a ma-
jor public health concern, as antimicrobials are
steadily losing their effectiveness in combating
bacterial infections (O’Neill, 2016). AMR is not
limited to human medicine; it is also a growing
issue among animals (Ekakoro et al., 2022; Cum-
mings et al., 2015), who can acquire and transmit
multidrug-resistant pathogens to humans (Guard-
abassi et al., 2004). Antimicrobial Stewardship
(AMS), which has demonstrated effectiveness in
improving antimicrobial use in both human and
animal healthcare (Davey et al., 2017; Hardefeldt
et al., 2022), aims to optimize antimicrobial use to
curtail the development and spread of AMR. Ac-
curate dosing is part of this strategy, as overdosing
can lead to toxicity and under-dosing can be partic-

Clinical Note Inputs

Consultation Note:
History: Realised on Saturday that there was a wound
on left fore leg...
Examination: Not limping in consult room...1cm wound
that has been filled with granulation tissue. Swelling
approx 0.5cm
Assessment: Wound over left fore limb...
Plan: Recheck in a week.

Prescription Label Information:
Item Label: Dog 14.00 x Amoxyclav Tabs 250Mg Give
half tablet twice a day
Item Name: Amoxyclav Tabs 250Mg (100)
Weight: 10kgs
Units Dispensed: 14.0

Inferred Labels for Evaluation

Ingredient: Amoxicillin Clavulanate
Indication: Traumatic Injury
Frequency: 2 (daily doses)
Medication Size: 250 (mgs)
Dose Unit Size: 0.5 (tablets per dose)
Duration: 14 (days)
Dose: 12.5 (mg/kg)

Figure 1: Example of consultation and prescription note
along with inferred labels.

ularly perilous as it can select for AMR organisms
and lead to poor therapeutic outcomes (Roe et al.,
2012; Grill and Maganti, 2011). A pragmatic way
to improve dosing accuracy and optimizing antimi-
crobial use is through decision support systems in
clinical settings (Hardefeldt et al., 2018b,a), where
targeted dosing recommendations can be made in
real-time.

Recent developments in Large Language Mod-
els (LLMs) introduce compelling opportunities for
automated information extraction and decision sup-
port (Bubeck et al., 2023; Nori et al., 2023), as
these models obviate the need for extensive labeled
data (Brown et al., 2020). Such models can poten-
tially furnish clinicians with data-driven counsel
on optimal antimicrobial selection, treatment du-
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ration, and dosing intervals, tasks that have been
historically reliant on extensive labor-intensive la-
beled data compilation (Uzuner et al., 2010; Tao
et al., 2017). To realize the potential for LLMs
for extracting prescription elements, an essential
step is empirical assessment of their ability to ac-
curately extract relevant information from clinical
text. Given the idiosyncratic nature of LLM train-
ing, which leverages instruction tuning rather than
conventional training paradigms, it becomes vital
to also scrutinize configuration variances for per-
formance optimization (Zheng et al., 2023). Ad-
ditionally, while the task of extracting elements
out of prescriptions was explored in shared tasks
such as the 2010 i2b2 challenge (Uzuner et al.,
2011), these studies only evaluate the ability to
extract text spans without performing numerical
conversion. Converting text spans to numerical
representations and performing necessary calcula-
tions to understand the dose and duration of a given
medication are also essential to optimize antimi-
crobial use. Studies performing such numerical
conversions rely on rules-based methods which are
notoriously brittle, and only one study we identi-
fied made the corresponding algorithm available
(Karystianis et al., 2016).

We leverage the VetCompass Australia (Mc-
Greevy et al., 2017) corpus, which comprises over
50 million clinical notes from over 200 veterinary
clinics across Australia, as our primary data source.
Our goal is to extract key information such as the
active ingredient, the indication for antimicrobial
use, and the dose and duration of the therapy. We
assess the performance of LLMs in zero-shot and
few-shot learning scenarios for extracting this criti-
cal information. By exploring the feasibility of ap-
plying LLMs to the VetCompass dataset, we seek
to understand their potential in aiding dosing rec-
ommendations to support AMS. Specifically:

• We construct a veterinarian-labeled evaluation
dataset of 200 clinical notes to study medication
dosage extraction from veterinary notes;

• Using silver labels generated by a baseline BERT-
based ensemble model to provide training exam-
ples, we benchmark the performance of LLMs
against the baseline model for extracting medi-
cation dosage information, their indications, and
active ingredients;

• While we demonstrate LLMs’ proficiency in el-
ement extraction for dose and duration calcula-
tions, they falter at arithmetic operations crucial

for deriving these elements (Yuan et al., 2023).
We introduce methods to overcome this using
functional prompting to combine the probabilis-
tic predictions from the LLMs with determinis-
tic calculations for labelling dosing elements in
zero- or few-shot settings.1

2 Task & Dataset

We investigate the task of dose information extrac-
tion from veterinary clinical notes. Given textual
clinical notes, the task is to extract seven labels, in-
cluding five entity labels: active ingredient, clinical
indication, frequency, medication size, and dosage
unit size, along with two derived labels: dose and
duration. A sample clinical note, prescription label,
and the inferred target labels are illustrated in Fig-
ure 1. Prescription label information is provided
as an input for all extractions except indication, for
reasons of document length. For indication, the
model is also given the set of potential indications;
for ingredient, the set of potential ingredients. We
evaluate accuracy based on exact match between
the output label and the ground truth label.

Data Extraction and Label Creation We assem-
ble a subset of 1500 clinical records sourced from
VetCompass Australia (McGreevy et al., 2017),
focusing on cases where patients received oral
antimicrobial treatments as outlined in Hur et al.
(2019). To facilitate further calculations, the pa-
tient’s weight in kilograms and the total quantity
of medication dispensed are also extracted from
structured textual fields within the clinical records
(Appendix Table 3). We extract the inferred la-
bel elements shown in Figure 1 using RxVetBERT,
an ensemble model introduced in prior work (Hur
et al., 2020, 2022); these inferred labels are used as
silver labels for in-context learning examples. The
extracted records and labels are partitioned into
1000 records for training, 300 for development,
and 200 for test. The test set is reserved exclusively
for the final evaluation stage after all prompts have
been refined and optimized.

Gold Test Set Annotations To ensure label accu-
racy in the test set, two expert veterinarians manu-
ally annotated the data. Inter-annotator agreement
was evaluated using exact match F1 scores. Initial
IAA F1 was 0.8 for Indication, 0.985 for Dose, and

1The code and select models used in this study available at
https://github.com/havocy28/prescription-text-analyzer
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1.0 for Duration, Ingredient, Medication Unit Size
and Dose Unit Size. High agreement in dosage
and ingredient categories was due to their objectiv-
ity. Consensus on indication is more challenging,
particularly when multiple clinical events compli-
cated interpretation—e.g., in scenarios involving
post-operative complications following traumatic
injury, the indication could be correctly interpreted
as either the initial injury or subsequent complica-
tions. Any annotation discrepancies were resolved
through consensus discussion.

Indication and Ingredient Labels Indication la-
bels are based on a subset of Veterinary Nomen-
clature (VeNOM) codes, a specialized adaptation
of SNOMED for veterinary medicine (Brodbelt,
2019). We use the subset of 52 curated by (O’Neill
et al., 2019), of which 23 appear in our test set.
Ingredient labels are based on unique antimicro-
bial agents from VetCompass, which consist of 49
unique ingredients, 9 of which occur in our test set.

Dosing Elements Frequency indicates the
amount of times per day a dose is given. It must be
a numerical value such that it can be used in dosing
calculations (e.g., ‘twice daily’ is converted to 2).
Dose unit size indicates the amount of medication
and must also be converted into a numerical value
(e.g., ‘half of a tablet’ is converted to 0.5).

The medication dose and duration can then be
calculated using the formulae:

Dose =
D ×M

W
Duration =

T

F ×D

where D is the Dose Unit Size (number of tablets
or volume of liquid), M the Medication Size (tablet
size [in mg]), W the Weight of Patient (in kg), T
the Total Units Dispensed, and F the Administra-
tion Frequency. The dose calculation is designed to
tailor the medication dose to the individual’s mass
to achieve the optimal therapeutic efficacy while
minimizing the risk of toxicity. This is particu-
larly important for veterinary and pediatric patients,
where the difference in mass between patients can
vary greatly (Waldman et al., 2008).

3 Methodology
We benchmark three LLMs on this task: GPT-3.5
(Brown et al., 2020), GPT-4 (OpenAI, 2023a),
and LLAMA2-70B (Touvron et al., 2023), against
the baseline ensemble model (RxVetBERT), which
combines rule-based methods and VetBERT as de-
scribed in previous works (Hur et al., 2020, 2022).

Prompt Settings We compare the following:

Zero-shot: Utilizes text from the clinical note
and/or prescription label, along with the item name,
weight of the patient, and the number of units dis-
pensed as input. A prompt for the element being
classified is included. No examples are provided.

Few-shot Random Examples: Incorporates
randomly-sampled example prescriptions or exam-
ination text and inferred labels from the training
set as in-context examples (Brown et al., 2020).
To manage token limits, we include three labeled
examples for prescription prompts and two for in-
dication prompts—the examination text required
for the indication prompt were much longer.

Few-shot Similar Examples: Instead of random
examples, we use text similarity as a selection cri-
terion to retrieve examples for in-context learning
(Zhang et al., 2023; Shi et al., 2023; Lewis et al.,
2021). For the retriever, we employ a distilled
SBERT model (Wang et al., 2020) to encode text
and retrieve examples based on cosine similarity.

Functional Prompting: In the zero-shot setting,
we leverage functional prompting (OpenAI, 2023b)
with GPT-3.5 and GPT-4 to combine probabilis-
tic outputs with rule-based calculations, enforcing
data types for extracted prescription attributes and
executing formulaic calculations for Dose and Du-
ration, as detailed in §2. We compare these results
with LLAMA2-70B’s configurations for extracting
dose unit size and frequency. Additionally, we fine-
tune a VetBERT model (Hur et al., 2020) with silver
label data to isolate these attributes, and perform
deterministic calculations for dose and duration.

Prompt Tuning To improve the performance of
calculating the dose and duration of therapy, we
include the formulas for the dose and duration cal-
culations as part of the prompt. The prompts used
for evaluation were additionally optimized using
the framework proposed by Yang et al. (2023) to
iteratively generate a set of prompts using GPT-4,
test those prompts on a subset of records from the
training set until no improvements were observed
after multiple iterations, and keep the prompt with
highest accuracy for each element. Final prompts
can be found in Appendix A.2.

Postprocessing We remove non-numerical text and
retain the first float in the model’s output for en-
hanced accuracy, except for indication and ingredi-
ent which are expected to be strings.
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Ingredient Indication Dose Duration Frequency Dose Unit Size
RxVetBERT 100 80.0 89.1 88.0 97.0 89.0

Few-Shot Similar Examples
GPT-3.5 97.5 56.5 29.5 70.0 98.0 98.0
GPT-4 99.5 75.0 85.0 91.0 98.5 99.5
LLAMA2-70B 94.0 9.0 12.5 58.0 97.5 95.5

Few-Shot Random Examples
GPT-3.5 67.0 73.5 26.0 61.0 98.5 97.0
GPT-4 100 73.5 88.5 84.5 98.5 100
LLAMA2-70B 42.0 27.5 9.5 61.0 97.5 92.5

Zero-Shot
GPT-3.5 80.5 35.0 3.5 52.5 12.0 21.0
GPT-4 97.5 69.5 24.0 75.5 97.5 55.0
LLAMA2-70B 21.0 0.0 5.0 57.5 98.0 59.5

Table 1: Model accuracy (%) across multiple settings, benchmarked against RxVetBERT.

Dose Duration Freq. Dose Unit
Size

Finetuned
VetBERT 90.0 88.0 97.0 90.5

Few-Shot Similar Examples
LLAMA2-70B 95.5 93.5 97.5 95.5

Zero-Shot
GPT-3.5 94.5 92.5 98.0 98.0
GPT-4 99.5 98.0 98.5 99.5

Table 2: Evaluation of GPT-3.5 and GPT-4 in a zero-
shot setting using functional prompts to enforce numeri-
cal data types, compared to VetBERT trained on silver
labels and LLAMA2-70B in the Few-Shot Similar setting.
Dose and Duration are computed deterministically for
all model variants.

4 Results and Discussion
Overall, our experiments find that LLMs are highly
effective at extracting and interpreting numerical
elements (e.g., Frequency and Dose Unit Size)
necessary to calculate the dose and duration (Ta-
ble 1). GPT-3.5 and GPT-4 show high accuracy
in the zero-shot setting and LLAMA2-70B using in-
context learning examples. For all models, inte-
grating probabilistic outputs with deterministic cal-
culations through functional prompting achieves
much higher accuracy for dose and duration values
compared to directly prompting models for these
values (Table 2). Functional prompting provides
an effective way to ensure more reliable outcomes
in tasks requiring numerical computations when
those computations can be explicitly described.

The much smaller finetuned VetBERT achieves
modest results, similar to silver label accuracy for
dose unit size and frequency of administration,

which suggests it could achieve higher accuracy
with more accurate training labels. For active in-
gredient, we find LLMs to be highly effective with
appropriate prompt tuning. Error analysis of ini-
tial results found that there were many errors for
multi-ingredient medications, e.g., Amoxycillin
Clavulanate incorrectly identified as Amoxycillin.
Through prompt tuning, we identified the most ef-
fective way to overcome this as including the fol-
lowing prompt text: “focus on the active ingredi-
ents and note them all if they were present.”

Nonetheless, accurately pinpointing the primary
indication for antimicrobial administration contin-
ues to be a challenging task, as evidenced by the
lower inter-annotator agreement score for indica-
tions as discussed in §2, and the relatively poor
performance of LLMs on this subtask. A closer
examination of the errors reveals that they largely
occurred in instances where the indication is am-
biguous, similar to the complications noted earlier.
Refining the labeling schema for indications is a
promising avenue for mitigating this issue.

Conclusion This paper provides a framework for
LLMs to extract essential prescription data from
veterinary text, such as dose, duration, and active
ingredients for supporting AMS efforts. We over-
come limitations in calculating elements such as
dose and duration by integrating probabilistic out-
puts with deterministic calculations through func-
tional prompting, even in zero-shot settings. Future
work should consider evaluation for human clinical
applications, given the potential contributions of
this approach to broader healthcare.
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Limitations

The efficacy of in-context learning for models in the
few-shot similar setting may be constrained by the
precision of RxVetBERT, which was employed to
furnish the examples used in the prompts. Random
sampling was used to create a test set mirroring the
full dataset population; this limited the diversity of
specific disease syndromes in the test data, and may
not provide a complete assessment of the models’
capabilities.

LLMs are still prone to errors, even though
they demonstrate high performance on evaluation
datasets. When using an LLM for clinical deci-
sions, it is critical that the final decisions involve
clinicians as LLMs in their current state may still
fall short. While our framework excels in identi-
fying active ingredients, it faces challenges in as-
certaining exact indications for medication, a more
subjective task, signaling a potential direction for
future work.
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A Appendix

A.1 Prompt Design Details

This section details the prompt template used and
provides an example prompt. Each initial prompt
was generated using GPT-4 by prompting the model
to generate 10 additional prompts for accomplish-
ing the task. Each task was tested using GPT-3.5
and the process was repeated until the additional
prompts were no longer improving the performance
after 3 successive iterations. For dose and duration,
which also required the steps for performing arith-
metic, the formula for the necessary arithmetic was
provided.

The prompt templates were designed as follows:
{PROMPT}

{Examples} (omitted in zero-shot settings)

{Instance to label}

Here is an example prompt for dose under the
few-shot random setting:

Output the dosage in mg/kg. Dose is determined
by multiplying the total dose units given per
administration multiplied by the size of the
medication in mg, dividing by the weight of the
patient in kg to determine the mg per kg

** Example:
** Item Label: Disp By: ***: Dog 21.00 x Clinacin

Tabs 150Mg One \& half (1.5) tablets twice a
day with food ***

** Item Name: Clinacin Tabs 150Mg (100) Clindamycin
** Weight: 30kgs
** Medication Unit Size: 150.0

** Units Dispensed: 21.0
** Dose: 7.5

** Example:
** Item Label: PM:Disp:***: Cat 7.00 x Baytril 50Mg

Tab Half (1/2) tablet once a day Give until
finished. ***

** Item Name: Baytril 50Mg Tab (100) (enrofloxacin)
** Weight: 5kgs
** Medication Unit Size: 50.0
** Units Dispensed: 7.0
** Dose: 5

** Example:
** Item Label: Vet: ***: *** : Dog 10.00 x Veraflox

Dog 60mg Give ONE (1) tablet ONCE a day Give
until finished; ***

** Item Name: Veraflox Dog 60mg (70) (pradofloxacin)
** Weight: 30kgs
** Medication Unit Size: 60.0
** Units Dispensed: 10.0
** Dose: 2

** Instance to Label:
** Item Label: Vet: ***: Dog 10.00 x Clavulox Tabs

500Mg One (1) tablet twice a day Give until
finished. with food ***

** Item Name: Clavulox (Clavulanic Acid) Tabs 500Mg
(100) **\\ Weight: 29kgs

** Medication Unit Size: 500.0
** Units Dispensed: 10.0
** Dose:

A.2 Prompts Used

This section details the example prompts used for
each label in the task.

• Active Ingredient: “Referencing the trade
name, choose the active ingredient from the In-
gredients List that forms the medication. For
combination drugs, ensure to select the ingre-
dient with all components.”

• Clinical Indication: “Using the provided list
of possible indications, give the most likely
indication for the antimicrobial administration.
If unclear from the text, label as unknown.”

• Frequency: “How many times per day is the
medication given?”

• Medication Size: “What is the medication
unit size in mg?”

• Dosage Unit Size: “How many units of the
medication are given per dose?”

• Overall Dose: “Output the dosage in mg/kg.
Dose is determined by multiplying the total
dose units given per administration multiplied
by the size of the tablet in mg, dividing by the
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RxVetBERT 100 80.0 89.1 88.0 97.0 89.0 - - -

Few-Shot Similar Examples
GPT-3.5 97.5 56.5 29.5 70.0 98.0 98.0 90.5 100 100
GPT-4 99.5 75.0 85.0 91.0 98.5 99.5 100 99.5 100
LLAMA2-70B 94.0 9.0 12.5 58.0 97.5 95.5 100 100 100

Few-Shot Random Examples
GPT-3.5 67.0 73.5 26.0 61.0 98.5 97.0 99.5 100 100
GPT-4 100 73.5 88.5 84.5 98.5 100 100 99.5 100
LLAMA2-70B 42.0 27.5 9.5 61.0 97.5 92.5 100 100 100

Zero-Shot
GPT-3.5 80.5 35.0 3.5 52.5 12.0 21.0 69.5 94 100
GPT-4 97.5 69.5 24.0 75.5 97.5 55.0 98.5 100 100
LLAMA2-70B 21.0 0.0 5.0 57.5 98.0 59.5 92.0 99.5 100

Table 3: Accuracy (%) of Large Language Models (LLMs) across multiple settings for all prescription elements,
benchmarked against the RxVetBERT baseline ensemble methods.

weight of the patient in kg to determine the
mg per kg.”

• Treatment Duration: “Calculate the length
of administration (in days) for the given pre-
scription. To determine the length of admin-
istration, find the total number of tablets or
doses dispensed and divide by the number of
doses given per day.”

A.3 Additional Evaluations

While evaluations were performed on all aspects of
the prescription text, we omitted the performance
of the elements which could be extracted directly
out of the text, which were required for the dose
calculations but did not require any conversion into
numerical values, this included the Weight, Total
Units, or Medication Size. We have included this
in Table 3.
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Abstract
The interplay between microbiota and dis-
eases has emerged as a significant area of re-
search facilitated by the proliferation of cost-
effective and precise sequencing technologies.
To keep track of the many findings, domain
experts manually review publications to ex-
tract reported microbe-disease associations and
compile them into knowledge bases. How-
ever, manual curation efforts struggle to keep
up with the pace of publications. Relation
extraction has demonstrated remarkable suc-
cess in other domains, yet the availability of
datasets supporting such methods within the
domain of microbiome research remains lim-
ited. To bridge this gap, we introduce the
Microbe-Disease Relation Extraction Dataset
(MiDRED); a human-annotated dataset contain-
ing 3,116 annotations of fine-grained relation-
ships between microbes and diseases. We hope
this dataset will help address the scarcity of
data in this crucial domain and facilitate the
development of advanced text-mining solutions
to automate the creation and maintenance of
microbiome knowledge bases.

1 Introduction

Microbiota play a pivotal role in human health in
diverse environments such as the gut, skin, and oral
cavity, influencing various physiological processes
and disease mechanisms (Cho and Blaser, 2012;
Lynch and Pedersen, 2016; Singh et al., 2017). The
significance of microbiome research is underscored
by its immense potential to unlock new understand-
ings and treatments for various health conditions
(Stefano et al., 2022; Yu et al., 2022; Kustrimovic
et al., 2023). For example, perturbations in gut
microbiota composition, exemplified by fluctua-
tions in Bacteroidetes and Firmicutes populations,
have been linked to obesity and type 2 diabetes,
respectively, providing valuable insights into the
pathophysiology of these conditions (Baek et al.,
2023; Kusnadi et al., 2023). The growth of micro-
biome research introduces significant challenges

in knowledge consolidation and utilization (Badal
et al., 2019; Huang et al., 2022). Current efforts
often involve domain experts spending countless
hours manually curating experimentally validated
associations between diverse microbiota and dis-
eases to form knowledge bases (KBs) (Li et al.,
2021; Dai et al., 2021; Qi et al., 2022; Zhang et al.,
2022). These KBs are invaluable for researchers
and practitioners, providing a consolidated view of
current findings, yet their maintenance is becom-
ing unsustainable due to the rapid pace of publi-
cation. Advanced text-mining methods designed
to extract knowledge from biomedical texts are a
well-established area of research (Wei et al., 2016;
Zhang et al., 2018; Hogan et al., 2021; Xu et al.,
2022; Li, 2022; Lai et al., 2023; Liu et al., 2023).
Methods often leverage human-annotated data to
train and validate a model’s performance; however,
robust datasets annotating microbe-disease associa-
tions are lacking.

To address these challenges, we introduce
MiDRED; a comprehensive text-mining dataset
designed to automate the construction and main-
tenance of microbiome KBs. MiDRED consists
of 3,116 annotated relationships between microbe-
disease pairs extracted from 1,655 scholarly arti-
cles. We specifically craft relation classes to align
with classes used in major microbe-disease KBs
to ensure MiDRED’s compatibility with existing
databases. Importantly, MiDRED annotates nega-
tive instances (e.g., a “no relation” class) to miti-
gate positive bias from trained models (Zhang et al.,
2017). MiDRED also includes span-level annota-
tions of entities, which are crucial for training in
Named Entity Recognition (NER) and Named En-
tity Normalization (NEN) tasks. See Table 2 for
statistics on the complete dataset. We conducted
experiments on MiDRED using a variety of gener-
ative and discriminative large language models to
obtain robust baselines to serve as a foundation for
future research. We openly release the MiDRED
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dataset on Hugging Face.1

2 Related Work

MiDRED is designed as a text-mining dataset
and draws inspiration from numerous biomedi-
cal (Khettari et al., 2023; Bossy et al., 2019; Luo
et al., 2022; Li et al., 2016; Taboureau et al., 2010;
Janssens et al., 2018) and general domain text-
mining datasets (Zhang et al., 2017; Stoica et al.,
2021; Yao et al., 2019). Text-mining datasets typi-
cally consist of manually annotated texts which can
be used to train and evaluate automated NER, NEN,
and relation extraction algorithms (Zhang et al.,
2017; Yao et al., 2019). Works such as Herrero-
Zazo et al. (2013), Luo et al. (2022), González et al.
(2019) are similar in task but differ either in entity
types, association types, or both.

The Human Microbe-disease Dataset (HMDAD)
(Ma et al., 2016) is a database of associations be-
tween human microbes and diseases. However, the
dataset does not provide span-level information de-
noting entity pairs which limits the dataset’s use in
training NER and NEN algorithms. Microbes in
HMDAD were primarily curated at the genus level
due to the sequencing technologies available when
the dataset was annotated. MiDRED benefits from
advancements in sequencing technologies, allow-
ing for a majority (95.4%) of microbial concepts to
be annotated at the species level. Furthermore, HM-
DAD relation annotations are done at the article-
level. Article-level annotation is commonly used
in microbiome knowledge bases (Janssens et al.,
2018; Cheng et al., 2019; Li et al., 2021; Skoufos
et al., 2020) and fails to denote the location of tex-
tual evidence supporting an association, making it
challenging to train automated text-mining tools.
Lastly, MiDRED differs from HMDAD in that it
does not limit its annotations based on host type,
leading to more diverse associations.

The Species-species Interaction (SSI) dataset
(Khettari et al., 2023) is a dataset that annotates bi-
nary associations between species of microbes. SSI
does not provide human-annotated entities and re-
lies on automated methods for NER. MiDRED dif-
fers from SSI in entity types and the number of re-
lation classes—in MiDRED, we annotate four rela-
tion classes (see Section 3.2 for more details), mov-
ing beyond binary associations. Bacteria Biotope
(BB 2019) (Bossy et al., 2019) is an NER/RE

1https://huggingface.co/datasets/
shangdatalab-ucsd/midred

dataset featuring microbes, diseases, habitats, and
locations. BB 2019 seeks to mine associations
of microbes and environments (habitats) to better
understand how microbes interact within various
environments. MiDRED, in contrast, focuses on
how microbes relate to diseases more generally
and offers a large number of annotated entities and
relations.

3 Methods

3.1 Data Collection and Entity Normalization

We collect an initial set of abstracts from PubMed
(Sayers et al., 2020) using the PubTator tool (Wei).
To ensure the subset of abstracts are relevant to
microbiome studies, we prioritize PMIDs found
within the Disbiome database (Janssens et al.,
2018). From this subset, we randomly select ab-
stracts and annotate microbes and diseases. Micro-
bial entities were normalized to the List of Prokary-
otic Names with Standing in Nomenclature (LPSN)
ontology (Parte et al., 2020). Disease entities were
normalized to the Comparative Toxicogenomics
Database (CTD)(Davis et al., 2020). See Appendix
A.1 for details about our entity annotation process.

3.2 Relation Annotation

As stated in Section 1, a primary goal of MiDRED
is compatibility with existing microbiome KBs. As
such, we align our relation classes to those used by
major microbiome KBs and annotate four classes:
connecting, contrasting, pathogen, and no rela-
tion. The connecting class aligns with positive
classes (e.g., “associated,” “increase,” and “posi-
tive”), signifying a microbe is associated with a
disease, while the contrasting class signifies a mi-
crobe that contrasts with a disease, aligning defi-
nitionally to negative classes (e.g., “reduce,” “de-
crease,” and “inhibit”) (Qi et al., 2022; Janssens
et al., 2018; Li et al., 2021; Zhang et al., 2022; Dai
et al., 2021). We also include pathogen, which is a
stronger, more causal relation compared to connect-
ing, as well as no relation to help prevent positive
bias. Each instance is double annotated by different
annotators and conflicting annotations are resolved
in a third annotation round. With this systematic
approach, we achieved a high inter-annotator agree-
ment (Fleiss’ Kappa) of 0.710. See Appendix A.1.1
for additional details about the relation annotation
process, class definitions, and examples (Table 7).

MiDRED’s data splits are constructed by col-
lecting the set of unique fact-triples (e.g., ⟨head
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Dataset Entity Types Relation
Classes

Host
Type

Negative
Instances

Entity
Spans # Microbes # Relation

Instances
HMDAD (Ma et al., 2016) Microbes/diseases 2 Human ✕ ✕ 292 483
SSI (Khettari et al., 2023) Microbes/microbes 2 Human ✔ ✔ N/A* 999
Bacteria Biotope (Bossy et al., 2019) Microbes/diseases/habitats/locs 2 Varied ✕ ✔ 1,760 2,639
MiDRED Microbes/diseases 4 Varied ✔ ✔ 5,590 3,116

Table 1: A comparison between our proposed dataset, MiDRED, and other microbiome text-mining datasets.
MiDRED features a multi-class relation classification task with annotated negatives (the “no relation” class) and
span-level entity annotations (*the SSI dataset does not provide manually annotated entities).

entity, relation, tail entity⟩). Unique triples are di-
vided into train, development, and test splits using
0.8/0.1/0.1 ratios, resulting in no overlapping fact-
triples between data splits. See Appendix A.2 for
statistics on each data split.

Documents: 1,655
Entities: All 12,027 (678)

Microbes 5,590 (197)
Diseases 6,437 (482)

Relationships: All 3,116
Connecting 1,744
Contrasting 161
Pathogen 920
No relation 291

Table 2: Counts of annotated entities and relationships
in MiDRED. Parenthesized values denote the number
of unique concepts. For detailed statistics on train, de-
velopment, and test splits, see Appendix A.2.

4 Baseline Experiments

We explore the performance of popular NLP mod-
els using MiDRED on Named Entity Recognition
(NER) and Relation Extraction (RE) tasks to estab-
lish the baseline performance and highlight chal-
lenging areas for future development.

4.1 Named Entity Recognition

In our NER experiments, we treat each entity men-
tion span individually. We tested three NER mod-
els on our corpus: BiLSTM-CRF (Hochreiter and
Schmidhuber, 1997), BioBERT-CRF (Lee et al.,
2019), and PubMedBERT-CRF (Gu et al., 2020).
Sentences were transformed into hidden state vec-
tor sequences by the respective models. Each
model was tasked with predicting the labels for
each token within these sequences. Subsequently,
a fully connected layer was employed to calculate
the network score, and a conditional random field
(CRF) layer decoded the optimal tag path from all
possible paths, utilizing the BIO (Begin, Inside,

Outside) tagging scheme to categorize each token
accurately. See Appendix A.4 for hyperparameter
details.

Model P R F1
BiLSTM-CRF 0.877 0.891 0.884
PubMedBERT-CRF 0.947 0.972 0.959
BioBERT-CRF 0.957 0.981 0.969

Table 3: Precision, recall, and F1-micro scores of vari-
ous NER models on the MiDRED test set. Results are
averages from three runs.

4.2 Relation Extraction
For RE experiments, we explore fine-tuning
encoder-only biomedical language models (Bi-
oLinkBERT (Yasunaga et al., 2022) and PubMed-
BERT (Gu et al., 2020)). We send representations
for the [CLS] token through a fully connected layer
trained with cross-entropy. Additionally, we ex-
plore the current in-context learning abilities of
frontier LLMs (GPT 3.5 (OpenAI, 2021) and GPT
4 (OpenAI et al., 2024))2. For details on the prompt
we use, see Appendix A.5.

5 Results and Discussion

Figure 1 displays the top ten microbes and diseases
and the distribution of relation classes in MiDRED.
We observe a long-tail distribution for both entity
types. The distribution of microbes, in particular,
features a steep drop-off in mention frequency after
the most mentioned microbe, Helicobacter pylori,
indicating that current research focuses on a rela-
tively narrow set of microbes.

We observe relatively high scores for both the
NER (Table 3) and RE (Table 4) experiments when
looking at performance across all test instances us-
ing small, fine-tuned biomedical language models
(PubMedBERTbase and BioLinkBERTlarge), indi-
cating the effectiveness of modern information ex-

2Specifically, we use gpt-3.5-turbo-16k-0613 and gpt-4-
turbo-preview via OpenAI’s API, accessed on 5/3/2024.
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Figure 1: Counts of the top ten most frequent (a) microbial and (b) disease concepts, as well as (c) the distribution
of relation classes found in the combined splits of MiDRED.

Model P R F1
PubMedBERTbase 0.867 0.855 0.861
BioLinkBERTlarge 0.907 0.904 0.905
GPT 3.5 0.542 0.562 0.552
GPT 4 0.716 0.725 0.721

Table 4: Precision, recall, and F1-micro scores of rela-
tion extraction models on the test set.

Model Q1 Q2 Q3 Q4
PubMedBERTbase 0.895 0.852 0.800 0.571
BioLinkBERTlarge 0.929 0.839 0.801 0.601
GPT 3.5 0.512 0.533 0.402 0.600
GPT 4 0.696 0.710 0.606 0.667

Table 5: F1-micro scores of RE models on test instances
decomposed into quartiles based on microbe frequency,
where Q1 is the performance on triples containing the
top 25% most frequent microbes across all of MiDRED,
followed by Q2, Q3, and finally, the least frequent quar-
tile of microbes in Q4.

traction methods. Large, general domain language
models (GPT 3.5 and GPT 4) leveraging in-context
learning struggle to identify relations compared to
smaller biomedical language models. This aligns
with Peng et al. (2024)’s findings, offering addi-
tional evidence that large language models have
yet to overtake smaller language models in infor-
mation extraction tasks.

Furthermore, Table 5 shows a steady drop-off in
PubMedBERTbase and BioLinkBERTlarge’s perfor-
mance across quartiles of test triples decomposed
based on microbe frequency, while the performance
of GPT 3.5 and 4 remains relatively stable. This
indicates that the smaller models generalize poorly
and signify an area for future development.

Annotation Challenges: Numerous challenges

were encountered when annotating microbes, dis-
eases, and their associations. Challenges with
acronyms and abbreviations arose due to variations
in naming conventions, which sometimes differed
from standard classifications. Relation types posed
difficulties in accurately describing the links be-
tween microbe-disease pairs, particularly in cases
involving numerical data or complex biological se-
mantics. We record these and other challenges in
Appendix A.3 in hopes of improving future ver-
sions of MiDRED and biomedical annotation ef-
forts in general.

6 Conclusion

Microbiota, integral to human health and prevalent
in various body environments like the gut, skin,
and oral cavity, are at the forefront of promising
research avenues that could revolutionize our under-
standing and treatment of numerous health condi-
tions. However, the manual curation of microbiome
knowledge bases, though invaluable, faces scala-
bility challenges in keeping pace with the rapid
influx of new research findings. In this paper, we
introduce MiDRED, a dataset that aims to bridge
this gap by providing a resource to help automate
the creation and maintenance of microbiome bases.
MiDRED can be used to train and validate state-
of-the-art NLP models on various tasks such as
named entity recognition, named entity normaliza-
tion, bacteria-disease relationship extraction, and
knowledge graph creation. We hope MiDRED will
unlock new applications and innovations within
microbiome research.
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Limitations

MiDRED is a sentence-level annotated dataset,
which inherently limits its scope to capturing re-
lationships expressed within individual sentences.
Consequently, the dataset does not encompass inter-
sentence relationships, which could provide addi-
tional context and depth to understanding microbe-
disease interactions. Furthermore, MiDRED main-
tains a focused thematic scope, exclusively concen-
trating on relationships between microbes and dis-
eases. While beneficial for depth and specificity in
this area, this focus excludes potential relationships
involving other biological entities or environmental
factors that could influence or be influenced by the
microbe-disease dynamics. Such annotations could
offer deeper insights into the context and contin-
gencies of the documented relationships. We aim
to address these limitations in future versions of
the dataset.
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In the development and release of the MiDRED
dataset, we have carefully considered ethical as-
pects and do not anticipate any major ethical con-
cerns. The dataset is constructed from publicly
available academic articles, focusing solely on the
relationships between microbes and diseases with-
out involving individual patient data or personal
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A Appendix

A.1 Annotation Details
We developed an in-house annotation tool with
functionality similar to open-source annotation
tools such as Islamaj et al. (2020) to aid in anno-
tating entities and relationships. When annotating
articles, annotators can tag text and select “disease”
or “microbe” based on the entity they intend to
annotate. Depending on their choice, a select box
displays a list of microbes from the List of Prokary-
otic names with Standing in Nomenclature (LPSN)
(Parte et al., 2020) dictionary or diseases based on
the Comparative Toxicogenomics Database (CTD)
(Davis et al., 2020) dictionary, allowing for the se-
lection of an ontology concept. The annotation tool

presents annotators with a list of potential microbe
or disease concept matches sorted based on the
mention text’s similarity to the concepts and con-
cept synonyms in the corresponding ontology. In-
dividual diseases and microbe concepts can also be
searched for using quotes. The selection of either
the disease or microbe allows for the normalization
of entities.

Additionally, the annotation tool we developed
has multiple features to aid the annotating process.
It underlines the annotated text based on selected
entities, with microbe entities underlined in purple
and disease entities underlined in orange, allowing
for quick verification by the annotator. Further-
more, annotators can quickly cycle through, delete,
and clear annotations using select keys, decreasing
the annotating process’s time-intensiveness.

Normalization is a classification process that
classifies the different named entities of the same
disease or microbe into a unique concept. Annota-
tors were instructed to label microbes and diseases,
including full names, abbreviations, synonyms, and
acronyms. Adjectives and entities beyond LPSN
and CTD databases were not annotated.

A.1.1 Annotating Relationships
After our entity annotation process, single sen-
tences containing at least one microbe-disease pair
were extracted and split into two subgroups. Sen-
tences that had 80 characters or less and contained
a rule-based keyword (Table 6) were placed into
Group A, while all other sentences were placed
into Group B. Group A sentences were then given
pre-labels by rule-based algorithms (Table 6) con-
cluded from observations in pilot annotation trials.
Each assigned relation type was later manually ver-
ified by human annotators. Sentences in Group
B were all manually labelled with relation types
by human annotators. Each sentence across both
groups were doubly-annotated to ensure the accu-
racy of the annotations. Instances of conflicting
annotations were re-visited and relabeled in a third
round of annotation. Using this process, we ob-
serve an inter-annotator agreement (Fleiss’ Kappa)
of 0.710, indicating high annotator agreement.

In pilot observation trials, we found that in de-
scribing relationships in which the microbial entity
favored the development of the disease entity, a pos-
itive relation type was insufficient to encompass all
associations. Thus, we employed two positive rela-
tion types of pathogen and connecting. Pathogen
is used for more explicitly defined cases, where the
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Relation type Rule-based Keywords
Connecting Associated, antibody, initiate,

increase, develop, positive, ac-
celerate, triggered, recognized,
identify, colonized, diagnose,
eradication+decrease, isolate

Contrasting Reduce, decrease, erad-
ication+increase, in-
hibit+proliferation, in-
duced+delayed, inhibit

Pathogen Caused, pathogen, agent, in-
duce, due to

No relation Not associated with, not
present in, no effect against

Table 6: Keywords for pre-labelling rules used for anno-
tating relationships.

microbe is a pathogen or causative agent for the
disease or characterizes a particular sub-type of the
disease. Connecting is used when the microbe is
associated with or is a risk factor for the disease.
See Table 7 for definitions of each relation class.

A.2 Data Splits
As mentioned in Section A.1.1, MiDRED is split
using a holdout set of fact triples. This ensures that
trained models cannot simply memorize relation-
ships between head and tail entities. In Table 8, we
show the statistics of each data split in MiDRED.

A.3 Challenges
In this section, we openly discuss the challenges
we faced in annotating microbe and disease entities
and associating relations. We hope these lessons
will inform subsequent versions of MiDRED and
future biomedical annotation efforts.

A.3.1 Challenges with acronyms and
abbreviations:

While microbial and disease entities in this dataset
were fully normalized to respective classification
standards, challenges and limitations were encoun-
tered during the annotation process. As a nomen-
clature convention, bacterium names are often ab-
breviated after the first introduction. As a result,
bacteria mentions had to be normalized, with its
abbreviated form, which could differ from paper
to paper. Similar challenges were found in dis-
ease acronyms, while compounded and embedded
naming involving disease acronyms brings extra
complexity. Moreover, while bacteria mentions

follow relatively rigid and uniform nomenclature
standards, disease mentions are more flexible and
versatile according to authors’ naming and writ-
ing style. With the differing naming techniques of
authors, disease and bacteria entities were occasion-
ally not encompassed by LPSN or CTD dictionaries
and, therefore, unable to be annotated. Unnormal-
ized entities were excluded from MiDRED and
thus could be missed in developing computational
models.

A.3.2 Challenges with relation types:
We found that pathogen, connecting, contrasting,
and no relation relation types could not describe
the linking relation between all microbe-disease
pairs. As mentioned in the Limitations section, an-
notation units were annotated in single sentences,
which led to lost context and instances where we
could not determine a relation type and associa-
tions. A similar problem occurred when numbers
were involved, for instance:

Helicobacter pylori was found in 12 of
13 AIDP patients (92%), and in 10 of
20 controls (50%), (P = 0.02). (PMID:
15679702)

Although the four relation types, particularly
connecting and contrasting, could be inferred from
cases in which numbers were involved, more often
than not, we felt that the numbers were taken out
of context, and perceived relation types could be
inaccurate from just the sentence. Consequently,
we decided not to label all cases in which numbers
were needed to determine relation types.

As the proposed four relation types were used
to successfully label most annotation units, two
commonly encountered complexity issues need to
be further addressed in future annotation efforts:
1. Relations Dependent on Quantitative Seman-

tics: As connecting and contracting relation
types categorize the directions of associated de-
velopment, which are often hinted at by key-
words, more specific descriptions of experi-
ments are often presented in quantitative data.
As a single sentence can only provide limited
information, the implication of the quantities is
sometimes indefinite, as in the following exam-
ple:

During the study period, a total of
373 blood cultures were obtained
from patients in whom brucellosis
was suspected, and 27 (7.2%) of
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Relation type Definition Example

Connecting The microbe is a risk fac-
tor for the development of
the disease.

BACKGROUND: The presence of My-
coplasma pneumoniae has been associated
with worsening asthma in children.

The microbe is associated
with the disease.

The Helicobacter pylori (H. pylori) bacterium
has been classified by the World Health Orga-
nization as a type 1 carcinogen with associa-
tions to the development of peptic and gastric
ulcers, gastric carcinoma and primary B-cell
lymphoma.

Contrasting The microbe or substances
extracted from it is bene-
ficial for the treatment of
the disease.

Bacille Calmette-Gurin (BCG), an attenuated
strain of Mycobacterium bovis, is one of the
most effective agents in the treatment of su-
perficial bladder cancer.

The microbe is beneficial
in the improvement of the
disease.

CONCLUSION: Lactobacillus reuteri effec-
tively reduced the duration of acute diarrhea
and hospital stays in children hospitalised with
acute gastroenteritis.

No relation No association between
disease and microbe.

A high density of H. pylori colonization in
the gastric mucosa was not associated with a
higher frequency of dyspepsia (P > 0.80).

Pathogen The microbe is a
pathogen/causative
agent for the disease.

Orientia tsutsugamushi (O. tsutsugamushi),
the causative agent of scrub typhus, is an ob-
ligate intracellular pathogen.

The microbe name is used
immediately preceding the
disease name to form a
specific subtype of the dis-
ease

Fifteen children (41%) had ulcers associated
with H. pylori gastritis, including all 10 chil-
dren with a chronic ulcer.

Table 7: Classification standards for microbe-disease relation annotation used when annotating MiDRED. Annotated
microbe and disease concepts are in bold.

them, drawn from 21 different pa-
tients, were positive for B. melitensis.
(PMID: 7989539)

2. Relations Dependent on Biological Seman-
tics: The relations between microbe and host
are essentially dynamic biological processes
that, in many cases, can hardly be interpreted
without implementing biological semantics. For
instance, concepts such as vaccine, attenuated
strains, microbe eradication, and co-infections
are sometimes used in sentences, and excluding
these semantics in the annotation process often

leads to incorrect labels. Below is an example
that our annotators found ambiguous without
additional context from biological semantics:

These results demonstrate that B.
burgdorferi-specific T lymphocytes
primed by vaccination with a whole-
cell preparation of inactivated B.
burgdorferi sensu stricto isolate C-
1-11 in adjuvant are involved in the
development of severe destructive
arthritis. (PMID: 7890402)

In the current version of MiDRED, such instances
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Annotations Train Dev Test All
Documents 1,521 521 549 1,655
Entities All 8,985 (613) 1,452 (311) 1,590 (310) 12,027 (678)

Microbes 4,182 (179) 687 (100) 721 (95) 5,590 (197)
Diseases 4,803 (435) 765 (212) 869 (216) 6,437 (482)

Relationships All 2,169 447 500 3,116
Connecting 1,224 248 272 1,744
Contrasting 100 29 32 161
Pathogen 635 132 153 920
No relation 210 38 43 291

Table 8: Counts of entities and relationships annotated in the MiDRED dataset across the train, development, and
test data splits. Parenthesized values denote counts of unique concepts.

are excluded from the dataset as they cast chal-
lenges for human annotators and the design of the
classification standards. We intend to rectify these
issues in future versions of the dataset.

A.3.3 Challenges with relation annotations:
There were some limitations to the rule-based pre-
labelling that we employed, as we could not as-
sign rule-based pre-labels to Group B sentences.
The reasoning behind this was twofold. Group B
housed all the sentences without rule-based key-
words (Table 6), so we could not give pre-labels by
rule-based algorithms as we had done with Group A.
Furthermore, Group B sentences were longer, and
relations dependent on biological semantics were
encountered more often, which required human
annotators to interpret individual cases. Based on
these challenges, we decided to forego rule-based
pre-labeling on Group B sentences, resulting in
these sentences being subject to more ambiguity.

A.4 Baseline NER Settings
For our NER experiments in 4, we use the fol-
lowing hyperparameter settings: 1,024 embed-
ding dimensions, 512 max sequence length, and
64 batch size. We trained BioLinkBERT-CRF
and PubMedBERT-CRF over three epochs and the
BiLSTM-CRF for ten epochs.

A.5 GPT 3.5 and GPT 4 Prompts
GPT 3.5 and GPT 4 often perform better on tasks
with the help of in-context learning (Wei et al.,
2023; Wang et al., 2023). We construct a prompt
that lists all relation classes and offers a couple of
examples of extracted relationships. The following
is the prompt we used for soliciting predictions for
our tests:

You are a relation extraction expert tasked
with labeling relationships between head
and tail entities in a sentence. Each
example below has the head and tail entities
appended to the sentence in the form: (head:
head entity) (tail: tail entity). Predict if the
sentence expresses one of the four following
relation classes: “no relation”, “connecting”,
“contrasting”, “pathogen”. The following
are some examples:

### Sentence: At day 0 , 25 acute ul-
cers were associated with chronic H. pylori
gastritis ; one patient had neither gastritis
nor H. pylori infection (head: “H. pylori”)
(tail: “ulcers”)

### Label: connecting

. . . [We include 4x examples of each
relation class in the prompt.] . . .

### Sentence: Significant resistance
enhancement of mice pretreated with P.
acnes against vaccinia virus or herpes
simplex virus type 1 infection was observed.
(head: “P. acnes”) (tail: “herpes simplex”)

### Label: ?

GPT 3.5 and GPT 4 responses were then aligned
to ground truth classes via partial string matching
for evaluation.
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Abstract

In this short position paper, we highlight the
importance of numbers in clinical text. We
first present a taxonomy of number variants.
We then perform corpus analysis to analyze
characteristics of number use in several clinical
corpora. Based on our findings of extensive use
of numbers, and limited understanding of the
impact of numbers on clinical NLP tasks, we
identify the need for a public benchmark that
will support investigation of numerical process-
ing tasks for the clinical domain.

1 Introduction

Numbers comprise a considerable amount of tex-
tual content and contribute substantially to convey-
ing meaning in a range of domains including finan-
cial and scientific contexts. Targeted strategies for
representing numbers have been shown to improve
general literacy of language models (Thawani et al.,
2021a). Numbers pose challenges for Natural Lan-
guage Processing (NLP) due to their varied repre-
sentations in text, as digits, words, or numerical
expressions. This requires NLP models to handle
ambiguity and context effectively in interpreting
numerical information (Thawani et al., 2021b).

Numerical reasoning is crucial in the generative
large language model (LLM) era because it under-
pins data-driven decision-making in many fields, in-
cluding clinical, where accurate numerical insights
are essential. LLMs often struggle with arithmetic
operations and unit conversions, impacting their re-
liability in quantitative tasks. In the clinical domain,
accurate numerical reasoning is vital for analyzing
trial data, interpreting results, and making precise
treatment recommendations, such as determining
appropriate drug dosages based on statistical analy-
ses of patient outcomes. For example, generating a
report that states “The mean number of antihyper-
tensive medication classes increased from 1.6 (95%
CI, 1.4-1.8) at baseline to 2.2 (95% CI 2.0-2.4) at

6 months”1 requires precise numerical reasoning.
In this paper, we characterize the numerical in-

formation in clinical NLP corpora. Through cor-
pus analysis, we find that numerical information is
frequent, but only a small portion is annotated or
utilized. Our analysis identifies a number of issues
concerning numeracy that need further attention
from the clinical NLP research community.

2 Numerical strings and types

There is an assumption that numbers may be triv-
ially extracted from text, as they consist of digit
sequences or a finite set of numerals. However,
numerical information can appear in various lexi-
cal surface and semantic contexts (Hanauer et al.,
2019; Miok et al., 2023). We identify a multitude
of number variants, and further define semantic
categories for numerical information.

Numerical values can be expressed in many
forms: (i) Digit, including integer (‘3’, ‘100,000’),
float (‘0.5’), and negative (‘−1’), (ii) Number with
unit (‘100 mg’, ‘160/90mmHg’), (iii) Fraction,
written using the division symbol (‘5/32’) or with
a special symbol (½), (iv) Number range (‘from 0
to 2 years’, ‘1969-77’), (v) Numeral, can be alpha-
betic numbers (‘twenty-five’, ‘two’) or combina-
tions of numbers and words (‘1 million’, ‘3k’), (vi)
Number with Quantifier (‘>’, ‘less than’, ‘about’),
(vii) Percentage is written either as ‘%’ or ‘per-
cent’), (viii) Roman numeral (‘iii’, ‘V’).

Table 1 presents a summary of the prevalent
types of numerical data, as well as examples of
where each can be found in clinical texts.

3 Corpus analysis

Clinical documents are rich with diverse numerical
data, expressed in different manners and contexts.

1This example is from https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4311883/
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Type Description Instantiations in clinical texts

Cardinal Used for counting or quantifying items in a set; total number
of elements (Mirza et al., 2017).

number of participants
sample size

Ordinal Indicate the relative position or rank of an element within a
series.

tumor stage

Measurement A numerical value, typically accompanied by a unit, rep-
resenting an attribute of a measured entity (Göpfert et al.,
2022; Harper et al., 2021).

vital signs: body temperature, blood pres-
sure, heart rate
laboratory values: white blood cell count,
hormone level, cholesterol

Temporal Dates (‘17 June 2024’, ‘05/08/10’), times (‘9pm’, “two years
ago”), and duration (“in an hour”) (Tourille et al., 2017).

duration of intervention
gestational age
date ranges

Frequency The number of times something occurs within a given inter-
val.

medication dosage frequency

Proportion A scaled quantity based on relative size hospital readmission rate
% group experiencing an outcome

Ratio a comparison between two quantities

Math Numbers, variables, and operators in a mathematical state-
ment such as a formula or probability; arithmetic operations
as well as functions (Lu et al., 2023).

estimate of effect with confidence interval; p
value

Non-
numerical

Numerical values lacking number properties, e.g. as part
of categorical data (identifiers) or or a named entities (e.g.,
COVID-19)

medical classification: disease code, pharma-
ceutical code

Table 1: Types of numerical information, and instantiations of each type in clinical text

To illustrate this, we empirically analyze four clin-
ical NLP corpora. Our selection of corpora cov-
ers (i) various clinical NLP tasks — information
extraction, information retrieval, natural language
inference, and question answering — and (ii) docu-
ment types — paper abstracts, clinical notes, and
patient description narratives.

For each corpus, we present descriptive analysis.
We count the frequency of numbers, estimated by
how many digits and numerals occur in the text
based on regular expression matching. We find
that numbers are highly prevalent in each corpus.
To understand contexts of number use, we sam-
ple and evaluate a few instances from each corpus
qualitatively.

EBM-NLP (Nye et al., 2018) This corpus con-
tains 4,993 abstracts of medical articles describing
clinical randomized controlled trials in which text
spans are annotated with PICO elements. That is,
annotation labels include the trial (P)articipants en-
rolled, the (I)nterventions studied and to what they
were (C)ompared, and the (O)utcomes measured.
We find that 4,507 abstracts (90%) contain numeri-
cal information. The distribution of number token
frequency with respect to number of abstracts is

Figure 1: y EBM-NLP documents contain x numbers.

shown in Figure 1. The majority of abstract docu-
ments encode 5–20 numbers per abstract. However,
only 13% of number tokens in the document col-
lection are within annotated PICO-spans. About
two-third of the numbers within spans belong to
Participants entities, most of which relate to sample
size and age of study population.

TREC-CDS (Koopman and Zuccon, 2016; Roberts
et al., 2022) The TREC Clinical Trial series task
involves matching a given patient to relevant clin-
ical trials. The task is framed as retrieval of clini-
cal trial documents using a patient descriptions as
a topic query. The data includes 60 topics from
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EBM-NLP (Nye et al., 2018)
METHODS We obtained economic data from 1424 Guatemalan individuals (aged 25–42 years) between 2002 and 2004. They
accounted for 60% of the 2392 children (aged 0-7 years) . . . enrolled in a nutrition intervention study during 1969–77. In
this initial study, two villages were randomly assigned a nutritious supplement (atole) for all children and two villages a less
nutritious one (fresco). . . .
FINDINGS Exposure to atole before, but not after, age 3 years was associated with higher hourly wages, but only for men. For
exposure to atole from 0 to 2 years, the increase was US$0.67 per hour (95% CI 0.16–1.17), which meant a 46% increase in
average wages. There was a non-significant tendency for hours worked to be reduced and for annual incomes to be greater for
those exposed to atole from 0 to 2 years.

TREC-CDS (Roberts et al., 2022)
Patient is a 55yo woman with h/o ESRD on HD and peritoneal dialysis who presented with watery, non bloody diarrhea and
weakness. She has a history of 2 prior C diff infections, the most recent just 1 month ago. Recent antibx use in the last month
on prior admission. Was also txd for Cdiff at that time for 14 d. course with po vanco. Pt was initially admitted to the ICU and
was septic on pressors (levophed) until the morning of [**8–26**] with leukocytosis but no fever.

MedNLI (Romanov and Shivade, 2018)
Premise The patient’s hematocrit dropped from 29.7 to 22.8.
Hypothesis The patient has a bleed.
Label Entailment

Table 2: Sample instances involving numbers from EBM-NLP, TREC CDS, and MedNLI

TREC-CDS 2014 and 2015 (Koopman and Zuccon,
2016), 75 from TREC-CDS 2021, and 50 from
2022 (Roberts et al., 2022). We find that 100%
of the patient descriptor topics contain numerical
information. All of them contain patient age infor-
mation expressed through different lexical variants.
Most topics also contain numerical information
about patient’s vital signs, lab results, and medica-
tion history. Several types of numerical informa-
tion are expressed as relations among measurement
attributes, temporal information, and frequency.

MedNLI (Romanov and Shivade, 2018) Natural
Language Inference (NLI) is an NLP task for de-
termining whether a premise sentence semantically
entails a hypothesis sentence. MedNLI is an NLI
dataset sourced from clinical notes and annotated
by a doctor. Each premise in MedNLI is grounded
in the medical history of a patient and the hypoth-
esis is a clinical conclusion labelled true, false, or
maybe. We observe that nearly 50% of premise sen-
tences contain numerical information, while only
1% of hypotheses have number tokens. This pat-
tern is consistent across train, dev, and test data.
We discover that numerical reasoning is one essen-
tial skill for formulating and interpreting medical
conclusions.

PubMedQA (Jin et al., 2019) consists of a con-
text and a yes/no/maybe question related to the con-
text. Contexts are derived from PubMed abstracts,
and questions are biomedical research questions.
We find that 96.5% of contexts in the manually
annotated subset PubMedQA-L contain numbers,

including statistical information relating to trial re-
sults. Quantitative reasoning is needed to correctly
infer the answer from the context.

4 Numeracy task and data in clinical
domain

Thawani et al. (2021b) and Yoshida and Kita (2021)
reviewed a broad range of numeracy tasks. Neither
survey specifically considers the clinical domain.
Given the findings of our corpus analysis (§3) that
numbers are ubiquitous, we speculated that there
may have been a number of related works on min-
ing numerical information from clinical corpora.
We search papers from the ACL Anthology2 and
PubMed3 using the following keyword query.

(“number” OR “numerical” OR “numeracy”)
AND (“clinical” OR “medical”)

Among the numeracy tasks explored in the re-
trieved literature, mostly pertaining to information
extraction, are extraction of lab test results (Bha-
tia et al., 2010; Liu et al., 2017) and extraction
of measurement values from radiology report nar-
rative (Bozkurt et al., 2019). In addition, we are
aware that a number of clinical information extrac-
tion tasks also extract numerical attributes together
with other entities, for example clinical trial vari-
ables (number of participants, sample size, out-
come measurements) (Kiritchenko et al., 2010;
Summerscales et al., 2011), eligibility criteria from
clinical trials (Kury et al., 2020; Tseo et al., 2020),

2https://aclanthology.org/
3https://pubmed.ncbi.nlm.nih.gov/
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medication attributes, such as drug dosage and fre-
quency (Uzuner et al., 2010; MacKinlay and Ver-
spoor, 2013; Kartchner et al., 2023), and temporal
information (Sun et al., 2013; Styler IV et al., 2014;
Miller et al., 2015)

Only a small number of tasks attempt to address
numerical reasoning problems. One is NLI4CT,
a dataset introduced for natural language infer-
ence and evidence retrieval tasks on clinical trial
report (Jullien et al., 2023). Another addresses in-
ference of patient phenotype based on extracted
numerical values utilising one or more clinical
attributes, e.g., “temperature 102°F suggesting
Fever” (Tanwar et al., 2022).

5 Discussion

There are several possible directions to progress
treatment of numbers in clinical NLP research.

Need for Benchmarks While there has been
some research on extraction of numerical infor-
mation from different medical data, most work has
used their own data and the gold standard has not
always been made public. This limitation has made
it impossible to compare model performances of
different systems (Jonnalagadda et al., 2015). The
performance reported in several past works was
very high (accuracy > 90%). This raises the ques-
tion of whether numerical information extraction
is a solved task.

We raise two concerns. First, a number of works
utilized relatively small data and this may result
in the reported accuracy scores lacking statistical
significance. Second, some works applied ‘easy’
task formulations, i.e., given a sentence containing
only a single number mention, it is trivial to extract
most numerical attributes. Such spurious patterns
in evaluation data may not generalize when we
deal with more realistic scenarios for information
extraction (Elangovan et al., 2024). For example,
a sentence containing multiple numbers and more
than one candidate for entities and attributes (see
example of EBM-NLP instance in Table 2). Hence,
we advocate for more public data benchmarks to
transparently evaluate the progress of numerical
information tasks in the clinical domain.

Scope of Numerical Reasoning Recent works
on numerical reasoning deal with math and arith-
metic problems (Mishra et al., 2022; Hendrycks
et al., 2021; Cobbe et al., 2021). In fact, com-
plex mathematics are less applicable in the clinical

domain. In addition to arithmetic, other types of
reasoning are required for clinical decision sup-
port. For example, number comparison (Park et al.,
2022) and number normalization (Almasian et al.,
2023). Different units of measurement often need
conversion, requiring precise calculations to main-
tain accuracy. For example, hormone levels may be
measured using nmol/L, ng/dL and ng/mL in differ-
ent trials. Dealing with various number representa-
tion is important to interpret numerical information
correctly. On the other hand, contextualizing such
numbers with medical background knowledge is
another important numeracy skill, as showcased by
the example of MedNLI instance in Table 2.

Tokenization Challenges How to encode num-
bers in language models has been discussed in sev-
eral works (Spithourakis and Riedel, 2018; Wal-
lace et al., 2019; Thawani et al., 2021a). Encod-
ing numbers is related to the problem of tokeniza-
tion (Geva et al., 2020). The models struggle to
recognize extrapolated numbers that are seldom
found in corpora and force them to be tokenized
digit by digit (Kim et al., 2021). In the clinical
context, when the numbers are grounded with units
or appear as ranges, the tokenizer is expected to be
more robust. We inspected few samples of token-
level annotated data of the EBM-NLP corpus. Our
finding was that numbers are not fully correctly
tokenized (e.g., “95% CI 0.16-1.17” is segmented
into multiple individual digit numbers that lack
meaning), even in the gold standard.

Utilizing Numerical Information for Clinical
Application. Clinical documents contain numer-
ous numerical data points. However, numbers
are mostly neglected when designing an NLP sys-
tem (Thawani et al., 2021b). Entity annotations
skip numbers in most cases, as in the EBM-NLP
corpus PICO annotation (Nye et al., 2018). Several
clinical NLP works acknowledge the importance
of numerical reasoning, but leave it for future work.
For instance, in multi-document summarization,
Otmakhova et al. (2022) identify that automati-
cally generating systematic reviews involves meta-
analysis that requires numerical aggregation of data
across primary studies or calculating some statis-
tics for variables. In another example, Lehman et al.
(2019) argue that numerical information from the
result section of studies can be utilized to improve
evidence inference.
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6 Conclusions

We analyzed well-established clinical NLP corpora,
covering a variety of tasks and data sources, and
identifying a broad set of types and usage of num-
bers. Our analysis shows that numbers play a major
role in medical texts. On the basis of these findings,
and the lack of systematic resources in the clinical
domain for investigating numerical information ex-
traction and reasoning tasks, we argue for the need
for the construction of such resources. Numbers
contain vital medical information. We strongly en-
courage clinical NLP researchers to consider how
numerical processing may interact with their work.

Limitation

Our conclusion is based on the corpus we analyzed
and reviewed during literature search. We may not
include some corpora, especially those that are not
publicly available, in our analysis. On the other
hand, this work focuses only on English. While
there have been some relevant works in the clinical
domain for languages other than English, we leave
this for future work.
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Abstract

Citations typically mention findings as well as
papers. To model this richer notion of citation,
we introduce a richer form of citation graph
with nodes for both academic papers and their
findings: the finding-citation graph (FCG). We
also present a new pipeline to construct such
a graph, which includes a finding identifica-
tion module and a citation sentence extraction
module. From each paper, it extracts rich basic
information, abstract, and structured full text
first. The abstract and vital sections, such as the
results and discussion, are input into the finding
identification module. This module identifies
multiple findings from a paper, achieving an
80% accuracy in multiple findings evaluation.
The full text is input into the citation sentence
extraction module to identify inline citation sen-
tences and citation markers, achieving 97.7%
accuracy. Then, the graph is constructed using
the outputs from the two modules mentioned
above. We used the Europe PMC to build such
a graph using the pipeline, resulting in a graph
with 14.25 million nodes and 76 million edges.

1 Introduction

In recent years, the volume of biomedical litera-
ture has been constantly growing. More than 3000
articles are published every day on average and
PubMed alone has a total of 29M articles as of
January 2019 (Lee et al., 2019). This makes it
difficult for experts to understand and assess the
publications within a short amount of time.

Citations play a crucial role in academic papers,
linking the new work to related research (Cohan
et al., 2019). They can assist in evaluating research
outputs (Yue and Wilson, 2004), and tracking the
progression of research while predicting future di-
rections (Prabhakaran et al., 2016). The citation
network, a graph that records the citation relation-
ship between papers, is commonly used in such
studies (Gundolf and Filser, 2013; Hota et al., 2020;
Zhao, 2020) .

{
pmid: 38399565,
cited_pmid: 35198509,
article_title: "A Prospective Analysis of the Effects of a Powder- Type Hemostatic Agent 
on the Short- Term Outcomes after Liver Resection",
cited_article_title: "In vivo study for the hemostatic efficacy and foreign body reaction 
of a new powder- type polysaccharide hemostatic agent",
cited_article_finding: "OOZFIX caused a minimal FBR that disappeared within 2 weeks 
in vivo, and its hemostatic performance was comparable with that of an existing agent, 
Arista AH. Further clinical studies are required in the future.",
citation_sentence: "In a study comparing OOZFIX (Theracion Biomedical, Seongnam, 
Republic of Korea), a new polysaccharide hemostatic agent, with Arista AH, both 
products showed comparable hemostatic performance in animal models, with both 
agents demonstrating minimal foreign body reactions that resolved within two weeks 
[18]."
}

Figure 1: An example of the relation between paper and
cited paper’s finding through the citation sentence.

In recent years, many academic databases, which
also can be regarded as academic citation networks,
have been developed to facilitate detailed citation
studies on biomedical publications. They provide
basic information for hundreds of millions of aca-
demic papers and the citations between these doc-
uments. Some of these databases are commercial,
like Clarivate’s Web of Science (WoS) and Else-
vier’s Scopus. Others are open-source, in line with
current trends. These include Microsoft Academic
Graph (MAG) (Sinha et al., 2015), OpenCitations
Index of CrossRef open DOI-DOI citations (COCI)
(Heibi et al., 2019), Dimensions (Herzog et al.,
2020), National Institutes of Health’s Open Cita-
tion Collection (NIH-OCC) (Ian Hutchins et al.,
2019), Semantic Scholar’s Open Research Corpus
(S2ORC) (Lo et al. 2020; Kinney et al. 2023).
Some statistics about these databases are shown in
Table 1.

From Table 1, it is clear that all databases, ex-
cept S2ORC, lack inline citation contexts. These
contexts provide information on what and why a
paper cites information from other papers. For
example, it may cite another paper’s findings or
refer to background or statistical information (Co-
han et al., 2019). The findings of the paper are
the most valuable output of the study. Only cita-
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Database Version Publication Citation Access Disciplines Citation
Contexts

Wos Core 2024 92M 2.2BN Commercial Multi No
Scopus 2024 94M 2.4B Commercial Multi No
MAG 2020-10 240M - Stop Serving Multi No
COCI 2023-01 77M 1.4B Open Source Multi No
Dimensions 2024 140M - Application Needed Multi No
NIH-OCC 2024-04 37M 782M Open Source Health No
S2ORC 2024 214M 2.49B Application Needed Multi Yes

Table 1: A comparison between existing academic databases covering medical corpus.

tions of these findings can be used to evaluate the
value of the publication and the research output.
However, to understand whether a paper cites an-
other paper’s findings and which specific finding
it refers to, the research findings need to be iden-
tified. A relationship between the citations and
findings must also be established. An example
can be seen in the Figure 1. Existing research on
identifying research findings, such as the approach
proposed by Wright et al. (2022) to extract sen-
tences describing research findings and study their
dissemination in scientific communication, can be
helpful in this context. Motivated by the challenges
of current databases and the existing research on
finding identification, we propose the development
of a fine-grained citation graph. This graph will
involve both research findings and citation contexts.
It will enable detailed evaluation and study of find-
ing evolution from the citation perspective.

In this paper, we define the finding-citation graph
first in section 3. Then, we outline the process of
constructing the finding-citation graph using the
European PMC dataset in section 4. We also eval-
uate the construction to ensure quality. The sum-
mary statistics of the graph and some interesting
observations are presented in section 5.

2 Related Work

Constructing a fine-grained citation graph directly
relates to cite-worthiness detection, and finding
identification. We will briefly introduce these as-
pects in the following sub-sections. Since the
biomedical large language model (LLM) has re-
cently gained popularity and may be used in our
project, it will also be introduced in the subsequent
sub-sections.

Cite-Worthiness Detection Cite-worthiness de-
tection involves identifying citation sentences in
an academic paper. These sentences contain ref-

erences to external sources cited within the paper.
There are many different forms of citation, but the
most common are:

• The topic is studied in previous work (Author1
et al. ###).

• The topic is studied in previous work [##].

• The topic is studied in previous work (##).

• The topic is studied using XXX (Author 1 et
al. ###) and XXX (Author1 et al. ###) XXX.

• Author 1 et al, ### (year) performs XXX.

Sugiyama, Kumar, Kan, and Tripathi (2010) sug-
gested the application of Support Vector Machines
(SVMs) with diverse features for cite-worthiness
detection. These features range from unigrams,
bigrams, and the existence of proper nouns, to sec-
tion information, classification of neighboring sen-
tences, and orthographic checking. They designed
a dataset using the ACL Anthology Reference Cor-
pus (ACL-ARC) (Bird et al., 2008), applying reg-
ular expression patterns. Similarly, Färber et al.
(2018b) carried out the same task using convolu-
tional recurrent neural networks on an expanded
dataset. The dataset incorporated three subsets:
ACL-ARC (Bird et al., 2008), arXiv CS (Färber
et al., 2018a), and Scholarly Dataset 2.

However, the datasets from these studies are con-
fined to one or a limited number of domains and
exhibit a high class imbalance. As per Färber et al.
(2018b), only a tenth of all sentences hold at least
one citation marker, leaving the remaining 90%
without any. Furthermore, these studies lack an in-
depth discussion on dataset creation and qualitative
analysis.

In response to these issues, Wright and Au-
genstein (2021) introduced a dataset for spotting
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citation-worthy sources across six domains. They
detailed the process for creating the dataset and
provided a qualitative analysis. However, their
approach to dataset creation was limited to using
regular expressions to identify the first and sec-
ond citation forms mentioned above. Besides, the
authors trained a set of baseline models on their
dataset to evaluate performance and understand the
complexity of the problem. The results of these
models are displayed in Fig 2.

Figure 2: Performance of models on the CITEWORTH
dataset (Wright and Augenstein, 2021)

Finding Identification The process of pinpoint-
ing and extracting results or conclusions from an
academic paper is known as finding identification.
Prabhakaran, Hamilton, McFarland, and Juraf-
sky (2016) designed a Conditional Random Field
(CRF) model that manages sentence-level sequence
labeling, designating each sentence in the abstract
a rhetorical role, including result and conclusion.
Dernoncourt and Lee (2017) introduced a consider-
able sentence classification dataset, PubMed 200K
RCT. This dataset, consisting of roughly 200,000
abstracts of randomized controlled trials (RCTs)
and a total of 2.3 million sentences, labels each
sentence with its rhetorical role, which includes the
result and conclusion. Though it is limited to the
RCT field, this dataset can help find identification.
Inspired by the PubMed 200K RCT dataset, Wright
et al. (2022) curated a dataset of 200K self-labeled
abstracts from PubMed, with no field restrictions.
Then, they fine-tuned a RoBERTa model (Liu et al.,
2019) on this dataset, classifying each sentence in
the abstract into categories such as result, conclu-
sion, method, background, and others. The model
achieved an F1 score of 92%, and when applied
to the full text of papers, it performed well. Pre-
vious studies have overlooked the importance of
certain sections of papers, such as the results and

conclusion sections. These sections often contain
important findings. Past studies mainly focus on
finding extraction, neglecting the potential for find-
ing generation. However, the development of large
generative language models, like Llama (Touvron
et al., 2023), now provides the opportunity for ef-
fective finding generation.

In the finding identification task, there is a sub-
task known as claim identification or argumenta-
tion mining exists. According to the definition
from Achakulvisut et al. (2020b), a claim is (1) a
statement declaring something as superior, (2) a
statement proposing something new, or (3) a state-
ment describing a new discovery or a new cause-
effect relationship. The definition of a claim differs
from that of a finding, being stricter and more pre-
cise. Nonetheless, some ideas from this research
could be useful. Achakulvisut et al. (2020b) de-
veloped a tool for annotating claims and collected
1500 labeled abstracts (SciCE) from PubMed arti-
cles published from 2008 to 2018. These abstracts
incorporate 11,702 sentences in total, with each
sentence labeled as a claim or non-claim. This
tool effectively tackles the issue of data scarcity in
the task. They also constructed a new model in-
corporating transfer learning, which improved the
F1 score by 14 percentage points compared to the
baseline model without transfer learning. In 2023,
Wei et al. undertook the same task, achieving a
new state-of-the-art (SOTA) performance on the
dataset using supervised contrastive learning and
transfer learning, with an 87.45% F1 score. As
observed, all these models operate on the abstract
rather than the full-text article, and the shift to the
full-text article still poses a challenge due to the
writing structure of the complete publication.

Biomedical LLMs Back in 2018, ELMo (Peters
et al., 2018) pioneered the use of a context-sensitive
language model pre-trained on a huge data cor-
pus. This sparked a wave of LLMs such as GPT
(Radford and Narasimhan, 2018), BERT (Devlin
et al., 2019), ERNIE (Zhang et al., 2019), GPT-2
(Radford et al., 2019), GPT3 (Brown et al., 2020),
among others. These LLMs are incredibly useful
for a variety of natural language processing (NLP)
tasks. However, general-purpose LLMs, which
are trained on resources like English Wikipedia
and BookCorpus, often struggle with biomedical
NLP tasks due to the numerous domain-specific
terms and proper nouns. To counter this, many
LLMs have been pre-trained on biomedical corpus
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like PubMed abstracts and PubMed Central full-
text articles, enhancing their performance in the
biomedical field.

There are two main approaches to domain-
specific neural language model paradigms: mix-
domain pre-training and domain-specific pre-
training from scratch. Mix-domain pre-training,
such as BioBERT (Lee et al., 2019) and BlueBERT
(Peng et al., 2019), begins with parameters from
a general-purpose language model and adopts its
vocabulary. On the other hand, domain-specific
pre-training from scratch, like PubMedBERT (Gu
et al., 2021), BioLinkBERT (Yasunaga et al., 2022),
BioMedLM (Bolton et al., 2024), and Bioformer-
8L (Fang et al., 2023), generates vocabulary and
conducts pre-training using only the in-domain cor-
pus. Models like PubMedBERT and BioMedLM
have shown that domain-specific pre-training from
scratch can outperform mix-domain pre-training.

3 The Finding-Citation Graph: Definition

Building on the work of Wright et al. (2022), we
define a finding as a statement that describes a
specific research outcome from a scientific study.
We also describe a citation sentence as a sentence
that references knowledge from other papers.

Subsequently, we define a finding-citation graph
(FCG) as G = (P, F,C,B), where P , F , C, and
B represent sets of papers, findings, citations, and
basic information respectively. A paper in this
graph is an academic paper. A finding in this graph
is a statement same as the above definition. A ci-
tation within the graph refers to instances where
the citation sentence includes the findings of the
cited paper, which we will now refer to as a useful
citation. The basic information includes the author,
journal, publication year, etc. of the paper contain-
ing the finding. The defined finding-citation graph
is a heterogeneous graph and can be perceived as a
variant of the citation graph, where the node is the
paper and the relation is the citation.

4 Constructing the FCG

We now introduce our pipeline to construct the
finding-citation graph (Figure 3), which allows us
to analyze findings from the perspective of the cita-
tion network. The pipeline takes a Europe PubMed
article in XML format as input and produces three
types of information for each paper: basic informa-
tion, all citation sentences, and all findings. This
information is then used to construct the graph. The

pipeline comprises four main modules, as follows:

• An XML parser is utilized to extract essential
paper information and article content from the
XML. The primary components of the article
include the abstract and the full-text article,
composed of various sections.

• The finding identification model aims to iden-
tify sentences that describe findings from the
abstract, conclusion, and result sections.

• The citation sentence extraction module iden-
tifies sentences within the full-text article that
contain citations and links the citation sen-
tences with its cited paper.

• The final module is to build the finding-
citation graph construction based on the out-
put of the above three modules

The above four modules will be introduced in
the following sections excluding the XML parser.
Our parser was primarily based on an open-source
PubMed parser (Achakulvisut et al., 2020a), with
minor changes made to increase speed.

4.1 Finding Identification
This module includes two steps:

• Identify the sentences that discuss the findings,
which are called finding sentences later.

• Generate findings based on the identified find-
ing sentences, which are called findings later.

We performed the first step similar to Prab-
hakaran et al. (2016) and Wright et al. (2022),
where the task was treated as a sentence classifica-
tion task. They classified sentences in the abstract
into five classes: background, result, conclusion,
method, and objective. Sentences labeled as the
result or conclusion can be considered findings sen-
tences. To build the sentence classification model,
we curated a dataset from self-annotated PubMed
abstracts, as shown in Figure 4. After filtering for
PubMed abstracts that met the set format, we ob-
tained 206K suitable abstracts, comprising roughly
2.5 million labeled sentences. We then fine-tuned a
RoBERTa model (Liu et al., 2019) on this curated
dataset, achieving an accuracy score of 91% on a
held-out 13.5% sample. This classifier was applied
to the abstract sentences and other sections of the
paper, like the results and conclusion, generating
multiple finding sentences for each paper.

419



1238
Europe PubMed 

XML
Finding 

Identification

Citation 
Sentence 
Extraction

Citation Sentences
& Reference Paper Info

Findings FInding- Citation Graph 
Construction

Finding- Citation 
GraphXML Parser

Paper Basic 
Information

Abstract & 
Other sections

Full- text article

Figure 3: Finding-citation graph construction pipeline

We also experimented with LLMs to assess their
potential as a substitute for the current fine-tuned
model. Specifically, we utilized Gemma (Gemma
Team et al., 2024) to assist us in categorizing the
information in the abstract into the five classes men-
tioned above. To evaluate Gemma’s performance,
we compared the organized information for each
class with self-annotated information, calculating
similarity scores. When we set 0.5 as the similarity
threshold, the accuracy was approximately 91%.
As the performance is nearly the same, taking the
time-consuming and resource-consuming into con-
sideration, we chose to use fine-tuned RoBERTa
model in our pipeline.

Figure 4: An example of a self-annotated PubMed ab-
stract from PubMed PMID:10435405.

It is important to note that these finding sen-
tences may contain overlap information with each
other and may discuss multiple discoveries from
the paper. Additionally, not all findings carry equal
importance to the article. Our next step involved
generating multiple findings for each paper, keep-
ing these points in mind. We used a combination
of scientific sentence-BERT (Wright et al., 2022)
and the Affinity Propagation clustering method to
eliminate duplicate sentences and select central sen-

tences as representative findings. This approach
yielded multiple findings (maximum 3) from each
paper. Afterward, we computed the similarity score
between each finding and the title of its correspond-
ing article. This score is considered as the impor-
tance score for each finding within its respective
paper. Consequently, we obtained multiple findings
for each paper along with an importance ranking
score. This procedure is illustrated in Figure 5.
In order to know how the multi-finding module
performs, we randomly sampled 100 articles with
241 findings and got 80% accuracy. We found that
some errors originated from the abstract’s conclu-
sion sentence, which did not accurately represent
the actual conclusions and simply offered a con-
cluding sentence without any useful information.

4.2 Citation Sentence Extraction
The task involves identifying sentences in the arti-
cle that reference external knowledge from other
papers. Unlike other researchers such as Sugiyama
et al. (2010) and Färber et al. (2018b), who em-
ployed binary classification models for this task,
we used a simpler yet effective method: the regular
expression. We addressed three formats of citation
using this method, shown below. The use of regular
expression simplified the process of linking the ci-
tation sentence with its cited paper. This was based
on the citation marker and reference information
derived from the XML. Consequently, we obtained
citation sentences along with the information of the
cited paper for each article.

• The topic is studied ... (Author1 et al. ###).

• The topic is studied ... [###].

• The topic is studied ... (###).

To evaluate how the module performed and max-
imize the use of the open-source dataset, we de-
signed the following two-step evaluation method.
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The first is a paper-level evaluation, which checks
the accuracy of the citation relations, i.e., the
PMID-PMID relation. Same as Liang et al. (2021),
we utilized the PMC dataset in PubMed Baseline
as the gold standard for this evaluation. Both the
original and filtered PMID-PMID relations of the
module were evaluated, with the latter excluding
references not found in the Europe PMC dataset. In
order to do the comparison with other open-source
datasets, we used the same evaluation metrics as
Liang et al. (2021), which are precision, recall, F1-
score, and accuracy. It should be noted that only
articles covered by the data source were included in
the evaluation process. The evaluation results can
be seen in Table 2. Even though our performance
is not bad, our precision and recall are not the best
among all the databases because the citation rela-
tions were based on citation sentences and markers,
not the reference list. This discrepancy may lead
to errors and losses in citation relations.

The second evaluation is to assess the cor-
rectness of the tuple, (citing_pmid, citation
_sentence, cited_pmid). This formed the final
output of the module. There is no other database
containing the citation sentences on the PubMed
corpus, except for S2ORC (Lo et al., 2020). How-
ever, the performance evaluation from Step 1 indi-
cates that the S2ORC database did not perform well.
Moreover, the S2ORC paper (Lo et al., 2020) does
not provide a significant evaluation of the citation
sentence, so we do not use it for evaluation. We
randomly sampled 350 tuples and achieved 97.7%
accuracy. We conducted an analysis to determine
why certain tuples are incorrect. We found that
some errors arise from mismatches between the de-
scription citation marker and the basic information
of the cited paper. Other errors occur when the
citation sentences are correctly identified, but the
PMID of the cited paper is lost. This largely con-

firms our previous analysis above that the citations
are based on citation sentences and citation markers
can lead to errors and losses in this module.

4.3 Finding-Citation Graph Construction
So far, we have collected multiple findings for each
paper, along with their importance scores and ci-
tation sentences with basic information about the
cited paper. Using this information, we can create
the finding-citation graph as outlined in Section
3.1. As we construct the graph based on a closed
dataset, Europe PMC, the references without PMID
or not in the closed dataset were dropped.

The graph comprises two types of nodes: articles
and findings. Each article node has some basic at-
tributes such as authors, journal, paper PMID, title,
and publication year. In contrast, the finding node
has no other attributes. The graph also contains
two kinds of edges. The first represents the rela-
tionship between an article and its findings, with
the importance score as an attribute. The second
represents the citation relationship between an ar-
ticle and the findings produced by the cited paper,
with the citation sentence and similarity score as
attributes. We calculate the similarity score using a
fine-tuned scientific sentence-BERT (Wright et al.,
2022). This approach helps us determine whether
a citation sentence contains the findings of another
paper and assess the usefulness of each citation. A
simplified view of the graph can be seen in Figure
6.

5 Experiments

We utilized Europe PMC articles in XML format
for our experiment. Europe PMC is an open-source,
global biomedical literature repository that houses
life science articles, preprints, micropublications,
books, patents, and clinical guidelines from around
the world. Up to Feb 2024, it holds over 40 million
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Metrics COCI.Updated Dimensions NIH-OCC S2ORC S2ORC_new Our_O Our_D
Precision 98.82% 99.60% 99.9% 97.66% 77% 94.32% 92.35%
Recall 85.18% 98.80% 98.99% 79.00% 25.4% 89.65% 93.05%
F1-score 90.95% 99.07% 99.34% 86.27% 34.5% 89.32% 90.7%
Accuracy 15.60% 81.55% 89.08% 5.86% 1.03% 34.4% 55.37%

Table 2: The evaluation of COCI.Updated, Dimensions, NIH-OCC, and S2ORC are from Liang et al. (2021).
Our main comparison is S2ORC, which is the most similar database to use and includes citation contexts, so we
evaluated S2ORC on the latest version again. It is not only for the comparison but also for the confirmation of our
comparison. The Our_O and Our_D are the original and filtered PMID-PMID relations respectively. When we did
the evaluation on the filtered PMID-PMID relations, we did the same filter to the gold dataset.

Paper A Finding AGenerate(importance_score)

Finding C

Finding B

Paper C

Cite(citation_sentence, similarity_score)
Paper B

Generate(importance_score)
Generate(importance_score)

Cite(citation_sentence, similarity_score)

Figure 6: A simplified view of the finding-citation graph

Type of Article Count(%)
Europe PMC XML 6M (100%)
Successfully parsed 5.75M (95.8%)
With PMCID 5.75M (95.8%)
With PMID 5.75M (95.8%)
With Abstract 4.83M (80%)
With Paragraph 5.75M (95.8%)
With References 5.21M (86.8%)

Table 3: Statistics of the XML Parser output.

abstracts and over 9.6 million full-text articles. Of
these, nearly 6 million full-text open-access articles
are available in XML format via the Europe PMC
web services or FTP site.

The XML Parser in our pipeline is used to parse
all the open-access articles mentioned above. The
statistical results of the output of this module are
presented in Table 3.

Next, the parsed text is processed by the finding
identification module and the citation sentence ex-
traction module. In terms of finding identification
results, approximately 4.25 million articles have
at least one finding. On average, we obtained 2.4
findings for each article that had findings, total-
ing around 10 million findings. For citation sen-
tence extraction results, roughly 3.69 million ar-
ticles have at least one citation sentence. We ob-
tained 56 citation sentences on average for each

Figure 7: Statistic of the number of articles over the
years in Europe PMC

article with citation sentences, amounting to ap-
proximately 200 million citation sentences in total.
After dropping the citations not in Europe PMC,
roughly 3.28 million articles have at least one cita-
tion sentence, with 20 citation sentences on average
for each article and 67 million citation sentences in
total.

Finally, the similarity scores were calculated
based on these findings and citation sentences.
These findings, citation sentences, and similarity
scores are then utilized to create the finding-citation
graph. We obtained 14.25 million nodes in total,
consisting of 4.25 million article nodes and 10 mil-
lion finding nodes. We got 77 million edges in total,
of which there are 67 million edges representing
citation relationships.

6 Discussion

6.1 Findings not in the abstract
From the literature review, it is clear that most pre-
vious studies primarily focus on identifying finding
sentences from abstracts, often neglecting other sec-
tions. In our proposal to identify multiple findings,
we are interested in determining how many find-
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ings are not included in the abstract, meaning the
sentences containing these findings are not found
in the abstract. From the 10 million findings we
identified, we discovered that nearly 44% of the
findings are not mentioned in the abstract. This per-
centage is slightly larger than expected. However,
it aligns with our understanding that the abstract
typically only describes the main findings, while
other sections may discuss additional or side find-
ings.

6.2 Distribution of similarity score between
findings and citation sentences

The sentence embedding similarity score is utilized
to measure how much information from the cited
paper’s findings is contained within the citation
sentence. The larger it is, the more information it
contains. The smaller it is, the less information it
contains. Understanding the distribution of such
similarity scores can help us determine how the
findings are cited. The distribution can be seen in
Figure 8. From the figure, it is clear that nearly half
of the similarity scores are lower than 0.4. This
suggests that half of the citation sentences contain
less information about the findings of the cited
papers. It meets our experience that most of the
citations are used in the literature review section
and for providing background information.

Figure 8: Distribution of the similarity score between
citation sentences and cited findings

6.3 Limitations

Currently, our method only extracts sentences with
the sentence marker for the citation, without consid-
ering the citation span. This approach might lead
to some errors in matching the citation sentence
with the findings.

Besides, the citation relations are based on the
citation sentence and citation marker extraction,
which would lead to error and loss to the graph.

Moreover, the citation graph is built using a
closed dataset, specifically the Europe PubMed
dataset. This approach excludes citations and arti-
cles not found in this dataset, inevitably leading to
an incomplete graph.

The mentioned limitations above will help us
identify areas where we can improve our graph
optimization strategies in the future.

7 Conclusion

We introduce a new fine-grained citation graph, the
finding-citation graph. Unlike the traditional cita-
tion graph which only contains papers as nodes,
the finding-citation graph also includes the find-
ings, representing the results of the academic pa-
pers. This graph facilitates more detailed studies at
the finding level, such as evaluating findings and
tracking the progression of research.

We also present a new pipeline for constructing
this graph. This pipeline mainly consists of three
modules: finding identification, citation sentence
extraction, and graph construction. As there is no
such pipeline to build the finding-citation graph, we
design an evaluation to confirm the graph’s quality.
The finding identification module achieved 91%
accuracy for finding sentence identification and
80% accuracy for multiple findings. The citation
sentence extraction module got a 90% F1-score
on the paper-level evaluation and 97.7% accuracy
on the tuple-level evaluation. The outputs of the
two modules are used to construct the graph and
confirm its quality.

Finally, we built a finding-citation graph using
Europe PMC. Our graph comprises 14.25 million
nodes, with 4.25 million being academic papers
and the rest being findings from those papers. It
also includes 76 million edges, with 66 million
representing citation relations.

The definition and creation of the FCG is an
essential step for our future research. We plan to
use it to assess research findings from a citation
perspective and pinpoint future research directions
at the finding level.

Ethics Statement

The paper considers the introduction of a new ci-
tation network, a finding-citation network, and a
pipeline to construct such a graph. We did not work
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Abstract

The primary concern with exposure to ioniz-
ing radiation is the risk of developing diseases.
While high doses of radiation can cause im-
mediate damage leading to cancer, the effects
of low-dose radiation (LDR) are less clear and
more controversial. To further investigate this,
it necessitates focusing on the underlying bio-
logical structures affected by radiation. Recent
work has shown that Large Language Models
(LLMs) can effectively predict protein struc-
tures and other biological properties. The aim
of this research is to utilize open-source LLMs,
such as Mistral, Llama 2, and Llama 3, to pre-
dict both radiation-induced alterations in pro-
teins and the dynamics of protein-protein in-
teractions (PPIs) within the presence of spe-
cific diseases. We show that fine-tuning these
models yields state-of-the-art performance for
predicting protein interactions in the context
of neurodegenerative diseases, metabolic dis-
orders, and cancer. Our findings contribute to
the ongoing efforts to understand the complex
relationships between radiation exposure and
disease mechanisms, illustrating the nuanced
capabilities and limitations of current compu-
tational models. The code and data are avail-
able at: https://github.com/Rengel2001/
SURP_2024

1 Introduction

The exploration of the biological consequences of
ionizing radiation on human health has long been a
focal point of medical and environmental research.
High doses of radiation are linked to immediate
cellular damage and an increased risk of cancer
(Wang et al., 2018). However, the implications of
low-dose radiation (LDR) exposure remain a topic
of significant debate. Emerging evidence suggests
potential associations with various non-cancerous
diseases, including neurodegenerative and cardio-
vascular diseases (Sharma et al., 2018; Kamiya
et al., 2015). Additionally, others show that cancer

Figure 1: Tasks Utilizing LLMs for Protein Behavior
Prediction.

is a result of low-dose radiation exposure (Shah
et al., 2014; Hauptmann et al., 2020).

Understanding these effects at the molecular
level, particularly in relation to protein structure
and function, is crucial for developing protective
measures. Similarly, protein-protein interactions
(PPIs) are vital for various cellular processes and
play a critical role in understanding disease mecha-
nisms. Furthermore, there exists extensive PPI data,
compiled into comprehensive public databases
like BioGRID (Oughtred et al., 2021), STRING
(Alanis-Lobato et al., 2016), HIPPIE (Szklarczyk
et al., 2021), and Kegg (Kanehisa et al., 2017).
Considerable research has been dedicated to un-
derstanding general protein interactions; however,
there is a lack of studies examining protein interac-
tion networks in the context of specific diseases.

The overarching goal of this research is to deter-
mine the efficacy of LLMs in accurately predict-
ing complex biological processes related to pro-
tein function under various conditions. We em-
ploy three state-of-the-art LLMs, to analyze data
from six diverse datasets. These datasets represent
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two distinct categories. The first focuses on the ef-
fects of LDR on proteins, and the second highlights
the PPI network present within specific diseases.
We formalize this data into two binary classifica-
tion tasks, which are illustrated in Figure 1. This
approach not only demonstrates the versatility of
LLMs in biological research but also paves the
way for novel insights into the molecular dynam-
ics influenced by radiation exposure and disease
processes. Our contributions in this paper include:

1. Organizing 6 key datasets, which are then split
into 13 subsets, each designed to emphasize
different experimental conditions.

2. Conducting a comprehensive evaluation of
three open-source LLMs, comparing the per-
formance of pre-trained models with the fine-
tuned models.

3. Investigating the level of knowledge that
LLMs have regarding protein behaviors and
reviewing their current limitations for these
tasks.

4. Analyzing the proteins that occur in both the
LDR datasets and the PPI datasets, to high-
light which proteins in each network are sig-
nificantly deregulated by radiation exposure.

2 Related Works

2.1 Low-Dose Radiation Research
There has been a great deal of research focused on
the effects of radiation on biological systems. Many
studies exploring the field use traditional meth-
ods and there has been significant progress (Khan
and Wang, 2022; Tatjana Paunesku and Woloschak,
2021; Ji et al., 2019). However, the application
of machine learning to these studies has been lim-
ited. Notably, one approach employed artificial
neural networks (ANNs) within the Rosetta suite
to predict protein post-translational modifications
(PTMs) relevant to radiation-induced effects (Ertelt
et al., 2024). Another study used machine learning
to identify potential methionine oxidation sites, a
modification also associated with oxidative stress
from radiation (Aledo et al., 2017). These instances
showcase the emerging intersection of computa-
tional power with radiation biology research.

2.2 PPI Prediction Methods
The abundance of PPI data has prompted signifi-
cant advancements in molecular biology research.

Recently, computational techniques employing ma-
chine learning and graph embeddings have been
developed for PPI prediction. One approach em-
ploys Graph-BERT, ProtBERT, and SeqVec mod-
els within a PPI network graph, showcasing the
efficacy of language models (Jha et al., 2023). An-
other emerging trend is the use of Convolutional
Neural Networks (CNNs), with studies employ-
ing Bio2Vec coupled with CNNs to predict PPIs
from sequences (Wang et al., 2019; Hashemifar
et al., 2018). The PIPR method simplifies PPI pre-
diction by using sequence data alone, surpassing
many traditional models in both basic and complex
PPI tasks (Chen et al., 2019). While many meth-
ods focus on general PPI prediction, the NECARE
model (Qiu et al., 2021) excels at predicting cancer-
associated PPIs using a deep learning framework
with a Relational Graph Convolutional Network
(R-GCN). Similarly, the symmetric logistic matrix
factorization (symLMF) approach (Pei et al., 2021)
accurately predicts PPIs, including those involved
in neurodegenerative and metabolic disorders, out-
performing most classifiers.

2.3 Language Models for Molecular Biology

Concurrently, advancements in computational bi-
ology have also leveraged language models and
the transformer architecture (Vaswani et al., 2017)
to achieve significant breakthroughs in biomolec-
ular and proteomics research. At the forefront,
AlphaFold (Jumper et al., 2021) has set a precedent
by employing innovative deep learning techniques
to predict protein structures with remarkable accu-
racy. Building upon these foundations, protein lan-
guage models like ProGen2 (Nijkamp et al., 2022),
ProGPT2 (Ferruz et al., 2022), and ProLlama (Lv
et al., 2024), have further developed the applica-
tions of language modelling for proteomics. Ad-
ditionally, this has led to advancements in general
purpose biological language models like BioGPT
(Luo et al., 2022), and BioMedLM (Bolton et al.,
2024).

2.4 General Purpose LLMs

Large-scale language models like Llama (Touvron
et al., 2023a), and its subsequent iterations includ-
ing Llama 2 (Touvron et al., 2023b), Llama 3
(AI@Meta, 2024) and Alpaca (Taori et al., 2023),
have highlighted the importance of data design and
task-specific training in improving model perfor-
mance across a variety of tasks. Additionally, the
creation of the Mistral (Jiang et al., 2023) model
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helps to bring open-source LLMs to the forefront
of scientific innovation. These strides in LLM re-
search have brought significant advancements in
other scientific disciplines (Zhang et al., 2024). We
aim to utilize such LLMs to further advance re-
search on LDR exposure and to analyze how this
might affect protein networks and specific diseases.

3 LLMs and Datasets

In this study, we employ three open-source LLMs,
Mistral (7B), Llama 2 (7B), and Llama 3 (8B),
to investigate two primary areas of biological re-
search: the effects of low-dose radiation (LDR)
on proteins and the dynamics of PPIs in the con-
text of specific diseases. These models were cho-
sen because of their state-of-the-art performance
in many natural language processing (NLP) tasks.
Additionally, their open-source nature allows for
broad accessibility and modification by researchers
across disciplines, which promotes transparency
and collaborative advancements in both NLP and
other scientific domains.

To facilitate a comprehensive analysis, our
methodology encompasses six core datasets, which
are further subdivided into 13 distinct subsets based
on specific experimental parameters and objectives.
The first 3 datasets primarily explore the effects of
LDR on protein deregulation. These 3 sets are fur-
ther divided into 10 subsets, emphasizing different
experimental conditions. The last 3 datasets focus
on PPIs in the presence of specific diseases, namely
neurodegenerative, metabolic, and cancer.

The subsets of the LDR data are much smaller
than the PPI datasets, which is why these were
combined into dataset 3c. Dataset 3c’s larger size
is shown in comparison with the other datasets in
Figure 2. The details about each dataset is outlined
in Appendix A.

Figure 2: Comparison of Dataset Sizes

4 Experiments

The methodology for analyzing each dataset be-
gan with data pre-processing, executed through a
Python script tailored to appropriately structure the
raw data. Subsequently, this processed data was
used to create prompts that fit the prompting strate-
gies outlined in Appendix A. These prompts were
then saved in a JSON file, and were subsequently
used as input to the LLMs.

For deploying the models, a separate Python
script using the Hugging Face Transformers library
loaded the models onto 4×NVIDIA A100 80GB
GPUs. These pre-trained models were then pre-
sented with the JSON file prompts and the perfor-
mance of each model was recorded.

4.1 Experimental Setup

Our experimental setup across the datasets imple-
mented a binary classification task, instructing the
models to produce a "yes" or "no" answer in re-
sponse to each prompt. The generated responses
from each model necessitate the deployment of
an algorithm to parse these outputs effectively. If
the given string "yes" or "no" is not found in the
model’s response, this response is marked as the
opposite of the true label. This is a result of using
causal language models, which are designed for
text generation. To optimize this task, the “Data
Collator for Completion-Only Language Models“
and the SFT (Supervised fine-tuning) Trainer from
the Hugging Face library were utilized in training
the models to give the correct response structure.

4.2 Data Split

We structured the training process differently for
each of the two tasks. For the LDR task, we di-
vided the prompts for each dataset into an 80/10/10
split for training, validation, and testing, respec-
tively. The PPI datasets 4 and 5 utilized a 5-fold
cross validation setup, where 4 sets were used for
training and 1 set was used for testing in each fold.
Similarly, the PPI dataset 6 used a 5-fold cross
validation setup but instead 3 sets were used for
training, 1 set for validation, and 1 set for testing.
This was carried out to replicate the experimental
conditions used in the benchmark models.

4.3 Fine-Tuning

During the training process, we employed Param-
eter Efficient Fine-Tuning (PEFT) (Mangrulkar
et al., 2022), a method focused on selectively modi-

429



fying a subset of the model’s parameters rather than
the entire set. Low-Rank Adaptation (LoRA) (Hu
et al., 2021) is a specialized PEFT technique that
was utilized when fine-tuning the LLMs for these
tasks. Additionally, we used QLoRA (Dettmers
et al., 2023) to reduce the GPU memory required
for training Llama 3 on datasets 4 and 5. This ap-
proach was essential because the combined size of
these datasets and the 8 billion parameter model
required more efficient memory usage than tradi-
tional LoRA.

5 Results

Every phase of the model training process was doc-
umented and analyzed. The evaluation metrics used
include accuracy, Matthews Correlation Coefficient
(MCC), specificity, macro precision, and macro F1
Score.

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.367 -0.343 0.068 0.290 0.304
Llama 2 (3-shot) 0.556 0.110 0.386 0.558 0.541
Llama 3 (3-shot) 0.489 0.0 1.0 0.244 0.328
Mistral (LoRA) 0.500 0.058 0.977 0.580 0.369
Llama 2 (LoRA) 0.522 0.061 0.750 0.534 0.500
Llama 3 (LoRA) 0.567 0.155 0.773 0.585 0.551

Table 1: Performance Comparison for Dataset 1.1

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.291 -0.461 0.027 0.210 0.239
Llama 2 (3-shot) 0.567 0.153 0.479 0.578 0.566
Llama 3 (3-shot) 0.545 0.0 1.0 0.272 0.353
Mistral (LoRA) 0.493 0.007 0.384 0.503 0.490
Llama 2 (LoRA) 0.537 -0.006 0.932 0.494 0.401
Llama 3 (LoRA) 0.552 0.054 0.945 0.554 0.420

Table 2: Performance Comparison for Dataset 1.2

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.286 -0.230 0.133 0.368 0.279
Llama 2 (3-shot) 0.381 -0.067 0.267 0.467 0.381
Llama 3 (3-shot) 0.714 0.0 1.0 0.357 0.417
Mistral (LoRA) 0.381 -0.241 0.400 0.391 0.358
Llama 2 (LoRA) 0.381 -0.447 0.533 0.286 0.276
Llama 3 (LoRA) 0.571 0.279 0.467 0.630 0.568

Table 3: Performance Comparison for Dataset 1.3

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.125 -0.745 0.0 0.083 0.111
Llama 2 (3-shot) 0.438 -0.035 0.3 0.482 0.435
Llama 3 (3-shot) 0.625 0.0 1.0 0.313 0.385
Mistral (LoRA) 0.688 0.313 0.8 0.664 0.654
Llama 2 (LoRA) 0.688 0.423 0.6 0.706 0.686
Llama 3 (LoRA) 0.813 0.592 0.9 0.809 0.792

Table 4: Performance Comparison for Dataset 2.1

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.095 -0.767 0.0 0.059 0.087
Llama 2 (3-shot) 0.524 0.224 0.4 0.607 0.523
Llama 3 (3-shot) 0.714 0.0 1.0 0.357 0.417
Mistral (LoRA) 0.714 0.0 1.0 0.357 0.417
Llama 2 (LoRA) 0.286 0.0 0.0 0.143 0.222
Llama 3 (LoRA) 0.524 -0.167 0.667 0.417 0.417

Table 5: Performance Comparison for Dataset 2.2

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.25 -0.5 0.25 0.25 0.25
Llama 2 (3-shot) 0.375 -0.378 0.0 0.214 0.273
Llama 3 (3-shot) 0.5 0 1.0 0.25 0.333
Mistral (LoRA) 0.625 0.258 0.5 0.633 0.619
Llama 2 (LoRA) 0.625 0.258 0.75 0.633 0.619
Llama 3 (LoRA) 0.5 0 1.0 0.25 0.333

Table 6: Performance Comparison for Dataset 2.3

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.1 -0.816 0.167 0.1 0.091
Llama 2 (3-shot) 0.4 -0.102 0.167 0.438 0.375
Llama 3 (3-shot) 0.6 0.0 1.0 0.3 0.375
Mistral (LoRA) 0.6 0.0 1.0 0.3 0.375
Llama 2 (LoRA) 0.4 0.0 0.0 0.2 0.286
Llama 3 (LoRA) 0.4 0.0 0.0 0.2 0.286

Table 7: Performance Comparison for Dataset 2.4

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.364 0.0 0.0 0.182 0.267
Llama 2 (3-shot) 0.364 -0.463 0.571 0.25 0.267
Llama 3 (3-shot) 0.636 0.0 1.0 0.318 0.389
Mistral (LoRA) 0.364 0.0 0.0 0.182 0.267
Llama 2 (LoRA) 0.364 0.0 0.0 0.182 0.267
Llama 3 (LoRA) 0.273 -0.418 0.0 0.15 0.214

Table 8: Performance Comparison for Dataset 3.1

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.438 0.0 0.0 0.219 0.304
Llama 2 (3-shot) 0.438 -0.098 0.333 0.450 0.435
Llama 3 (3-shot) 0.625 0.293 1.0 0.8 0.5
Mistral (LoRA) 0.563 0.0 1.0 0.281 0.360
Llama 2 (LoRA) 0.438 0.0 0.0 0.219 0.304
Llama 3 (LoRA) 0.563 0.0 1.0 0.281 0.360

Table 9: Performance Comparison for Dataset 3.2

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 0.247 -0.593 0.0 0.173 0.198
Llama 2 (3-shot) 0.475 -0.015 0.769 0.491 0.443
Llama 3 (3-shot) 0.493 -0.038 0.317 0.480 0.473
Mistral (LoRA) 0.552 0.090 0.423 0.546 0.540
Llama 2 (LoRA) 0.547 0.066 0.154 0.549 0.459
Llama 3 (LoRA) 0.516 0.014 0.375 0.507 0.502

Table 10: Performance Comparison for Dataset 3c

Tables 1-13 indicate the performance of both the
pre-trained models, and their fine-tuned counter-
parts on each of the 13 datasets. We evaluated the
pre-trained models using the same procedure as the
fine-tuned models, the only difference is that the
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Model Acc. (%) MCC (%) Spec. (%) Prec.(%) F1 (%)
Mistral (3-shot) 38.44±0.46 -31.79±0.54 4.15±0.16 28.16±0.28 30.23±0.25
Llama 2 (3-shot) 55.14±0.16 13.18±0.29 23.79±0.57 58.47±0.23 50.23±0.17
Llama 3 (3-shot) 50.38±0.36 6.17±0.27 1.0±0.0 75.10±0.18 34.18±0.17
Mistral (LoRA) 62.34±6.88 25.53±14.37 97.89±1.17 48.49±12.84 51.97±10.36
Llama 2 (LoRA) 87.28±0.41 76.63±1.03 88.59±0.95 87.33±0.22 87.28±0.31

Llama 3 (QLoRA) 88.27±1.08 76.92±2.12 92.81±1.06 88.58±1.08 88.26±1.07
SymLMF (Reported) 86.11±1.05 74.29±2.07 N/A 83.24±1.28 N/A

Table 11: Performance Comparison for Dataset 4

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 35.52±0.76 -39.08±0.82 1.98±0.14 23.65±0.56 27.33±0.48
Llama 2 (3-shot) 51.45±0.81 6.66±1.16 6.42±0.37 57.66±1.31 39.09±0.57
Llama 3 (3-shot) 56.03±0.21 12.12±0.46 53.69±0.34 56.06±0.23 56.00±0.21
Mistral (LoRA) 62.18±6.61 25.08±13.33 93.80±3.89 57.70±11.91 51.93±10.16
Llama 2 (LoRA) 84.63±0.24 69.20±0.66 84.06±0.92 84.51±0.34 84.43±0.34

Llama 3 (QLoRA) 91.28±0.87 82.57±1.73 90.41±1.08 91.29±.86 91.28±0.87
SymLMF (Reported) 81.37±1.04 63.31±2.07 N/A 77.70±1.07 N/A

Table 12: Performance Comparison for Dataset 5

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) 41.91±1.19 -23.81±1.55 5.15±0.43 32.45±0.95 32.79±0.69
Llama 2 (3-shot) 57.61±0.91 16.69±2.40 39.18±1.42 59.0±1.32 56.09±1.0
Llama 3 (3-shot) 53.96±1.62 16.40±2.75 97.83±0.55 67.25±2.83 42.91±1.68
Mistral (LoRA) 83.76±8.12 68.81±15.40 93.30±2.15 79.20±12.41 80.69±10.85
Llama 2 (LoRA) 93.25±0.84 86.84±1.49 93.39±1.38 93.55±0.74 93.22±0.84
Llama 3 (LoRA) 93.94±0.25 88.04±0.47 91.83±1.12 94.09±0.22 93.92±0.25

NECARE (Reported) N/A 84.0±3.0 92.0±2.0 90.0±2.0 90.0±2.0

Table 13: Performance Comparison for Dataset 6

models were prompted with example questions or
“shots“ before the dataset prompt was given. The
term "3-shot" refers to the 3 example questions
prompted before the dataset’s prompt. The results
of these experiments demonstrated that LLMs were
particularly effective when fine-tuned on larger,
well-structured datasets, as evidenced by their suc-
cess in the PPI prediction task.

5.1 Performance
When fine-tuned with QLoRA, Llama 3 shows su-
perior performance on the PPI prediction task for
each of the three datasets. On the neurodegen-
erative (Table 11) and metabolic disorder (Table
12) PPI prediction tasks, it scores an accuracy of
88.27% and 91.28% respectively. These values out-
perform the current best model SymLMF (Pei et al.,
2021), which achieves only 86.11% and 81.37%.

Furthermore, this model fine-tuned with LoRA
achieves a precision of 96.9%, which outperforms
the 94% precision achieved with NECARE (Qiu
et al., 2021) as shown in table 13. It is clear that the
fine-tuned Llama 3 model is currently the best pre-
diction method for identifying PPIs in the presence
neurodegenerative diseases, metabolic disorders,
and cancer.

5.2 Discussion

We show that fine-tuning the LLMs can increase
performance by a substantial margin. However,
this depends heavily on the size of the dataset
used to train the model, and the specific prompting
techniques used. While fine-tuning significantly
boosted accuracy in datasets 4, 5, and 6 by up to
50%, model performance on datasets 1, 2, and 3
exhibited less pronounced improvements after fine-
tuning (Tables 1-10).

In analyzing the discrepancies in model perfor-
mance between the PPI and LDR tasks, one notable
difference lies in the composition of the prompts
used for each task. For the PPI task, each prompt
includes two variable protein names. This dual-
protein structure of the prompts likely provides
the model with a relational context that aids in
discerning interaction patterns between proteins,
facilitating more effective learning and prediction.

In contrast, the LDR task prompts feature only
one variable protein name, potentially limiting the
model’s learning and predictive capabilities due to
insufficient relational or comparative data. The sin-
gle protein name reduces the available contextual
cues for predicting deregulation. This prompt de-
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sign likely contributes to the lower accuracy in the
LDR task, as the model may struggle to infer the
broader biological impacts of LDR exposure from
a solitary protein reference.

These results not only illustrate the current con-
straints of these models but also suggests potential
avenues for improvements, such as the develop-
ment of more domain-specific datasets related to
LDR, or the application of prompt engineering tech-
niques.

6 Evaluation of Model Predictions

In this section, we analyze the predictions made
by the LLMs and highlight some of the proteins
that were correctly and incorrectly identified. We
focus on interpreting the results obtained from our
experiments in tables 1-13, examining the predic-
tions made and identifying patterns in each model’s
output to understand their current limitations.

6.1 Correctly Identified Proteins
After analyzing the model output for each LLM,
there are a few commonalities between the cor-
rectly identified proteins. Many of the names fol-
low standard naming conventions in molecular bi-
ology, such as using abbreviations or acronyms
that represent the function or family of the protein.
Some examples include: SLC (Solute Carrier) pro-
teins slc9a6, slc3a2, slc27a4, slc1a1, slc38a3, and
RP (Ribosomal Protein) proteins rpl24, rpl22, rpl9,
rpl15, rps11, rps25, rps13, rps27rt.

Additionally, the proteins correctly identified
seem to belong to various functional categories,
such as cytoskeletal proteins: tubb4a, tubb, actb,
signaling proteins: hras, gsk3b, camk2a, camk4,
rab3b, and metabolic enzymes: aldh3b1, aldh1l1,
psat1, cpt2, pnpo, ak5, pgm3.

Overall, the correctly identified proteins cover a
diverse range of cellular functions, including signal-
ing, metabolism, transport, cytoskeletal organiza-
tion, and many others. The naming conventions and
functional hints within the protein names suggest
that these proteins are well-studied and recognized
by the models, potentially due to their importance
in various biological processes and their prevalence
in scientific literature.

6.2 Incorrectly Identified Proteins
When contrasting the incorrectly identified proteins
with the correctly identified ones, a few key dif-
ferences can be observed. Specifically, the incor-
rectly identified protein names seem to follow less

standardized naming conventions compared to the
correctly identified ones. They lack common abbre-
viations or acronyms that indicate their functional
categories or protein families.

Furthermore, it is more challenging to infer the
functional categories or processes that the incor-
rectly identified proteins are involved in based
solely on their names. These proteins could be less
well-known or less extensively researched, making
it more challenging for the models to accurately
identify them.

Additionally, LLMs might have biases or limi-
tations in their training data or algorithms, which
could contribute to the discrepancies in identifi-
cation accuracy. Ultimately, the correctly identi-
fied proteins seem to follow more recognizable
naming conventions, belong to well-characterized
functional categories, and potentially have a more
substantial presence in scientific literature, which
could explain why they were more accurately iden-
tified by the models compared to the incorrectly
identified ones.

7 Dataset Cross-Reference Analysis

Independent of the LLM experiments, we conduct a
dataset cross-reference analysis to identify the com-
mon proteins between the LDR and PPI datasets,
highlighting those that may be involved in both pro-
cesses. Through this extensive analysis, we gained
a deeper understanding of the data utilized for train-
ing these LLMs and enhanced our understanding
of the protein dynamics involved in both radiation
response and disease mechanisms.

We identified overlaps between the PPI datasets
4, 5, and 6, and the combined LDR dataset 3c. The
positive interaction pairs were identified for each
of datasets 4 (11,762 proteins), 5 (10,262 proteins),
and 6 (1,866 proteins). Subsequently, the signifi-
cantly affected proteins in the combined dataset 3c
were identified (1,111 proteins). Our findings show
that the highest percentage of overlap with the LDR
data was with dataset 4, the neurodegenerative PPI
dataset.

7.1 Dataset Analysis Metrics

The metrics used for these experiments include the
percentage of overlap, the multiset coverage, the
Jaccard index, and the weighted Jaccard index. The
difference between the percentage overlap and the
multiset coverage is that the multiset coverage takes
into account the frequency of reoccurring proteins
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between all interactions. In other words, multiset
coverage includes duplicate protein names, where
the percentage overlap uses only unique proteins
names.

The reasoning for calculating both multiset cov-
erage and percent overlap is because if a specific
protein occurs frequently in the protein interaction
network, it likely contributes more to the overall
biological structure. Thus, including the duplicate
proteins in the calculation of multiset coverage il-
lustrates the extent to which these proteins affect
the network.

Additionally, the Jaccard index was used for cal-
culating the set similarity for the unique proteins,
and the weighted Jaccard index was used when
accounting for duplicate proteins. These values
measure the similarity between the two sets, while
accounting for their sizes through normalization.

7.2 Neurodegenerative Diseases PPI
The neurodegenerative diseases PPI dataset exhib-
ited the highest percentage of unique protein over-
lap (14.02%) and multiset coverage (22.21%). The
Jaccard Index for unique proteins was 0.0633 and
the Weighted Jaccard Index was 0.2546, indicating
a significant shared profile. This neurodegenera-
tive PPI dataset contains 820 unique proteins in
the PPI network. There were 115 unique proteins
identified to overlap between the LDR data and
PPI data. Some of these proteins include MAPT
(Microtubule-Associated Protein Tau) (Medeiros
et al., 2011), HTT (Huntingtin) (Tabrizi et al., 2019;
Jimenez-Sanchez et al., 2017), APP (Amyloid Pre-
cursor Protein) (de la Vega et al., 2021; X et al.,
2021), and GFAP (Glial Fibrillary Acidic Protein)
(Yang and Wang, 2015; Kunchok et al., 2019), each
of which have been shown to be linked with neu-
rodegenerative diseases.

7.3 Metabolic Disorders PPI
The metabolic disorders PPI dataset showed a
7.14% overlap with unique proteins, and a mul-
tiset coverage of 13.78%. Both the Jaccard In-
dex (0.0357) and Weighted Jaccard Index (0.1420)
were lower compared to the neurodegenerative
dataset, indicating less similarity with the LDR
dataset but still notable overlap. This metabolic
diseases PPI dataset contains 1036 unique proteins
in the network. There were 74 unique proteins
identified between both sets. Some of these pro-
teins include ALDH2 (Aldehyde Dehydrogenase
2) (Wang et al., 2021; Chen et al., 2022), ACE

(Angiotensin-Converting Enzyme) (Fountain et al.,
2024), and ACAD8 (Acyl-CoA Dehydrogenase 8)
(Zhuang et al., 2022), which have been shown to
link to metabolic disorders.

7.4 Cancer PPI

The overlap in the cancer PPI dataset was more
modest, with an 8.84% overlap and 4.72% mul-
tiset coverage, highlighting 19 unique overlap-
ping proteins. The Jaccard Index was notably
low at 0.0145, and the Weighted Jaccard Index
at 0.0305. Some notable proteins identified in-
clude PAK1 (P21-Activated Kinase 1) (Belli et al.,
2023), GRM1 (Glutamate Metabotropic Receptor
1) (Mehta et al., 2013; Nord et al., 2014), ANK1
(Ankyrin 1) (Tessema et al., 2017), and PTEN
(Phosphatase and Tensin Homolog) (Liu et al.,
2015). These proteins are illustrated in Figure 3.
The highlighted proteins are also found in the com-
bined LDR dataset, indicating that these proteins
are significantly deregulated after exposure to LDR.

Figure 3: Cancer Protein Interaction Network. High-
lighted Proteins are Significantly Affected by LDR.

7.5 Comparison

The higher overlap and Jaccard indices for dataset
4 show that there are more proteins in this network
that are affected by LDR compared to those in
the metabolic and cancer datasets. Similarly, the
overlap of unique proteins between dataset 3c and
dataset 6 is more than the overlap between datasets
3c and 5 despite its significantly larger size. This
data suggests a higher probability that LDR affects
cancer when compared to metabolic disorders. By
highlighting the specific proteins overlapping be-
tween these datasets, we have identified key points
for future research that can help bridge the gap
between LDR exposure and disease mechanisms.
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8 Conclusion

This study presents an exploration of the capabil-
ities of LLMs in predicting the molecular dynam-
ics of proteins under various conditions. By em-
ploying three state-of-the-art LLMs across multiple
datasets, our research offers valuable insights into
the potential utility and limitations of computa-
tional models for these tasks.

The fine-tuning process using LoRA proved to
be a pivotal factor in enhancing model performance,
demonstrating notable improvements in accuracy
and predictive capabilities. Improving the accuracy
of these models is key, because a major limitation
of LLMs is their tendency to hallucinate, or give
false information. Utilizing parameter efficient fine-
tuning strategies helps to alleviate this problem
while also maintaining an efficient computational
complexity. Through the use of PEFT, the Llama
3 model outperforms the current best models for
the PPI prediction tasks, indicating its potential for
future advancements in biomolecular research.

Our analysis of protein identification by these
models revealed intriguing patterns. Correctly iden-
tified proteins often belonged to well-characterized
functional categories and were represented by stan-
dard naming conventions, suggesting that the pre-
training on extensive biomedical literature may
have equipped the models with a robust foundation
of biological knowledge. Conversely, proteins that
were incorrectly identified typically lacked these
characteristics, possibly indicating areas where
LLMs could benefit from further training or more
focused dataset enrichment.

The cross-referencing of proteins affected by
LDR with those involved in PPIs of neurodegen-
erative, metabolic, and cancer-related processes
brought forth specific proteins that could be further
explored in future studies. Notably, the neurode-
generative PPI dataset showed the highest overlap,
where 115 unique proteins were identified in both
datasets. These results highlight exactly which pro-
teins in the PPI networks are significantly dereg-
ulated after LDR exposure, which could help to
advance our understanding of how LDR affects
disease mechanisms.

In conclusion, the integration of LLMs into bio-
logical research, particularly using fine-tuning tech-
niques like LoRA, holds promising potential for ad-
vancing our understanding of the molecular mecha-
nisms underpinning disease and radiation exposure.
The versatility and scalability of these models make

them instrumental tools in the ongoing quest to de-
code complex biological data. Their capacity to
learn patterns and generate insights from extensive
datasets holds immense promise for future research
endeavors. Future work should focus on expand-
ing the datasets, specifically the LDR data, and
refining model architectures to further enhance the
precision and applicability of LLMs in scientific
discovery.
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A Dataset Information

Dataset 1
The first dataset was provided from this study:
“CREB Signaling Mediates Dose-Dependent
Radiation Response in the Murine Hippocampus
Two Years after Total Body Exposure” (Hladik
et al., 2020). This study records the modulation of
protein expressions in response to varied radiation
exposures, categorizing proteins based on their up-
regulation or downregulation across three distinct
radiation groups. A graphical representation of the
significantly deregulated proteins can be seen in
Chart A, this chart was presented in the original
study and helps to visualize the structure and size
of the dataset.

To construct a balanced representation of
the data, we combine the identified upregulated
and downregulated proteins, for each of the
three radiation groups. Subsequently, we employ
a randomized selection process, drawing an
equitable count of proteins from the list of proteins
deemed unaffected by LDR, as shown by the
original study.

After cleaning the data, the number of pro-
teins in each of the three subsets (1.1, 1.2, and 1.3)
are 892, 1332, and 204 proteins respectively. Each
subset maintains an equal distribution between
proteins influenced by LDR and those unaffected,
thus ensuring analytical balance. The LLMs are
then tasked to evaluate the following query for
each protein: "Given the options yes or no, will
there be significant deregulation of the protein
{protein x} 24 months post low-dose radiation
exposure at {dosage level} Gy?".

Dataset 2
The second dataset was provided from the
study titled “DNA damage accumulation during
fractionated low-dose radiation compromises
hippocampal Neurogenesis” (Schmal et al., 2019).
This research provides an evaluation of protein
expression changes due to low-dose radiation
(LDR), and gives information regarding the
temporal aspects of radiation exposure on cellular
processes. Similar to Dataset 1, we have provided
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Figure 4: Chart A (Top) and Chart B (Bottom)

a graphical representation of the significantly
deregulated proteins in Chart B, this chart was also
presented in the original study.

This dataset encapsulates the regulatory sta-
tus of proteins, upregulated or downregulated,
across four distinct cohorts. Each cohort under-
went an identical radiation dosage of 2.0 Gy, but
the resultant protein expression was analyzed
at different post-exposure intervals. Mirroring
the methodology applied to the first dataset, we
combined the upregulated and downregulated
protein expressions, as indicated by the red and
green columns for each group, and randomly
sample the unaffected proteins. This approach
ensures a balanced representation of the data for
each group.

After the data cleaning process the number
of proteins in each of the four subsets (2.1, 2.2,
2.3, and 2.4) are 160, 198, 74, and 94 proteins
respectively. Similar to the first dataset, the LLMs
are then tasked to evaluate the following query for
each protein: "Given the options yes or no, will

there be significant deregulation of the protein
{protein x} {time} after exposure to low dose
radiation at 2.0 Gy?".

Dataset 3

Dataset 3 was provided from the study titled
"Low-dose radiation differentially regulates
protein acetylation and histone deacetylase
expression in human coronary artery endothelial
cells" (Barjaktarovic et al., 2017). This work
delves into the post-translational modifications,
specifically acetylation, that occur in proteins
of human coronary artery endothelial cells as a
result of low-dose radiation (LDR) exposure. The
administered radiation dose of 0.5 Gy and the
subsequent temporal protein measurements offer
valuable insights into the cellular responses.

In this study, the protein deregulation via
acetylation was monitored at two time intervals:
at 4 hours and then at 24 hours post-radiation
exposure. The resulting subsets for analysis,
capturing the 4 hour period and the 24 hour period,
comprised 98 and 154 proteins, respectively. These
two groups represents datasets 3.1 and 3.2.

To maintain a consistent evaluation strategy,
the LLMs are given a prompt for each protein in
the dataset: "Given the options yes or no, will there
be an altered acetylation status of protein {protein
x} 24 hours after exposure to low dose radiation at
0.5 Gy?".

Dataset 3c

Dataset 3c represents a strategic combination of
datasets 1, 2, and 3. This integration was motivated
by insights derived from the review of experiments
1 through 3, which suggested limitations in the
approach’s efficacy. Specifically, the chosen
prompts for these experiments were potentially
too narrowly defined, and the datasets themselves
were not sufficiently sized to enable the LLMs to
recognize the patterns within the data.

To address these challenges, we synthesized
a comprehensive dataset combining the protein
deregulation data from the first 3 datasets. The
objective was to refine the training process for
the LLMs using a larger dataset and significantly
broader prompting strategy. The reformulated
prompt used to train the LLMs is: "Given the
options yes or no, will there be deregulation of
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the protein {protein x} after low-dose radiation
exposure?".

Dataset 3c includes an amalgamation of datasets
1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2. It is a
combination of the proteins in each of the columns
from charts A and B from Figure 17, along with the
proteins from datasets 3.1 and 3.2. The repeated
proteins between all datasets were removed. These
proteins become deregulated across different time
intervals and radiation dosage levels, resulting in a
comprehensive dataset of 1,111 proteins.

A randomized sampling methodology was
employed to select proteins that do not exhibit
deregulation across these varied experimental
conditions, which resulted in a dataset featuring
2,222 proteins. This augmented dataset size
significantly enhances the LLMs’ training ability,
facilitating a more nuanced understanding of
protein behavior in response to low-dose radiation
exposure.

Dataset 4

Dataset 4 was provided by the study "Predicting
Protein-Protein Interactions Using Symmetric
Logistic Matrix Factorization" (Pei et al., 2021).
In an effort to understand the Protein-Protein
Interactions (PPIs) specific to disease mechanisms,
this dataset focuses on the protein interactions
associated with neurodegenerative diseases.

From the data provided, this study narrows
its focus to a subset encompassing 820 proteins,
which form a network of 5,881 positive (interaction
present) and 5,881 negative (interaction absent)
protein pairs. This gives us a total of 11,762
protein interactions. The LLMs are prompted
with the following query for each protein pair:
"Given the options yes or no, do proteins {protein
x} and {protein y} interact in the presence of
neurodegenerative disease?".

Dataset 5

Concurrent with the exploration of neurodegen-
erative diseases in Dataset 4, Dataset 5 focuses
on metabolic disorders. Provided by the same
study "Predicting Protein-Protein Interactions
Using Symmetric Logistic Matrix Factorization"
(Pei et al., 2021), this dataset shines a light on
the protein interactions that might contribute to
metabolic dysfunction.

This data is made up of 1,063 proteins, from which
a balanced collection of 5,131 positive and 5,131
negative protein pairs is drawn. This leads to a
total dataset size of 10,262 protein interactions.
The LLMs will use a similar prompt to that used
for dataset 4: "Given the options yes or no, do
proteins {protein x} and {protein y} interact in the
presence of a metabolic disorder?".

Dataset 6
Dataset 6 was provided from the study "Network-
based protein-protein interaction prediction
method maps perturbations of cancer interactome"
(Qiu et al., 2021), which offers a focused lens on
the protein interaction network within the context
of cancer.

This data presents a network of protein interactions
consisting of 933 positive instances—indicative
of an interaction’s presence—and 1,308 negative
instances, signifying the absence of interaction. To
achieve an even representation akin to previous
datasets, we conduct a randomized selection,
reducing the negative instances to 933, thereby
equalizing the number of positive and negative
samples and giving a total of 1,866 protein
interactions. The prompt used for this dataset is
similar to datasets 4 and 5: "Given the options
yes or no, do proteins {protein x} and {protein y}
interact in the presence of cancer?".
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Abstract

The latest breakthroughs in large language
models (LLMs) and vision-language models
(VLMs) have showcased promising capabili-
ties toward performing a wide range of tasks.
Such models are typically trained on massive
datasets comprising billions of image-text pairs
with diverse tasks. However, their performance
on task-specific domains, such as radiology, is
still under-explored. While few works have
recently explored LLMs-based conversational
medical models, they mainly focus on text-
based analysis. In this paper, we introduce
XrayGPT, a conversational medical vision-
language (VLMs) model that can analyze and
answer open-ended questions about chest ra-
diographs. Specifically, we align both medical
visual encoder with a fine-tuned LLM to pos-
sess visual conversation abilities, grounded in
an understanding of radiographs and medical
knowledge. For improved alignment of chest
radiograph data, we generate 217k interactive
and high-quality summaries from free-text radi-
ology reports. Extensive experiments are con-
ducted to validate the merits of XrayGPT. To
conduct an expert evaluation, certified medical
doctors evaluated the output of our XrayGPT
on a test subset and the results reveal that
more than 70% of the responses are scientif-
ically accurate, with an average score of 4/5.
Our code and models are available at: https:
//github.com/mbzuai-oryx/XrayGPT

1 Introduction

The Large-scale Vision-Language models have
emerged as a transformative area of research at
the intersection of computer vision and natural
language processing, enabling machines to under-
stand and generate information from both visual
and textual modalities. These models represent a
significant advancement in the field, bridging the
gap between visual perception and language com-
prehension, and have demonstrated remarkable ca-
pabilities across various tasks, including but not

limited to image captioning (Hossain et al., 2019),
visual question answering (Lu et al., 2023), and vi-
sual commonsense reasoning (Zellers et al., 2019).
Training these models requires vast amounts of
image and text data, enabling them to learn rich
representations that capture the intricacies of both
modalities. Additionally, fine-tuning can be em-
ployed using task-specific data to better align the
models with specific end tasks and user preferences.
Recently, Bard and GPT-4 have demonstrated im-
pressive capabilities in various tasks, raising excite-
ment within the research community and industry.
However, it is important to note that the models
of Bard and GPT-4 are not currently available as
open-source, limiting access to their underlying
architecture and implementation details.

Recently, Mini-GPT (Zhu et al., 2023) demon-
strated a range of impressive capabilities by align-
ing both vision and language models. It excels
at generating contextual descriptions based on the
given image. However, it is not as effective in
medical scenarios due to the significant differences
between medical image-text pairs and general web
content. Adopting vision-text pre-training in the
medical domain is a challenging task because of
two factors: (1) Lack of data, Mini-GPT has trained
the projection layer on a dataset of 5M image-text
pairs, while the total number of publicly available
medical images and reports is orders of magni-
tude below. (2) Different modalities and domains,
while Mini-GPT may involve distinguishing be-
tween broad categories like "Person" and "Car" the
distinctions within medical domains are much more
subtle and fine-grained. For instance, differentiat-
ing between terms like "Pneumonia" and "Pleural
Effusion" requires more precision by capturing and
aligning relevant medical domain knowledge.

Chest radiographs are vital for clinical decision-
making as they offer essential diagnostic and prog-
nostic insights about the patients. Text summariza-
tion tasks can partially address this challenge by
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providing meaningful information and summaries
based on the given radiology reports. In our ap-
proach, we go beyond traditional summarization
techniques by providing concise summaries that
highlight the key findings and the impression based
on the X-ray. Additionally, our model allows for in-
teractive engagement, enabling users to ask follow-
up questions based on the provided answers. We
argue that based on the visual and large language
models, the majority of knowledge acquired dur-
ing the pertaining stage of these models requires
a domain-specific high-quality instruction set de-
rived from task-specific data to achieve promising
results. The main contributions of our work are:-

• We generate interactive and clean summaries
( 217k) from free-text radiology reports of two
datasets: MIMIC-CXR (Johnson et al., 2019)
and OpenI (Demner-Fushman et al., 2015).
These summaries serve to enhance the perfor-
mance of our XrayGPT by fine-tuning the lin-
ear transformation layer on high-quality data.

• We fine-tune a standard LLM (Vicuna)
on medical data (100k real conversations)
and 20k radiology conversations from sam-
ples from chatdoctor (Li et al., 2023) to ac-
quire medical domain-specific features.

• In our XrayGPT, the frozen specialized medi-
cal visual encoder is aligned with a fine-tuned
medical LLM, using a simple linear transfor-
mation to understand medical meanings and
acquire visual conversation capabilities.

• We conduct experiments including an evalu-
ation study through certified medical doctors
to validate the merits of our XrayGPT. To pro-
mote future research, our codebase, fine-tuned
models, and high-quality instruction set along
with the recipe for data generation and model
training will be publicly released.

2 Related Work

Medical Chatbots: Recent medical chatbots have
emerged as valuable tools in healthcare, providing
personalized support and assistance to patients and
professionals. The recently introduced Chatdoc-
tor (Li et al., 2023), a next-gen AI doctor based on
LLaMA (Touvron et al., 2023), aims to be an in-
telligent healthcare companion, answering patient
queries and offering personalized medical advice.
After success of ChatGPT (OpenAI, 2022), GPT-
4 (OpenAI, 2023) and other open source LLM’s

(Touvron et al., 2023; Chiang et al., 2023; Taori
et al., 2023), many medical chatbots were intro-
duced recently such as Med-Alpaca (Han et al.,
2023), PMC-LLaMA (Wu et al., 2023), and Doc-
torGLM (Xiong et al., 2023). These models utilize
open-source LLMs and are finetuned on medical
instructions, demonstrating the potential of chat-
bots to enhance patient engagement and health out-
comes with personalized interactions.
Large Vision-Language Models: A significant
area of research in natural language processing
(NLP) and computer vision is the exploration of
Large Vision-Language Model (VLM) learning
techniques. This VLM aims to bridge the gap be-
tween visual and textual information, enabling ma-
chines to understand and generate content that com-
bines both modalities. Recent studies have demon-
strated the potential of VLM models in various
tasks, such as image captioning (Zhu et al., 2023),
visual question answering (Bazi et al., 2023; Liu
et al., 2023; Muhammad Maaz and Khan, 2023),
and image generation (Zhang and Agrawala, 2023).

3 Method

XrayGPT is an innovative conversational medi-
cal vision-language model designed for analyzing
chest radiographs. Our approach draws inspira-
tion from the design of vision-language models in
general, but with a specific focus on the medical
domain. Due to the limited availability of medical
image-summary pairs, we adopt a similar method-
ology by building upon a pre-trained medical vi-
sion encoder (VLM) and medical large language
model (LLM), as our foundation. The fine-tuning
process involves aligning both modalities using
high-quality image-summary pairs through a sim-
ple transformation layer. This alignment enables
XrayGPT to possess the capability of generating
insightful summaries about chest radiographs.

3.1 Model Architecture

We show in Fig. 1 an overview of our XrayGPT.
Given the X-ray, we align both visual features
and textual information from a pre-trained med-
ical vision encoder (VLM), and medical large lan-
guage model (LLM). Specifically, we utilize Med-
Clip (Wang et al., 2022) as a visual encoder and
our large language model (LLM) is built upon the
recent Vicuna (Chiang et al., 2023).

Given X-ray x ∈ RH×W×C , the visual encoder
is used to encode the image into embeddings using
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The chest x-ray shows bilateral lung
hyperinflation with flattening of the
thoracic spine. This may suggest
emphysema or asthma. The heart is mildly
enlarged and there is mild asymmetry of
the hila with mild vascular congestion,
indicative of early congestive cardiac
failure (CCF). However, there are no signs
of consolidation, pulmonary edema,
pleural effusion or pneumothorax. The
upper abdomen is normal, and there is no
bony abnormality. The impression of the
chest x-ray is mild CCF with flattening of
the thoracic spine.

### Doctor: What are 
the main findings and 

impression of the given 
x-ray?

Linear 
Transformation

Medical VLM

M
ed

ic
al

 L
LM

### Assistant:

Chest Xray sample

: Frozen module : Learnable module

Figure 1: Overview of our XrayGPT framework. The input X-ray is passed sequentially to three components.
(i) Frozen medical visual encoder to extract relevant features pertaining to the chest diagnosis. (ii) Learnable
linear transformation layer to align the medical visual features with the Medical LLM to learn medical visual-text
alignment. (iii) Frozen Medical LLM to generate X-ray summary based on encoded features and the given prompt.

a vision encoder Eimg. Then, the raw embeddings
are mapped to an output dimension of 512 using a
linear projection head fv.

Vp = fv(Eimg(x)) (1)

To bridge the gap between image-level features
and the language decoder’s embedding space, we
employ a trainable linear transformation layer, de-
noted as t. This layer projects the image-level
features, represented by Vp, into corresponding
language embedding tokens, denoted as Lv:

Lv = t(vp), (2)

We use pre-defined prompts as directives
for our LLM in the given format ###Doctor:
<Img><ImgFeature></Img> <Instruction> ###As-
sistant, where ###Doctor, corresponds to the
prompt. ###Assistant, serves the purpose of deter-
mining the system role, which in our case is defined
as "You are a helpful healthcare virtual assistant."
<Instruction> refers to a randomly selected instruc-
tion from our pre-defined set. Both text queries
undergo tokenization, resulting in dimensions rep-
resented by Lt. Finally, Lv is concatenated with Lt

and fed into the medical LLM, fine-tuned Vicuna,
which generates the summary of the chest x-ray.

Our XrayGPT follows a two-stage training
approach. In the first stage, we pre-train the
model using high-quality curated interactive sum-
maries of the training set of MIMIC-CXR (John-
son et al., 2019) reports. While in the second
stage, we use the curated interactive summaries
of OpenI (Demner-Fushman et al., 2015) reports.

3.2 Image-text alignment

To align the generated high-quality summaries with
the given x-ray, we use similar conversational for-
mat of the Vicuna (Chiang et al., 2023) language
model as follows:

###Doctor: XRXQ ###Assistant: XS

where XR is the visual representation produced
by the linear transformation layer for image X ,
XQ is a sampled question (e.g. What are the main
findings and impression of the given X-ray?), and
XS is the associated summary for image X .

4 Curating high-quality data

Datasets: The MIMIC-CXR consists of a collec-
tion of chest radiographs associated with free-text
radiology reports. It consists of 377,110 images
and 227,827 associated reports, which are used for
both training and testing purposes. The dataset is
de-identified by removing the health information to
satisfy health insurance and privacy requirements.
The OpenI dataset is a collection of chest X-ray im-
ages from the Indiana University hospital network,
composing 6,459 images and 3,955 reports.
High Quality and Interactive Summaries: To
generate concise and coherent medical summaries
from the unstructured reports, we perform the fol-
lowing pre-processing steps for both datasets: (1)
Removal of incomplete reports lacking finding or
impression sections. (2) Elimination of reports that
have finding sections containing less than 10 words.
(3) Exclusion of reports with impression sections
containing less than 2 words.

In addition, utilizing the power of gpt-3.5-turbo
model, we further implement the following pre-
processing techniques to ensure high-quality sum-
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maries per image: (1) Elimination of sentences
containing comparisons to the patient’s prior med-
ical history. (2) Removal of de-defined symbols
"__", while preserving the original meaning. (3)
As our training is based on image-text pairs, we
excluded the provided view from the summary. (4)
We combine the clean findings and impressions to
generate an interactive and high-quality summary.

Following these steps, we obtained a set of fil-
tered training reports consisting of 114,690 reports
associated with 241k training images based on
Mimic-CXR dataset. Also, we obtain 3,403 high-
quality summaries that used for training based on
the OpenI dataset. We show an example before and
after our pre-processing in Appendix A.2.

5 Experiments

5.1 Implementation Details

Stage-1 Training: The model is designed in this
stage to gain understanding of how Xray image fea-
tures and corresponding reports are interconnected
by analyzing a large set of image-text pairs. We em-
ploy our high-quality interactive report summaries
as described in sec. 4 of MIMIC-CXR (Johnson
et al., 2019) train set with 213,514 image-text pairs.
The model is trained for 320k steps with a total
batch size of 128 using 4 AMD MI250X GPUs.
Stage-2 Training: The pretrained model of stage-1
is fine-tuned on 3k highly curated image-text pairs
from OpenI dataset (Demner-Fushman et al., 2015).
The total training steps are 5k, with a total batch
size of 32 using single AMD MI250X GPU.

5.2 Evaluation Metrics

We use the ROUGE Score as an evaluation met-
ric to assess the contributions of our components
over the baseline Mini-GPT (Zhu et al., 2023). The
ROUGE Score serves as a valuable quantitative
measure to assess the performance of different text
generation models with the ground truth. Then,
we use GPT-based evaluation schema to assess the
quality and coherence of the text generated by our
approaches, compared to the baseline. Further-
more, we provide certified medical doctors evalua-
tion for 50 samples derived from the testing set of
MIMIC-CXR (Johnson et al., 2019).

5.3 Results

In this section, we highlight a key contribution of
our XrayGPT compared to our baseline (Zhu et al.,
2023). We conduct quantitative evaluation using

Method R-1 R-2 R-L

Baseline 0.1313 0.0221 0.0879
+ MedCLIP 0.1517 0.0308 0.0973
+ MedVicuna 0.2099 0.0551 0.1284
+ RadVicuna 0.3213 0.0912 0.1997

Table 1: Comparison of our XrayGPT components with
the baseline Minigpt-4 (Zhu et al., 2023) using ROUGE
scores (R-1, R-2, and R-L) on MIMIC-CXR (Johnson
et al., 2019) test set. Our approach outperforms Minigpt-
4 with an absolute gain of 19% in terms of R-1 score.

advanced metrics such as ROUGE score and GPT-
based evaluation as described in sec. 5.2. Tab. 1
shows comparison of our key components when
progressively integrated into our baseline (Zhu
et al., 2023) frame. From Tab. 1 our XrayGPT (row
4) has a significant improvement of 19% over the
state-of-the-art baseline (Zhu et al., 2023) on the
MIMIC-CXR test set. Also, we did LLM’s based
evaluation by asking ChatGPT model to choose
"which response is closer to reference between
baseline vs XrayGPT" where our model scored
82% compared to baseline 6% showing the superi-
ority of XrayGPT for radiology-specific summary.

To assess the responses of XrayGPT scientifi-
cally, we asked certified medical doctors to evalu-
ate the responses of our model alongside the base-
line, compared to their real findings and impres-
sion. This evaluation shows that our XrayGPT
has accurate output in 72% of the cases, with an
average score of 4/5, outperforming the baseline
which achieves only 20%, with an average score of
2/5. Both models provided inaccurate responses in
8% of the cases. Despite occasional inaccuracies,
XrayGPT significantly improves upon the baseline,
highlighting its potential in assisting radiologists
with chest radiograph analysis. Additional details
of our evaluations are in Appendix (A.3,A.4). We
also show qualitative examples in Appendix A.5.

6 Conclusion

To conclude, we introduce XrayGPT, an innova-
tive medical vision-language model that combines
both vision-language modalities to summarize and
answer inquiries regarding chest radiographs. By
aligning both modalities and leveraging our pro-
posed interactive summaries derived from free-text
radiology reports, XrayGPT demonstrates excep-
tional visual conversation abilities grounded in a
deep understanding of chest radiographs.
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7 Limitations

While our XrayGPT shows promise toward con-
structing conversational VLMs for chest radiograph
summarization, we acknowledge some limitations
here. We observe some potential limitations in
generation of responses when presented with side
views, as the majority of the trained images pri-
marily consist of frontal views. To address this
limitation, our potential future research direction
is to focus on enhancing the quality and reliability
of the model when handling multiple views of X-
rays. Our current model is specifically trained and
designed to answer questions pertaining to chest
radiographs. Expanding the model’s support to
encompass multiple modalities is a potential re-
search direction. By broadening its capabilities,
the resulting potential model is expected to possess
certain capabilities across various medical imaging
domains beyond chest radiographs.
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A Appendix

A.1 Medical Data
We gather the 100k medical conversational sam-
ples data and 20k radiology specific samples from
chatdoctor (Li et al., 2023) and train LLM (vicuna)
to obtain medical domain-specific LLM. This med-
ical specific LLM then helps in better alignment of
linear transformation layer of our XrayGPT. These
medical conversations are between patient queries
and a doctor response to it. On average a question
length is about 45 words, and a doctor response
covers a brief answer comprising of 100 words. Be-
low is an example of such a conversation sample.
These conversations cover a variety of topics such
as radiology, paleontology, histopathology, etc.

A.2 Example for generating interactive
summary

Input findings: PA and lateral views of the chest
were provided demonstrating no focal consolida-
tion, effusion, or pneumothorax. Cardiomediasti-
nal silhouette appears normal and stable. There
is a compression deformity involving a mid tho-
racic vertebral body, which appears new from the
prior chest radiograph of ___. No free air below
the right hemidiaphragm. There are tiny surgical
clips in the left base of neck, likely indicating prior
thyroid surgery. Input Impression: No acute in-
trathoracic process. Interval development of a mid
thoracic spine compression fracture. High-quality
and interactive summary: The chest x-ray find-
ings reveal no evidence of focal consolidation, ef-
fusion, or pneumothorax. The cardiomediastinal
silhouette appears stable and normal. There is a
newly developed mid thoracic spine compression
fracture but no free air below the right hemidi-
aphragm. The presence of surgical clips in the
left base of the neck suggests prior thyroid surgery.
The impression suggests that there is no acute in-
trathoracic condition detected in the x-ray aside
from the new development of mid thoracic spine
compression fracture.

A.3 LLM based Evaluation
LLM-based evaluation represents a comprehensive
and meticulous approach to assessing and analyz-
ing language models such as GPT-3.5 (OpenAI,
2022, 2023). This evaluation methodology aims to
evaluate the language model’s performance, capa-
bilities, and constraints when generating text that
is both coherent and contextually appropriate. The

evaluation process employs a diverse range of tech-
niques, including automated metrics like perplexity
and fluency scores, as well as human evaluations
that rely on expert judgments and comparisons with
reference texts. By incorporating quantitative and
qualitative measures, LLM-based evaluation offers
valuable insights into the language model’s grasp of
language comprehension, coherence, factual accu-
racy, and its ability to produce responses that align
with the given context. Through this robust evalua-
tion framework, we can continuously enhance and
refine language models by addressing potential bi-
ases, improving response quality, and maximizing
their practicality across various language tasks and
domains. We used GPT-3.5 (OpenAI, 2022) Turbo
for evaluation of our baseline (Zhu et al., 2023) vs
XrayGPT generated responses with the following
meta details.
System Role: You are a chest radiologist that eval-
uates the response of two models: Model_1 and
Model_2 and say which one is closer to the ground
truth. You should print which model is closer to
the ground truth.
User Role: Perform the following task: [1] Which
model (Model_1 or Model_2) is closer to the
Ground_Truth based on the medical finding and
impression? Ground_Truth: <response> Model_1:
<response> Model_2: <response>. [2] Output
should be in valid JSON format without expla-
nation where key=answer and value should be
Model_1 or Model_2.

A.4 Evaluation from Certified Medical
Doctors

In order to comprehensively evaluate the quality
and performance of XrayGPT-generated samples,
we conducted an extensive assessment in collabo-
ration with certified medical doctors, utilizing sam-
ples from MIMIC-CXR test split. During the eval-
uation process, we carefully curated summaries
generated by two different methods: our base-
line (Zhu et al., 2023) method and the XrayGPT
model. These summaries were then presented to
the certified medical doctors, who were tasked with
determining which response provided a relatively
superior summary and diagnosis for the given X-
ray image. To further gauge the medical doctor’s
evaluation, we requested them to assign a score
ranging from 1 to 5 to each response, indicating the
perceived quality of the summaries. This detailed
evaluation process allowed us to gather valuable in-
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sights into the comparative performance and effec-
tiveness of the baseline (Zhu et al., 2023) method
and the XrayGPT model in generating accurate and
informative summaries for X-ray images.

Our scoring criteria is defined as follows,

1. poor description

2. fair description

3. moderate description

4. good description

5. excellent description

In this context, an ‘excellent description’ is de-
fined as one that accurately reflects the findings
and impression of the X-ray without any extrane-
ous false positives or negatives. A ‘good descrip-
tion’, meanwhile, includes all necessary findings
and impressions but may contain additional false
positive findings that do not detract from the over-
all impression. XrayGPT has an accurate output in
72% of the cases. That means in the evaluation of
XrayGPT responses by medical professionals, our
XrayGPT has a score of 4 or higher in 72% of the
responses.

During the evaluation process, medical doctors
also identify and address limitations and challenges
associated with our XrayGPT-generated X-ray im-
age summaries. They consider scenarios where
our XrayGPT method may fail to detect subtle ab-
normalities, mischaracterize findings, or provide
inaccurate recommendations. The medical doc-
tors explore the causes of such limitations, such as
dataset biases, rare or unusual cases not adequately
represented during training, or technical factors that
may impact the XrayGPT system’s performance.

A.5 Qualitative examples
We present a series of illustrative examples
that highlight the remarkable capabilities of our
XrayGPT. In Fig. 2, our XrayGPT effectively sum-
marizes the contents of a provided chest x-ray im-
age, extracting essential findings and generating
an impression. While in Fig. 3, the model demon-
strates its proficiency in follow-up procedures by
recommending appropriate treatments based on the
given case. In Fig. 4, the model accurately identi-
fies key findings in the x-ray and provides correct
responses to user queries. Notably, this particular
case reveals the presence of lung hyperinflation.
Fig. 5 serves as a testament to the versatility of

XrayGPT, showcasing its ability to address mul-
tiple subsequent questions and suggest treatment
options for pleural effusion. Lastly, in Fig. 6, the
model showcases its competence in identifying var-
ious abnormalities within a chest x-ray while also
offering medical treatment recommendations for
pulmonary edema. Through these diverse exam-
ples, we demonstrate how XrayGPT consistently
delivers accurate and comprehensive analyses, po-
sitioning it as a valuable tool in the field of medical
imaging.
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Chest X-Ray Diagnosis

Describe the given chest x-ray image as detailed as possible.

The chest x-ray shows a normal cardiomediastinal silhouette and well-aerated lungs without focal
consolidation, pleural effusion, or pneumothorax. The upper abdomen appears normal with no
bony abnormality identified. The impression is that there is no acute cardiopulmonary process
identified.

Figure 2: XrayGPT: Delivering Comprehensive and Succinct Findings and Impressions for Every X-ray
Image. Our XrayGPT provides detailed radiology specific summary as well as concise findings and impression for
given xray image.

Chest X-Ray Diagnosis

Is there any sign of pneumonia in given chest x-ray ?

The chest x-ray shows bilateral lung hyperinflation with flattening of the thoracic
spine. This may suggest emphysema or asthma. The heart is mildly enlarged and
there is mild asymmetry of the hila with mild vascular congestion, indicative of early
congestive cardiac failure (CCF). However, there are no signs of consolidation,
pulmonary edema, pleural effusion or pneumothorax. The upper abdomen is
normal, and there is no bony abnormality. The impression of the chest x-ray is mild
CCF with flattening of the thoracic spine.

What further diagnosis and treatment do you recommend based on given x-ray?

The findings are compatible with early congestive cardiac failure, but this cannot be confirmed until
additional cardiac imaging studies, such as an echocardiogram or stress nuclear test, are performed.
Depending on the presence of heart failure indicators, such as cardiac enzyme elevation, chest pain,
shortness of breath and fatigue, the need for further treatment will be determined. If heart failure
indicators are not present, and the chest x-ray is taken in a resting state, then the patient may be
observed without treatment. However, if any new or worsening symptoms occur, then the patient should
be assessed with further diagnostic tests and/or medical or interventional therapy. If there is fluid
overload, diuretics may be considered. Otherwise, the management should focus on optimizing heart
failure indicators, optimizing cardiac disease management, such as coronary artery disease and
arrhythmia, and avoiding other potential contributing factors, such as fluid overload, hypertension,
diabetes, renal disease, infection, etc.

Figure 3: XrayGPT: Empowering Users with Concise Insights - Explore the Comprehensive Analysis Derived
from the xray Image. Our XrayGPT provides a brief explanation for users quaries based on the overall findings
from the given xray image.

What are the key findings in this chest x-ray image?

Based on the provided chest x-ray, there is no consolidation, effusion, or 
pneumothorax. The heart and mediastinal contours are normal. However, there are 
multiple nodular density throughout the lung fields, most notably involving the right 
mid lung, left upper lung, and the lateral chest wall. These are likely to represent 
metastatic lung nodules. No evidence of pneumonia or acute pulmonary edema.

Is there any hyperinflation in the Lungs?

Yes, hyperinflation of the lung is present.

Chest X-Ray Diagnosis

Figure 4: XrayGPT: Unlocking the Power of Precision, Providing Specific Key Details in Response to User
Queries. Our XrayGPT is able to answer specific key detail in response to user queries.447



Chest X-Ray Diagnosis

Are there any visible indications of enlargement or abnormalities in the patient’s 
lymph nodes in this chest x-ray image?

The chest x-ray shows bibasilar opacity with overlying edema, indicating pulmonary edema. There
is also a moderate left-sided pleural effusion. The heart size and cardiomediastinal contour are
unremarkable. Based on these findings, the impression is pulmonary edema with pleural effusion.
The patient may also have underlying pulmonary disease.

Based on findings, does the x-ray have any serious issues ?

Yes, it shows pulmonary edema with pleural effusion.

Suggest treatment to cure pleural effusion.

The best way to start treatment is to discuss the pleural effusion with a general physician, since
the underlying cause may be infectious and could require removal via thoracoscopic technique. A
chest CT scan is recommended to confirm the effusion, and to determine if it is superimposed
upon other issues that could be causing the effusion. Please consult your physician to determine
the best treatment strategy for your condition.

Chest X-Ray Diagnosis

Figure 5: XrayGPT: The Conversational AI Revolutionizing Radiological Interactions. Our XrayGPT has
radiological conversational capabilities.

Chest X-Ray Diagnosis
Provide the detailed analysis of given chest x-ray. List down the 
abnormalities if any

Impression: 1. Heart size is enlarged with pulmonary edema. 2. Lungs are otherwise
clear. 3. Right-sided ICD has a single lead extending to the right atrium. The chest
x-ray shows the presence of pulmonary edema, with no consolidation or effusion.
Heart size is slightly enlarged, and there is no indication of pneumothorax. The
lungs are clear without signs of any other abnormalities such as pleural effusion or
fracture.

What medical treatment do you suggest for pulmonary edema ?

The treatment is contingent on underlying diagnosis. In case of congestive heart failure, diuretics or
other cardiac medications may be prescribed along with nebivolol or amlodipine to control cardiac
hypertension. In case of ischemic heart disease, nitrates or other cardiac vasodilators may be
prescribed. In case of coronary artery disease, stent placement or bypass surgery may be indicated. In
case of pulmonary edema caused by atrial fibrillation or other arrhythmias, rate control should be done.
If the patient is stable and pulmonary edema is improving, conservative medical therapy may be
continued with nebivolol or amlodipine, nitrates or diuretics. If the patient is unstable, angioplasty or
bypass surgery may be indicated. In case of ischemic heart disease, angioplasty or bypass surgery may
be indicated if angiography reveals new coronary blocks or other coronary disease. In case of pulmonary
edema caused by atrial fibrillation or other arrhythmias, rate control should be done before starting.

Figure 6: XrayGPT: Medical Treatment Recommendation. Our XrayGPT has the capability to suggest treatment
based on the diagnosis.
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Abstract

Domain adaptation of Large Language Mod-
els (LLMs) leads to models better suited for a
particular domain by capturing patterns from
domain text which leads to improvements in
downstream tasks. To the naked eye, these
improvements are visible; however, the pat-
terns are not so. How can we know which pat-
terns and how much they contribute to changes
in downstream scores? Through a Multilevel
Analysis we discover and quantify the effect of
text patterns on downstream scores of domain-
adapted Llama 2 for the task of sentence sim-
ilarity (BIOSSES dataset). We show that text
patterns from PubMed abstracts such as clear
writing and simplicity, as well as the amount
of biomedical information, are the key for im-
proving downstream scores. Also, we show
how another factor not usually quantified con-
tributes equally to downstream scores: choice
of hyperparameters for both domain adaptation
and fine-tuning.

1 Introduction

Domain Adaptive Pretraining (DAPT) is an effec-
tive method to adapt a model to a particular do-
main via continual pretraining (Gururangan et al.,
2020; Rietzler et al., 2020), with BioBERT (Lee
et al., 2019) being a successful case in the biomed-
ical domain. From our side, we have widely used
DAPT not only to adapt LLMs to biomedicine, but
as a part of a bigger pipeline to create customer-
oriented, intelligent agents which can faithfully
recover domain knowledge from both their param-
eters and external databases. However, domain
adapting Llama 2 (Touvron et al., 2023) brought us
a puzzle: huge variability on downstream scores.

Given both the size of Llama 2 and GPU mem-
ory restrictions, the domain adaptation of Llama
2 was restricted to a sample (subset) of PubMed
abstracts. After domain-adapting and fine-tuning
Llama 2 on PubMed abstracts and on the BIOSSES

Figure 1: Variations in downstream score depending
on the choice of both sample used for DAPT and hy-
perparameters. Each row represents a sample; each dot
a Pearson score from a fine-tuned model (BIOSSES
downstream dataset).

dataset (Soğancıoğlu et al., 2017), respectively, we
obtained highly different downstream scores de-
pending on the choice of the sample used for DAPT,
as displayed in Fig. 1. This figure shows a huge
variability in Pearson (downstream) scores: from
67 points up to an almost perfect score of 98 points.
Surely, hyperparameter choice for both DAPT and
fine-tuning has an impact on the scores, but, by
comparing the patterns of score variation across
samples used for DAPT we observe that this vari-
ation does not seem to be explained only by the
choice of hyperparameter values. Clearly, data used
for DAPT has also an impact on the scores.

Thus, we asked: What features from the samples
used for DAPT impact on the downstream scores
and to what extent? And to what extent is the im-
pact of the choice of hyperparameter values? We
hypothesized that text patterns, such as sentence
length, syntactic dependencies, or text complexity,
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among others, impact on the downstream scores. In
order to analyze the importance of each text feature,
and the effect of hyperparameters, we used Mul-
tilevel Modeling, a regression model widely used
in the Social Sciences to explain social phenom-
ena such as the effect of both school and student
features on the students’ performance scores.

Our results are simple: clarity and simplicity
of writing, and amount of biomedical information,
are key text features from PubMed abstracts for
improving downstream scores. Moreover, vari-
ation in scores is also largely due to the choice
of hyperparameters, contributing approximately as
equal as the text features. These results not only
explain important features from domain adaptation
but can also serve for designing better document
sampling strategies and hyperparameter search
methods. Moreover, the use of Multilevel Mod-
els (MLMs) is key for a deeper understanding of
NLP models which we hope the NLP community
will adopt.

2 Related Work

2.1 Analyses of Large Language Models

Different works have analyzed different aspects of
LLMs. For example, some works studied the inter-
play between data and model abilities during the
SFT (Supervised Fine-Tuning) phase showing the
key impact of data on these abilities (Dong et al.,
2024). Other works analyzed which training in-
stances contributed to specific model predictions,
or abilities learned, using methods such as gradient-
based tracing-back (Koh and Liang, 2017; Garima
et al., 2020; Akyurek et al., 2022) and machine un-
learning (Jang et al., 2023; Eldan and Russinovich,
2023; Zhao et al., 2024). Furthermore, strategies
have been proposed to improve both the quality
and selection of pretraining data to optimize LLMs’
training time, perplexity, or capabilities on down-
stream tasks (Lee et al., 2022; Rae et al., 2022;
Tirumala et al., 2023; Nguyen et al., 2023). How-
ever, to our knowledge, ours is the first work ana-
lyzing the effect of text features from samples used
for domain adaptation on downstream scores via
Multilevel Analysis.

2.2 Multilevel Modeling

Multilevel Models (MLMs) are extensively used
across fields in the Social Sciences to measure the
effect of multi-level variables on an outcome. For
example, in Education, MLMs can predict student

performance while finding out the most important
features from students (level-1) and schools (level-
2) (Rasbash et al., 2010; Goldstein et al., 2007);
also, MLMs are used to compare school effective-
ness (Yang et al., 2002; Goldstein et al., 1993). In
Epidemiology, MLMs have been used to 1) model
the impact of personal-level risk factors on disease
across populations (Weinmayr et al., 2016); 2) mea-
sure the effect of air pollution on cardiovascular
disease (Forbes et al., 2009); and 3) estimate the
risks of food constituents from different items for
breast cancer (Witte et al., 1994).

3 Data and Multilevel Model

3.1 Multilevel Regression Analysis
In MLMs, the dependent variable (downstream
scores) depends on a set of independent variables
which can be at different levels in a hierarchy. We
model our problem as a 2-level hierarchy where fea-
tures from DAPT and fine-tuning, such as choice of
hyperparameters, correspond to level-1 variables;
and text features from the samples used for do-
main adaptation of Llama 2 correspond to level-2
variables. This choice of level-1 and level-2 vari-
ables is due to our design of the domain adaptation
and fine-tuning of Llama 2: from each sample, by
varying DAPT hyperparameter values, we obtain
2 domain-adapted models, and from each of these
two models, by varying fine-tuning hyperparam-
eters, we obtain 8 fine-tuned models; i.e., from
each sample we obtain 16 fine-tuned models; from
the perspective of Multilevel Analysis, we say that
each sample is a group and the 16 fine-tuned mod-
els are grouped under this sample.1

Thus, variables at level 1 are indicator variables
signaling the use of a specific combination of hyper-
parameters for DAPT and fine-tuning where values
of random seed, batch size, among other hyperpa-
rameters, vary; and level-2 variables correspond
to numeric and indicator variables capturing text
features (Section 3.2). Then, a 2-level MLM (Hox
et al., 2017) can be expressed as:

y = β0 + u0j + β1x1 + ...+ βnxn

+ γ1jx1 + ...+ γkjxk + e (1)

where β0 is the intercept and u0j is a term called
random intercepts which can be interpreted as a

1We chose MLM over simple linear regression since it is
designed to deal with grouped (non-independent) instances
while allowing for multi-level variables.
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deviation in downstream score from the intercept
according to each sample j; level-1 and level-2 vari-
ables are denoted by xi and the terms βi are called
fixed-effects coefficients which represent the aver-
age effect of each variable (across all samples) on
downstream scores (y); terms γij , called random
coefficients or slopes, are key terms in Multilevel
Analysis and can be interpreted as an adjusted ef-
fect on the level-1 fixed-effects coefficients (βi)
according to each sample j;2 e is the residual.

The advantage of modeling random coefficients
lies in capturing differential contributions of each
sample on downstream scores; that is, we expect
different combinations of hyperparameters to have
different effects, due to chance, on the scores de-
pending on the choice of sample; thus, for each
sample we can estimate the number of points (γij)
that a combination of hyperparameters deviates
from the mean effect across all samples (βi).

3.2 Data for Multilevel Regression

To fit an MLM that predicts downstream scores
based on both text features from samples used for
domain adaptation and choice of hyperparameters
for DAPT and fine-tuning, we extract text features
from 70 samples3 used for domain-adapting Llama
2 and use indicator variables to signal the use of a
specific hyperparameter combination.

We obtained 1120 fine-tuned models but 16 were
discarded since the outputs generated were outside
the set of permissible outputs (a ranking score be-
tween 0 and 4 showing the degree of similarity
between two input sentences), so we used 1104
models. Each fine-tuned model corresponds to an
instance in our dataset for fitting MLMs. The de-
pendent variable corresponds to the Pearson corre-
lation score (scaled to [0-100] points) of a model’s
outputs with gold outputs from the BIOSSES vali-
dation set (as measured in the BLURB benchmark
(Gu et al., 2021)). Independent variables corre-
spond to features at levels 1 and 2 which we group
in 8 groups according to their type. These text
features are motivated by research on Education
for predicting student writing performance since
they have been shown to be strong predictors. We
describe these features:

Hyperparameter choice: Level-1 indicator vari-
ables signaling the choice of hyperparameter com-

2This only applies to level-1 variables, thus k < n (Eq. 1).
3The suggested minimum number of groups is 50 (Maas

and Hox, 2005).

bination used for both domain adaptation and fine-
tuning. In Section 4.2 we call these variables
DAPT_1 , DAPT_2 (2 combinations for DAPT)
and HCF_1, ..., HCF_8 (8 combinations for fine-
tuning).

Syntactic dependencies: We extracted 39 syn-
tactic relations from the sentences in each sample
via the Stanford dependency parser (Chen and Man-
ning, 2014) and we used the frequency of each re-
lation across the whole sample as a level-2 feature.

Terms overlaps: We hypothesized that overlap
of information contained in the sample used for
DAPT with information in the BIOSSES dataset
may help to improve downstream scores; thus, we
computed the frequency of overlapping terms. To
do so, we computed frequencies of biomedical and
non-biomedical terms at the unigram and bigram
levels separately for the train and validation sets
of the BIOSSES dataset (leading to eight level-2
numeric features) using the frequency metric of
Kerz et al. (2021).

Biomedical information: We computed the ra-
tio of biomedical unigrams to the total number of
terms occurring in each sample used for DAPT
as we hypothesized that the more the amount of
biomedical terms in a sample the better the down-
stream scores; this led to a numeric level-2 feature.

Text complexity: We measured the linguistic
complexity of the samples at 3 different levels:
morphological, syntactical, and global, according
to Kolmogorov metrics of complexity used in lin-
guistics (Ehret and Szmrecsanyi, 2019), leading to
three level-2 features. We hypothesized that com-
plex texts may provide more information and thus
better scores.

Average lengths: From each sample, we com-
puted average lengths of both PubMed abstracts (in
terms of words) and words (in terms of characters)
resulting in two level-2 features.

Sample size: We hypothesized that the number
of PubMed abstracts matter, so we tried two differ-
ent sample sizes for DAPT: 25K and 50K, opera-
tionalized as a level-2 indicator variable.

Sampling method: We hypothesized that sam-
pling contiguous abstracts, in terms of publication
time, could improve scores since biomedical in-
formation tend to be more uniform; thus, we tried
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two sampling methods: randomly and contiguously,
which we operationalized as a level-2 variable.

4 Multilevel Analysis and Results

4.1 Fitting Multilevel Models

Goals: We have 2 goals (Harrell, 2015). First,
finding which variables have a statistically-
significant effect on downstream scores. And sec-
ond, evaluating the predictive behavior of our Mul-
tilevel Model to unseen data via cross-validation.

Modeling Strategies: Our strategy is three-fold.
First, we deal with the issue of multicollinearity,
where it is difficult to assess the effect of variables
when they are correlated, via a variant of the vari-
able selection strategy from Yu et al. (2015). Sec-
ond, we aim for a parsimonious model (Robson
and Pevalin, 2016) that is simple enough, in the
number of parameters, to be understood, yet com-
plex enough to have low prediction error. Third,
we perform suggested evaluations in the literature
such as likelihood ratio tests (Brown, 2021), R-
squared effects (Rights and Sterba, 2019), and
cross-validation (Lindner et al., 2022).4 Lastly, we
note that we standardize (mean=0, std dev=1) all
independent variables to allow for a head-to-head
comparison of their impact on downstream scores.

The curse of multicollinearity: We found ex-
treme cases of multicollinearity across most vari-
ables (Fig. 2). To alleviate this problem, we ad-
just the strategy of Yu et al. (2015): we first use
lasso to eliminate non-essential variables; then, we
discard redundant variables via variance decompo-
sition proportions; and finally, we apply a back-
wards search to remove non-significant variables.
To avoid introducing bias, we confirm our choice
of deletion by measuring cross-validation error.

4.2 Regression Results

We show the results of our best MLM: we show the
features that have a significant impact on scores.
For Tables 1 and 2, the statistical significance code
is: p=0 ’***’, p<0.001 ’**’, p<0.01 ’*’.

Biomedical information matters: In Table 1 we
observe the standardized coefficient of Biomedi-
cal_info having a positive and statistically signifi-
cant effect of 1.78 meaning that for every standard
deviation increase in the frequency of biomedical

4We compute 5-fold cross-validated RMSE (Root Mean
Squared Error), averaged over 5 different random seeds.

Figure 2: Multicollinearity of all independent variables
according to Variance Inflation Factor scores. Scores
bigger than 10 show severe cases of multicollinearity.

terms in a sample used for DAPT, the downstream
scores increase, in average, by 1.78 points.

Text structure and clarity of writing matters:
As we observe in Table 1, the syntactic dependency
of parataxis has a negative effect on downstream
scores: for every standard deviation increase in fre-
quency, scores reduce by 1.92 points. Parataxis oc-
curs when complex sentences are split into clauses
separated by commas or semicolons without using
any subordinating or coordinating conjunction to
make their relationship clear (de Marneffe et al.,
2021). Academic writing, as that in PubMed ab-
stracts, often uses parataxis, for example, for re-
porting previous findings. If overused, parataxis
can convey a sense of text unclarity. In contrast, ad-
nominal clauses (acl) occur when the main nominal
in a sentence is modified by a subordinate clause
usually via clear connectors and in a specific order
which conveys text clarity. As we observe in Table
1, acl is the only syntactic relation having a positive
effect on downstream scores.

Simplicity matters: As shown in Table 1, two
other dependencies have a negative effect on scores:
mwe (multiword expressions) and cc.preconj. Sim-
ply stated, complex terms such as compounds (e.g.
USB cellphone charger), proper names, fixed ex-
pressions (e.g. as well as), or preconjuncts (e.g.
both DNA and RNA) (de Marneffe et al., 2021),
which are common in academic writing, decrease
scores. Moreover, longer words tend to substan-
tially decrease scores, as captured by the feature
Avg_word being, surprisingly, the feature with the
biggest negative impact. Thus, a concise writing
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Variable Coeff. (β) SE t
Intercept 92.66*** 0.28 325.58
DAPT_1 -1.00* 0.43 -2.30
HCF_1 -2.53*** 0.38 -6.63
HCF_2 -2.49*** 0.34 -7.20
HCF_3 -1.12** 0.35 -3.20
HCF_4 -1.12*** 0.29 -3.75
HCF_5 -2.76*** 0.37 -7.42
HCF_6 -2.68*** 0.37 -7.25
acl 1.86** 0.59 3.15
mwe -0.82** 0.28 -2.87
parataxis -1.92** 0.56 -3.39
cc.preconj -3.04*** 0.72 -4.20
Biomedical_info 1.78* 0.71 2.49
Avg_word -3.91*** 0.80 -4.84

Table 1: Results of MLM: fixed-effects of variables at
levels 1 and 2. Coeff: coefficient. SE: Standard Error. t:
t-value (values truncated at the hundredths). DAPT_1
and HCF_i are indicator variables signaling the use of a
specific combination of hyperparameters for DAPT and
fine-tuning, respectively. We use DAPT_2 and HCF_8
as references to avoid perfect collinearity.

Variable Variance Std. Dev.
Intercepts 3.06*** 1.75
HCF_1 3.90*** 1.97
HCF_2 2.09* 1.44
HCF_3 2.34** 1.53
HCF_5 3.38** 1.84
HCF_6 3.28*** 1.81
DAPT_1 11.03*** 3.32

Table 2: Results of MLM: random-effects (random in-
tercepts and random coefficients). We use DAPT_2 and
HCF_8 as references to avoid perfect collinearity.

with less idiomatic and complex expressions is key
for a better domain adaptation. However, it is un-
clear whether biomedical terms, which are often
complex, may jeopardize the domain adaptation;
thus, this phenomenon deserves a deeper analysis
for future work.

How much hyperparameters impact on scores?
As we see in Table 1, different hyperparameter
combinations lead to different results being com-
bination HCF_5 the one with the biggest impact:
whenever used, it leads to an average decrease of
2.76 points in scores across all samples. Moreover,
in Table 2 we observe that the choice of sample
adds a random effect to the fixed effect of most of
the hyperparameter combinations; i.e., we can ex-

Figure 3: R-squared: Decomposition of variance across
fixed and random effects.

pect average variations of (±)[1.44-1.97] and (±)
3.32 points in the effects of fine-tuning and DAPT
hyperparameters observed in Table 1, respectively.

Cross-validation error: Our MLM obtains an
RMSE of only 4.02 points, which means that our
model will deviate, in average, only by 4 points
from expected Pearson scores on unseen data.

R-squared effects: Figure 3 shows that around
55% of the variation in downstream scores is ac-
counted by fixed- and random-effects, where 15%
is due to fixed-effects, 23% due to random-effects
(slopes), and the rest (intercept variation) is due to
other features from the samples that we were not
able to identify. From Fig. 3 and Table 1, we esti-
mate that the overall effect of hyperparameters on
downstream scores is approx. equal to that of text
features for domain adaptation described above.

5 Conclusions

How important is to analyze the data used for
DAPT? Working in the trenches has allowed us to
see the paramount importance that data plays on the
right adjustment of LLMs to a target domain. From
a customer-oriented perspective, DAPT plays a vi-
tal role for the correct adjustment of LLMs not only
to parametric knowledge but also to human align-
ment via SFT and to databases via RAG (Retrieval
Augmented Generation). Thus, as in a snowball
effect, studying the factors that matter for biomedi-
cal DAPT –clarity and simplicity of writing as well
as biomedical information– assures us to provide
better adapted LLMs for customer applications.
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Limitations

We note that our work has some limitations. For
example, despite the low RMSE from our MLM
(4% error) and even though we tried our best to pro-
pose a comprehensive set of variables that could
fully explain the variation in downstream scores,
we acknowledge (as observed in Fig. 3) that 45%
of the variation in scores remains unexplained; that
is, there are more variables at level 1 and level 2
that may have an impact on downstream scores.
Furthermore, while we chose the most widely used
type of MLM in the literature (2-level MLM), it is
possible that other choice of MLM may be a better
fit to our problem such as a 3-level model where
at level-1 we define only hyperparameter combina-
tions of DAPT, at level-2 we define hyperparameter
combinations of fine-tuning, and at level-3 we de-
fine features from the samples; however, a model of
this type requires a substantial increase in the num-
ber of both domain-adapted and fine-tuned models
and thus of computing time.
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A Appendix

A.1 Statistical Software
To fit MLMs we use the R-package lmerTest
(Kuznetsova et al., 2017). To compute cross-
validated RMSE we use the cvms package (Olsen
and Zachariae, 2023), where for folds used as test
data, we leave out all fine-tuned models from the
samples selected for testing to avoid training and
testing on models derived from the same sam-
ple. Furthermore, to estimate the proportion of
explained variability in downstream scores we com-
pute R-squared effects using the framework of
Rights and Sterba (2019) via the R-package r2mlm
(Shaw et al., 2022). We plot Figures 1 and 2 via the
lattice (Sarkar, 2008) and performance (Lüdecke
et al., 2021) packages in R, respectively. To fit lasso
regression we use the glmmLasso (Groll, 2023)
package in R; to compute variance decomposition
proportions we use the mctest (Imdadullah et al.,
2016) package in R. Likelihood ratio tests and back-
ward search are implemented via the lmerTest pack-
age.

A.2 Training Features
We used a Titan RTX GPU (24GB of memory) for
both domain adaptive pretraining and fine-tuning.
We domain-adapted Llama 2 for 1 epoch with
each sample. We fine-tuned each domain-adapted
model with each hyperparameter combination for
30 epochs and kept models with the highest valida-
tion score. We used QLoRA (Dettmers et al., 2024)
to be able to fit Llama 2 in GPU memory.
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Abstract

Biomedical information extraction is crucial for
advancing research, enhancing healthcare, and
discovering treatments by efficiently analyzing
extensive data. Given the extensive amount of
biomedical data available, automated informa-
tion extraction methods are necessary due to
manual extraction’s labor-intensive, expertise-
dependent, and costly nature. In this paper, we
propose a novel two-stage system for informa-
tion extraction where we annotate biomedical
articles based on a specific ontology (HOIP).
The major challenge is annotating relation be-
tween biomedical processes often not explic-
itly mentioned in text articles. Here, we first
predict the candidate processes and then deter-
mine the relationships between these processes
without relying on mentions. The experimental
results show promising outcomes in mention-
agnostic process identification using Large Lan-
guage Models (LLMs). In relation classifica-
tion, our proposed BERT-based models out-
perform LLMs significantly. The end-to-end
evaluation results suggest the difficulty of this
task and room for improvement in both process
identification and relation classification.

1 Introduction

In the biomedical domain, unraveling the mecha-
nisms underlying various diseases contributes sig-
nificantly to their treatment and prevention. How-
ever, information about these mechanisms is of-
ten scattered across articles, presenting challenges.
The challenges include the lack of clarity, the im-
plicit nature of background knowledge, and the ad
hoc use of vocabularies with variations in notation.
Moreover, inherent biological complexity spans
molecules, cells, and organs, with external factors
such as viruses influencing infection mechanisms.

To address these challenges, organizing knowl-
edge through ontologies is crucial as they provide

*Equal contribution.

a clear framework for consistently structuring en-
tities and their relationships. In the Homeostasis
Imbalance Process Ontology (HOIP), manual anno-
tation has been employed to extract and structure
knowledge about processes such as cellular senes-
cence and COVID-19 infection mechanisms (Yam-
agata et al., 2021, 2024). Despite these systematic
approaches, manual annotation faces significant
challenges due to its high cost and time-consuming
nature. These challenges highlight the need for
more efficient and consistent (semi-)automated an-
notation approaches to improve the overall quality
and usefulness of ontologies.

In this paper, we propose an application of Nat-
ural Language Processing (NLP) as a promising
solution. Specifically, assuming automatic annota-
tion of the HOIP ontology as our ultimate goal, we
propose a two-stage information extraction (IE) sys-
tem. Figure 1 shows an overview of our two-stage
system. Given an input passage1, the first stage,
Process Identification, identifies process entities
that are described in the passage or can be inferred
using the domain knowledge.2 The entities are rep-
resented as unique IDs in the ontology. The entities
are then passed to the second stage, Document-level
Relation Extraction (DocRE) (Christopoulou et al.,
2019; Zhou et al., 2021; Xiao et al., 2022; Zhang
et al., 2021; Li et al., 2023), to classify entity pairs
into a pre-defined set of interrelations. The system
output is represented as a set of triples: {(head en-
tity ID, relation, tail entity ID)}. We develop and
evaluate different approaches including supervised
models based on BERT (Devlin et al., 2019) and

1In this paper, we use the word “passage” instead of “docu-
ment” or “paragraph” to describe the input in our task, because
the text describing biomedical processes is not necessarily a
complete text like an entire paragraph or document.

2Process Identification is similar to Entity Disambigua-
tion (ED), but differs as discussed in the following paragraph.
Given an input passage, ED aims to identify entities (IDs) for
each given mention, whereas Process Identification aims to
identify entities (IDs) without the availability of mentions.
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Progressive respiratory failure develops 
in many patients with severe Covid-19 
soon after the onset of dyspnea and 
hypoxemia.
These patients commonly meet the 
criteria for the acute respiratory distress 
syndrome (ARDS), which is defined as 
the acute onset of bilateral infiltrates, 
severe hypoxemia, and lung edema that 
is not fully explained by cardiac failure 
or fluid overload.

5. HOIP_0036007
    (respiratory disfunction)

2. HOIP_0036023
    (pulmonary interstitium edema)

6. HOIP_0036026
    (increasing lung weight)

1. HOIP_0041839
    (pulmonary edema)

4. HP_0002113
    (pulmonary infiltrates)

S0:

S1: 3. HOIP_0041236
    (pulmonary alveolar edema)

1. (HOIP_0041839, has_result, HOIP_0036007)

3. (HOIP_0041839, has_part, HOIP_0036023) 

5. (HP_0002113, has_result, HOIP_0036007)

2. (HOIP_0041839, has_result, HOIP_0036026)

4. (HOIP_0041839, has_part, HOIP_0041236)

...
...

Input Passage (from PMID:32412710) Predicted Entities Predicted Triples: {(Head, Relation, Tail)}

1st: Process Identification 2nd: Document-Level Relation Extraction
        (DocRE)

BERT

...
...

LLM-ICL

OR

...
...

BERT

...
...

LLM-ICL

OR

HOIP Ontology (entity pool)

Mentions can be implicit and are unavailable

{(ID, canonical name, description)}

Figure 1: An overview of our mention-agnostic two-stage information extraction system with a real example in our
HOIP dataset. Given an input passage, the first stage identifies process entities described in the passage or inferable
based on the domain knowledge. The predicted entities are then passed to the second stage to identify relations
between them. Please note that our system does not rely on mentions, enabling extraction of structured knowledge
about entities and relations described implicitly in the passage.

generative methods based on Large Language Mod-
els (LLMs) and In-Context Learning (ICL) (Brown
et al., 2020; Chowdhery et al., 2022; Wadhwa et al.,
2023; Ozyurt et al., 2024) for both process iden-
tification and DocRE. The HOIP dataset, a novel
manually annotated dataset built based on the HOIP
ontology for biomedical IE system development,
will be available to the public.

Traditional IE studies (Yu et al., 2020; Wu et al.,
2020; Zhou et al., 2021) assume that an entity can
appear multiple times in a passage explicitly (such
textual instances are called mentions), and derive
entity features from these mentions. Mentions are
strong indicators in IE, since they directly indicate
how entities are described in a text. However, in
real-world scenarios including our HOIP dataset,
an entity sometimes appears only implicitly. With
no availability of mentions, it is not obvious how to
induce useful entity features from a passage. This
paper proposes multiple approaches that do not
require explicit mentions.

Our contributions and findings are summarized
as follows:

• We release the HOIP dataset, to facilitate the de-
velopment and bench-marking of IE models for
the real-world ontology.

• We develop a mention-agnostic two-stage IE sys-
tem, which enables to extract structured knowl-
edge described implicitly in text. BERT-based su-
pervised models and LLM-based models are pre-
sented for both process identification and DocRE.

• Experimental results in process identification sug-
gest that generative models are valuable for low-
resource in-domain corpora like the HOIP dataset.

• DocRE results suggest that, although mentions are
strong indicators, the proposed BERT-based mod-

els outperform LLMs and achieve F1 scores of
around 56-59 points even without mention hints.

• Evaluation results on the end-to-end system reveal
that improvements in both process identification
and DocRE are crucial in the current stage.

• The HOIP dataset and the source codes are avail-
able: https://github.com/norikinishida/
hoip-dataset (dataset), https://github.
com/sl-633/bio-process-identifier (pro-
cess identification), https://github.com/
norikinishida/kapipe (DocRE).

2 HOIP Dataset

Our ultimate goal is to update and improve ontolo-
gies by (semi-)automatically extracting entities and
their interrelations from articles. As a testbed ontol-
ogy, we choose the Homeostasis Imbalance Process
Ontology (HOIP) (Yamagata et al., 2021, 2024),
which focuses on understanding the COVID-19 in-
fectious mechanism (courses).3 To facilitate the
development of NLP systems and benchmark the
task, we construct and release a new dataset named
the HOIP dataset based on the HOIP ontology. The
dataset includes passages extracted from PubMed
articles describing biomedical processes in the con-
text of COVID-19 infectious courses. Each passage
is a brief portion of a PubMed article that describes
at least two specific processes. The processes are
manually annotated as a set of triples, i.e., {(head
entity, relation, tail entity)}. Figure 1 shows a real
example in the dataset.

3For the details of the ontology see Appendix A.
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Train Dev Test

# passages 255 35 37
# entities 1988 143 211
# triples 1848 137 177
Avg. words per passage 75.5 70.4 61.8
Avg. entities per passage 7.8 4.1 5.7
Avg. triples per passage 7.2 3.9 4.8

Table 1: Dataset statistics for the HOIP dataset.

2.1 Data Collection and Enhancement

We first stored the HOIP ontology files in an RDF
store using Apache Jena Fuseki4, and constructed
a SPARQL endpoint. We used SPARQL queries
to retrieve the information required for the dataset.
The results were then converted to CSV. To opti-
mize the dataset for machine annotation and en-
hance its clarity, we made several adjustments
based on the hierarchical structure of the HOIP on-
tology. Originally, some process entities included
course information, such as “blood vessel dam-
age in severe COVID-19” (the course is in italics),
indicating a specific context. We removed these
course information from the entities to optimize
for machine annotation. Additionally, processes
with too fine granularity were deemed unsuitable
for machine annotation predictions. Therefore, we
prioritized processes that are generalized using su-
perclasses of each process, assigning Gene Ontol-
ogy (GO) terms (Ashburner et al., 2000). This
approach ensures that the annotations are practical
for applications for reusability.

2.2 Dataset Organization

In the CSV file generated by the above procedure,
each record corresponds to one triple. We com-
bined the triples associated with the same passage
(string) and PubMed ID into the same group, and
this group was considered to be a single exam-
ple in the final dataset. We found that there were
textual overlaps across the passages. Thus, if a
passage dsrc was textually contained in another
passage ddst and both passages are associated with
the same PubMed ID, the triples Tsrc for dsrc were
merged into the triples Tdst for ddst. Finally, we
split the entire dataset into training, development,
and test sets, ensuring that passages extracted from
the same article were not scattered across different
splits. The dataset statistics are shown in Table 1.

4https://jena.apache.org/documentation/fuseki2/

3 Methods for Process Identification

In the HOIP dataset, a biological process entity is
annotated depending on whether it is mentioned
(explicitly or implicitly) in the passage, without
specifying the corresponding phrase of the entity in
the passage. This makes the dataset more closely
match the real-world scenario, but also brings chal-
lenges to the automatic process identification – di-
rectly employing Named Entity Recognition meth-
ods that require the correspondence between a ex-
plicit mention (entity text and offsets) and an input
text for model training is no longer an option. To
address this task, we propose approaches to iden-
tify biological processes without prior recognition
of mentions that can be matched to terminological
expressions of entities in the HOIP ontology. Two
distinct approaches are developed: BERT-based
supervised methods and LLM-based In-Context
Learning (ICL) methods.

3.1 BERT-based Supervised Approach
Considering that 360 unique process names are en-
compassed in the HOIP dataset, the task of process
identification can be approached as a multi-class
and multi-label classification problem. For simpli-
fication purposes, we convert the task into a binary
format, framing it in the following manner: Let D
be the set of passages and A be the set of annotated
process names. The input sequence is constructed
for each passage from D as follows:

[CLS] passage [SEP] name [SEP]

where name denotes a process name ai ∈ A. Then,
the task is a binary classification task whether the
passage involves the process or not.

3.2 LLM-based ICL Approach
Taking into account the unique characteristics of
the dataset and the rapid advancements in the capa-
bilities of LLMs to produce coherent texts in low
resource settings (Wang et al., 2023), LLMs are
utilized in this study to generate HOIP processes
for each passage. We aim to evaluate the model’s
performance in low-resource settings characterized
by imbalanced data in a specialized domain, and as-
sess the model’s generative capability in producing
HOIP ontology terms.
• Zero-shot setting: The model is prompted to

list the biological processes present in the text.
Following a prompt format being demonstrated
effective in many studies (Mishra et al., 2022;
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Sclar et al., 2023), the prompt includes task in-
struction, constraints on the output, the input text.
An example of the prompt is shown in Table 8.

• Few-shot setting: Following the previously men-
tioned prompt format, two few-shot strategies are
employed through adding demonstrations: the
first involves selecting randomly three examples
from the development set, while the second is
selecting examples based on semantic closeness
of process names.

4 Methods for Document-level RE

Given an input passage d, a set of entities for
the passage {e1, · · · , eK}, and a pre-defined set
of relationsR, document-level relation extraction
(DocRE) (Christopoulou et al., 2019; Zhou et al.,
2021; Xiao et al., 2022; Zhang et al., 2021) aims to
predict relations from R ∪ {NA} for entity pairs
(ei, ej) (i, j ∈ [1,K]; i ̸= j), where ei and ej de-
note head and tail entities respectively, and the NA
class indicates that the entity pair has no relation.

4.1 QA-Style DocRE Model
Our first approach is to perform DocRE as a Ques-
tion Answering (QA) task. We first generate ques-
tions for each possible triple. The question and
the input passage are concatenated and passed to a
pre-trained language model for answering.

Question Generation. We first enumerate all
possible entity pairs {(ei, ej)}i,j∈[1,K];i ̸=j , and
then apply pre-defined template functions {Tr}r∈R
to the entity pairs to obtain questions for each possi-
ble triple (ei, r, ej): q(ei,r,ej) = Tr(ei, ej). Table 7
shows examples for the pre-defined templates. The
input x to our QA model is as follows:

[CLS] question [SEP] passage [SEP]

where question and passage are the word-pieces
tokens of q(ei,r,ej) and d, respectively. An exam-
ple for the input is “[CLS] does immunoglobulin
production result in immunoglobulin mediated im-
mune response ? [SEP] within 19 days after symp-
ton onset , 100 % ... [SEP]”.

Answer Classification. Then, we feed the input
sequence x into a BERT-based encoder (Devlin
et al., 2019; Beltagy et al., 2019) to obtain the
contextual embeddings: {hw}N

x
tok

w=1 = Encoder(x),
where Nx

tok is the number of tokens in x. We con-
catenate the output of the last layer for the [CLS]
token and the average-pooling embedding to obtain

the passage embedding: h̃ = h1⊕ 1
Nx

tok

∑Nx
tok

w=1 hw,
where ⊕ represents the concatenation of vectors.
Then, we apply a two-layer feed-forward network
and sigmoid activation to the passage embedding
to calculate the probability of answer “Yes”.

Loss Function. The network is trained using a bi-
nary cross entropy loss to maximize the probability
for the correct triples.

4.2 Mention-Agnostic ATLOP (MA-ATLOP)

Our first approach requires solving QAs for all
the possible triples. Since the number of possi-
ble triples is increased by O(K2) for the number
of entities K, this is not efficient. Our second
approach is to make predictions over all possible
triples in a single forward pass. We extend a tradi-
tional and popular DocRE method, ATLOP (Zhou
et al., 2021), so as not to rely on explicit mentions.
We call this method Mention-Agnostic ATLOP, or
MA-ATLOP shortly.

Entity Encoding. We use a BERT-based encoder
to encode each entity ei and passage d jointly into a
dense vector that takes into account how the entity
ei is described in the passage d. Specifically, we
first retrieve the canonical names {ni}Ki=1 and the
descriptions {si}Ki=1 for the given entities from the
ontology using the entity IDs as query. Then, for
each entity ei, we construct input xi as follows:

[CLS] name : description [SEP] passage [SEP]

where name, description, and passage are the word-
pieces tokens of ni, si, and d, respectively. We
apply the encoder to each input xi independently

to obtain contextual embeddings: {hi,w}N
xi
tok

w=1 =
Encoder(xi). We take the embedding of the [CLS]
token as the entity embedding, i.e., ei = hi,1.

Relation Classification. After obtaining the en-
tity embeddings {ei}Ki=1, we apply two separate
FFNNs and tanh activation to map them to different
representations for the head/tail entities of triples.
Then, we apply a group bilinear classifier (Zheng
et al., 2019; Tang et al., 2020) to the head/tail repre-
sentations of an entity pair (ei, ej). Specifically,
we divide both head/tail representations into G
contiguous groups and then apply bilinear to each
group. They are then summed up to calculate the
score for relation r ∈ R ∪ {TH}. Refer to Zhou
et al. (2021) for the detail of group bilinear. We fol-
low ATLOP and employ the adaptive-thresholding
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class TH. The relations scored higher than the TH
class are regarded as positive. If no such relation
exists, the NA class is assigned to the entity pair.

Loss Function. We use the adaptive-thresholding
loss proposed in ATLOP to push the scores of cor-
rect/incorrect relations to be higher/lower than the
TH class.

Negative Entity Sampling (NES). In an exper-
imental setting, we assume experts correctly an-
notate entities. However, in real-world situations,
entities are automatically annotated by the systems.
Thus, it often happens that entities not described
in the passage are included in the given entity list
{ei}Ki=1. Our DocRE system must be robust to
such noisy (false-positive) entities. Therefore, we
propose Negative Entity Sampling (NES), where
we sample additional negative entities randomly
and add them to the given entities {ei}Kpos

i=1 dur-
ing training. We sample negative entities from all
entities in the ontology. Given the number of pos-
itive entities Kpos and a hyperparameter ρ > 0,
we define the number of sampled negative entities
as Kneg = round(ρ×Kpos), where round is the
rounding function. For instance, for Kpos = 10
and ρ = 0.5, Kneg is 5. We add a linear layer to
the network to classify whether the entity is de-
scribed in the passage: yenti = σ(FFNNent(ei)).
We use a binary cross entropy as an auxiliary loss
to maximize yenti for positive entities.

4.3 LLM and In-Context Learning for DocRE
To investigate the effectiveness of LLMs with
In-Context Learning (ICL) (Brown et al., 2020;
Chowdhery et al., 2022; Wadhwa et al., 2023;
Ozyurt et al., 2024) in our task, we compare the
LLM-ICL results with the above BERT-based mod-
els. Table 9 in Appendix C shows a prompt ex-
ample we used in our experiments. Specifically,
we instruct an LLM to generate a bulleted list of
triples for the given passage and the entity list.5

Each entity is represented in the form "* <ID> :
<NAME>" and the entity list is presented as a bul-
leted list. In the prompt, we also use 3 examples
randomly sampled from the training set as the few-
shot demonstrations. The same demonstrations are
used for all test passages. From each bulleted line
generated, we extract the head entity ID ei, the re-
lation label r, and the tail entity ID ej using regular

5In our preliminary experiments, we also tried to generate
JSON directly by Llama2 13B; however, generating JSON
yielded lower DocRE scores consistently than generating text.

expressions. If the extracted entity IDs (ei, ej) and
the relation label (r) cannot be found in the given
entity list {e1, · · · , eK} and the possible relation
classes R, the bulleted line is ignored. We also
remove duplicated triples. The resulting triples are
then compared with the gold triples for evaluation.

5 Experiments on Process Identification

Binary classification. In the supervised task for-
mulation, each passage is associated with all 360
process names, with binary labels assigned based
on the presence of them in the annotations. Nu-
merous negative samples are constructed for each
passage. Consequently, we incorporate negative
sampling using various ratios of negative to posi-
tive samples. The classification task involves fine-
tuning BERT-based models – BioBERT (Lee et al.,
2019), SciBERT (Beltagy et al., 2019), and Pub-
MedBERT (Gu et al., 2021) on the training set. For
hyper-parameter details see Table 11.

Generative experiments. Two instruction types
are utilized: One prompts the model to list all bi-
ological processes in the text, while the other in-
structs it to generate pairs of processes having a
relation. This distinction stems from annotation
being conducted at the relation level, where only
processes involved in relations are annotated. Con-
sequently, other processes may exist in the text but
aren’t annotated. We employ Llama2 13B (Tou-
vron et al., 2023) and Llama3 8B (AI@Meta, 2024)
on the test set to ensure comparability with the su-
pervised method’s results.

5.1 Clustering-based Demonstration Selection

In the zero-shot setting, process names differ sig-
nificantly from the provided annotations. In the
few-shot scenario, performance is highly sensitive
to the chosen demonstrations (Li et al., 2022; Lu
et al., 2022; Zhang et al., 2023). To enhance few-
shot performance, we introduce a retrieval module
based on semantic similarity to cluster the most
relevant examples from the annotated processes in
the development set.

To achieve this, we use the development set to
create 10 clusters with K-means clustering (Lloyd,
1982; MacQueen et al., 1967), based on the an-
notated process list for each passage. Each list is
encoded into a vector using BERT by averaging the
last hidden state of the [CLS] token for all labels.
Each passage in the test set is assigned a cluster
given the last hidden state of the [CLS] token of the
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Positive-Negative Ratio BioBERT PubMedBERT SciBERT
P R F1 P R F1 P R F1

1:8 21.7 27.9 24.4 22.2 42.6 29.2 21.3 18.9 20.1
1:4 15.8 45.0 23.4 18.4 60.6 28.2 17.6 44.5 25.3
1:1 10.6 64.9 18.3 12.0 47.3 19.2 9.99 71.5 17.5

Table 2: Results of the BERT-based supervised approach on process identification. Precision (P), Recall (R), and F1
scores on the test set of the HOIP dataset are reported. Values in bold represent the best F1 score for each model.

Method Top-K In-Ontology Matching In-Dataset Matching
P R F1 P R F1

Llama2 13B

1 10.7 22.3 14.5 11.2 28.9 16.2
3 10.0 30.8 15.1 6.7 45.5 11.7
5 8.3 32.7 13.3 5.4 57.3 9.9
10 7.0 38.9 11.9 4.1 74.9 7.8

Llama3 8B

1 43.1 11.8 18.6 34.3 28.4 31.1
3 39.5 16.1 22.9 19.5 43.6 26.9
5 33.9 19.0 24.3 15.6 55.9 24.4
10 29.4 27.5 28.4 9.5 62.1 16.5

Table 3: Results of the LLM-based in-context learning approach on process identification. For In-Ontology
Matching, we used all entities found in the HOIP ontology as the candidate entities for matching. Matched entities
that are not present in the HOIP dataset are ignored. For In-Dataset Matching, we used entities only found in the
HOIP dataset as the candidate entities for matching.

passage to the clustering model. During generation,
examples from the assigned cluster are included in
the prompt. See Table 10 for details.

5.2 Evaluation Methods
We evaluate three primary aspects of generative
process identification. The initial aspect involves
the Direct Output assessment, where we directly
evaluate the output by comparing it to the anno-
tation. This process aims to weight the model’s
ability to generate processes formulated within the
knowledge base framework. As for the second
aspect – assessing the system’s capability to auto-
matically populate the target knowledge base, we
include an ontology alignment-based evaluation
which is presented in three steps:

1. Computing embeddings: Let Egenerated be the set
of embeddings of the generated processes and
Eontology be the set of embeddings of ontology
terms calculated by SapBERT (Liu et al., 2021).

2. Selecting top k generated processes: For each xi
from Egenerated, calculate sim(xi, yj) for all yj
from Eontology. Then, select the k elements with
the highest cosine similarity.

3. Computing precision, recall and F1 scores be-
tween the list of annotated processes and the
flattened list of top k generated processes at a
passage level.

The last aspect of evaluation mirrors the sec-
ond one, with the distinction being that instead of
matching with the entire ontology, only the process
names used in the dataset are taken into account.
This approach is grounded on the assumption that
the terms utilized in the dataset annotation are the
most prevalent.

5.3 Results and Discussion

Direct output assessment. We compared anno-
tation labels with generated process names using
zero-shot, regular few-shot, and ICL few-shot set-
tings. The ICL few-shot method achieved the most
exact matches, with 30 compared to 2 for regular
few-shot and none for zero-shot, underlining the
importance of better selected demonstrations, as in
Min et al. (2022). Thus, evaluation using the HOIP
ontology and dataset matching will be based on the
ICL few-shot setting outputs.

In-Dataset Matching. We report in Table 2 the
results of the fine-tuned BERT-based models. The
negative ratio significantly influences the overall
performances of the models. Results indicate that
with fewer negative samples, models are more
likely to identify true positives but at the cost of
also misclassifying more false positives. This is
likely due to semantic similarity among the inputs.
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PubMedBERT achieves the highest F1 score, under
the optimal negative ratio of 8.

Furthermore, we compare the results of the su-
pervised approach with the top-1 results of Llama2
and Llama3 present in Table 3. Across all neg-
ative ratios, the F1 score of BERT-based models
exceeds the results of Llama2, even under the low-
resource setting. However, this trend changes with
Llama3, which outperforms the PubMedBERT re-
sult by nearly 2 points. Comparing Llama2 and
Llama3 reveals that Llama3 is more effective at
generating well-tailored process names, resulting
in higher precision. Llama3 generates fewer, but
better-quality candidates, enhancing task perfor-
mance. Llama2 improves with more candidates,
increasing chances of correct matches, but accu-
racy still depends significantly on the quality of
these generated candidates.

In-Ontology Matching. Following the same ten-
dency in the In-Dataset setting, matching with
better-generated process names proves to be more
effective overall. Since the goal of this matching is
to automatically populate an ontology and DocRE
is the next step in the pipeline, concentrating on
finding the correct process names is crucial. This
focus will aid the DocRE step in serving as a filter-
ing mechanism, ensuring more accurate and rele-
vant candidate triplets to be added to the ontology.

6 Experiments on Document-level RE

We evaluate our systems on the HOIP dataset
and CDR dataset (Li et al., 2016). CDR con-
sists of 1,500 abstracts from PubMed, manually
annotated with Chemical or Disease entities and
Chemical-Induce-Disease relations between them.
Since entity IDs in CDR are MeSH unique IDs
(e.g., D006493), and the HOIP ontology, while
highly specialized for annotating processes related
to COVID-19, does not provide the coverage for
general chemical compounds and disease terms as
the MeSH controlled vocabulary, we used MeSH
instead of the HOIP ontology for CDR. We use
precision, recall, and F1 metrics, and report the
scores averaged independently over 3 trials with
different random seeds. A triple (ei, r, ej) is con-
sidered correct when the head entity ID (ei), the
tail entity ID (ej), and the relation label (r) are all
predicted correctly. We used greedy decoding in
the LLM-ICL methods, the results of which do not
depend on the seed differences. Table 12 shows the
hyperparameters for our DocRE models.

Method P R F1

ATLOP (all mentions) 64.61 75.92 69.74
Llama3 8B (all mentions) 42.26 48.69 45.25
QA-Model (first mention) 56.40 67.39 61.36
MA-ATLOP (first mention) 57.54 68.11 62.34
MA-ATLOP (first mention) + NES 57.55 67.95 62.31
Llama3 8B (first mention) 43.62 49.34 46.30
QA-Model 53.37 64.01 58.12
MA-ATLOP 53.72 65.92 59.18
MA-ATLOP +NES 54.03 66.20 59.50
Llama3 8B 44.75 51.97 48.09

Table 4: DocRE results on the CDR test set. All metrics
are averaged over 3 trials. “all mentions” (or “first men-
tion”) indicates that the models use all mentions (or the
first-appearing mention) as the entity names instead of
the canonical name retrieved from the MeSH ontology.
The best scores are in bold for each block.

6.1 Experiments on the CDR Dataset

To investigate the importance of mentions in
DocRE and how well our models can identify rela-
tions without relying on mentions, we first evaluate
the models on CDR. We also evaluate a variant of
each of our models, which uses the first-appearing
annotated mention as the entity name rather than
the canonical name retrieved from the MeSH on-
tology. Although this variant still does not use
mention spans, we expect this variant to recognize
more easily how the entity is described in the pas-
sage than the original model, because the entity
names appear at least once in the passage.

Table 4 shows the results. ATLOP exploits men-
tion spans as the direct hints for entity encoding
and achieves an F1 score of 69.7. In contrast, our
best mention-agnostic model, i.e., MA-ATLOP (+
first mention), achieved an F1 score of 62.3, lower
than the ATLOP score by 7.4 points. When there
were no mention hints at all, MA-ATLOP and QA-
Model yielded F1 scores of 59.2 and 58.1, respec-
tively. These results suggest that our models can
identify triples more accurately than expected even
without mention hints; however, mentions are still
crucial in this task. Also, the BERT-based super-
vised models outperformed the LLM counterparts.
MA-ATLOP outperformed QA-Model consistently.
Considering that MA-ATLOP also has higher com-
putation efficiency than QA-Model, MA-ATLOP is
more suitable for real-world applications. By em-
ploying Negative Entity Sampling (NES), when
no mention is available, MA-ATLOP improved
all metrics slightly, suggesting the effectiveness
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Method Entity P R F1

QA-Model gold 51.5 63.1 56.7
MA-ATLOP gold 67.2 52.6 58.9
MA-ATLOP + NES gold 71.2 48.6 57.7
Llama3 8B gold 18.5 16.7 17.6
Upper-bound pred. 100.0 26.8 42.3
MA-ATLOP pred. 7.7 14.9 10.2

Table 5: DocRE results on the HOIP test set. The up-
per and lower blocks show the results when using the
ground-truth entities or predicted entities, respectively.
The predicted entities are provided by Llama3 8B.

of NES. For the "first-mention" setting, NES did
not improve the performance, probably due to the
discrepancy between the entity-name style between
positive entities (mention) and negative entities
(ontology-based name).

6.2 Experiments on the HOIP Dataset

The upper block in Table 5 shows the results on the
HOIP dataset when using the ground-truth entities.
We evaluate the models that do not require men-
tion hints on this dataset. The BERT-based models
achieved much higher F1 scores (56.5-59.0) than
LLM (17.6). MA-ATLOP also outperformed QA-
Model by 2.2 points in F1. These results were
consistent with the results on CDR, demonstrat-
ing the effectiveness of MA-ATLOP in terms of
both accuracy and computational efficiency in this
task. Negative Entity Sampling improved the pre-
cision by 4 points, but decreased the recall. These
results suggest that, while NES enhances the fil-
tering capability of MA-ATLOP, NES also has the
effect of making the model reluctant about positive
predictions, and it would be necessary to develop
techniques to avoid such biases.

The above experiments assume that the entities
are fully and correctly annotated. This setup is ap-
propriate for a clean measurement of the DocRE
system’s performance itself. However, in reality,
entities can be predicted automatically. To evaluate
the whole system’s performance in the real-world
situations, we evaluate our best DocRE model (MA-
ATLOP) on the HOIP dataset with entities pre-
dicted by Llama3 (8B).

The lower block in Table 5 shows the results.
We first calculated the upper-bound scores for the
predicted entities. Specifically, we created a subset
of gold triples that can be created based on the pre-
dicted entities. Precision, recall, and F1 scores are

100.0, 26.8, and 42.3, respectively. The precision
does not depend on the quality of predicted entities.
The lower recall suggests that there is much room
for improvement in DocRE as the process identi-
fication recall improves. MA-ATLOP yielded 7.7,
14.9, and 10.2 scores for precision, recall, and F1,
respectively. Compared to the much higher preci-
sion (67.2) in the gold-entity setup (Table 5), the
results suggests that the current model struggles to
filter out noisy triples with irrelevant entities. In
summary, both improvements in recall (coverage)
and precision (low-noisiness) in process identifica-
tion and DocRE are needed in the current situation,
suggesting the difficulty of this task.

7 Case Study

We performed case study to analyze the system
outputs qualitatively. We used the best Llama3 (8B)
and MA-ATLOP models for process identification
and DocRE, respectively.

Table 6 shows an example with true-positive and
false-negative entities and triples. Additional ex-
ample can be found in Appendix F. For ease of
understanding, entities are shown by names, not
by IDs. We can observe that entities that are al-
most explicit in the passages, such as “pyroptosis”
(Pyroptosis in the passage), and “pore formation in
membrane of other organism” (Formation of pores),
were accurately extracted. Triples that are almost
explicit based on the context, such as (“pyroptosis”
has part, “pore formation in membrane of other or-
ganism”) and (“pyroptosis”, has result, “release of
DAMP molecules by cell rupture”), were correctly
identified by the DocRE system. In contrast, im-
plicit (or knowledge-requiring) entities and triples,
such as “binding of pattern recognition receptor
to DAMPs”, were not identified by the systems.
The entity is derived from the interpretation that
these molecules recruit more immune cells, which
requires background knowledge of immunology:
DAMP molecules must bind to receptors recog-
nized by immune cells to recruit immune cells.

The quality evaluation reveals several insights:
(1) Detailing causal relationships in elucidating dis-
ease mechanisms often necessitates background
knowledge not explicitly mentioned in articles.
This background knowledge is sometimes added
to intermediate causal entities by manual anno-
tation. The BERT-based supervised models and
LLMs have difficulty in obtaining such background
knowledge and understanding the task from limited
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ID72. Passage:
Pyroptosis is a highly inflammatory form of
lytic programmed cell death that occurs most
frequently upon infection with intracellular
pathogens and is likely to form part of the an-
timicrobial response. Pyroptosis can take place
in immune cells and is also reported to occur in
keratinocytes and some epithelial cells. Forma-
tion of pores causes cell membrane rupture and
release of cytokines, as well as various damage-
associated molecular pattern (DAMP) molecules
such as HMGB-1, ATP and DNA, out of the cell.
These molecules recruit more immune cells and
further perpetuate the inflammatory cascade in
the tissue.
True-Positive Entities:

* pore formation in membrane of other organ-
ism
* pyroptosis
* release of DAMP molecules by cell rupture

False-Negative Entities:
* binding of pattern recognition receptor to
DAMPs

True-Positive Triples:
* (pyroptosis, has part, pore formation in mem-
brane of other organism)
* (pyroptosis, has result, release of DAMP
molecules by cell rupture)

False-Negative Triples:
* (release of DAMP molecules by cell rupture,
has result, binding of pattern recognition re-
ceptor to DAMPs)

Table 6: A case study on our process identification
and DocRE models. Phrases referred in Section 7 are
underlined.

supervision (labeled data or demonstrations). (2)
NLP systems could be complementary to manual
annotations. Manual annotation often focuses on
the causality of a particular process in one litera-
ture and gives priority to further causes and conse-
quences in other literature. Therefore, other pro-
cesses and causal relationships in the same passage
may not be extracted. It is also possible that pro-
cesses that missed identification due to simple er-
rors due to annotation fatigue are also in the false
positive. In such manual annotation issues, NLP
analysis could make a significant contribution to
the identification of processes.

8 Related Work

Gene Ontology Causal Activity Modeling (GO-
CAM) defines molecular-level causal relation-

ships (Thomas et al., 2019); however, it lacks gran-
ularity and context for COVID-19 infection. Our
HOIP dataset is based on the HOIP ontology (Ya-
magata et al., 2021, 2024), which organizes knowl-
edge about biomedical processes in the context of
COVID-19 infectious courses and thus essential for
analyzing SARS-CoV-2 infection and progression.

In knowledge acquisition, entities are typically
identified by Named Entity Recognition (NER) and
Entity Disambiguation (ED). The task of NER is
to identify mentions in the given text that represent
one of the pre-defined types (e.g., Chemical, Dis-
ease) (Yu et al., 2020; Zhu and Li, 2022; Ye et al.,
2022). The entity mentions are then passed to ED
to link them to the knowledge-base concept IDs
that the mentions refer to best (Kolitsas et al., 2018;
Wu et al., 2020; Cao et al., 2021; Yamada et al.,
2022). These tasks commonly assume that entities
are explicitly described in text. In reality, however,
entities are not necessarily explicitly described. In
this work, we explore mention-agnostic methods
for process identification.

The most widely used approach to DocRE
is to model entities by a pre-trained Trans-
former and perform pairwise relation classification.
Christopoulou et al. (2019) proposed to model en-
tity dependencies via graphs with nodes of various
granularities. Zhou et al. (2021) proposed ATLOP,
which models entity-pair contexts for pairwise re-
lation classification. Xiao et al. (2022) introduced
evidence modeling for improving ATLOP. Zhang
et al. (2021) used U-Net architecture for modeling
entity dependencies. These methods commonly
rely on mentions and often insert special mention-
boundary markers into text to indicate the mention
locations to the Transformer. However, Li et al.
(2023) showed that these methods are too sensitive
to the accuracy of mentions and it is unrealistic to
expect perfect mentions in the real-world scenario.
In contrast, we propose mention-agnostic DocRE
methods and investigate how well the mention-
agnostic models can identify relations.

9 Conclusion

To assist ontology-based biological knowledge an-
notation, this work proposes a new dataset and
practicable entity- and relation-level biomedical in-
formation extraction methods. We will continue to
promote relevant research of semi-automatic anno-
tation and advance practical applications.
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Limitations

Despite demonstrating promising outcomes
in mention-agnostic process identification and
DocRE, our methodology does face limitations.
First, our two-stage IE system consists of a cascade
of process identification and DocRE, which
inevitably suffers from error propagation. The
experimental results in the pipeline setting suggest
that the DocRE performance is significantly
vulnerable to the accuracy of predicted entities.
Moreover, the process identification model and
the DocRE model are disconnected and cannot
interact with each other. Second, our methods have
only been evaluated in the domain of the HOIP
ontology, and the accuracy in other biomedical
domains and ontologies remains unknown. Third,
our methodology has not been fully evaluated
by domain experts. Although an expert analysis
is performed, the analysis is based primarily on
just two examples. A more thorough and detailed
analysis by specialists is needed. Tackling these
limitations remains an intriguing avenue for future
research.
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A HoIP Ontology

Understanding the HOIP ontology may be helpful
for understanding our HOIP dataset and the task. In
this section, we describe the features of the HOIP
ontology.

The HOIP ontology is annotated based on
COVID-19 related articles in PubMed using Pro-
tégé 5.5.06 and the Web Ontology Language
(OWL). The COVID-19 infectious processes are
manually annotated. Passages corresponding to
the annotated terms are also provided. Article
identifiers (e.g., PubMed ID (PMID: 25301932),
DOI) are also provided using the database cross-
reference annotation property.

The processes in HOIP consist of a hierarchy.
The infectious processes described in the articles
and the superclass of each process using Gene On-
tology are annotated.

The relationships between processes are anno-
tated using object properties, Causal relationships
between processes are primarily annotated using
the ‘has result’ relationship. Furthermore, sub-
processes of a process are identified using the ‘has
part’ relation.

HOIP defines a "COVID-19 infectious course"
as a sequence of the abovementioned processes to
describe infectious mechanisms. These courses
are organized into an is-a (subclass of) hierarchy
by severity, ranging from mild to severe. Notably,
the "COVID-19 severe course" includes a subclass
associated with acute respiratory distress syndrome
(ARDS). These COVID-19-specific processes are
used as our primary dataset for this study.

B Question Templates

Table 7 shows the question templates Tr (r ∈ R)
used for QA-Model. In the table, <HEAD> and
<TAIL> are replaced by the head and tail entity
names, respectively. The entity names are retrieved
from the ontology using the entity IDs as query. We

6https://protege.stanford.edu
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Dataset Relation Question Template

CDR CID Does <HEAD> induce <TAIL> ?

HOIP

has result Does <HEAD> result in <TAIL> ?
has part Does <HEAD> involve <TAIL> ?
has molecular reaction Does <HEAD> have molecular reaction of <TAIL> ?
part of Is <HEAD> part of <TAIL> ?

Table 7: Question templates used in QA-Model (Section 4.1).

manually created the question templates for each
dataset: CDR and HOIP.

C Prompts

Table 8 shows an example of the prompt used in the
few-shot setting in process identification. Only ex-
amples section is discarded in the zero-shot setting.
Table 9 also shows a prompt used in DocRE exper-
iments on the HOIP dataset and the corresponding
output by Llama3 (8B). We replaced the ontology
name (“HOIP”) and possible relation classes (“has-
result, has-part, ...”) in the prompt template with
“MeSH” and “Chemical-Induce-Disease” respec-
tively in CDR experiments. The demonstrations
are also different between the datasets.

D ICL Few-Shot Setting in Process
Identification

Table 10 exhibits the number of examples per clus-
ter created for ICL in the few-shot setting in process
identification.

E Hyperparameters

Table 11 shows the hyper-parameters used in the
supervised models for process identification. Ta-
ble 12 also list hyper-parameters used in our
DocRE models.

F Another Example of Case Study

Table 13 shows another example used in our case
study (in Section 7).
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Instruction: Generate the list of processes present in the Text.

Constraints: Don’t repeat the question. Justification and explanation are
prohibited.

Examples: Text: Within 19 days after symptom onset, 100% of pa-
tients tested positive for antiviral immunoglobulin-G (IgG).
Seroconversion for IgG and IgM occurred simultaneously
or sequentially. Answer: [immunoglobulin production, im-
munoglobulin mediated immune response]

Text: ACE2 expression has been demonstrated in arterial and
venous endothelium of several organs, and histopathological
studies have found microscopic evidence of SARS-CoV-2
viral particles in endothelial cells of the kidneys and lungs.

Answer: -

Table 8: Example of the few-shot setting prompt in process identification, following the described prompt template.
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Prompt:
Based on the given text and entities associated with the text, please identify relations between the
entities.
1. Named entities are listed next to the text.
2. Each entity is represented using HOIP Concept ID.
3. Possible relations: has-result, has-part, has-molecular-reaction, part-of
4. Output a bulleted list of triples. Each bullet line corresponds to each triple: “<BULLET>
(<SUBJECT ENTITY>, <RELATION>, <OBJECT ENTITY>)“,
where <SUBJECT ENTITY>, <RELATION>, and <OBJECT ENTITY>, correspond to the subject
entity, the relation label, and the object entity, respectively.

Below are some examples.

# Example 1
Text: We also provide biophysical and structural evidence that ...
Entities:

* http://purl.bioontology.org/ontology/HOIP/HOIP_0040511: Negative regulation of ACE2
activation
* http://purl.bioontology.org/ontology/HOIP/HOIP_0041139: host cell surface receptor binding
in nasal epithelial cells

...
Answer:

1. (http://purl.obolibrary.org/obo/GO_0046789, has-result, http://purl.bioontology.org/ontology
/HOIP/HOIP_0040511)
2. (http://purl.obolibrary.org/obo/GO_0046789, has-part, http://purl.bioontology.org/ontology/
HOIP/HOIP_0041139)

...

# Example 2
...
# Example 3
...

Let’s try the following test example.

# Test Example
Text: Within 19 days after symptom onset, 100% of patients tested positive for antiviral
immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially.
Entities:

* http://purl.obolibrary.org/obo/GO_0002377: immunoglobulin production
* http://purl.obolibrary.org/obo/GO_0016064: immunoglobulin mediated immune response

Please output the answer to the test example in bullet points, following the format specified above.

Generated response:
Here is the answer to the test example:

• (http://purl.obolibrary.org/obo/GO_0002377, has-result, http://purl.obolibrary.org/obo/GO_0016064)

Note that there is only one possible relation between the entities in this example, which is "has-
result".

Table 9: Example of the whole prompt in DocRE and the corresponding Llama3 (8B) output.471



Cluster 0 1 2 3 4 5 6 7 8 9

# Elements 3 9 4 4 1 5 3 1 4 1

Table 10: Number of elements for each cluster created
for ICL few-shot setting. In cluster assignement, only
clusters 0, 2, 3, 5, 6 appear in the HOIP test set

Hyper-parameter

Max Sequence Length 512
Optimizer AdamW
Learning Rate 1× 10−5

Weight Decay 1× 10−6

Epochs 8
Batch Size 8

Table 11: Hyper-parameters for the supervised models
on Process Identification.
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Hyper-parameter QA-Model MA-ATLOP LLM-ICL

Pre-trained model SciBERT (cased) SciBERT (cased) Llama3 (8B; instruction-fine-tuned)
Max Sequence Length 512 512 4096
Bilinear Group G - 64 -
Negative Sampling Ratio ρ - 0.5 -
Optimizer AdamW AdamW -
Learning Rate (BERT encoders) 2× 10−5 2× 10−5 -
Learning Rate (FFNNs) 1× 10−4 1× 10−4 -
Epochs 30 30 -
Batch Size 4 2 -
Warmup Ratio 0.06 0.06 -
# Few-Shot Examples - - 3
Quantization Bits - - 4
dtype - - BFloat16
Max. New Tokens - - 512

Table 12: Major hyper-parameters for the DocRE models.

ID242. Passage:
Moreover, isolated right ventricular dysfunction may occur as a result of elevated pulmonary vascular
pressures secondary to ARDS, pulmonary thromboembolism, or potentially virus-mediated injury to
vascular endothelial and smoothmuscle tissue.
True-Positive Entities:

* increasing blood pressure
* respiratory blood vessel smooth muscle damage
* thrombus formation

False-Negative Entities:
* artery narrowing
* endothelium damage
* endothelium malfunction
* vasoconstriction

True-Positive Triples:
* (endothelium damage, has result, endothelium malfunction)
* (thrombus formation, has result, artery narrowing)
* (vasoconstriction, has result, increasing blood pressure)

False-Negative Triples:
* (respiratory blood vessel smooth muscle damage, has result, vasoconstriction)

Table 13: A case study on our process identification and DocRE models.
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Abstract
We present a novel approach to automating the
identification of risk factors for diseases from
medical literature, leveraging pre-trained mod-
els in the bio-medical domain, while tuning
them for the specific task. Faced with the chal-
lenges of the diverse and unstructured nature of
medical articles, our study introduces a multi-
step system to first identify relevant articles,
then classify them based on the presence of risk
factor discussions and, finally, extract specific
risk factor information for a disease through a
question-answering model.

Our contributions include the development of
a comprehensive pipeline for the automated
extraction of risk factors and the compilation
of several datasets, which can serve as valu-
able resources for further research in this area.
These datasets encompass a wide range of dis-
eases, as well as their associated risk factors,
meticulously identified and validated through
a fine-grained evaluation scheme. We con-
ducted both automatic and thorough manual
evaluation, demonstrating encouraging results.
We also highlight the importance of improving
models and expanding dataset comprehensive-
ness to keep pace with the rapidly evolving
field of medical research.

1 Introduction

Automatic identification of risk factors for diseases
plays a pivotal role in preventive medicine, en-
abling healthcare professionals to formulate effec-
tive prevention strategies and improve patient out-
comes. Traditionally, this process has relied heavily
on manual review of extensive medical literature, a
time-consuming and labor-intensive task, hindering
knowledge accessibility and effective usage.

As a concrete example, recently, compelling evi-
dence has emerged linking Lipoprotein A (Lp(a))
— a particle operating similarly to the more familiar
LDL molecule — to the pathogenesis of atheroscle-
rosis and subsequent coronary artery disease, com-
monly referred to as Myocardial Infarction (MI).

Despite the established role of Lp(a) as a risk factor
(Kronenberg et al., 2022), many primary care clini-
cians remain inadequately informed, occasionally
lacking knowledge regarding its testing procedures.
Moreover, in a conversation with a board-certified
professor of interventional cardiology, he disclosed
receiving frequent inquiries from other clinicians
questioning the necessity of referrals for Lp(a) test-
ing. This highlights the pressing need for an auto-
mated tool capable of screening vast amounts of
scientific literature and identifying prominent risk
factors for various diseases.

Despite significant advances in the field of nat-
ural language processing, automatic extraction of
disease risk factors from scientific medical liter-
ature remains a challenging endeavor. Contrary
to the analysis of electronic health records (Chen
et al., 2015; Boytcheva et al., 2017; Chokwijitkul
et al., 2018), here the primary challenge lies in the
diverse and unstructured nature of medical publi-
cations, where risk factors are described in various
contexts and formats. What is more, the contin-
uous discovery of new risk factors necessitates a
dynamic approach that can adapt to the evolving
body of medical knowledge. This study introduces
a novel approach to automating the identification
of disease risk factors from medical literature.

Utilizing pre-trained large language models,
based on BioBERT (Lee et al., 2020), we developed
a multi-step system, that first identifies relevant
medical articles, classifies them based on the pres-
ence of risk factor discussions, and then extracts
specific risk factor information through a question
answering (QA) model. Our approach to extraction
of disease risk factors is illustrated in Figure 1: (1)
medical abstracts are retrieved from PubMed, (2)
a specifically fine-tuned binary classifier is used
to identify abstracts with risk factors information,
and (3) textual spans containing risk factors are ex-
tracted via a question answering model, fine-tuned
on manually annotated QA items.
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Figure 1: The pipeline for extraction of disease’s risk factors: (1) medical abstracts are retrieved from PubMed, (2)
a specifically fine-tuned binary classifier is used to identify abstracts with risk factors information, and (3) precise
textual spans containing risk factors are extracted via a QA model, fine-tuned on manually annotated QA items.

The contribution of this work, therefore, twofold:
First, we present a comprehensive pipeline for au-
tomated extraction of risk factors. Second, we com-
pile and make available several datasets that can
serve as valuable resources for future research in
this field. These datasets include a carefully anno-
tated, large and diverse set of over 1,700 risk factors
associated with 15 diseases, as well as set of over
160,000 automatically extracted risk factors,1 with
almost 1,500 manually assessed for their quality,
using a fine-grained annotation scheme.2

We survey the related work in Section 2 and de-
tail on collection and annotation of our datasets
in Section 3. We next describe our approach to
the task and report experimental results in Sec-
tion 4. Human evaluation results are presented in
Section 5. Discussion of the difficulty of the task
and the limitations of this work are presented in
Section 6. We conclude this study in Section 7.

2 Related Work

Automatic identification of disease risk factors
through the analysis of medical texts has garnered
interest across various research domains, particu-
larly in applying natural language processing and
machine learning techniques to electronic health
records (EHRs) and electronic medical records
(EMRs). Here we review key contributions in this
area, highlighting approaches that parallel and di-
verge from our focus on free-text medical articles.

Chokwijitkul et al. (2018) explore the utilization
of deep learning models to extract heart disease

1We note that the set of over 160,000 automatically ex-
tracted risk factors are of admittedly mixed quality (see Sec-
tion 5 and Table 5 for details), yet, we thought this data can
serve the community for further research in the field.

2All code and data are available at https://github.com/
maximrub/diseases-risk-factors.

risk factors from EHRs. The approach, grounded
in analyzing structured data within EHRs, contrasts
with our exploration of unstructured text in med-
ical literature, underscoring the diversity in data
sources for risk factor identification. Boytcheva
et al. (2017) attempt at mining clinical texts for
risk factor identification using association rules.
Specifically, they handle data in XML format from
the Diabetes Register, indicating a structured ap-
proach to data analysis. This work differs from
ours in terms of both data source type (clinical nar-
ratives), as well as in our broader application to
unstructured, free-text medical articles and the use
of pre-trained large language models (LLMs) for
the task of text understanding.

A comprehensive work on identifying risk fac-
tors for heart disease (from clinical data) over time
was done in a shared task organized by UTHealth3

(Stubbs et al., 2015). Sheikhalishahi et al. (2019)
offer an overview of NLP applications in analyz-
ing clinical notes for chronic disease management,
highlighting the increasingly significant contribu-
tion of language models to healthcare applications.
In the domain of precision medicine, Sabra et al.
(2017) focus on extracting semantic information
and assessing sentiments in clinical notes.

Various works have employed data mining and
machine learning (ML) techniques for identifying
risk factors from patient data (Abdelhamid et al.,
2023), or clinical outcome prediction (Kavakiotis
et al., 2017; Mehmood et al., 2021; Naik et al.,
2021). Recently, the identification of risk factors
for delirium prediction, a rare adverse reaction ob-
served in COVID-19 patients, was developed uti-
lizing ML applied to nursing records (Miyazawa
et al., 2024). Additional line of studies focuses

3The University of Texas Health Science Center.
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on building language models specifically-tailored
for medical literature related tasks (Roitero et al.,
2021; Yang et al., 2022; Singhal et al., 2023).

Several significant contributions have been made
in the field of biomedical relation extraction, which
includes identifying factors that predispose individ-
uals to diseases. The SemRep (Kilicoglu et al.,
2020) tool extracts semantic predications from
biomedical texts, including relationships such as
"predisposes". The outputs of SemRep have been
used to create SemMedDB (Kilicoglu et al., 2012),
a large-scale repository of semantic predications
from PubMed. Building on these resources, Bio-
PREP (Hong et al., 2021) employs deep learn-
ing techniques for predicate classification. The
BioRED (Luo et al., 2022) dataset includes a "pos-
itive correlation" relation between diseases and
other biomedical entities like genes and chemicals.

Conclusion While the majority of existing re-
search focuses on analyzing structured electronic
health records and electronic medical records to
identify disease risk factors, our study pushes be-
yond these confines by examining free-text medi-
cal literature. Processing unstructured medical text
introduces distinct challenges, especially due to
language complexity, variation, and the potential
for nuanced double meanings, and even worse, due
to the necessity to discern context accurately. Con-
sequently, it opens up expansive opportunities for
subtle understandings of disease risk factors, facili-
tating both research and practical applications.

3 Dataset

Data collection process for this work can be viewed
as a three-step process: (i) collection of the set of
disease names spanning multiple disease families,
(ii) manual annotation of scientific article abstracts
containing explicit mention of risk factors of a sub-
set of diseases – "abstracts seed", and (iii) manual
annotation of risk factors description (span) in ab-
stract texts found in (ii) – "risk factors seed". We
detail on each step in this multi-phase procedure.

3.1 Disease Dataset Collection

Aiming to assemble a comprehensive list of dis-
eases, we made use of the KEGG Disease Database
API4 to retrieve disease-related information, includ-
ing names, description and relevant medical codes

4KEGG database: https://www.kegg.jp/kegg/
disease/; specifically, we used its REST API service at
https://www.kegg.jp/kegg/rest/ for retrieval.

such as MeSH (Medical Subject Headings), ICD-
10 and ICD-11.5 This process resulted in 2,624
distinct disease names, comprising the foundation
for further retrieval of scientific abstracts and, ulti-
mately, automatic extraction of risk factors, from
scientific medical literature.

3.2 Seed Dataset with Relevant Abstracts
Retrieval of Abstracts Discussing Risks Using
the list of disease names retrieved from KEGG,
we next queried PubMed6 — a large, reliable, and
authoritative resource of biomedical literature —
for article abstracts containing the disease names.
Specifically, we used the Entrez Programming Util-
ities7 via the biogo package.8 The inherent limi-
tation of this study is related to the fact that only
abstracts are freely available through the PubMed
interface. However, paper abstracts typically con-
tain a concise summary and main findings of the
work, hence constitute a sufficient input for the task
at hand. Similarly, prior studies analyzed abstracts
retrieved from PubMed for building a biological
network (Chen and Sharp, 2004), topical cluster-
ing (David and Samuel, 2012), and identification
of negative and positive domain-specific medical
terms (Vinkers et al., 2015).

Aiming at retrieval of abstracts discussing find-
ings related to risk factors, we queried PubMed for
containment of the phrase "risk factor" in a paper’s
information: title, abstract or MeSH terms. The
following pseudo-code was used for this purpose:

where disease_name refers to the disease we are
seeking risk factors for, and the exact search term
"risk factor" (surfacting also the plural "risk fac-
tors") can appear in abstract, title or MeSH terms.

Annotation of Abstracts for Risk Factors De-
spite the evident potential, not every abstract with
explicit mention of "risk factor" or marked with a
"risk factor" MeSH term contains risk factors for a
pre-defined disease. As a concrete example, a med-
ical study can mention a list of potential risk factors
tested, without any of them showing as significant.

5As of April 2024, ICD-11 (International Classification of
Diseases, v11) is the most up-to-date code collection.

6https://pubmed.ncbi.nlm.nih.gov
7https://www.ncbi.nlm.nih.gov/books/NBK25501
8https://github.com/biogo/ncbi
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We, therefore, define our first (pre-processing) task
as automatic classification of a retrieved abstract
for spelling out an artifact, found to be a risk factor
for the disease in the study.

A qualified annotator with medical background
(one of the authors of this paper) annotated a ran-
dom set of 182 abstracts. The procedure resulted
in 87 positive abstracts (explicitly mentioning a
risk factor) and 95 negative, thereby comprising a
sufficient training set for the binary classifier – step
(2) in the pipeline in Figure 1. Table 1 shows two
examples of relevant abstract parts containing risk-
related phrases which do or do not qualify as risk
factors, as identified by the annotator. Evidently,
the nuanced language used to discuss risks in vari-
ous contexts renders the task as non-trivial for both
humans and automatic tools.

3.3 QA Seed Dataset with Risk Factors

Given an article abstract specifying a risk factor(s)
for a certain disease, we cast the risk factor identi-
fication problem as extractive question answering
scenario, where given the abstract and the question
"What are the risk factors for {disease
name}?", a textual span, containing the answer, will
be identified. In Section 4.1.2 we make use of the
established and popular BERT-based QA model –
BioBERT9 (Lee et al., 2020), and fine-tune it for
the task at hand using a manually annotated set
of QA items: context (article abstract), a targeted
question of the form mentioned above, and a set of
manually marked answers in the form span_start
and answer_text (implying span_end).

In the absence of suitable annotated datasets for
this nuanced task, we developed a web interface
for medical students to manually annotate article
abstracts. This interface is used for (manual) identi-
fication of text segments within abstracts, given the
disease discussed in the article. We present a few
screenshots of the annotating tool in Appendix A.1,
and release the tool for the community.

The annotator with medical background marked
text spans containing risk factors in a random set of
668 abstracts identified to contain explicit mention
of a risk factor,10. resulting in the total of 1,712 QA
items, spanning 15 diverse diseases,11 where each
QA item reflects a single risk factor in an abstract
that (possibly) encompasses multiple valid risks.

9https://huggingface.co/dmis-lab/biobert-v1.1
10The abstracts were sampled from the set automatically

classified as "positive" (see Section 4.1.1)
11Appendix B reports the full list of diseases.

Sentences suggesting risk factors significant only
within specific population subgroups were denoted
as such. Table 4 presents two examples of QA
items: disease name, abstract, and the highlighted
risk factor span, as marked by the annotator.

Collectively the carefully-curated and annotated
set of abstracts for binary classification of medical
articles, and the set of QA items, comprise a high-
quality collection for tuning pre-trained language
models for the purpose of this study.

4 Methodology and Experiments

We further describe in detail our methodological
approach, experimental setup and results.

4.1 Methodology

As illustrated in Figure 1, we apply a multi-step
approach to automate the identification of disease
risk factors from medical literature. Central to our
methodology is the use of BioBERT, a variant of
BERT pre-trained on biomedical texts, enabling nu-
anced understanding of complex medical language
(Lee et al., 2020). We next provide details on each
step in the process. This model was chosen due to
its proven benefits in the biological domain, and its
encoder-based architecture – (arguably) the most
appropriate choice for both the classification and
extractive question answering tasks at hand.12

4.1.1 Detection of Abstracts with Risk Factors
The pre-trained BioBERT-based classifier13 was
tuned for abstracts classification using the training
part (80%) out of over 182 manually annotated ab-
stracts (see Section 3.2), and tested on the held-out
part (20%), achieving the accuracy of 92%. Table 3
reports the per-class classification results. This en-
couraging result facilitated our efforts of analyzing
content that is most likely to yield valuable insights
into disease-risk factor associations.

We collected a substantial dataset of abstracts,
by querying PubMed for each one of over 2400 dis-
eases, as detailed in Section 3.2; this step resulted
in 137,740 abstracts. We next apply the fine-tuned
classifier to identify abstract potentially containing
risk factors for a disease. Out of the total num-
ber of 137,740 abstracts, 89,834 were classified
as positive – containing explicit mentions of risk

12Our future work includes investigation of decoder-based
models (e.g., GPT), casting the QA part as an abstractive task.

13https://huggingface.co/dmis-lab/biobert-v1.1.
We used the default settings with max_input_length of 512
tokens, training the classifier for three epochs.
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article title: Risk Factors for Pediatric Human Immunodeficiency Virus-related Malignancy (2003)
Context: Although cancers occur with increased frequency in children with human immunodeficiency virus
(HIV) infection, the specific clinical, immunological, and viral risk factors for malignancy have not been
identified. Objective: To identify risk factors for malignancy among HIV-infected children. [...] Epstein-Barr
virus viral load of more than 50 viral genome copies per 105 peripheral blood mononuclear cells was strongly
associated with cancer risk but only for children with CD4 cell counts of at least 200/ microL (odds ratio [OR],
11.33; 95% confidence interval [CI], 2.09-65.66, P<.001). [...]
High viral burden with EBV was associated with the development of malignancy in HIV-infected children
although the effect was modified by CD4 cell count. The pathogenesis of HIV-related pediatric malignancies
remains unclear and other contributing risk factors can be elucidated only through further study.

article title: Profound Hypoglycemia and High Anion Gap Metabolic Acidosis in a Pediatric Leukemic
Patient Receiving 6-Mercaptopurine (2024)
A 13-year-old male undergoing maintenance chemotherapy with methotrexate and 6-mercaptopurine (6MP), for
very high-risk B-cell acute lymphoblastic leukemia (ALL), presented with vomiting due to severe hypoglycemia
with metabolic acidosis. While his laboratory values were concerning for a critically ill child, the patient was
relatively well appearing. Hypoglycemia is a rare but serious side effect of 6MP with an unexpectedly variable
presentation; therefore, a high index of suspicion is needed for its prompt detection and treatment. [...]
6MP-induced hypoglycemia can be ameliorated with the addition of allopurinol to shunt metabolism in favor of
the production of therapeutic metabolites over hepatotoxic metabolites. Additionally, a morning administration
of 6MP and frequent snacks may also help to prevent hypoglycemia. Overall, this case adds to the literature of
unusual reactions to 6MP including hypoglycemia in an older child without traditional risk factors.

Table 1: Article abstracts discussing risk factors (retrieved per the query in Section 3.2). Top – abstract identified as
relevant for risk factors extraction by the annotator, where the highlighted part refers to the discussed factor. Bottom
– abstract mentioning "risk factors", yet annotated as irrelevant.

factors for diseases. Naturally, some diseases (and
disease families) resulted in more prolific retrieval,
due to their higher coverage in the medical litera-
ture: while various cancer types (e.g., Carcinoma,
Leukemia) have large body of related articles, ge-
netic disorders are surveyed less frequently in the
context of risk factor discussion.

4.1.2 Identification of Disease Risk Factors
The collection of abstracts classified positively to
contain a risk factor, was then subject to the task
of risk factor extraction – step (3) in Figure 1. We
cast the task as extractive QA, where the medical
abstract represents the context, and the question
template is formulated as "What are the risk
factors for {disease name}?". We anticipate
the BioBERT QA model (Lee et al., 2020) to iden-
tify span(s) in the abstract containing the answer
(or answers, in case multiple risk factors are men-
tioned in the same abstract), similarly to examples
presented in Table 2. We fine-tune the model for
the specific task, as described below.

Fine-tuning the QA Model We tuned the
BioBERT model for our usecase using the train-
ing part (80%) of the 1,712 QA items annotated
manually by the author with medical background

(see Section 3.3); the remaining 20% were used for
testing. Notably, the set of 15 diseases in the 668
abstracts was carefully split into training and test
sets, so that the same disease does not appear in
both sets, facilitating the assessment of the model’s
generalizability and performance across a variety
of disease contexts. The model tuning was done
using the maximum context length of 384 tokens,
learning rate of 2e-5, and 25 epochs.

We use two common metrics for automatic
evaluation of extractive question answering:
exact-match and F1-score. Applied on the test
set (342 QA items), the metrics obtained 61.76%
for exact-match, and 88.23% for F1-score, high-
lighting the potential of the approach.

Determining the Maximum Answer Length
We determined the maximum length for answers
in our QA model by analyzing the lengths of all
answers within our training dataset. We calculated
the length of each answer (in characters) and stud-
ied their distribution. The maximum answer length
was set at the 95th percentile of these lengths to en-
compass the majority of real-world answers while
excluding outliers. This threshold is crucial for
maintaining focus on concise and relevant answer
segments, thereby enhancing the model’s training
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disease: Diabetes in Men
OBJECTIVE: To examine the association between smoking, alcohol consumption, and the incidence of non-
insulin dependent diabetes mellitus in men of middle years and older. [...] RESULTS: During 230,769 person
years of follow up 509 men were newly diagnosed with diabetes. After controlling for known risk factors men
who smoked 25 or more cigarettes daily had a relative risk of diabetes of 1.94 (95% confidence interval 1.25 to
3.03) compared with non-smokers. Men who consumed higher amounts of alcohol had a reduced risk of diabetes
(P for trend < 0.001). Compared with abstainers men who drank 30.0-49.9 g of alcohol daily had a relative risk
of diabetes of 0.61 (95% confidence interval 0.44 to 0.91). CONCLUSIONS: Cigarette smoking may be an
independent, modifiable risk factor for non-insulin dependent diabetes mellitus. Moderate alcohol consumption
among healthy people may be associated with increased insulin sensitivity and a reduced risk of diabetes.
disease: Breast and Colorectal Cancer
BACKGROUND: Increasing evidence suggests that diabetes mellitus (DM) is associated with increased cancer
incidence and mortality. Several mechanisms involved in diabetes, such as promotion of cell proliferation and
decreased apoptosis, may foster carcinogenesis. This study investigated the association between DM and cancer
incidence and cancer-specific mortality in patients with breast and colorectal carcinoma. [...] The overall HR for
breast cancer incidence was 1.23 (95 per cent confidence interval 1.12 to 1.34) and that for colorectal cancer was
1·26 (1·14 to 1·40) in patients with DM compared with those without diabetes. The overall HR was 1.38 (1.20
to 1.58) for breast cancer- and 1.30 (1.15 to 1.47) for colorectal cancer-specific mortality in patients with DM
compared with those without diabetes. CONCLUSION: This meta-analysis indicated that DM is a risk factor for
breast and colorectal cancer, and for cancer-specific mortality.

Table 2: Example of two paper abstracts manually annotated for risk factors. The highlighted text spans (comprising
the factors) where marked by the co-author with medical background. Note that in some cases the precise name of
the risk factor (e.g., "cigarette smoking") for a disease (e.g., "diabetes in men") is annotated in its broader context,
to ensure the model is trained to extract risk factors tied to the disease, and not other, unrelated, artifacts.

class P R F1
POS (with risk factor) 0.89 0.94 0.92
NEG (w/o risk factor) 0.94 0.89 0.92

Table 3: Classification results reported on the test set
(20%) of the manually annotated 182 abstracts.

and operational effectiveness. In practice, when
the model evaluates potential answers, it only con-
siders text segments whose length does not exceed
this predefined limit. Specifically, the text extracted
between the predicted start and end indices is com-
pared against the maximum length, and any text
exceeding this threshold is disregarded.

Identification of Risk Factors at Scale Utiliz-
ing the fine-tuned QA model, we then processed
the collected abstracts to identify and validate
risk factors for a wide range of diseases, culmi-
nating in a dataset that catalogs these findings
in much detail. As a concrete example, the en-
try for the "B-cell acute lymphoblastic leukemia"
includes 16 (not necessarily unique) automati-
cally extracted risk factors. Along with the ex-
tracted span, the BioBERT QA model provides
its probability (confidence, in the 0-1 range) for
the identified answer. For a given disease, we
only considered answers exceeding the confi-

dence of 0.6*max_answer_probability, where
the max_answer_probability is the maximum
probability assigned to an answer for the disease.
The final dataset encompasses the total of 162,409
identified risk factors spanning 744 diseases, ex-
tracted from 54,820 PubMed abstracts.

Due to the inherently strict nature of the
exact-match metric, we could observe multiple
cases where the extracted answer was largely cor-
rect, but didn’t represent a precise overlap with the
"gold" answer due to a single missing or redundant
word. In particular, while some cases surface useful
information about a disease risk factors, they are
marked as inaccurate by the automatic metric. We
complement the evaluation pipeline by sampling
a large amount of (automatically identified) risk
factors for diseases, and performing fine-grained
human assessment of the results’ quality.

5 Human Evaluation

We next manually evaluated a random sample of
1,485 extracted risk factors spanning 29 various
diseases (constituting roughly 1% of the full set
of extracted factors), based on their validity and
relevance to the disease in question.
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5.1 Evaluation Scheme

We designed a specifically-tailored, four-tiered an-
notation scheme for the sake of reliable and accu-
rate evaluation, as detailed below. Each risk factor
was scored with one of three annotation marks,
following the below annotation scheme:

(1) Valid risk factor for the specified disease:
Correctly identified risk factor extracted for the
disease of interest, i.e., the disease in the question
introduced to the QA system.

(2) Valid risk factor for a different disease:
Correctly identified risk factor for a different dis-
ease, i.e., not the disease in the question introduced
to the QA system, indicating capabilities yet high-
lighting challenges in specificity.

(3) Invalid risk factor: Phrases and terms that
are not considered medical risk factors.

Additional distinction was done within the first
group (valid risk factor), annotating risk factors
with strong statistical correlation, as evident from
the abstract by inspecting statistical measurements
as odd ratio (OR), and confidence intervals (CIs) –
metrics often used in medical literature for testing
the significance of findings, such as the presence of
a factor in one population but not the other. 41 out
of the total of 1,485 were marked as highly signif-
icant risk factors; we release these annotations as
well to facilitate further research in the community.

5.2 Evaluation Results

Table 4 presents error analysis of correctly- and
incorrectly-identified risk factor examples (the first
two rows), as well as an example for artifact that
does not constitute a risk factor (the last row).

We attribute most factors erroneously annotated
with type 3 annotation — not a risk factor — to
cases where the QA model was required to extract
a risk factor from an abstracts that does not contain
one. Since the model was trained (and fine-tuned)
to always identify an answer span for a given con-
text and question, it is expected to yield (admit-
tedly) weak performance on a context lacking the
factors at the first place. Notably, a relatively small
amount of all manually evaluated examples (around
8.5%) fall into this category.

Table 5 further summarizes the evaluation re-
sults by disease family. The prevalence of type 1
and 2 annotations illustrates the model’s effective-
ness in identifying risk factors, yet also underscores

the challenges in achieving precise disease-specific
accuracy. The presence of type 3 annotations, al-
though significantly lower, highlights the ongoing
need for the classification model refinement to en-
hance both specificity and accuracy.

Error Analysis Additional observation can be
made about error distribution between type 1 and
2 annotations within and across disease families.
Evidently, while some disease families show a
balanced ratio between type 1 and 2 annotations
(e.g., Infection, Leukemias), others resulted in
more mis-identified factors – type 2 annotation
(e.g., Metabolic disorders). We hypothesize that
abstracts concerning diseases with a significant,
sometimes absolute, genetic component are less
likely to address other contributing factors. Conse-
quently, research in this area predominantly focuses
on stratifying potential risks for other diseases in
individuals already affected by the genetic disorder.

6 Discussion and Limitations

Our study, while contributing valuable insights into
the automation of risk factor identification from
medical publications, is subject to several limita-
tions that merit a thorough discussion.

One of the primary limitations is the challenge
of accurately distinguishing risk factors specifi-
cally associated with the disease in question (type
1) from valid risk factors that are not directly re-
lated to the disease under investigation (type 2).
While our models demonstrated a high capacity for
identifying potential risk factors, the precision in
contextualizing these factors to specific diseases
varied. This aspect highlights a critical area for fu-
ture research, emphasizing the need for enhanced
specificity in the models to improve their utility in
targeted medical research and practice.

Moreover, the study’s reliance on free-text medi-
cal articles introduces variability in the data qual-
ity and representation. The unstructured nature of
these texts and the diversity in how risk factors are
described pose significant challenges for both the
binary classification and question-answering mod-
els. Efforts to standardize data representation and
improve model robustness against such variability
are essential steps forward.

The datasets used in this study, while extensive,
are not exhaustive. The landscape of medical re-
search is continuously evolving, with new findings
emerging regularly. The datasets, therefore, rep-
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disease abstract excerpt (identified risk factor highlighted) marker
Chronic
Myeloid
Leukemia

[...] RESULTS: Previous diagnoses of dyspepsia, gastritis or peptic ulcers, as well as previous
proton pump inhibitor (PPI) medication, were all associated with a significantly increased risk
of CML (RRs, 1.5-2.0; P = 0.0005-0.05). Meanwhile, neither inflammatory bowel disease nor
intake of NSAIDs were associated with CML, indicating that it is not gastrointestinal ulcer or
inflammation per se that influences risk. [...]

1

Cystic
Fibrosis

BACKGROUND: Cystic fibrosis, like other chronic diseases, is a risk factor for the development
of elevated symptoms of depression and anxiety. [...] Patient anxiety (OR 2.33) and depression
(OR 4.09) were significantly associated with forced expiratory volume in one second (FEV1) <40%
and forced vital capacity (FVC) <80% (OR 1.60 and 1.61, respectively). CONCLUSIONS: Cystic
fibrosis increases the risk of developing anxiety and depression in female patients and in mothers.

2

Renal Cell
Carcinoma

RESULTS: A total of 888 incident RCCs and 356 RCC deaths were identified. In models including
adjustment for body mass index and energy intake, there was no higher risk of incident RCC
associated with consumption of juices (HR per 100 g/day increment = 1.03; 95% CI, 0.97-1.09),
total soft drinks (HR = 1.01; 95% CI, 0.98-1.05), [...] CONCLUSIONS: Consumption of juices or
soft drinks was not associated with RCC incidence or mortality after adjusting for obesity.

3

Table 4: Examples for automatic identification of risk factors in medical abstracts, marked by the annotator:
1 (valid risk factor for the specified disease) – stomach diseases are risk factors for CML; 2 (valid risk factor for a
different disease) – CF, the disease of interest, was found to be a risk factor for depression and anxiety; and 3 (not a
risk factor) – juices were not identified as a risk factor for RCC.

family (sub-family)
(1) valid risk factor

for the specified disease
(2) valid risk factor

for a different disease
(3) not a risk factor total in family

Carcinomas 317 285 60 662
Infection 45 51 6 102
Leukemias 208 192 46 446
Lymphomas 27 12 4 43
Metabolic disorders (GD) 4 60 8 72
Mucus malefunction (GD) 11 34 2 47
Cardiomyopathy 5 23 0 28
Sarcomas 15 5 1 21
other hematological disorders 30 32 2 64
total 662 694 129 1485

Table 5: Distribution of manual evaluation annotations by disease family. "GD" denotes "genetic disorder". Note
the much high number of risk factors identified for common (and potentially fatal) diseases, due to the vast body of
empirical literature. The numbers refer to the total number of (not necessarily unique) risk factors identified for a
disease family. We hypothesize that abstracts concerning diseases with a significant, sometimes absolute, genetic
component are less likely to address other contributing factors; between the dashed lines in the table.

resent a snapshot in time, and ongoing efforts to
update and expand these resources are necessary to
maintain their relevance and utility.

Finally, the study’s scope was constrained by the
computational resources available. Future work
could explore more complex models or ensemble
approaches that might offer improved accuracy but
require more substantial computational power.

Despite these limitations, this study represents
a significant step toward automating the identifica-
tion of disease risk factors from medical literature.
Acknowledging and addressing these limitations
in future research will be crucial for advancing the
field and enhancing the practical applicability of
these technologies in healthcare.

7 Conclusions and Future Work

This study presented an approach to identifying
and extracting disease risk factors from free-text
medical articles using advanced natural language
processing techniques, specifically leveraging the
capabilities of the pre-trained BioBERT-based ar-
chitecture. Our methodology involved a multi-step
process, including the retrieval of relevant articles,
binary classification to filter articles discussing risk
factors, and a question-answering model to extract
specific risk factor information.

We have demonstrated the potential of language
technologies to significantly enhance the efficiency
and effectiveness of risk factor identification in
medical literature. Our contributions to this field
are twofold: the presentation of an automated
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pipeline for risk factor extraction and the creation
of valuable datasets for future research. While
our study marks an advancement in the automated
extraction of risk factors from medical literature,
there remain several avenues for future research
and development. Our future directions include
introducing improvements to QA model’s accu-
racy and specificity, integration of additional data
sources, and evaluation of more advanced LLMs
for the task of risk factors identification.

Furthermore, inspired by recent findings that
automatic annotations generated by models like
GPT-4 can achieve results comparable to human
annotations, we plan to investigate the use of GPT-4
for the task of risk factors annotation, and compare
its performance with human experts.

8 Ethical Considerations

We make use of publicly available data in the do-
main of healthcare, that have been broadly used in
numerous studies. Manual annotations were con-
ducted by one of the authors of the paper, with
medical background. Due to the required expertise
and the inherent difficulty of the task, the mean
hourly rate for the annotator was much higher than
the established minimum wage.
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A Appendices

A.1 Overview of the Risk Factor Annotation
System Architecture

The risk factor annotation system comprises three
main components designed to streamline the pro-
cess of annotating risk factors in medical arti-
cles. This system was instrumental in creating the
datasets used in our research.

GraphQL Server The backbone of the system
is a GraphQL server, which serves as the central
communication hub. Hosted on Kubernetes (k8s)
for scalability and reliability, the server facilitates
data exchange between the user interface and the
database. It handles requests for data retrieval and
submission, ensuring that the web application and
the code can access and store data efficiently.

Web UI The front end of the system is a React-
based web application, also deployed on Kuber-
netes for high availability. This intuitive user in-
terface allows medical students and researchers to
interact with the system, including retrieving med-
ical articles, annotating risk factors within texts,
and submitting these annotations back to the server.
The design prioritizes ease of use to facilitate accu-
rate and efficient annotation work.

Python Algorithm Complementing the user in-
terface is a Python-based algorithm that interacts
with the GraphQL server. This component is re-
sponsible for processing medical articles, including
sending requests to the server to fetch articles for
annotation and submitting the results of automated
risk factor identification processes. It plays a criti-
cal role in pre-processing and post-processing steps
in the dataset creation pipeline.

Database At the core of the system lies a Mon-
goDB database hosted on Azure Cosmos DB. This
NoSQL database was chosen for its scalability, flex-
ibility, and robust support for storing unstructured
data, such as medical article texts and annotations.
It stores all data related to diseases, articles, and
user annotations, providing a persistent and reliable
data storage solution for the system.

Figures 2-3 illustrate two screenshots of the ap-
plication developed for manual annotation of risk
factors. The system code will also be made avail-
able per acceptance.

B Diseases with Annotated Risk Factors
in the QA dataset (the training set)

Section 3.3 details the procedure of manual anno-
tation of risk factors following the step of abstract
retrieval. The annotated data comprises 1,712 QA
items from 668 abstracts covering 15 diseases from
multiple disease families, as detailed in Table 6.

C Diseases with Evaluated Risk Factors

Table 7 reports the distribution of manually evalu-
ated risk factors by disease family.

483



Figure 2: Disease Risk Factor Annotation System: disease details as retrieved from KEGG and parsed.

Figure 3: Disease Risk Factor Annotation System: manual annotation of spans containing risk factors; multiple risk
factors for the same disease can be identified in the same abstract.
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family disease
Autoimmune disease Celiac disease
Autoimmune disease Rheumatoid arthritis
Autoimmune disease Type 1 diabetes mellitus
Carcinomas Bladder cancer
Carcinomas (to the most part) Breast cancer
Carcinomas (to the most part) Colorectal cancer
Chronic lung disease Chronic obstructive pulmonary disease
Chronic lung disease Asthma
Circulatory disorder High blood pressure
Heart disease Myocardial infarction
Melanoma/Skin cancer Melanoma
Metabolic disease Metabolic syndrome
Metabolic disease Type 2 diabetes mellitus
Neurodegenerative disorder Alzheimer disease
Neurologic disorder Migraine

Table 6: Disease distribution by disease family in the
manually annotated set of 1,712 risk factors used for
BioBERT QA fine-tuning.

family disease
other hematological disorders Multiple myeloma
Carcinomas Choriocarcinoma
Carcinomas Esophageal cancer
Carcinomas Gastric cancer
Carcinomas Malignant pleural mesothelioma
Carcinomas Non-small cell lung cancer
Carcinomas Penile cancer
Carcinomas Renal cell carcinoma
Carcinomas Small cell lung cancer
Carcinomas Vulvar cancer
Infection Cholera
infection Gonococcal infection
infection Pertussis
Leukemias Acute myeloid leukemia
Leukemias Adult T-cell leukemia
Leukemias B-cell acute lymphoblastic leukemia
Leukemias Chronic lymphocytic leukemia
Leukemias Chronic myeloid leukemia
Leukemias Hairy cell leukemia
Leukemias Polycythemia vera
Leukemias T-cell acute lymphoblastic leukemia
Lymphomas Burkitt lymphoma
Lymphomas Lymphoplasmacytic lymphoma
Metabolic disorders (GD) Congenital adrenal hyperplasia
Metabolic disorders (GD) Gaucher disease
Metabolic disorders (GD) Hemochromatosis
Mucus malefunction (GD) Cystic fibrosis
Cardiomyopathy Dilated cardiomyopathy
Sarcomas Osteosarcoma

Table 7: Disease distribution by disease family in the
manually evaluated set of 1,485 identified risk factors.
"GD" denotes "genetic disorder".
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Abstract

We explore different information extraction
tools for annotation of interventions to support
automated systematic reviews of preclinical
AD animal studies. We compare two PICO
(Population, Intervention, Comparison, and
Outcome) extraction tools and two prompting-
based learning strategies based on Large Lan-
guage Models (LLMs). Motivated by the high
recall of a dictionary-based approach, we de-
fine a two-stage method, removing false posi-
tives obtained from regexes with a pre-trained
LM. With ChatGPT-based filtering using three-
shot prompting, our approach reduces almost
two-thirds of False Positives compared to the
dictionary approach alone, while outperform-
ing knowledge-free instructional prompting.

1 Introduction and Related Work

Biomedical information extraction is the task of au-
tomatically extracting entities, relations, and events
from biomedical literature (Hobbs, 2002; Liu et al.,
2016). This information is in turn relevant to writ-
ing of systematic reviews, which support evidence-
based decision making by identifying, integrating,
and assimilating relevant articles on a given clinical
question (Methley et al., 2014). A standard frame-
work used for defining review questions is PICO,
standing for Population (or Patient), Intervention
(or Exposure), Comparison, and Outcome (Cooke
et al., 2012).

We examine information extraction in
Alzheimer’s Disease (AD), which has affected
more than 55 million people around the world1.
We focus on detecting the PICO dimension
of Intervention in the AD literature, where
interventions are typically drugs. This task is
sometimes referred to as intervention extraction.
It suffers from having low precision compared
to extraction of other PICO elements (Hair et al.,

1https://www.alzint.org/about/dementia-facts-
figures/dementia-statistics/

2023a). More precise extraction of interventions
will support more effective systematic reviewing,
and can help to prioritize drugs for clinical trials in
literature-based discovery (Pu et al., 2023).

Standard methods for intervention extraction
include dictionary-based approaches (Hair et al.,
2023b) and machine learning models (Wang et al.,
2021; Wei et al., 2024). The recent advent of gen-
erative Large Language Models (LLMs) and the
prompting-based paradigm for information extrac-
tion (Liu et al., 2023) raise questions of how to
better leverage them in this task and whether they
outperform previous methods. This is particularly
interesting in domain-specific scenarios such as
AD, where limited data is available for training
models (Wang et al., 2023). We address these ques-
tions, with two main contributions: 1) we show
that while generative LLMs improve intervention
extraction precision, they suffer from low recall
compared to dictionary-based methods, and 2) we
propose a two-stage architecture combining both
dictionaries and LLMs that better balances preci-
sion and recall and reaches a new state-of-the-art
on the AD dataset.

2 Methods

2.1 Data

We used a manually-curated dataset containing pre-
clinical animal studies in the context of AD (Hair
et al., 2023b). This dataset consists of documents
comprising title, abstract, and keyword fields for
100 studies. The dataset was created in two steps:
1) a set of regular expression (regex) patterns cor-
responding to a dictionary of interventions was
applied to annotate intervention entities, and 2)
a human annotator labeled each tagged entity as
“intervention” or “not an intervention”. Figure 1
shows an example of an annotated document, the
extracted entities, and the human judgment label
for each. The AD dataset may not be perfect since
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Training set Test set

Document count 5 95
#Intervention 6 67
#Not an intervention 14 288

Table 1: AD dataset statistics for training and testing.

human annotations were a subset of regex anno-
tations. Intervention entities not being captured
by the regex dictionary were out of the scope for
the human annotator. However, we used human
annotations as a gold standard for this study.

Article id: PMID 31190768
Document: [ "... Icariin (ICA) as one of the active
ingredients of Chinese herbal medicine has the imm-
unomodulating function. This study aimed to investi-
gate the immunotherapeutic potential of ICA on AD...
Then the ethological and biochemical experiments
such as Morris water maze assay Aβ ELISA blood
T cell flow cytometry and plasma and brain cytokines
array were conducted to evaluate the effects of
ICA administration. ..."]
Matched spans: [[156,163], [527,532]]
Text spans: ["Icariin", "water"]
Human labels: ["intervention", "not an intervention"]

Figure 1: An example of an annotated document in the
dataset from Hair et al. (2023b). The “document” field
contains the title, abstract, and keywords for each paper.
Only part of the abstract is shown for brevity.

We randomly split the dataset into a training set
(5 documents) and a test set (95 documents) (Ta-
ble 1). The training documents were used for few-
shot learning in prompt-based methods. All results
are reported on the test set.

2.2 Baselines
We adapted three biomedical entity extraction tools
for intervention extraction to use as baselines, de-
tailed in Table 2. The regex-based method of (Hair
et al., 2023b) utilizes a customized dictionary based
on regular expressions for preclinical AD animal
studies. Each publication was tagged with ani-
mal models, outcomes, interventions, species, and
sexes; here we considered only entities tagged as
interventions. The intervention dictionary had a list
of 12,447 compounds compiled from DrugBank2

and Alzforum3. Synonyms, alternate spellings, and
punctuation differences were captured in regexes
(Hair et al., 2023b). This method was used to create

2https://go.drugbank.com/drugs
3https://www.alzforum.org/therapeutics

the dataset employed in our experiments, resulting
in maximum recall by design.

Wang et al. (2021) constructed a PICO extraction
workflow based on Bidirectional Encoder Repre-
sentations (BERT; Devlin et al. (2019)) for gen-
eral preclinical animal studies (not specific to AD).
This method had two entity categories that relate
to interventions: Intervention and Comparator. In-
tervention was defined as interventions that reflect
clinical practice, while Comparator was defined
as a control group, such as no treatment, vehicle/-
placebo, sham treatment, or another intervention.
We treated entities tagged as either Intervention or
Comparator entity types as interventions.

Finally, we also used the latest version of PubTa-
tor 3.0 (Wei et al., 2024) as an additional baseline,
due to its widespread usage in biomedical informa-
tion extraction. This tool extracted proteins, genetic
variants, diseases, and chemicals with a recently
developed named entity recognition (NER) model
called AIONER (Luo et al., 2023). We treated
Pubtator-identified Chemical entities as Interven-
tions. For this entity type, training was based on
the NLM-Chem corpus (Islamaj et al., 2021), with
∼5000 unique drug/chemical name annotations in
150 PubMed full-text chemical literature. The Pub-
Tator API4 was used to conduct raw processing of
input texts for entity extraction.

2.3 Prompt-based methods

Since we had limited labeled data, we prioritized
prompt-based models over training machine learn-
ing or deep learning models. We followed the
framework of (Liu et al., 2023) to design our
prompt-based models. We considered four aspects
of prompt-based learning for intervention extrac-
tion: pre-trained language models (PLMs), prompt-
ing templates, answer space, and prompting param-
eters.

Pre-trained LMs We selected ChatGPT5 and
GPT-4 (OpenAI, 2023) as the PLMs.6

Prompting templates We adapted prompting
templates previously used for zero-shot gene ex-
traction in biomedical literature (Törnkvist, 2024)
to our task for both zero-shot and few-shot learning.

4https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
5https://platform.openai.com/docs/models/gpt-3-5-turbo
6In an effort to employ open-source LMs, we also consid-

ered OLMo (Groeneveld et al., 2024). However, we were not
able to obtain meaningful answers from this LM.
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Entity extraction tool Scope of entity types Entity types used
Regex-based method
(Hair et al., 2023b)

Animal model, Outcome measure,
Intervention, Species, Sex

Intervention

BERT-based method
(Wang et al., 2021)

Intervention, Comparator, Outcome,
Species, Strain, Induction

Intervention, Comparator

PubTator 3.0
(Wei et al., 2024)

Gene/Protein, Variant, Disease,
Chemical, Species, and Cell Line

Chemical

ChatGPT (OpenAI, 2023) - Intervention
GPT-4 (OpenAI, 2023) - Intervention

Table 2: Scope and use of entity types for this study from entity extraction tools

Our templates7 are described in Appendix B.

Answer space We used text spans from the doc-
uments that were recognized as interventions.

Prompting parameters For both models, we set
temperature to be 0.7, max_tokens as 50, and top_p
as 1. The “temperature" parameter controls ran-
domness, which ranges between 0 to 2.

Figure 2: An example of the two-stage filtering method
that we proposed. (1) A regex-based method annotated
potential interventions in each document. Each potential
intervention had a corresponding human label, indicat-
ing whether it was an intervention in context. (2) Each
potential intervention and its context were inputs for a
PLM. Figure is simplified due to space limitations.

2.4 Two-stage filtering method

The approach we proposed (Figure 2) was moti-
vated by the maximum recall provided by the regex
patterns used to create the dataset. Instead of hav-
ing a PLM doing the full work of extracting inter-
ventions, we proposed using it to filter the false
positives obtained from regexes. Precision errors
arising from regex-based methods were mainly due
to a lack of context: any entity that matched a
regex would be recognized as an intervention. We
hypothesized that a PLM can contextualize entity

7The prompting templates (Appendix B) used for base-
lines were different from the templates (Appendix C) in the
two-stage filtering method. For baselines, the prompting tem-
plates were adapted from Törnkvist (2024). For the two-stage
filtering method, the prompting templates were created on our
own.

context and filter them out if appropriate, without
undermining recall.

We experimented with both zero-shot and few-
shot approaches (with examples sampled from the
training set), using ChatGPT as the PLM. We tai-
lored our prompts to frame the task as filtering
(described in Appendix C). All other parameters
were the same as described in Section 2.3.

3 Results and Discussion

Table 3 summarises our results, reporting preci-
sion, recall, and F1 scores for all methods. As
expected, the regex-based method resulted in per-
fect recall (since it was employed to develop the
dataset in the first place) but low precision. Both
BERT-based and PubTator 3.0 approaches did not
perform well, likely due to domain differences. The
prompt-based methods resulted in slightly better
precision, at the price of a large decrease in recall.

Our zero-shot filtering approach outperformed
the baselines in F1 score, with only a small de-
crease in recall. It filtered 30% of the false posi-
tives (FPs) of the regex-based method. A three-shot
variant, adding three true positive (TP) examples
to the prompt, gave even better precision and F1
score, filtering almost two-thirds of all FPs.

3.1 Further analysis on few-shot prompting

We performed additional experiments analyzing
the influence of adding positive examples to the
prompt in our two-stage method. The regex-only
baseline resulted in 67 TPs and 288 FPs: an ideal
filtering layer should remove all FPs while keeping
the original TPs.

Table 4 shows detailed results using two metrics:
the total reduction in FPs and the total reduction
in TPs (the latter framed as “TP price”, since this
should ideally be zero). In general, the higher the
FP reduction, the higher the TP price. However, we
did not see any particular trends when increasing

488



Intervention extraction method TP FP FN Precision Recall F1 score

Baselines
Regex-based 67 288 0 0.19 1.00 0.32
BERT-based 22 232 45 0.09 0.33 0.14
PubTator 3.0 43 369 24 0.10 0.64 0.18
ChatGPT (0-shot) 28 97 39 0.22 0.42 0.29
ChatGPT (3-shot) 24 61 43 0.28 0.36 0.32
GPT-4 (0-shot) 27 108 40 0.20 0.40 0.27
GPT-4 (3-shot) 30 94 37 0.24 0.45 0.31

Our approach
Regex+ChatGPT (0-shot) 64 203 3 0.24 0.96 0.38
Regex+ChatGPT (3-shot) 58 107 9 0.35 0.87 0.50

Table 3: Results for all intervention extraction. The first three columns detail true positives (TPs), false positives
(FPs) and false negatives (FNs), while the last three columns report our evaluation metrics.

the number of examples, except for an outlier result
for 1-shot prompting. Our 3-shot results provided
the best balance but more work is required to under-
stand if further increasing the number of examples
can result in better performance.

#Examples TP FP TP price FP reduction

Baseline 67 288 0 (0%) 0 (0%)
0 64 203 3 (4%) 85 (30%)
1 45 90 22 (33%) 198 (69%)
2 63 181 4 (5%) 107 (37%)
3 58 107 9 (13%) 181 (62%)
4 63 177 4 (5%) 111 (38%)
5 61 186 6 (8%) 102 (35%)

Table 4: Detailed results varying the number of exam-
ples using our two-stage approach. All examples were
“positive” labels (entities labeled as interventions by the
human annotator), sampled from the training set.

We also tried using negative examples for few-
shot learning. However, this did not improve the
performance compared to using positive examples
only. We report detailed results in Appendix A.

3.2 Motivating case study
We discuss case studies for our motivation for em-
ploying the two-stage filtering method. We ana-
lyzed the False Positives (FPs) of the regex-based
method. As this method annotated every text span
matching the intervention dictionary indiscrimi-
nately, the 288 FPs came from context recognition
errors, i.e. where an intervention term did not de-
scribe a relevant intervention in the context of a
document. For instance, the potential intervention
entity “quercetin" in PMID:36840284 (Table 5)
was part of the molecular modeling results of a
compound rather than a drug whose effects were
directly studied.

PMID 36840284
Evaluation False Positive

Context

“Molecular modeling results revealed that
the compound’s ellagic acid, epicatechin,
catechin, kaempferol, quercetin , and apigenin
have the potential to act as a dual inhibitor
of acetylcholinesterase (AChE) and COX-2 and
can be responsible for the improvement of both
cholinergic and inflammatory conditions."

PMID 30618732
Evaluation True Positive

Context

“This study aimed to evaluate the neuropro-
tective effect of quercetin against the
detrimental effects of LPS such as neuroin-
flammation-mediated neurodegeneration and
synaptic/memory dysfunction in adult mice."

Table 5: An example of the same entity string labeled as
both an intervention and not an intervention in distinct
contexts.

One may argue that removing “quercetin" from
the regex dictionary would reduce FPs. However,
the entity “quercetin" was also used as an inter-
vention in other contexts. As shown in Table 5,
PMID:30618732 assessed the effects of “quercetin"
as an intervention for treating adult mice with
neurodegenerative diseases. Therefore, an ideal
method must contextually differentiate usages of
the putative entity mentions.

3.3 PLM response outliers

A generative PLM may produce model responses
out of the target answer space, requiring further pro-
cessing. In the Regex+ChatGPT (0-shot) scenario,
the model responded with “therapeutic” (cf. “inter-
vention”/“not an intervention”) for a potential inter-
vention entity string “therapeutic" and a given con-
text of PMID:25061594. In the Regex+ChatGPT
(3-shot) scenario, the model responded with a copy
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of the prompting template for a potential interven-
tion “potassium" for PMID:30548427.

For these two outliers, we reverted to the output
of a RegEx phase, i.e. with the label “intervention”.

4 Conclusion

In this work, we proposed a two-stage approach
for intervention extraction that combined a regex-
based method with a filtering step done by prompt-
ing a generative LLM. This approach outperformed
strong baselines, including standalone use of LLMs.
Effectively, we show that LLMs can augment
regex/dictionary-based methods by removing con-
text recognition errors.

Future work involves extending our approach to
all PICO entities, beyond just interventions. This
will help automate important tasks in the literature
review for AD, such as collecting data for system-
atic reviews, and support creating more precise
knowledge graphs for literature-based discovery.
The same approach could also be adapted with spe-
cific resources and be applied to other datasets and
domains, such as clinical trials (Nye et al., 2018).
Finally, different strategies to employ LLMs in the
filtering step could be investigated, such as fine-
tuning.
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A Prompting with negative shot for a
two-stage filtering method

#Examples #TP #FP TP price FP reduction
Baseline 67 288 0 (0%) 0 (0%)
0 64 203 3 (4%) 85 (30%)
1 41 104 26 (38%) 184 (63%)
2 52 118 15 (22%) 170 (59%)
3 58 167 9 (13%) 121 (42%)
4 61 167 6 (8%) 121 (42%)
5 53 106 14 (20%) 182 (63%)

Table 6: Detailed results varying the number of exam-
ples using our two-stage approach. Selected examples
were with human labels [“Positive", “Negative", “Posi-
tive", “Negative", “Positive"], sampled from the training
set.

B A prompting template for intervention
extraction baselines

B.1 Zero-shot learning

Task description: Please identify any mention of
interventions in the text. Answer only the detected
interventions and if more than one is found, separate
them with ‘;’ not ‘and’. The answer should only
contain the names of the interventions and nothing
else. If no intervention is found, answer ‘None’.
Task content: Text: In this study we investigated the
pharmacological influence of methylphenidate (MPH)
on behavioral deficits of 5xFAD mice.

Table 7: An example of a prompting template for inter-
vention extraction baselines (zero-shot). “Task descrip-
tion" is for the role of “system", while “Task content" is
for the role of “user".

B.2 Few-shot learning

Task description: Please identify any mention of
interventions in the text. Answer only the detected
interventions and if more than one is found, separate
them with ‘;’ not ‘and’. The answer should only
contain the names of the interventions and nothing
else. If no intervention is found, answer ‘None’.
Task content structure: <Examples for few-shot
learning> Learn from the examples and complete
the following task. <Text>
Task content: Here are examples for the task. The
following is the first example. Text: Purpose: To
study the effect of vitamin B2 (VB2) on the develop-
ment of Alzheimer’s disease (AD). Identified inter-
ventions in the text: vitamin; vitamin B2. Learn
from the examples and complete the following
task. Text: In this study we investigated the pharma-
cological influence of methylphenidate (MPH) on
behavioral deficits of 5xFAD mice.

Table 8: An example of a prompting template for inter-
vention extraction baselines (few-shot). “Task descrip-
tion" is for the role of “system".“Task content" is for the
role of “user". “Task content structure" is a structure to
create “Task content".

C A prompting template for a two-stage
filtering method

C.1 Zero-shot learning

Task description: You will be provided with a text
span and a block of text. Your task is to decide an entity
type for the text span by considering the block of text
as a context.
Task content: Text span [X]: glutathione. A block of
text: Moreover the reduced activities or contents
of glutathione reductase superoxide dismutase (SOD)
and reduced GSH within the cortex and hippocampus
caused by scopolamine were elevated by the treatment
of KD-501. Please fill in the slot [Z]: [X] belongs to
an entity type [Z]. Choose an entity type [Z] from
the [‘intervention’, ‘not an intervention’]

Table 9: An example of a prompting template for a two-
stage filtering method (zero-shot). “Task description" is
for the role of “system", while “Task content" is for the
role of “user".
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C.2 Few-shot learning

Task description: You will be provided with a text span
and a block of text. Your task is to decide an entity type
for the text span by considering the block of text as
a context.
Task content structure: <Examples for few-shot learning>
Learn from the examples and complete the following task.
<Text span> <A block of text> Please fill in the slot [Z]: [X]
belongs to an entity type [Z]. Choose an entity type [Z]
from the [‘intervention’, ‘not an intervention’]
Task content: Here are examples for the task. The
following is the first example. Text span [X]: Quercetin.
A block of text: Prosencephalon/metabolism/ultrastructure,
Quercetin/*administration & dosage. [X] belongs to an
entity type intervention. Learn from the examples and
complete the following task. Text span [X]: glutathione.
A block of text: Moreover the reduced activities or contents
of glutathione reductase superoxide dismutase (SOD) and
reduced GSH within the cortex and hippocampus caused
by scopolamine were elevated by the treatment of KD-501.
Please fill in the slot [Z]: [X] belongs to an entity type [Z].
Choose an entity type [Z] from the [‘intervention’,
‘not an intervention’]

Table 10: An example of a prompting template for a
two-stage filtering method (few-shot). “Task descrip-
tion" is for the role of “system". “Task content" is for
the role of “user". “Task content structure" is a structure
to create “Task content".
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Abstract

Clinical text is rich in information, with men-
tions of treatment, medication and anatomy
among many other clinical terms. Multiple
terms can refer to the same core concepts which
can be referred as a clinical entity. Ontolo-
gies like the Unified Medical Language Sys-
tem (UMLS) are developed and maintained
to store millions of clinical entities includ-
ing the definitions, relations and other corre-
sponding information. These ontologies are
used for standardization of clinical text by nor-
malizing varying surface forms of a clinical
term through Biomedical entity linking. With
the introduction of transformer-based language
models, there has been significant progress in
Biomedical entity linking. In this work, we
focus on learning through synonym pairs as-
sociated with the entities. As compared to the
existing approaches, our approach significantly
reduces the training data and resource consump-
tion. Moreover, we propose a suite of context-
based and context-less reranking techniques for
performing the entity disambiguation. Overall,
we achieve similar performance to the state-of-
the-art zero-shot and distant supervised entity
linking techniques on the Medmentions dataset,
the largest annotated dataset on UMLS, with-
out any domain-based training. Finally, we
show that retrieval performance alone might
not be sufficient as an evaluation metric and
introduce an article level quantitative and qual-
itative analysis to reveal further insights on the
performance of entity linking methods.

1 Introduction and Related Work

Medical text consists of a diverse vocabulary de-
rived from various nomenclatures including vary-
ing surface forms corresponding to terms like di-
agnosis, treatment, medications, etc. This diver-
sity poses a challenge for effective communication

*akshit.achara@gehealthcare.com
†sanand.sasidharan@gehealthcare.com
‡gagan.n@gehealthcare.com

across medical institutions and organizations. One
of the techniques to mitigate this inherent diversity
present in multiple references to the same term is
entity linking. Entity linking is used to map these
references to standardized codes. These codes are
curated and maintained by medical organizations
for standardization of medical nomenclature.

Given a corpus, entity linking includes the map-
ping of a mention m which is a span of k words,
to an entity ϵ, where the entity belongs to a knowl-
edge base such as Wikipedia. In the biomedi-
cal domain, the textual phrases are linked with
the corresponding concepts from a knowledge
base constructed using the medical ontologies
like UMLS (Bodenreider, 2004), SNOMED (El-
Sappagh et al., 2018), etc. The UMLS ontol-
ogy comprises of a broad range of clinical enti-
ties along with rich information for each entity
like synonyms, definitions, etc. Traditional ap-
proaches for entity linking, such as Support Vec-
tor Machines (Cristianini and Shawe-Taylor, 2000)
and Random Forests (Breiman, 2001), rely heavily
on hand-crafted features, thereby restricting gen-
eralization to diverse data. Neural networks have
emerged as a prominent technique for entity linking
due to their ability to learn semantic representations
from textual data.

Alias matching based techniques like (Aron-
son, 2001; Neumann et al., 2019; Liu et al., 2020)
have been proposed where an input mention is
mapped to an alias associated with an entity in
the knowledge-base. However, these techniques re-
quire large amount of training data. Contextualized
entity linking approaches (Zhang et al., 2021) uti-
lize the semantic similarity between contextualized
mentions. This approach requires a list of entities
in advance and includes distant-supervision on arti-
cles containing examples of these entities. Generat-
ing medical codes using large language models can
be error prone (Soroush et al., 2024). In (Yuan et al.,
2022b), the authors use a seq2seq model to map a
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mention to its canonical entity name. This method
is resource intensive and requires generation of
synthetic examples for pretraining, utilizing entity
definitions and synonyms. In (Kong et al., 2021),
the authors propose a zero-shot entity linking ap-
proach by leveraging synonym and graph based
tasks. However, the approaches require training
samples from UMLS for both these tasks. More-
over, entity disambiguation has not been explored
in the work.

Efficient student models like MiniLM (Wang
et al., 2020) can be used to perform contrastive
learning on synonyms of entities. This results in
a significantly less embedding size (384) as com-
pared to the approaches like SAPBERT (Liu et al.,
2020) with an embedding size of 768. The pre-
dicted candidates in alias based techniques are
ranked based on the cosine similarity score. How-
ever, there are ambiguous cases where multiple
entities have similar scores for a common men-
tion. Therefore, there is a requirement to disam-
biguate these candidates through reranking. Cross-
Attention based reranking approaches utilize su-
pervised training on the concatenated mention and
candidate representations as inputs (Zhang et al.,
2021). More recent approaches utilize homonym
disambiguation (Garda and Leser, 2024) and have
shown to improve the performance of autoregres-
sive approaches like GenBioEL.

In comparison to the discussed techniques, we
propose an efficient and low resource zero-shot
biomedical entity linking approach along with a
suite of disambiguation techniques. Furthermore,
we introduce an article level similarity analysis
to obtain further insights. This also allows us to
conduct a qualitative analysis without manually
going through all the articles manually.

Our contributions are as follows:

• Data: We show that the impact of train-
ing is negligible on a finetuned MiniLM
model1 as compared to the pretrained MiniLM
model. Moreover, the pretrained MiniLM
model when finetuned on all UMLS synonym
pairs has worse performance than the all-
MiniLM model.

• Disambiguation We show that reranking on
entity-level semantic information provided in
UMLS can be highly effective for entity dis-
ambiguation. We further propose a parametric

1https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

reranking technique that is beneficial for alias-
based entity linking solutions.

• Evaluation We propose a comprehensive eval-
uation of entity linking which utilizes the se-
mantic representation of articles coupled with
the strict matching and related matching of
predicted and gold standard entities. This eval-
uation is used to highlight issues related to the
annotation granularity, missing context and
surface form bias (for abbreviations) without
the need of going through all the articles.

2 Datasets

In this work, we explore entity linking on the
Medmentions (Mohan and Li, 2019) dataset which
consists of titles and abstracts from 4392 English
biomedical articles. These articles comprise of
textual spans annotated with mentions of UMLS
2017AA entities. The dataset provides two ver-
sions: a full version containing 34724 unique enti-
ties and an st21pv version with 25419 unique enti-
ties, the latter being recommended by the authors
for information retrieval. Further details about the
dataset versions are discussed in Table 9 in (Kartch-
ner et al., 2023).

2.1 Preprocessing
We replace the abbreviations with their correspond-
ing full forms using Ab3p (Sohn et al., 2008).
The abbreviation expansion using Ab3p has shown
to significantly improve the entity linking perfor-
mance across different approaches (Kartchner et al.,
2023). Prior to creating synonym pairs for train-
ing, we remove all the suppressed entities, deleted
entities and deprecated entities. Some deprecated
entities have also been merged with other entities
having a synonymous relation. We map these dep-
recated entities to the corresponding active entities
with a synonymous relation.

st21pv full

merged 181 280
deleted 49 60
non-synonymous 226 348

Table 1: The table shows the details of Medmentions
entities annotated with UMLS 2017AA version that are
deprecated in UMLS 2023AB version.

Some annotations in Medmentions (prepared
with UMLS 2017AA) are deprecated in the UMLS
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2023AB (see details in table 1). Therefore, ap-
proaches utilizing UMLS 2023AB version may
want to use an updated version of Medmentions.
Furthermore, the prototype space (feature vector
space) consisting of UMLS entities will have to
be updated to the remove deprecated entities. This
would help in avoiding deprecated entities to be
predicted as candidates.

3 Methodology

In this work, we create a prototype vector space
comprising of the encodings (feature vectors) as-
sociated with the canonical name of each entity
in the UMLS ontology. To obtain meaningful en-
codings for constructing this prototype space, we
train an encoder-based transformer (Vaswani et al.,
2017) model on pairs of canonical names of en-
tity synonyms. This is similar to the training ap-
proaches utilized in (Kong et al., 2021) and (Liu
et al., 2020). The prototype space constructed using
this trained model is used for performing semantic
search, where the query encoding is obtained by
passing the mention through the same model. This
step is known as candidate generation. The can-
didate generation may lead to ambiguous results
where multiple predicted entities have equal simi-
larity scores. This is addressed through the rerank-
ing approaches discussed in section 3.3. Finally,
we utilize both semantic similarity and retrieval per-
formance for our quantitaive and qualitative evalua-
tion. The comprehensive structure of our proposed
approaches is depicted in the figure 1.

The following sub-sections discuss the individ-
ual components used in our work:

3.1 Training

We construct a training dataset by taking all the
canonical names for each entity from UMLS and
create pairs of canonical names corresponding to
the same entity. Each pair is of the form (ϵi, ϵ∗i ),
where ϵ∗i represents the canonical name of a syn-
onym of entity ϵi. The preprocessing steps are
discussed in the section 2.1. We use this dataset
to finetune a sentence-transformer (Reimers and
Gurevych, 2019) model using Multiple Negatives
Ranking loss (Henderson et al., 2017). We use
MiniLM (Wang et al., 2020) which is a distilled
version of BERTBASE model obtained using an
effective knowledge distillation approach outper-
forming other lightweight models like TinyBERT
and DistillBERT. We also utilize a finetuned all-

MiniLM2 model for training/finetuning on this
dataset. The all-MiniLM model is obtained by
training the MiniLM model on a 1B sentence pairs
dataset using a contrastive learning objective. The
corresponding MiniLM and all-MiniLM models
trained/finetuned on k examples are hereafter re-
ferred as MiniEL∗

k and MiniELk respectively. For
example, the all-MiniLM model finetuned on 10
pairs/examples is referred as MiniEL10.

The Multiple Negatives Ranking loss function is
defined as:

L(x, y, θ) =
1

B

B∑

j=1

logP (yj |xj) (1)

Here, θ represents the network parameters, (x, y)
represents a pair of phrases and B represents the
batch size. The parameters details for training are
provided in section in Appendix in the section A.1.

3.2 Candidate Generation
A prototype space is prepared for the UMLS
2017AA version comprising of the encodings of
canonical names of each entity and its synonyms.
These encodings are computed using the MiniEL*
and MiniEL models. The prototype space is used
for performing semantic search where the queries
are formed using the labeled mentions from the
Medmentions dataset. The top-k concepts are re-
trieved based on the cosine similarity of the query
and entity encodings. These candidates are referred
as generated candidates.

3.3 Disambiguation
The candidate generation solely relies on the cosine
similarity score between the mention and prototype
space candidate encodings. However, there may
be cases where multiple candidates have similar
scores or the scores alone may not be sufficient to
rank the candidates. Therefore, there is a need to
rerank the candidates. We propose the following
reranking approaches that to perform the entity
disambiguation:

3.3.1 Parametric Reranking
In this section, we propose a parametric approach
to rerank the generated candidates. We consider
three parameters based on the prototype space and
our training framework for disambiguation namely,
cosine similarity score (CSS), representative alias

2https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2
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Figure 1: This figure illustrates the sequential flow of our proposed approaches. Starting from the left, we begin
with leveraging a neural embedding model to create a prototype space on the UMLS entities. The cosine similarity
metric is used to perform semantic search on the queries given the input mentions. The resultant top-k candidates
are reranked using the listed methods for disambiguation and finally a comprehensive evaluation comprising of the
retrieval performance and semantic similarity is performed.

score (RAS) and the candidate entity frequency
score (CEFS) as our parameters. The parameters
have the corresponding coefficients a, b and c re-
spectively. These parameters are used to compute a
new ranking score for each candidate. The equation
below shows the updated score (δ∗(., .)) computa-
tion for reranking each of the generated candidates.

δ∗(q, v) = a ∗ δ(q, v) + b ∗ 1

n

n∑

j=1

δ(q, vj) + c ∗ n (2)

Here, q is the query encoding, v is a generated
candidate encoding and n is the number of aliases
of v in the generated candidates.

The optimal selection of coefficients a, b and c
corresponding to each of these parameters is per-
formed through a grid search on a subset of man-
ually defined bounds. Further details on the grid
search and the impact of the these coefficients are
discussed in appendix in the section A.2.

3.3.2 With UMLS Semantic Information
UMLS comprises of additional classification asso-
ciated with individual entities, grouping them based
on their semantic types and semantic groups. Each
semantic type and semantic group has a canoni-
cal name. In this section, we calculate the cosine
similarity between the mention’s semantic type or
semantic group canonical name encoding and the
corresponding canonical names of the top-k candi-
dates. This similarity score is added to the initial
candidate generation score to rerank the top-k can-
didates.

1. Assuming Availability of Gold Standard
Information: In this case, we assume that
the gold standard semantic type and semantic

group information is available for each men-
tion. We rerank the candidates by utilizing the
following methods:

(a) Semantic Type Based Disambiguation:
In this method, calculate the cosine sim-
ilarity between canonical name encod-
ings of semantic types of a mention and
each of its top-k candidates. The updated
score is computed as follows:

δ∗(q, v) = δ(q, v) + δ(TUI(q), TUI(v)) (3)

Here, TUI(.) maps the input men-
tion/entity to the encoding of correspond-
ing semantic type canonical names.

(b) Semantic Group Based Disambigua-
tion: In this method, calculate the cosine
similarity between canonical name en-
codings of semantic groups of a mention
and each of its top-k candidates. The
updated score is computed as follows:

δ∗(q, v) = δ(q, v) + δ(SG(q), SG(v)) (4)

Here, SG(.) maps the input men-
tion/entity to the encoding of the cor-
responding semantic group canonical
names.

2. Semantic Type/Group Prediction: In scenar-
ios where the semantic type/group informa-
tion of the mentions is not available, the meth-
ods proposed in (Le et al., 2022) and (Mao
et al., 2023) can be used to predict the seman-
tic type or group based on the input mentions.
This can be followed by the computational
methods discussed in the section 3.3.2.
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4 Results and Discussion

We obtain the retrieval performance for the dis-
cussed approaches by considering the top-k closest
candidates (that include aliases) from the prototype
space. We observe that the retrieval performance
(considering top-128 candidates) of all the miniEL
and miniEL1000 approaches is around 87% for the
st21pv version and 88% for the full version of the
Medmentions dataset.

4.1 Quantitative Analysis

In this section, we present the quantitive analy-
sis associated with candidate generation (see sec-
tion 4.1.1 and tables 2, 3) and reranking (see sec-
tion 4.1.2, figure 2 and tables 4). Furthermore, the
intricate analysis on the distribution of exact, re-
lated and missed candidate matches are discussed
in the section 4.1.3.

4.1.1 How much data do we need?
In this section, we discuss the candidate generation
performance of our approaches trained using vary-
ing number of examples. It can be seen that the
performance of miniEL has a negligible training im-
pact and the performance is stable across different
number of examples (see tables 2 and 3). How-
ever, the miniEL∗ approach improves consistently
with increasing number of training examples.The
miniEL approach without any finetuning still out-
performs the miniEL∗ approach trained on all the
training examples.

miniEL* miniEL

Training Samples R@1 R@5 R@1 R@5

0 0.401 0.594 0.553 0.756
10 0.427 0.622 0.552 0.758
1000 0.499 0.693 0.557 0.766
10000 0.518 0.717 0.553 0.76
ALL 0.534 0.736 0.556 0.756

Table 2: This table shows the R@1 and R@5 can-
didate generation performance of the approaches on
the Medmentions (st21pv) dataset. The models are
trained with varying number of training samples used
to train/finetune the MiniEL∗ and MiniEL models.

In comparison, our approach outperforms gener-
ative methods like BioBART (Yuan et al., 2022a)
and BioGenEL (Yuan et al., 2022b) that are re-
source intensive. Since these approaches use the
Medmentions training set to finetune the models,
we only compare the test set performance. The
R@1 candidate generation performance of MiniEL

MiniEL* MiniEL

Training Samples R@1 R@5 R@1 R@5

0 0.462 0.657 0.567 0.782
10 0.477 0.676 0.565 0.783
1000 0.525 0.728 0.569 0.789
10000 0.537 0.747 0.568 0.788
ALL 0.556 0.761 0.568 0.783

Table 3: This table shows the R@1 and R@5 candi-
date generation performance of the approaches on the
Medmentions (full) dataset. The models are trained
with varying number of training samples used to
train/finetune the MiniEL∗ and MiniEL models.

is 0.552 as compared to the overall performance
of 0.496 and 0.520 of BioBART and BioGenEL
respectively (the results are taken from (Kartchner
et al., 2023)).

4.1.2 Reranking Performance
In the following subsections, we discuss the candi-
date reranking results. The results corresponding
to the parametric approach and those correspond-
ing to the semantic disambiguation approaches are
discussed in the following subsections.

Figure 2: This figure highlights the trends associ-
ated with the retrieval performance improvement over
varying top-k candidates using MiniEL0, MinEL and
MiniEL1000 models. The improvement in R@1 is more
significant as compared to that in R@5 for all the mod-
els and reranking methods. It can be observed that the
retrieval performance of PARAMETRIC reranking de-
creases with increase in the top-k (k>15) whereas the
performance of SEMANTIC GROUP and SEMANTIC
TYPE reranking is consistent across the top-k.

1. Parametric Reranking: The top-k candi-
dates selected based on the parametric ap-
proach discussed in section 3.3.1 and the cor-
responding results are shown in figure 2 and
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st21pv full

Reranking top-5 top-10 top-5 top-10

PARAMETRIC 0.604 0.614 0.620 0.630
GROUP 0.638 0.649 0.659 0.670
TYPE 0.648 0.661 0.681 0.697

Table 4: The table shows the R@1 performance of the
MiniEL0 model after applying the listed reranking meth-
ods using the top-5 and top-10 candidates. It can be
seen that there is a significant improvement in the per-
formance as compared to the results in Tables 2 and 3.

table 4. It can be seen that the retrieval perfor-
mance improves by from 0.553 to 0.614 for
the st21pv version and from 0.567 to 0.630
for the full version of Medmentions. The a, b
and c values used to obtain these results have
the proportion a : b : c ∝ 50 : 2 : 1 (see
section A.2 for more details).

2. With UMLS Semantic Information: In this
section, we discuss the retrieval performance
improvements after the reranking using the
semantic type and group information. The
details of these methods are discussed in sec-
tion 3.3.2.

Figure 2 and table 4 show the R@1 perfor-
mance of the MiniEL0 model after applying
these reranking strategies. The performance
improves from 0.553 to 0.649 for semantic
group and to 0.661 for semantic type rerank-
ing for the st21pv version of Medmentions.
Similar observations can be made for the full
version of Medmentions. Moreover, the re-
trieval performance does not deviate signif-
icantly with the increase in the top-k candi-
dates used for reranking (see figure 2 for de-
tails).

The improvement in candidate ranking is ap-
proached in two ways. Firstly, to maximize the
R@1 performance by reranking the generated can-
didates (see details in section 3.3) and secondly, to
include context for addressing the context based
ambiguity (see details in Appendix in section A.3).

4.1.3 How should the performance be
evaluated?

In the retrieval-based evaluation strategy, we com-
pute the retrieval performance on gold standard and
predicted entity matches. However, there are cases
where the most similar candidate is related to the
gold standard entity. It can be seen in the table 5

Approach Exact Related Missed

MiniEL0 0.553 0.220 0.227
MiniEL0 + PARAMETRIC 0.614 0.172 0.214
MiniEL0 + GROUP 0.649 0.188 0.163
MiniEL0 + TYPE 0.661 0.176 0.163

Table 5: This table shows the R@1 retrieval per-
formance distributed into the exact matches, related
matches and missed matches. The top-10 candidates are
used for reranking. Here, we use the st21pv version of
Medmentions.

that about 77% entities are exacting matching or
are related to the gold standard entity. The details
of each type of relation we have considered are
provided by UMLS.3

Figure 3: This heatmap illustrates the percentage
changes in the number of initial exact, related and
missed matches for the MiniEL0 model. The perfor-
mance preceding the changes is labeled ’FROM’ for the
rows, while the subsequent performance is denoted by
’TO’ for the columns. The experiments are performed
on the st21pv version of Medmentions.

Figure 3 shows that the effect of parametric
reranking is directed primarily towards convert-
ing related matches to exact matches, coverting
36% of related matches into exact matches. The
semantic group and semantic type based rerank-
ing approaches convert both missed and related
matches into exact matches.

The following analysis is focused on the further
evaluation of related and missed matches. In this
article level analysis, we replace a mention with the
closest generated candidate’s canonical name for
each mention in the article where the closest can-
didate is a related match or a missed match respec-
tively. This results in an article AP . We compute
the cosine similarity between the original article
A and the modified aricle AP called SP using a

3https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
release/abbreviations.html#mrdoc_REL
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PubmedBERT-base (Gu et al., 2020) model4 fine-
tuned using sentence transformers (Reimers and
Gurevych, 2019) on biomedical data. Similarly, we
also replace the mentions with the gold standard
canonical names to create an article AG. This is fol-
lowed by computation of cosine similarity between
A and AG called SG. We focus on scenarios where
SP and SG deviate significantly as compared to
the mean deviation of the articles. These are high-
lighed in the figure 4. This forms a base for our
qualitative analysis where we use this deviation to
provide insights on the granularity of gold standard
predictions as well as highlight current issues in
the approach.

Figure 4: This figure illustrates the disparity in similar-
ity scores (SG − SP ) at the article level (4392 articles),
alongside the smoothed retrieval performance (R@1)
per article using a moving average with a window size
of 200. The region A consists of semantically closer
predictions and B consists of semantically farther pre-
dictions.

4.2 Qualitative Analysis

We perform a qualitative analysis on the entity link-
ing predictions to highlight the difference in the
granularity of the gold standard and predicted enti-
ties.

In this section, we qualitatively evaluate the arti-
cles displayed in the regions A and B of figure 4.
The region A consists of articles where the pre-
dicted article AP is semantically more similar to
the original article A as compared to the gold stan-
dard articleAG. Whereas, the region B consists of
articles where AG is more similar to A as compared
to AP .

4https://huggingface.co/NeuML/
pubmedbert-base-embeddings

MENTION: "Vitamin D Receptor Activator Use and Cause-
specific...Vitamin D receptor activators (VDRA) may exert...5,635
VDRA users were matched...that VDRA use was"
GOLD: Biologically Active Substance (C0574031)
PREDICTION: VDR protein, human (C3657722) with parent
entity Vitamin D3 Receptor (C0108082)

MENTION: "Influence of Sinus Floor Configuration....the sinus
floor configuration...osteotome sinus grafting procedure...into
the sinus area...sinus floor configuration...sinus floor profile...flat
sinus group...maxillary sinus following...predictable in sinuses
with a concave..."
GOLD: Anatomical space structure (C0229984)
PREDICTION: Nasal sinus (C0030471)

MENTION: "...effectiveness of disc synoptoscope on pa-
tients...effectiveness of disc synoptoscope on binocular-
ity...therapy with disc synoptoscope in...with disc synoptoscope is
effective...disc synoptoscope could serve as an..."
GOLD: Medical Devices (C0025080)
PREDICTION: Synoptophores (C0183765)

MENTION: "...performance of the Afirma gene expression
classifier...the Afirma gene expression classifier (GEC)...on
which GEC was performed...GEC testing was performed...atypia
of undetermined significance (AUS)...the AUS cases...the
AUS group...patients with AUS...value of GEC decreased
from...suspicious GEC result...value of GEC in indetermi-
nate...suspicious GEC result...suspicious GEC result..."
GOLD: Research Activities (C0243095), Finding (C0242481)
PREDICTION: Gene Expression Profiling (C0752248), Atypical
cells of undetermined significance (C0522580)

MENTION: "including the cytoplasmic tails of integrins and com-
ponents of the actin cytoskeleton"
GOLD: CytoPlasmic (C0521449)
PREDICTION: Cytoplasmic Domain (C1511625) with alias ’Cy-
toplasmic Tail’.

Table 6: The table shows qualitative examples selected
from the region A in the figure 4.

Table 6 shows the qualitiative examples from
region A where it can be observed that our ap-
proach is penalized for granular or highly related
predictions. For example, The mention gene expres-
sion classifier has a gold standard entity Research
Activities as compared to the more granular pre-
diction Gene Expression Profiling. Similarly, the
mention cytoplasmic tails has a gold standard ent-
tity CytoPlasmic as compared to the more granular
prediction Cytoplasmic Domain.

Table 7 shows the qualitatuve examples corre-
sponding to the region B where it can be seen
that the gold standard annotation is based on the
context of mention in the article. More specifi-
cally, the mention mice has a gold standard entity:
Laboratory mice based on the article context. How-
ever, this context is missing in the mention surface
form. Therefore, to address these kind of cases,
we need to provide the necessary context in the
query. We utilize three different disambiguation
techniques and show examples of the correspond-
ing predictions. We observe that additional context
from the articles may result in granular predictions.
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However, the results are highly sensitive to the
context and overall retrieval performance drops sig-
nificantly (see section A.3 for more details).

We also observe an inconsistency in the granular-
ity of gold standard entities in these examples. The
mention experimental mice has a gold standard en-
tity Animals, Laboratory as compared to the more
granular prediction Laboratory mice.

MENTION: "....iron accumulation in the substantia nigra (SN)
of mice.....the substantia nigra of experimental mice treated with
MPTP."
GOLD: Laboratory mice (C0025929), Animals, Laboratory
(C0003064)
PREDICTION: House mice (C0025914), Laboratory mice
(C0025929)

MENTION: "...mRNA N6-methyladenosine methylation of post-
natal...mRNA m6A methylation during...outcomes of mRNA m6A
methylation...levels of m6A methylation and...by m6A methylation
at...higher m6A methylation and...differential m6A methylation
may..."
GOLD: mRNA methylation (C2611689)
PREDICTION: Methylation (C0025723)

Table 7: The table shows qualitative examples selected
from the region B in the figure 4.

5 Conclusion

Biomedical entity linking has been an active area of
research with various approaches being proposed
to improve medical text standardization (see de-
tails in section 1). We propose a multi-stage ap-
proach where the first stage retrieves candidates
with a high recall (∼ 87% for top-128 candidates).
This is followed by application of the proposed
reranking approaches focused on improving the
R@1 retrieval performance. The reranking im-
proves the performance by more than 10% (see
figure 2 and table 4). We investigate the misses in
R@1 and segregate the candidates into related and
missed matches. Following this, we compute the
article level semantic similarity together with the
article level retrieval performance. This analysis
highlights qualitative examples that can be used to
obtain further insights about the framework. The
semantic analysis is used to select the following
types of qualitative examples: a) low retrieval per-
formance and high similarity and, b) low retrieval
performance and low similarity. The former can be
highlight issues pertaining to granularity of gold
standard entities and the latter can be used to high-
light issues pertaining to the retrieval performance.
Overall, the proposed techniques are highly effec-
tive in entity linking and have negligible training,
prototype-space creation and inference costs (see

table 9 for more details).

5.1 Future Scope
We believe that there is a significant scope for
future developments in biomedical entity linking
across different components of existing deep learn-
ing solutions. Firstly, there can be multiple biomed-
ical normalizations for a mention or surface form.
However, there is no method to determine the
"closeness" of a prediction to a surface form as
opposed to the binary matching. We believe that
there should be a partial scoring instead of a bi-
narized computation in order to accomodate the
quality of predictions in the evaluation. Moreover,
semantic similarities can also determined by ex-
perts to provide a ranking that could be used across
biomedical entity linking for disambiguation.

5.2 Limitations
We observe that while an abbreviation pre-
processing module is utilized in the proposed ap-
proaches, it doesn’t convert all the abbreviations
into their full forms. This causes a high amount
of ambiguity in the results and often times the re-
trieval candidates do not consist of the correct en-
tity. This drawback in positive pairs based learning
has also been highlighted in (Zhang et al., 2021).
Research addressed towards improving abbrevia-
tion expansion can help improve the recall of our
candidate generation. Moreover, the region B in
figure 4 highlights the examples where missing
context in the surface form causes our framework
to predict broader entities as the closest candidates.
We utilize various approaches to include additional
implicit and explicit context into our queries and
analyze the corresponding retrieval performance
(see details in Appendix section A.3).
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A Appendices

A.1 Terminology and Parameters

This section includes the terminology details and
training, inference or other parameters used in this
work.

Term Description

δ Similarity function
m mention
ϵ Entity
q Query
µ Entity canonical name
TUI(.) maps an entity to it’s semantic type canonical name
SG(.) maps an entity to it’s semantic group canonical name

R@n Retrieval performance on top-n unique candidate entities
top-k top-k candidate entities including aliases

Table 8: The table shows the symbols used in our work
and the corresponding descriptions.

Table 9 shows the memory consumption and
carbon emissions associated with the MiniEL0 ap-
proach. It can be seen that our proposed techniques
is low resource and results in very low amount of
carbon emissions.

Phase Memory
(MB)

Emissions (Kg.
Eq. CO2)

Training 0 0
Prototype Space
Creation

1906 0.1

Inference 938 0.04

Table 9: The table shows the memory and carbon emis-
sion details. We utilized a 16GB V100 GPU for our
tasks. The Inference was performed on the st21pv ver-
sion of Medmentions.

A.2 Ablation Studies

In this section, we discuss the influence of param-
eters used in the parametric disambiguation ap-
proach discussed in the section 3.3. Specifically,
we consider the candidate generation results ob-
tained by using the MiniEL0 model and perform
the reranking by removing b and c parameters re-
spectively. To highlight the impact of changing the
a, b and c values, we perform a grid search on a
manually selected range of values.

Furthermore, considering the top-10 candidates
for reranking, removal of the parameter b results
in an R@1 of 0.611, removal of c results in 0.481.
This can be compared to the baseline R@1 0.553
and the R@1 of 0.614 obtained using optimal a,b

Figure 5: This figure shows the grid search on the pa-
rameters a, b and c for optimizing the R@1 performance
of the MiniEL0 model using the parametric approach
discussed in the section 3.3. The optimal combination
of a, b and c is found to be 5, 0.1 and 0.05, respectively.

and c. The performance is computed on the st21pv
version of Medmentions. Overall, the impact of
parameter c is highly significant in the performance
improvement.

A.3 Contextualized Queries

In our framework, the encoded representations of
mentions are queried on the prototype space to
get relevant candidates from UMLS. However, the
mention spans alone may lack the necessary con-
text to map the mention to their corresponding
UMLS entities. In this section, we evaluate mul-
tiple techniques for incorporating context in the
queries. Specifically, we use a running span based
context addition, an implicit context addition and
an attention based span context addition.

A.3.1 Neighboring Context
In this approach, we select a few words before and
after the mention span to update the mention m
and encode the updated mention to form a query.

Firstly, we add 5 neighbouring words before and
after the mention and observe that the retrieval per-
formance drops drastically (R@1 ∼ 10%). There-
fore, we the number of words to 2 on both sides
of the mention which results in a drastic drop in
retrieval performance (R@1 ∼ 22%).

Overall, this context addition approach results in
a significant drop in our retrieval performance and
may not be suitable for contextual disambiguation.

A.3.2 Attention-Based Context
In this section, we perform experiments to identify
the most influential words from the articles that
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attend to the span in consideration. We modify
the original mentions by adding these words as
additional context. This is done by utilizing the
attention mechanism of encoder based transformer
models namely BioBERT (Lee et al., 2020). Firstly,
the entire title and abstract text is tokenized and
passed to these models. The corresponding atten-
tion outputs are obtained and passed to the mention
enrichment algorithm.

Let k be the number of word-piece tokens ob-
tained from the encoder model, for each head H of
Layer L, the attention matrix can be mentioned as:

A =




a11 a12 ... a1k

a21 a22 ... a2k

...
... ....

...
...

... ....
...

ak1 ak2 .... akk




(5)

The mention spans lie in the range [c, d] where
0 ≤ c < d ≤ k. Therefore, the matrix A can be
shortened to a submatrix of interest B mentioned
as:

B =




acc ac(c+1) ... acd

a(c+1)c a(c+1)(c+1) ... a(c+1)d

...
... ....

...
...

... ....
...

akc ak(c+1) .... akd




(6)

Equivalently,

B =
[
bc b(c+1) ... bd

]
(7)

where bi represents a column of B. Next, the
token corresponding to the maximum attention
value of each column is obtained as T (max(bi))
where T (j) represents the token at index j ∈
{1, 2, ..., k}in the text spanning from 1st to the kth

token. The resulting token vector from the attention
head Hm and Layer Ln is represented as:

Rnm =
[
T (max(bc) T (max(b(c+1)) ... T (max(bd)

]

(8)

The ENRICH function discussed in the algo-
rithm 1 return the enriched context for a given men-
tion m, which is then modified as shown below:

m∗ = m : Rmn[0], Rmn[1] (9)

Finally, stop words are removed from Rmn[0]
and Rmn[1]. An example mention cold can be mod-
ified as cold: severe,recent where, ’severe, recent’
is the added context.

Algorithm 1 Enrichment Context Selection
procedure SORTmcbl(V : 1D vector) {most common by
length in descending order}

C = {x | count(x) = max(count(T )) ∀ T ∈ V }
C∗ = {x | x ∈ C and len(x) >= len(y) ∀ y ∈ C}
return C∗

end procedure
{Rn denotes the representative token from all attention
heads in Layer n}
{Ln denotes the representative token(s) from Layer n}
{M denotes the representative token(s) for the tokenk in
mention M}
{E denotes the representative token context (E) for mention
M}
procedure ENRICH(Rn : 1D vector) {enrich mention with
context}

C∗ = SORTmcbl(Rnm)
Rn = C∗

1 or Rn = C∗(1)
Ln = {R1, R2, ..., Rz}
C∗ = SORTmcbl(Ln)
Mt = {C∗

1 , C
∗
2}

M = {M1,M2, ...,Mk}
C∗ = SORTmcbl(M)
E = {C∗

1 , C
∗
2}

end procedure

A.3.3 Implicit Context
In this approach, we utilize mean-pooled embed-
ding of the mention encodings taken from the entire
article as an input. Firstly, the entire text is used
as an input to obtain the tokenwise encodings from
the model.

f(text, θ) = {ET1 , ET2 , ..., ETn} (10)

Here, ET is encoding of token T and n are the
number of tokens in the input text.

Given a span s, consisting of l tokens and
tokens in the span {Tk, ...., Tk+l}, we take the
corresponding encodings from the model outputs
{ETk

, ..., ETk+l
}. We perform a mean pooling on

these encodings to obtain the updated query rep-
resentation Q = 1

l

∑k+l
k {ETk

, ..., ETk+l
}. The

prototype space consists of the sentence encodings
of the canonical names of all the entities in UMLS.

The R@1 candidate generation performance
drops drastically in this setup where a drop of more
than 30% is observed. Overall, we observe that
these implicit contextual queries are not helpful in
improvement of retrieval performance.

A.3.4 Evaluation
In this section, we perform the quantitative and
qualitative analysis of our context based ap-
proaches on the Medmentions st21pv version. The
qualitative examples shown below highlight the pre-
dictions provided by the proposed context based
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MENTION: "....iron accumulation in the substantia nigra (SN) of
mice...."
MENTIONAC : "...iron accumulation in the substantia nigra (SN)
of mice: experiment...."
PREDICTIONAC : Laboratory mice (C0025929))
PREDICTIONIC : House mice (C0025914)
PREDICTIONNC : Laboratory mice (C0025929)

MENTION: Kindlin-1 is expressed primarily in epithelial cells,
kindlin-2 is widely distributed and is particularly abundant in ad-
herent cells, and kindlin-3 is expressed primarily in hematopoietic
cells.
MENTIONAC : Kindlin-1: kind,primarily is expressed primarily
in epithelial cells, kindlin-2: distributed,Kind is widely distributed
and is particularly abundant in adherent cells, and kindlin-3:
expressed,Kind is expressed primarily in hematopoietic cells.
PREDICTIONAC,IC,NC : FERMT1 gene (C1423809), FERMT2
gene (C1423716), FERMT3 protein, human (C1311640)
PREDICTIONAC + TYPE: Fermitin Family Homolog 2, human
(C3889282), Fermitin Family Homolog 2, human (C3889282),
FERMT3 protein, human (C1311640)

Table 10: This table shows the qualitative analysis of
the MiniELAC

0 , MiniELIC
0 and MiniELNC

0 approaches
on examples from Medmentions.

approaches. As discussed in the qualitative analy-
sis of region B (see section 4.2), the surface forms
have missing context resulting in an inaccurate pre-
diction.

It can be observed in table 10 that the mention
mice is correctly predicted as the entity Laboratory
mice using the MiniELAC

0 and MiniELNC rerank-
ing approaches. We also highlight the effect se-
mantic type reranking approach though the exam-
ple mentions kindlin-2 and kindlin-3 where the
prediction semantic type changed from ’Gene’ to
the correct type ’Protein’. Here, the MiniELNC

0 ,
MiniELAC

0 and MiniELIC
0 methods correspond to

the results obtained using the Neighboring Con-
text, Attention-based Context and Implicit Context
approaches, respectively, utilizing MiniEL0 as the
base model.

It can be observed that the AC approach pro-
vides meaningful outputs as it includes the neces-
sary context in the surface form. Similar outputs
are provided by the NC approach. However, the
neighbouring words may not necessarily contain
the context and this can be seen in the following
qualitative example listed in the table 11.

We observe that the attention span based context
enrichment approach is sensitive to the context ad-
dition as it induces bias the surface form and the
resulting candidates may be more similar to the bias
term as compared to the base form. Therefore, to
understand the impact of bias on the surface form,
we observe the retrieval performance based on the
number of words in the mention. The figure 6
shows that the performance of MiniELAC

0 is better

MENTION:"...inhibitor of T cell function....hypoxic conditions
influence human T cell functions and found that..."
MENTIONAC :"...inhibitor of T cell function: cell....hypoxic con-
ditions influence human T cell functions: cell and found that..."
GOLD: Cell physiology (C0007613), Cell physiology (C0007613)
PREDICTIONAC : Cell physiology (C0007613), Cell physiology
(C0007613)
PREDICTIONNC : Cell physiology (C0007613), T cell differenti-
ation (C1155013)

Table 11: This table shows the qualitative analysis of
the MiniELAC

0 and MiniELNC
0 approaches on examples

from Medmentions.

Approach R@1 R@5

miniEL0 0.553 0.756

miniELNC
0 0.219 0.405

miniELAC
0 0.384 0.642

miniELIC
0 0.161 0.359

Table 12: The table presents the candidate generation
performance of the listed context based approaches. The
performance is computed the st21pv version of Med-
mentions.

Figure 6: This figure presents the word-count level re-
trieval performance, measured in terms of exact and
related matches, comparing the performance of the
MiniEL0 approach in comparison to its performance
on applying the context based methods.

on mentions with higher length as compared to the
mentions with lower lengths. A similar trend is
observed for the MiniELNC

0 approach. This trend
is not seen for the MiniELIC

0 approach where the
performance drops with the increase in number of
words in the mentions. However, the attention span
based approach has better performance as com-
pared to the neighboring context approach. For
each specific mention word count, we select men-
tions with at least about a 100 examples for this
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analysis.
To summarize, the quantitative and qualita-

tive context enrichment analysis shows that the
MiniELAC

0 approach outperforms the other ap-
proaches and is effective in context addition. How-
ever, the sensitivity in the encodings results in
large deviations in the candidate generation (see ta-
ble 12). Therefore, the robustness of this contextual
approach needs to be improved.
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Abstract

In electronic health records, text data is con-
sidered a valuable resource as it complements
a medical history and may contain informa-
tion that cannot be easily included in tables.
But why does the inclusion of clinical texts as
additional input into multimodal models, not
always significantly improve the performance
of medical decision-support systems? Explain-
able AI (XAI) might provide the answer. We
examine which information in text and struc-
tured data influences the performance of mod-
els in the context of multimodal decision sup-
port for biomedical tasks. Using data from an
intensive care unit and targeting a mortality pre-
diction task, we compare information that has
been considered relevant by XAI methods to
the opinion of a physician.

1 Introduction

Electronic health records often contain factual in-
formation in short, tabular form, including labo-
ratory values, diagnoses, gender, and age. They
also include longer texts in various forms written
for many different purposes. Depending on the
origin and context of the data, the text could be a
clinical or nursing note, a discharge summary, or
a radiology report, to name a few. The text might
provide a high-level interpretation of the current pa-
tient situation, taking different kinds and sources of
information into account. The text might refer di-
rectly to some given structured facts in the database
(e.g., a lab value is above borderline) but might also
consider additional information such as general im-
pressions, assumptions, and information gathered
directly from the patient or other medical person-
nel (e.g., the patient is not very adherent). For this
reason, the texts are generally considered valuable
resources in the clinical routine. In the context of
machine learning for healthcare, however, the in-
clusion of such texts has shown in various setups
only marginal effects (Khadanga et al., 2019; Yang

Figure 1: Comparison of human annotation regarding
relevant tokens for in-hospital mortality, versus XAI

and Wu, 2021), although one would assume that
the additional information and complementary per-
spective should improve a system’s performance.

Many papers in this area deal with multi-modal
data, integrating, for instance, image and text, or
structured and unstructured data into one model.
MIMIC-III (Johnson et al., 2016) is a popular
dataset in this context, as it can be easily accessed
by researchers. It contains data from an intensive
care unit (ICU) of a US hospital, including pa-
tient demographics, time series data, or text, such
as nursing notes, discharge summaries, or social
worker notes. However, while many approaches in
other domains do achieve a boost in performance
using multimodal (text) data, the performance dif-
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ference between unimodal and multi-modal mod-
els in the medical context can be modest (Dezn-
abi et al., 2021). In this work, we explore which
information is valuable for multi-modal machine
learning using MIMIC data. More precisely, we
re-implement two multi-model (MM) approaches
for the task of in-hospital mortality prediction. We
then introduce an XAI approach for the given MM
approaches and examine the attributed informa-
tion according to their faithfulness. Finally, we
investigate if the attributions are plausible from a
physician’s perspective.

2 Related Work

Recent years have seen a surge in leveraging deep
learning approaches utilizing diverse clinical data
sources for clinical outcome predictions. These
include textual clinical notes, longitudinal data,
and demographic data. Unimodal approaches like
CNNs (Rocheteau et al., 2021), LSTMs (Choi et al.,
2016), and BERT (Naik et al., 2022) have laid the
groundwork. Later expanded to multimodal ap-
proaches such as additive fusion (Khadanga et al.,
2019; Deznabi et al., 2021) to more sophisticated
cross attention fusion (Zhang et al., 2022; Qiao
et al., 2019). Yang and Wu (2021) and Deznabi
et al. (2021) implemented additive and gated fusion-
based multimodal models for tasks like diagnosis
prediction, acute respiratory failure prediction, and
in-hospital mortality prediction. We extend their
work by applying explainability methods to models
and evaluating the quality of explanations.

Explainable AI (XAI) enhances transparency
and trust in healthcare applications, especially
within medical decision support systems (Markus
et al., 2021) and clinical NLP (Roller et al., 2022a).
Notably, Naylor et al. (2021) compared the faithful-
ness of various explanation methods for models like
BERT in mortality prediction. Additionally, DeY-
oung et al. (2020) introduced a benchmark with hu-
man annotations to evaluate NLP models explain-
ability for faithfulness and plausibility. However,
previous research has mainly focused on quantita-
tive evaluations of explainability methods for uni
models. This study addresses this gap by quantita-
tively evaluating XAI in multimodal models.

3 Method

3.1 Data
We use the Medical Information Mart for Intensive
Care (MIMIC-III) dataset (Johnson et al., 2016)

in our experiments. MIMIC comprises authentic
electronic health record (EHR) data, including vital
signs, laboratory measurements, and clinical notes
(free text), from ICU patients. One of its tasks
involves predicting patient mortality risk in the in-
tensive care unit (ICU) based on the first 48 hours
of patient stay. Mortality, in this context, refers to
the likelihood of a patient dying while receiving
intensive care.

For our cohort selection and setup, we mostly
follow Harutyunyan et al. (2019) and Yang and
Wu (2021) and focus on patients aged 18 years
and older with ICU stays lasting 48 hours or more,
accompanied by clinical notes. The original cohort
of Harutyunyan et al. (2019) includes 17 different
features that undergo different pre-processing steps,
such as inserting missing information by previous
or plausible default values and converting them into
time series data. As we are particularly interested
in text data, we extend the original cohort by two
different sources of text, namely nursing notes and
admission notes.1

The final data consists of three different modal-
ities: a) text, consisting of either nursing notes
or admission notes; b) time series data, such as
heart rate, blood pressure, or glucose; and c) time-
invariant data, such as age or ethnicity. While some
time series features are numeric, others are cate-
gorical (e.g., Glasgow coma scale eye-opening),
which are converted into several binary features
during pre-processing following the approach of
Harutyunyan et al. (2019). More details about data
imputation and a synthetic example of the data are
added to the Appendix B.

3.2 Multimodal Models

In this study, we employ diverse architectures to
encode information from different modalities into
latent vectors. Specifically, we use LSTMs to pro-
cess time series data, linear layers to handle time-
invariant data, and transformer models for textual
data. To integrate all the encoded information ef-
fectively, we use two fusion approaches: The gated
fusion approach proposed by Yang and Wu (2021)
and the concatenation fusion approach introduced
by Deznabi et al. (2021). In the gated fusion ap-
proach, a gated attention mechanism is applied over
the encoded vectors to generate a fused representa-
tion that incorporates context from all the encoded

1Explanation of this terminology can be found in Ap-
pendix A.
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vectors. Conversely, in the concatenated fusion ap-
proach, all the encoded vectors are concatenated
into a single vector to produce a fused representa-
tion. Figure 2 depicts a simplified overview of the
multimodal architectures. Subsequently, the fused
vector from both fusion approaches is projected
into a fully connected layer for prediction.

Figure 2: Combining modalities using concatenation or
gated fusion.

Both approaches use a pre-trained ClinicalBERT
(Huang et al., 2019) to encode the clinical notes
(nursing, radiology, others, etc.). Both approaches
use the average embedding over all the clinical
notes as the encoded textual feature.

3.3 Multi-Modal XAI
To identify which information is crucial for suc-
cessful predictions in our multimodal setup, we in-
tegrate XAI techniques using state-of-the-art meth-
ods based on gradient and attention. For pinpoint-
ing significant information in time series data pro-
cessed by the LSTM, we employ Integrated Gra-
dients (IG) (Sundararajan et al., 2017). For the
textual data fed into the BERT model, we use the
attention vector norm (Kobayashi et al., 2020) and
layer-wise Token-to-token Interaction (ALTI) (Fer-
rando et al., 2022). These methods have shown
promising results in explaining transformer-based
models. They let us identify relevant tokens in
the texts and pertinent features in the time series
data, which we can then compare with annotations
provided by medical professionals.

4 Experimental Results

Our first experiment concerns the reproduction of
multimodal and unimodal methods and application
to the in-hospital mortality task. For the evalua-
tion, we follow a similar methodology to related
work (§2), utilizing ROC (Area Under the Receiver
Operating Characteristic curve) and AUPR (Area
Under the Precision-Recall curve).

In the second experiment, we apply XAI to the
models and examine which information is consid-

ered by the model as valuable for the prediction.
Following Jacovi and Goldberg (2020), we explore
faithfulness by replacing the top X attributed token
or time point of the time series with a mask token
or zero and observe the drop in model performance.

Finally, we conduct a plausibility test, as sug-
gested by DeYoung et al. (2020). Here, we directly
compare the attributions on text and structured data
to the relevant information according to a physi-
cian’s perspective. Only annotation of text data is
quantitatively analyzed based on the overlap be-
tween annotated tokens and attributed tokens, such
overlap matching is not possible for time-series
data. As we are particularly interested in examin-
ing the benefit of text data, we randomly select 100
patient cases in which a multi-modal approach pre-
dicts a higher probability score for mortality than
the unimodal LSTM approach. Likewise, we ran-
domly select 100 cases in which the multi-modal
approach predicts a lower probability score for mor-
tality. For those cases, we assume that text data
provided additional information to make a stronger
prediction assumption (independent of whether the
prediction is correct or not).

A final-year medical student annotated these 200
cases. The student was asked to identify parts of the
text and important time-series features that support
the outcome of mortality or survival. In addition,
the student was asked to provide their estimation
of the patient’s survival and whether the text was
useful in solving the task.

4.1 Results
Model performance: Unimodal vs. multi-modal
Table 1 presents the results of the two multimodal
approaches in comparison to the unimodal mod-
els for both text types. The first observation is
that LSTM provides stronger results compared to
the two BERT approaches, and all multimodal ap-
proaches outperform the unimodal models. This
slight performance gain is particularly visible when
using nursing notes in comparison to admission
notes. Moreover, the more complex gated mecha-
nism shows a slight benefit over the concatenation.
Overall, the presented results are comparable to
what has been reported already in other related
work (Khadanga et al., 2019; Lyu et al., 2022).

We can conclude that for the given data and the
given problem, structured (time series) data seems
to have a stronger influence on the model perfor-
mance, and adding both ‘worlds’ can lead to further,
but rather minor, improvements. However, an ad-
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Table 1: Performance of multimodal (MM) approaches
in comparison to the unimodal models in predicting in-
hospital mortality according to ROC and AUPR.

Model ROC AUPR

BERT (nursing) 0.80 0.37
BERT (admission) 0.74 0.30
LSTM 0.80 0.42
ConcatMM (nursing) 0.81 0.44
ConcatMM (admission) 0.81 0.37
GatedMM (nursing) 0.83 0.43
GatedMM (admission) 0.82 0.39

LSTM w/o height+weight 0.78 0.38

ditional analysis of the data reveals that the two
features height and weight are often missing and
imputed with default values. For this reason, we
removed those two features from the original data
and trained an LSTM. Without those two features,
however, the model suffers a drop in performance.

Explanation faithfulness test Table 2 presents
the faithfulness test, in which we examine which
information influences the models’ prediction. To
do so, we replace the top-5 (top-10 and top-15)
strongest (XAI) attributed tokens or time points of
the time-series data and compare this to a random
replacement of the same amount of information.
The table shows that removing the attributed to-
kens leads to a stronger drop in performance, com-
pared to the random removal. This indicates that
the model relies on information (and particularly
text tokens), which are useful for the mortality pre-
diction task.

Table 2: ROC Performance after replacement of top-X
text tokens or time point of time-series data. The table
compares a random replacement against the replacement
of attributed information (XAI). The table compares
BERT (admission) with ROC=0.80 for text and MM
with ROC=0.83.

Modality Top Attribution Random

5 0.769 (0.031) 0.801 (0.000)
Text 10 0.744 (0.056) 0.800 (0.000)

15 0.734 (0.066) 0.799 (0.001)
5 0.664 (0.166) 0.726 (0.104)

Struct. 10 0.595 (0.235) 0.674 (0.156)
15 0.585 (0.245) 0.632 (0.198)

Regarding the attributed tokens in the text data,
we found the following patterns: First, highly at-
tributed information is often spread widely across
the document. In many cases, attributed tokens in a
document include medical conditions such as symp-
toms or diseases (e.g., pain, cirrhosis, pneumonia),

in some others also body parts such as heart or lung
and sometimes medications. However, many other
seemingly irrelevant tokens are highlighted, such
as the word patient or a specific time mentioned in
the text. Finally, even though information tends to
be spread across the document, the attribution also
covers sequences of words, such as the patient’s
age (‘53 y. o. man’), negations (‘denies pain’), and
other connected information (‘chest pain,’ ‘renal
failure’).

When looking closer at the attributed time-series
data, the following five features play a particu-
larly important role in the model’s performance
drop: Glasgow Coma Scale (total), blood pressure
(mean), Glasgow Coma Scale (motor response),
oxygen saturation, and Glasgow Coma Scale (ver-
bal response).

Explanation plausibility evaluation For the 200
patient cases that a physician annotated, we first
conducted a manual analysis to find differences
and similarities to the attributed tokens. Figure 1
depicts an example text with human and machine
(XAI) annotation. In general, the annotations show
that, in many cases, a few larger chunks of text
sequences were annotated. Moreover, even though
severe conditions seem to be mentioned multiple
times in the documents (redundancy), the physi-
cian often annotated each condition just once – the
explanations, however, also highlight the same con-
dition in multiple parts of the document. More-
over, the physician annotated some measurements
of values as relevant, whereas XAI never detected
anything comparable – although it considers, in
some cases, age and gender as useful. On a time-
series data, the physician considers similar infor-
mation useful compared to XAI, namely the Glas-
gow Coma Scale (eye-opening), the Glasgow Coma
Scale (motor response), the Glasgow Coma Scale
(total), oxygen saturation, and respiratory rate.

Table 3: Plausibility evaluation measuring agreement
with human-annotated of the clinical text (nursing and
admission) for mortality prediction. The table shows
the lenient-f1 scores obtained by measuring the overlap
between the annotated token and the attributed token.

Model Precision Recall Lenient-F1

BERT (nursing) 0.141 0.204 0.166
BERT (admission) 0.064 0.090 0.075
ConcatMM (nursing) 0.102 0.159 0.124
GatedMM (admission) 0.110 0.168 0.133

Second, we quantitatively evaluated plausibility
509



by measuring the lenient-F1 score for the over-
lap between annotated and attributed text. Since
our main focus is textual data, we did not create
annotations for time points, making such overlap
evaluation impossible for time series data. Table 3
shows that the BERT model attributions align more
closely with human annotations for nursing notes,
while multimodal models exhibit lower agreement
with human annotations. However, the overall
agreement, as measured by the lenient-F1 score,
is very low. This low agreement is likely because
the models struggle to differentiate between acute
conditions (e.g., active bleeding, signs of severe in-
fection) and pre-existing conditions (e.g., pneumo-
nia, diabetes mellitus), missing out on the negation
of medical conditions by attending only to pathol-
ogy (e.g., ‘no melena’ is annotated by physician
but the model attribution identifies only "melena").

5 Discussion

The initial results align with findings from related
work: text data is a valuable resource for improving
predictions, but its benefit varies depending on the
task and the text source. For instance, nursing notes
led to higher results than admission notes, despite
the fact that nursing notes were often truncated
due to BERT’s restricted input length. Given the
redundancy in clinical texts, it may be beneficial
to compress larger texts into shorter documents to
accommodate additional text sources.

Another notable finding is the performance drop
when removing height and weight, two features
that are often missing and filled with default val-
ues. Our medical expert confirmed that height and
weight do not influence the given task, which may
reduce overall trust in our model. However, it is
not unusual for machine learning models to con-
sider seemingly irrelevant information as useful.
For example, in Roller et al. (2022b), a nephrol-
ogy outcome prediction model found the number
of lab measurements in the last month to be very
useful, which may indirectly indicate a patient’s
deteriorating condition. In our case, the model’s
reliance on height and weight might be justified
by the context in which these features are used.
For instance, weight may be measured over time
to monitor fluid balance. Thus, the model might
be capturing an important dependency that is not
immediately apparent.

In the second experiment evaluating the faithful-
ness of the attributions, we observed a significant

drop in model performance when the top-attributed
information was replaced in the input, compared to
a random replacement. This stronger decline in per-
formance was particularly pronounced when time-
series data was replaced, indicating that time-series
information plays a crucial role in the model’s per-
formance for the given task. Conversely, it also
shows that some tokens, such as medical condi-
tions that are mentioned in the text, have a positive
influence on the model.

In the third experiment, comparing human and
XAI annotations of texts suggests that systems can
extract relevant information (pre-existing condi-
tions are identified more often than acute condi-
tions). On the other hand, the extracted information
is not always humanly plausible. The comparison
of human and XAI annotated time-series features
showed that both the physician and the model con-
sider similar features useful for the given prediction
task. However, multimodal quantitative analysis
of plausibility remains a bottleneck that should be
addressed in future work.

6 Conclusion

We analyzed the relevance of text and structured
data in the context of a multimodal decision support
system for in-hospital mortality. We found that the
source of text influences the model performance
(nursing vs admission notes). Moreover, sparse
information (e.g., patient height and weight) can
benefit the performance of models, although such
information does seem irrelevant from an expert’s
perspective.

In our experiments, we found that the model
performance drops considerably when structured
information (time series) is replaced in the input
compared to textual inputs. In general text data
could provide additional context in a multimodal
setup, but its benefit depends on the task (other
tasks might lead to more benefits) as our results
showed only a marginal boost in performance com-
pared to unimodal models.

Finally, our comparison between human and
XAI annotations of the texts indicates that the mod-
els can extract relevant information but not always.
It seems that for multimodal data such as text and
time series, quantitative analysis of plausibility is
a bottleneck, and it should be addressed in future
work.
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Limitations

Our approach has clear limitations in terms of ap-
plied models (for instance, a multimodal LLM
could have been tested) as well as additional XAI
methods (e.g. LIME or SHAP). Moreover, in order
to gain more insights into the human perspective,
a large-scale annotation from a human perspective
is necessary, considering additional human annota-
tors, patient cases, and datasets.

Ethical Considerations

Although we build multimodal machine learning
models for healthcare with the intention of creating
a positive impact on society, our model is trained
and tested only on retrospective and anonymized
data. In this way, we do not influence patient out-
comes.
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A Nursing and admission notes

Nursing notes are small text snippets written by
medical personnel during a patient’s stay in the
ICU. They describe general observations, current
medical conditions, and treatment. As we target
the patient situation within the first 48 hours, we
concatenate all nursing notes from that time into
one document.

Following the work of van Aken et al. (2021),
we simulate patient textual information at the time
of admission by extracting the chief complaint,
present illness, medications, allergies, physical
exam, and family and social history from discharge
summaries. We refer to this as admission notes.

B Imputation value and synthetic sample

Table 4: Shows the selected time-series values and their
corresponding impute values (plausible).

Variable Impute value

Capillary refill rate 0
Diastolic blood pressure 59.0
Fraction inspired oxygen 0.21
Glascow coma scale eye opening 4 spontaneously
Glascow coma scale motor response 6 obeys commands
Glascow coma scale total 15
Glascow coma scale verbal response 5 oriented
Glucose 128.0
Heart Rate 86
Height 170.0
Mean blood pressure 77.0
Oxygen saturation 98.0
Respiratory rate 19
Systolic blood pressure 118.0
Temperature 36.6
Weight 81.0
pH 7.4
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Figure 3: A synthetic sample of a patient’s time-series in the MIMIC-III dataset.

Figure 4: A synthetic sample of a patient’s clinical text in the MIMIC-III dataset.
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Abstract

Adolescents exposed to advertisements promot-
ing addictive substances exhibit a higher like-
lihood of subsequent substance use. The pre-
dominant source for youth exposure to such
advertisements is through online content ac-
cessed via smartphones. Detecting these adver-
tisements is crucial for establishing and main-
taining a safer online environment for young
people. In our study, we utilized Multimodal
Large Language Models (MLLMs) to identify
addictive substance advertisements in digital
media. The performance of MLLMs depends
on the quality of the prompt used to instruct
the model. To optimize our prompts, an adap-
tive prompt engineering approach was imple-
mented, leveraging a genetic algorithm to re-
fine and enhance the prompts. To evaluate the
model’s performance, we augmented the RICO
dataset, consisting of Android user interface
screenshots, by superimposing alcohol ads onto
them. Our results indicate that the MLLM can
detect advertisements promoting alcohol with
a 0.94 accuracy and a 0.94 F1 score.

1 Introduction

The exposure of adolescents to advertisements pro-
moting addictive substances is a risk factor for the
subsequent development of maladaptive substance
use patterns (Jackson et al., 2018). In the case of
alcohol, exposure to alcohol advertising and the
level of endorsement for alcohol-related advertise-
ments among twelve-year-olds significantly affect
the severity of alcohol-related issues experienced
by individuals at age fifteen (Grenard et al., 2013).
This impact is mediated by the escalation in alcohol
consumption during this age period. Historically,
studies examining the connection between expo-
sure to addictive substance marketing and early use
initiation among teenagers has predominantly cen-
tred on well-established mediums like television
and newspapers (Anderson et al., 2009). However,
the marketing landscape has evolved, with social

media and web platforms emerging as dominant
sources for advertising addictive substances. This
shift is attributed to the under-regulation of these
platforms and their widespread popularity among
teenagers (Jackler et al., 2018; Zewude et al., 2022;
Clendennen et al., 2020). In addition to advertise-
ments sponsored by alcohol companies, there is a
proliferation of user-generated content actively pro-
moting the consumption of these substances. This
phenomenon results in socially amplified adver-
tising on social networking sites, presenting chal-
lenges in terms of regulation and monitoring (Sal-
imian et al., 2014; Barry et al., 2018).

Multimodal Large Language Models (MLLMs)
can process data from multiple modalities, such as
text, images, and audio. In this study, we employed
an MLLM to automate the detection of alcohol
advertisements within digital media. Similar to
Large Language Models (LLMs), the efficacy of an
MLLM is contingent upon the instructive prompt’s
quality (Grabb, 2023). While substantial efforts
have been directed toward prompt engineering for
models that can only process text (Wei et al., 2022;
Chen et al., 2023; Zelikman et al., 2022; Fernando
et al., 2023), the exploration of prompt engineer-
ing for models capable of handling both text and
images remains relatively underexplored. To op-
timize the instruction prompt for our MLLM, we
employed a genetic algorithm for prompt genera-
tion and selection. Each of the instruction prompts
represented an individual in our genetic algorithm.
Through an iterative process of mutating and re-
producing the fittest prompts, we identified the
one yielding the best results. Each of the instruc-
tion prompts were crafted based on the following
prompt engineering techniques: Chain-of-Thought
(CoT) (Wei et al., 2022), Generated Knowledge
(GK) prompting (Liu et al., 2022), Self-critique
(Wang et al., 2023), and Expert prompting (Xu
et al., 2023). Thus, our research also provides in-
sights into the effectiveness of different prompt
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engineering techniques for MLLMs.
To evaluate the performance of our model, we

augmented the RICO dataset (Deka et al., 2017).
The RICO dataset comprises screenshots of user
interfaces from various Android apps, such as so-
cial, dating, and communication apps. To augment
the dataset, we incorporated advertisements from
alcohol companies by superimposing them onto the
RICO images. The MLLM was employed to clas-
sify the images based on the presence or absence
of alcohol ads. The evaluation involved measuring
the accuracy and F1 score of the classifier.

Our main contributions are as follows:

1. Development of a dataset of user interface
screenshots with alcohol ads.

2. Creation, evaluation, and release of our adap-
tive prompt engineering algorithm for multi-
modal models. Our evaluation provides in-
sights regarding which prompt engineering
technique works best for MLLMs.

2 Related Work

2.1 Detection of addictive substances in digital
media

The proliferation of alcohol advertisements on so-
cial media platforms has played a significant role
in fostering maladaptive drinking behaviors among
adolescents (Berey et al., 2017). As a result, mul-
tiple studies have aimed to develop effective tools
for systematically monitoring the portrayal of alco-
holic beverages and other addictive substance use
within social media content. For example, Shan-
mugam et al. (2022) utilized the Darknet Frame-
work and YOLOv3 for developing a parental con-
trol mobile application. This app enhanced moni-
toring of children’s exposure to inappropriate con-
tent including substance use-related content on mo-
bile devices, achieving an accuracy of 0.87 and
an average precision score of 0.84. Hashmi et al.
(2021) used a Mask R-CNN, Cascade Mask-R-
CNN, and Hybrid Task Cascade to detect smok-
ing images. Their best performing model, Mask
R-CNN, achieved an average precision of 0.79 at
an Intersection over Union (IoU) of 0.5. Using
a further approach, Yang and Luo (2017) utilized
a multimodal analysis method, employing multi-
task learning and decision-level fusion to identify
drug-related posts on Instagram. Their best per-
forming model achieved a precision of 0.83 in the
task of recognizing drug-related posts. Pramanick

et al. (2021) introduced the MOMENTA frame-
work, a novel deep neural network approach that
integrates VGG-19, CLIP Image Encoder, CLIP
Text Encoder, and DistilBERT with self-attention
mechanisms, for detecting alcohol-related harm-
ful content in memes, achieving an accuracy of
0.83 and F1 score of 0.83. Ha et al. (2023) cre-
ated a dataset focused on detecting harmful objects
across six categories: alcohol, blood, cigarettes,
guns, insulting gestures, and knives. This study
showcased the enhanced detection capabilities of
YOLOv5 and Faster R-CNN models, as evidenced
by YOLOv5 achieving the highest mean average
precision (mAP) of 0.94, while Faster R-CNN
achieved a maximum mAP of 0.81 across all cate-
gories.

In contrast to previous approaches, our model
is capable of identifying harmful content, even if
presented in textual form. Additionally, unlike ear-
lier models that evaluated independent images to
determine if the entire image was associated with
harmful content (Hashmi et al., 2021; Yang and
Luo, 2017; Shanmugam et al., 2022; Pramanick
et al., 2021; Ha et al., 2023), our approach also dis-
cerns harmful elements within discrete portions of
an image. This distinction holds particular impor-
tance, given that advertisements featuring harmful
content may not always dominate the entire screen;
they could be confined to small sections within
the overall image. The ability to detect harmful
content in discrete portions of an image provides
flexibility compared to other models. Unlike previ-
ous methods that relied on first extracting all web
image elements from a site and then using classi-
fiers to identify harmful content (Chou et al., 2008;
Invernizzi et al., 2016), our approach is more adapt-
able. This adaptability is particularly valuable in
the context of live stream videos, a format that has
gained popularity in social media (Zimmer, 2018).
In contrast to preloaded and static content, such as
images, live stream videos pose a significant chal-
lenge to substance use image detection systems due
to their real-time and dynamic nature.

2.2 Prompt Engineering
The effectiveness of language models in complet-
ing tasks depends on the quality of the prompts they
receive (Grabb, 2023). Strategies in prompt engi-
neering, such as CoT, Graph of Thoughts (Besta
et al., 2023) and thought decomposition (Xie et al.,
2023), involve incorporating intermediate steps to
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enhance a model’s problem-solving capabilities.
Promoting a diverse set of intermediate steps is a
critical aspect when optimizing prompts, since it
enables a model to explore a vast solution space for
effective problem-solving (Fernando et al., 2023).
Highlighting the impact of prompt diversity on
model performance, self-consistency (Wang et al.,
2022) boosted the performance of CoT by replac-
ing the naive greedy strategy employed in CoT. In
self-consistency, a diverse set of intermediate steps
are initially sampled, as opposed to always opt-
ing for the immediately best one. Subsequently,
the model selects the most consistent answer from
this varied set of intermediate steps. By leverag-
ing the intuition that a complex reasoning prob-
lem admits a diverse set of intermediate steps, self
consistency boost the performance of CoT on a
range of popular arithmetic benchmarks, such as
GSM8K (+17.9%) and SVAMP (+11.0%). Simi-
larly, Auto-Cot (Zhang et al., 2022) underscores
the importance of diversity in intermediate reason-
ing steps to enhance LLMs. By diversifying these
steps, Auto-Cot consistently matched the perfor-
mance of manually crafted CoT across ten public
benchmarks.

Automated prompt strategies, aimed at minimiz-
ing manual intervention in prompt design and op-
timization, have demonstrated promising results.
For instance APE, an Automated Prompt Engineer-
ing (Zhou et al., 2022) scheme, achieved human-
level performance on the 17/21 Big-Bench and
the Instruction Induction datasets. APE leverages
LLMs to generate task-prompts candidates and to
introduce prompt mutation to add variability to the
task-prompts employed for problem-solving. In
our study, we adopted the methodology employed
in PromptBreeder (Fernando et al., 2023), which
aims to enhance diversity within prompts by mod-
ifying both the prompts responsible for mutating
instruction prompts and the instruction prompts
themselves. The Promptbreeder approach uses a
binary tournament genetic algorithm framework
(Harvey, 2009). This entails randomly selecting
two prompts originating from different instruction
tasks, and replacing the prompt with the lower fit-
ness by a mutated version of the one with the higher
fitness.

Given that PromptBreeder consistently opts for
the prompt with the highest fitness at each stage,
this greedy approach introduces the risk of getting
trapped in a local maximum. Greedy algorithms

tend to converge faster than their non-greedy coun-
terpart, this characteristic poses a challenge in the
realm of automated prompt engineering. The rapid
convergence results in prompts resembling only
those with the highest fitness, thus reducing the
diversity of prompts and limiting the search explo-
ration for the optimal one. To prevent convergence
to a local maximum, a distinct heuristic was em-
ployed for winner selection in the genetic tourna-
ment. We used the roulette wheel selection method
to select the individuals for the next generations
(Behera, 2020). Instead of solely relying on indi-
vidual fitness, we normalized the overall fitness of
all prompts. The normalized value is then used in
a probability function to select the winner. This
method maintains a preference for prompts with
higher fitness, while granting prompts with lower
fitness an opportunity to mutate and potentially
contribute to the solution by exploring alternative
paths that might lead to the optimal outcome. This
method promotes a more balanced exploration of
the solution space by increasing the diversity of the
prompts.

Previous prompt engineering techniques were
predominantly either manually crafted or exclu-
sively evaluated for Large Language Models. In
this research, we are pioneering an automated
prompt engineering technique tailored for a Mul-
timodal Large Language Model. Notably, the mu-
tation prompts utilized to evolve the task prompts
are rooted in successful prompt engineering tech-
niques previously designed for LLMs. We system-
atically track the performance of these mutation
prompts, providing valuable insights into their effi-
cacy within the context of MLLMs. This approach
allows us to discern and adapt what proves to be ef-
fective for enhancing the performance of MLLMs.

3 Method

3.1 Data collection
To construct our training and testing dataset, we
utilized the RICO dataset (Deka et al., 2017) by
extracting 2,100 distinct user interface (UI) screen-
shots from it. Additionally, we employed a web
scraper to gather images from Google featuring al-
cohol advertisements. Please see Appendix A for
the terms used to search for alcohol ad images. An
author of the paper reviewed the downloaded im-
ages to remove non-alcohol-related ones, resulting
in a curated dataset of 2,100 different alcohol ad
images. These advertisement images were resized
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Figure 1: To evaluate a prompt’s fitness, we use an MLLM with the prompt and a batch of labeled images as input.
The output from the MLLM is then labeled by a binary text classifier. The resulting accuracy represents the prompt’s
fitness.

to one-eighth of the UI images and superimposed
onto them. Please refer to Figure 5 in Appendix
B for an example of a superimposed image. Con-
sequently, the resultant dataset comprised 4,200
images, which were partitioned into a stratified
training and testing datasets, allocating 3,200 for
training and 1,000 for testing. The training dataset
was then divided into batches of 200 image each,
each one containing an equal number of images
with and without alcohol ads.

3.2 Genetic Algorithm
Let O represent the output from an MLLM when
given an instruction prompt T and an image I as
inputs, expressed as O = MLLM(T, I). Our ge-
netic algorithm aims to find an optimal instruction
prompt P with the goal of maximizing the quality
of O in comparison when T is utilized.

Similar to PromptBreeder, our algorithm mutates
prompts to optimize them. Mutations involve a mu-
tation prompt M and an LLM. A mutated prompt
P ′ is defined as P ′ = LLM(M+ P ), where + de-
notes string concatenation. The pool of mutation-
prompts is elaborated upon in section 3.4. Refer
to Appendix C for a prompt mutation example.
Mutation-prompts are also evolved via hypermu-
tations (Ouertani et al., 2019). To do so a hyper-
mutation prompt H and an LLM are used. An
evolved mutation-prompt M ′ is represented as M ′

= LLM(H + M ).
Given an initial instruction prompt consisting of

detecting alcohol ads in an image, our algorithm
creates an initial population of prompts by evolv-
ing the initial instruction prompt using a set of
random mutation prompts. The mutated prompts
are then used by the MLLM to make predictions on
a random batch from the training dataset. Once the

batch has been processed, the detection accuracy
that the MLLM got using each prompt is stored
as the fitness level of that prompt. Our algorithm
maintains a record of the instruction prompt, the
mutation prompt, and the associated fitness level
that the prompt achieved when processing a batch
of images. Each record represents an individual in
the population.

Once the population is initialized, our evolution-
ary process unfolds in generational iterations. In
each generation, each individual has a mutation
probability of µm, representing the likelihood of
undergoing a mutation that alters its instruction
prompt. After selecting which individuals will un-
dergo a mutation, our algorithm then determines
the type of mutation to be acquired from four op-
tions: Chain of Thought, Generated Knowledge,
Self-verification, or Expert Prompting. To strike
a balance between breadth and depth needed for
a robust evolutionary search (Moreno-Bote et al.,
2020), each mutation mechanism initially has an
equal base probability of being the acquired muta-
tion. However, as generations progress, mutation
types with a proven track record of producing su-
perior fitness outcomes are granted an increased
chance in addition to the base probability.

Upon calculating the mutated individual’s fitness
using a random batch from the training dataset, it
is introduced into the population. This iterative
process continues until the maximum population
cap is reached. Upon reaching the population cap,
succeeding generations employ a roulette wheel
selection method to determine individuals advanc-
ing to the subsequent generation and those being
phased out. To mitigate the risk of falling into a
local maxima, our algorithm samples the surviv-
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Figure 2: In our genetic algorithm, individuals consist of three components: an instruction prompt for guiding the
MLLM, a mutation prompt that was used to generate the instruction prompt, and a corresponding fitness determined
by the accuracy of the MLLM’s performance using that prompt. At the beginning of the algorithm, the initial
population is formed, with one individual generated for each mutation type. During each generational step, there is a
probability for each individual to undergo a mutation that modifies its instruction prompt. The specific mutation type
is chosen from a mutation pool. The individuals that experience mutation are then incorporated into the population.
When the maximum population cap is reached, a fitness-based probabilistic selection is employed to determine
which individuals progress to the next generation.

ing individuals using a probability based on their
fitness (Marsili Libelli and Alba, 2000). While
fitter individuals possess a higher likelihood of sur-
vival, underperforming individuals, with potential
for uncovering global maxima, are still given an
opportunity to contribute to forthcoming genera-
tions. After N generations, the instruction prompt
from the individual with the highest fitness is se-
lected as the optimized prompt. Figure 2 presents
an overview of our algorithm.

3.3 Natural Language Processing Models
Our genetic algorithm was tested using two types of
models, one open-source and one proprietary. The
open-source MLLM we used was LLaVA (Large
Language and Vision Assistant), its code being
licensed under the Apache License 2.0. The selec-
tion of the LLaVA model was driven by its capabil-
ity to be run locally. This attribute is particularly
crucial for applications of this nature, where the
analysis involves social media images that may
contain sensitive and personal information from
users. The ability to execute the model locally en-
hances privacy and security considerations in han-
dling such data. For the proprietary MLLM, we uti-

lized OpenAI’s model ‘gpt-4-vision-preview’. The
choice of OpenAI models was motivated by their
superior performance compared to open source al-
ternatives. The MLLMs received as input an im-
age and an instruction prompt instructing them to
identify any advertisements for alcohol within the
image.

Since the MLLMs can generate diverse textual
outputs to indicate the presence or absence of such
ads, we appended a formatting prompt to the in-
struction prompt, requesting the model to respond
with a ‘yes’ or ‘no’. Subsequently, a BERT text
classifier was utilized to categorize the MLLM’s
outputs. A label of 0 was assigned to responses
indicating no alcohol ad content, while a label of 1
was assigned to responses indicating the presence
of alcohol ads, as demonstrated in Figure 1. This
classification step ensures a standardized and con-
sistent output, which was needed to measure the
performance of the MLLM model. To train the
BERT classifier the MLLM processed one image
batch from our training dataset. Subsequently, we
leveraged OpenAI’s GPT-3.5 Turbo model for data
augmentation, generating a total of 10,000 texts,
with half affirming the presence of harmful content
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and the other half negating it. We then divided
the augmented outputs into a training and testing
dataset, with a distribution of 80% to 20% respec-
tively. We used an Adam optimizer with weight
decay, using a learning rate of 1.0 × 10−5, and
trained it for 10 epochs. The accuracy of the BERT
classifier was 0.98.

For prompt optimization, we used OpenAI’s
GPT-3.5 Turbo model. The computing infrastruc-
ture employed for running all the NLP models was
an NVIDIA A100 GPU.

3.4 Mechanisms of mutation
The pool of mutation prompt types is derived from
prompt engineering techniques employed to en-
hance prompts for LLMs. Refer to Appendix D for
the set of starting prompts for each type of muta-
tion.

3.4.1 Chain-of-Thought
Chain-of-Thought (CoT) is a prompt engineering
technique that leverages task decomposition to en-
hance a model’s performance. This approach in-
volves introducing intermediate reasoning steps, en-
abling LLMs to undertake intricate reasoning tasks.
In our implementation, we utilized the zero-shot
version of Chain-of-Thought, as described by Ko-
jima et al. (Kojima et al., 2023). Specifically, this
technique appends variations of the string "Let’s
think step by step" to the original prompt.

3.4.2 Generated knowledge prompting
Generated Knowledge prompting involves a two-
phase process designed to enhance the performance
of an LLM. The first phase is the knowledge gener-
ation stage, where a language model is tasked with
producing additional valuable information perti-
nent to a specific task. Subsequently, in the knowl-
edge integration phase, a second language model
utilizes this additional information as input to carry
out its designated task.

3.4.3 Self-critique
Self-critique is a two-step process designed to im-
prove the output of an LLM by inspecting and crit-
icizing its own initial output. The initial stage in-
volves forward reasoning, where the model utilizes
a prompt to address a specific task. In the subse-
quent backward-verification phase, a second LLM
scrutinizes the validity of the initial answer.

3.4.4 Expert prompting
Expert prompting involves explicitly indicating to
an LLM that it is proficient in a particular field. In
our scenario, where the goal is to create a versatile
genetic algorithm applicable to various tasks, we
inform the model that its expertise lies in prompt
engineering tasks. Figure 6 in Appendix C illus-
trates an example of a mutation using an expert
prompting technique.

3.4.5 Hyper-mutation
A hyper-mutation occurs when a mutation prompt
is mutated, thereby expanding the dimensions of
the search space for each prompt. To execute this
process, we select a mutation prompt from one of
our mutation prompt pools and utilize it to modify
another prompt from the same pool. For instance,
we can mutate a CoT mutation prompt by employ-
ing another CoT mutation prompt. Subsequently,
this newly generated mutation prompt is incorpo-
rated into its corresponding mutation prompt pool.

3.5 Evaluation
To determine the optimal task prompt, we executed
the genetic algorithm with a population limit set
to 20 individuals, a mutation probability µm of
50%, and spanning a total of 15 generations. Sub-
sequently, we selected the prompt with the highest
fitness level from the surviving population. The
selected prompt became the input for the MLLM,
and we assessed its performance using the images
from the testing dataset. Our evaluation metrics in-
cluded measuring and reporting both the F1-score
and the accuracy achieved by the MLLM on the
testing dataset.

4 Results

In this section, we present our findings derived
from the evaluation tasks. The subsequent section
is dedicated to a comprehensive discussion and
analysis of the implications arising from these out-
comes. The optimized prompts ultimately resulting
from the genetic algorithms were as follows:

1. GPT-4: Examine the image carefully for vi-
sual cues of alcohol, such as beer bottles, wine
glasses, or alcohol brand logos. Pay attention
to color, shape, and context that may indicate
alcohol consumption. Consider the setting of
the image - is it a bar, party, or other alcohol-
present environment? Look for behavioral
cues like people holding drinks or appearing
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Figure 3: Performance metrics: Accuracy and F1 scores
for GPT-4 and LLaVA in alcohol advertisement detec-
tion.

intoxicated, and note any subtle elements sug-
gesting alcohol reference. Answer with a yes
or a no.

2. LLaVA: Does the following image contain
an alcohol ad? Carefully analyze the image
for any alcohol brands, such as beer logos,
wine labels, or liquor bottles. Pay attention to
distinctive colors or shapes commonly found
on alcohol packaging. Make note of labels,
bottles, or glasses that suggest the presence
of alcoholic beverages. Approach the task
systematically, considering each element one
by one. Answer with a yes or a no.

Figure 3 depicts the performance metrics of the
MLLMs employing an optimized prompt gener-
ated through our genetic algorithm. After 15 gen-
erational steps, the classifier utilizing the GPT-4
vision model as the MLLM obtained an accuracy
of 0.94 and an F1-score of 0.94. The classifier em-
ploying the LLaVA model as the MLLM achieved
an accuracy of 0.922 and an F1-score of 0.9215.

In Figure 4, the distribution of mutation types
among individuals across generations is illustrated
for the genetic algorithm employing GPT-4 and
LLaVA. For the GPT-4 model, the CoT mutation
type consistently generated prompts that were se-
lected to advance to the next generation through
the roulette wheel selection method. In the case of
the genetic algorithm utilizing the LLaVA model,
CoT and Generated Knowledge were the mutation
types with the highest-frequency of occurrence that
persisted in each generation.

5 Discussion

The most effective prompts and prevalent mutation
types observed throughout multiple generations
stemmed from the CoT prompt engineering tech-
nique, with the top-performing prompts from the
final generation being a product of a CoT mutation
prompt. However, upon examining the prompts,
we noted their integration of elements from differ-
ent prompt engineering methods. Prompts created
from the generated knowledge mutation prompts
consistently include enumerations of components
for image inspection, as shown in this optimized
prompts. Therefore, our findings suggest that the
optimal prompt engineering approach involves a
blend of different techniques.

The performance of the open-source model in
detecting alcohol ads in images is comparable to
that of the proprietary model. This is a promising
result, as it enables researchers to analyze sensitive
images without the necessity of sending them to
third-party organizations. Moreover, the fact that
the model is open-source potentially reduces costs,
hence increasing accessibility to the tools in less
well-resourced settings.

Our adaptive prompt engineering technique
presents a more accessible approach for public
health researchers seeking to apply automated
methods to the identification of other types of harm-
ful online content. Notably, our method reduces
the need for users to possess a background in ma-
chine learning for training to optimize an MLLM.
Additionally, it operates without reliance on the
model’s proprietary weights or architecture, which
can be inaccessible. Furthermore, users are not
required to possess prompt engineering experience,
as state-of-the-art prompt engineering techniques
are already integrated into the algorithm. Moreover,
our algorithm allows for easy upgrades upon the
discovery of new prompt engineering techniques,
requiring only their addition to the mutation pool.

6 Conclusion

We developed a genetic algorithm to optimize the
prompt for MLLMs to detect harmful content in
images. We also extended the RICO dataset which
contains UI screenshots by superimposing alcohol
advertisements. The optimal prompt achieved an
accuracy score of 0.94 and a F1 score of 0.94.

The mutation prompts utilized in our algorithm
were derived from prompt engineering techniques
traditionally employed for LLMs. However, these
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Figure 4: Number of individuals from a given mutation type in the population at a given generational step. Left:
GPT-4 model; Right: LLaVA model.

approaches had not been previously tested within
the framework of MLLMs. By tracking the perfor-
mance of each mutation type, we identified that,
within the realm of MLLMs, the CoT and the Gen-
erated Knowledge mutations outperformed the Ex-
pert and self-critique approaches.

Although our algorithm was initially designed
and tested for detecting alcohol advertisements,
it can be extended to identify other harmful sub-
stances such as tobacco and drugs when provided
with the appropriate data sets. We envision that by
adapting our algorithm online platforms can detect
and remove harmful content, thereby fostering a
safer online environment.

7 Limitations

Our main objective in implementing the genetic
algorithm was to identify prompts that optimized
the MLLM for detecting harmful content in im-
ages. However, the optimization strategy does not
explicitly address potential biases introduced by
the chosen prompts. For example, if the training
examples lead the model to establish an inaccurate
association between an ethnic group and alcohol
consumption, it could result in the creation of bi-
ased prompts. Generative models may exhibit bi-
ases in their outputs, requiring a comprehensive ex-
amination to mitigate the inadvertent propagation
of such biases (Hemmatian and Varshney, 2022;
Abid et al., 2021; Cabrera Lozoya et al., 2023).

Due to resource constraints associated with us-
ing a paid MLLM, we faced limitations in con-
ducting additional experiments to evaluate the ro-

bustness of our models. Various hyperparameters
could have been explored, such as adjusting the
mutation rate, maximum population size, or the
number of generations employed to discover the
optimal prompt. Additionally, both GPT-3.5 Turbo
and GPT-4 Vision possess the capability to handle
multiple languages. However, our collection of
ads exclusively consisted of English ads. Further-
more, due to hardware constraints, we opted for
the 7 billion LLaVA model, despite the existence
of larger models that outperform the one chosen.
Consequently, this decision limits our ability to
demonstrate the potential of an open-source model
for detecting harmful content.

While the detection of alcohol advertisements
serves to protect vulnerable populations, notably
teenagers, from the impact of marketing materials
on their attitudes and behaviors related to alcohol
consumption, the utilization of such technologies
carries inherent risks of improper use. There is
a potential for entities to exploit the technology
beyond its intended public health purpose, conduct-
ing surveillance or accessing sensitive information,
thus posing a threat to privacy and civil liberties.
Hence, the application of our image detector re-
quires a balanced ethical framework. Achieving a
careful balance is crucial, seeking to maximize the
tool’s positive contributions to public health while
actively addressing potential concerns through ro-
bust privacy safeguards, bias mitigation, and re-
sponsible deployment practices.
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A Search terms

The following is the list of terms used to search
for alcohol advertisements: Alcohol ads, Beer ads,
Whiskey ads, Tequila ads, Lager ads, Ale ads, Red
wine ads, White wine ads, Vodka ads, Stout ads,
Scotch ads, Brandy ads, Champagne ads, Cider
ads, Sake ads, Mezcal ads, Soju ads, Rosé ads,
Rum ads, Gin ads, Cognac ads, Bailey irish cream
ads, Grand Marnier ads, Amaretto ads, Khalúa ads,
Triple Seca ads, Schnapps ads, Raki ads, Baijiu ads,
Flavored Vodka ads, Extra añejo tequila ads, Blano
tequila ads, Reposado tequila ads, Añejo tequila
ads, Wheat vodka ads, Grappa ads, Pilsner ads, and
Pisco ads.

B Image example

Figure 5 illustrates an example of an original UI
screenshot from the RICO dataset, and a version
with an alcohol ad superimposed.

C Mutation example

Figure 6 illustrates an example of a mutation step.
In this scenario a mutated prompt is created by
using a mutation prompt from the Expert pool to
mutate an instruction prompt.

D Prompts

Table 1. presents the initial prompts for each type
of mutation.
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Figure 5: Examples of RICO UI screenshots and their modified version with an alcohol ad.

Figure 6: Example of a mutation step.
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Mutation type Prompts
Chain of thought Append to the following instruction the following text, "Let’s think step by step."

Decompose and rewrite the instruction as a set of logical steps, rewrite it as a
sentence.
Rewrite the following instruction by adding intermediate steps to enhance its perfor-
mance.

Expert Act as an expert in prompt engineering with 10 years of experience designing
and debugging prompts. Identify the strengths and weaknesses of the following
instruction, think about what changes you would make, and suggest an improved
version.
Imagine you are an expert in generating instructions for large multimodal models.
You are designing an instruction to achieve the best possible result. A colleague
shares their best instruction with you; identify why it is good and generate an even
better one.
Simulate being an expert program in improving instructions, detecting their strengths,
weaknesses, and consistently providing better results. Take this prompt and make it
better.

Generated
Knowledge

Enhance the effectiveness of the following prompt by generating and appending
additional content. Focus on providing specific examples, detailed criteria, or relevant
guidelines to elevate its performance.
Improve the prompt’s performance through the strategic generation and integration
of supplementary content, fostering heightened efficacy within the experimental
domain.
Optimize the prompt’s performance via the meticulous generation and incorporation
of additional content.

Critique Critique the following instruction and propose enhancements to address any identified
shortcomings. Please provide only the refined version in your response.
Review the given instruction, identify any areas for improvement, and suggest
changes to enhance its quality. Please provide a refined version that incorporate these
improvements.
Examine the given instruction, analyze it for potential shortcomings, and suggest
improvements to address any identified issues. Submit only the refined version in
your response, integrating enhancements to elevate its overall quality.

Table 1: Starting prompts for each mutation type.
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Abstract 

We fill a gap in scholarship by applying a 

generative Large Language Model (LLM) 

to extract information from clinical free text 

about the frequency of seizures experienced 

by people with epilepsy. Seizure frequency 

is difficult to determine across time from 

unstructured doctors’ and nurses’ reports of 

outpatients’ visits that are stored in 

Electronic Health Records (EHRs) in the 

United Kingdom’s National Health Service 

(NHS). We employ Meta’s Llama 2 to mine 

the EHRs of people with epilepsy and 

determine, where possible, a person’s 

seizure frequency at a given point in time. 

The results demonstrate that the new, 

powerful generative LLMs may improve 

outcomes for clinical NLP research in 

epilepsy and other areas. 

1 Introduction 

Advances in Natural Language Processing (NLP), 

in particular pre-trained Transformers (Vaswani et 

al., 2017) and Large Language Models (LLMs), 

create opportunities to develop new methodologies 

to mine free-text Electronic Health Records 

(EHRs) for clinical research. One such opportunity 

is to investigate associations between anti-seizure 

medications (ASMs) and the frequency of seizures 

suffered by people with epilepsy, which is typically 

recorded in free text in the UK’s National Health 

Service (NHS). Mostly, this text consists of 

doctors’ and nurses’ reports of outpatients’ 

ambulatory visits; the reports are shared with a 

patient’s primary care physician in the form of a 

letter. The majority of hospital care episodes for 

people with epilepsy occur in ambulatory care. 

 

 
Figure 1: Distribution of 9 seizure frequency  

categories in annotated dataset. 

 

Yet these reports are unstructured and typically 

noisy as they include a range of medical and 

administrative information, such as the patient’s 

medication, other therapies, and details disclosed 

during previous clinic visits. Moreover, the reports 

often do not include any information about seizure 

frequency and, if they do, the language is often 

imprecise so that the nature of the frequency is 

vague or unclear. These factors make the 

application of NLP to EHRs to research seizure 

frequency challenging. 

Epilepsy affects about 1% of the general 

population (Fiest et al., 2017). Around 30% of 

people with epilepsy do not respond to ASMs and 

are therefore regarded as refractory to treatment 

(Kwan and Brodie, 2000). While there are more 

than 30 individual ASMs and a much larger 

number of possible combinations of ASMs taken 

together, it is not feasible to try them in every 

refractory patient. This underlines the importance 

of research in predicting which ASMs would have 

the greatest impact on epileptic seizures for 

individual patients.  

Extracting Epilepsy Patient Data with Llama 2 
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Although there is some published research on 

applying pre-trained Transformers to investigate 

epileptic seizure frequency among EHRs, the more 

recent opportunity of applying the new, generative 

LLMs for the same task is under-explored. 

However, it is expected that the application of 

generative LLMs to epilepsy research will increase 

significantly (van Diessen et al., 2024). The paucity 

of published research in this field may largely be 

due to the fact that these models are so new. 

The most extensive relevant research we found 

was a long-term study (Xie et al., 2023; Xie et al., 

2022a; and Xie et al., 2022b) that used a different 

methodology from ours to extract seizure 

frequency information from EHRs. The University 

of Pennsylvania researchers applied the pre-trained 

Transformers Bio_ClinicalBERT (for text 

classification), RoBERTa (for text extraction), and 

a T-5 model (to summarize sentences with seizure 

frequency data) to free-text data in EHRs to 

determine the seizure frequency of a person with 

epilepsy or whether that person was seizure free. 

For seizure frequency, they framed the task as an 

extractive question-answering problem, asking the 

language model to identify statements that 

answered the question: “How often does the patient 

have seizures?” They then simplified each sentence 

into a standardized format, “X per Y 

[day/month/year/visit]”; for example, “1 per 1 

week”. They subsequently manually annotated 

1,000 sentences of seizure frequency generated by 

their models with the formatted summaries, then 

split them into training (700 sentences) and testing 

(300 sentences) datasets. Finally, they fine-tuned a 

T5-large model using Huggingface on the training 

dataset and made predictions on the test dataset. 

The researchers declared an “overall accuracy” 

score of 0.88 for seizure frequency, which 

comprised scores for each of “sentence accuracy”, 

“summary accuracy”, and “quantity accuracy”. 

That study follows a large body of research 

applying pre-trained Transformers to a wide 

variety of clinical tasks, such as predicting the risk 

of seizure recurrence among children with epilepsy 

(Beaulieu-Jones et al., 2023), inferring cancer 

disease response from free-text radiology reports 

(Tan et al., 2023), or detecting dementia with in-

hospital clinical notes (Liu et al., 2023). Two other 

studies used rules-based NLP approaches to 

identify seizure frequency in unstructured clinic 

 
1 https://cogstack.org 

letters (Fonferko-Shadrach et al., 2019; Decker et 

al., 2022). 

Our objective was to apply a new, generative 

LLM to the task of determining seizure frequency 

from free-text data. LLMs are built on the 

architecture of the Transformers but are much 

larger and more powerful language models. We 

were encouraged by recent research that 

demonstrates the benefits of using LLMs with 

clinical texts (for example, Agrawal et al., 2022; 

Thirunavukarasu et al., 2023; and Zhou et al., 

2023). Our research, however, was restricted to 

using only an open-source language model because 

we used confidential NHS medical data that had to 

remain within the hospital’s secure IT network for 

regulatory reasons. Therefore, we could not 

experiment with LLMs such as OpenAI’s ChatGPT 

that are only available via an API to an off-site 

service. We found that Meta’s Llama 2 (Touvron et 

al., 2023) performed best for our purposes within 

our limitations (see details in section 2.4). The 

LLM was run on up to eight Nvidia V100 GPUs. 

2 Data and Methods 

2.1 Data Collection 

We selected 41,340 EHRs, the vast majority of 

which comprised doctors’ and nurses’ reports of 

outpatients’ ambulatory visits, from King’s College 

Hospital (KCH) in London spanning a decade from 

2013-2022. The records related to 6,853 unique 

adult people with epilepsy being treated at KCH. 

We defined a person with epilepsy as someone who 

has at least one record of an epilepsy diagnosis. The 

selection was done via CogStack, an open-source 

information retrieval and extraction platform for 

EHRs developed by researchers at the NIHR 

Maudsley Biomedical Research Centre in 

London.1 CogStack integrates with KCH’s EHRs. 

We defined a set of epilepsy-related keywords and 

medical codes, and then used CogStack's search 

functionality to filter out EHRs that matched these 

definitions. We then used stratified random 

sampling to select 3,000 EHRs to create an 

annotated dataset, which ensured proportional 

distribution across the original dataset in regard to 

age, gender, and ethnicity to minimize bias. 

Subsequently, a team of six annotators, comprising 

four neuroscience clinicians and two data 

scientists, manually annotated the 3,000 EHRs for 
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key data categories of the project, in particular 

seizure frequency, as well as seizure freedom, 

current anti-epilepsy medication, epilepsy type, 

seizure type, associated symptoms, and 

comorbidities. Due to time and resource 

limitations, as well as tight deadlines, the 

annotators worked on separate batches of the 3,000 

EHRs, rather than having two annotators work on 

the same batch for moderation. A user guide was 

written for the annotators with instructions on how 

to annotate for each key data category, including 

seizure frequency with eight temporal frequencies 

and ‘unknown’ (see section 2.3 and Table 1 for 

more details).   

2.2 Broader Research Project 

This research on seizure frequency was part of a 

broader epilepsy research project run by the 

Department of Basic & Clinical Neuroscience in 

the School of Neuroscience at King’s College 

London in the UK. The objective of the broader 

project is to apply machine learning at scale in an 

attempt to discover combinations of ASMs that 

enable refractory people with epilepsy to stop 

having seizures. Seizure frequency is a critical data 

point for this broader project.  

2.3 Seizure Frequency Categories 

We chose nine categories of seizure frequency for 

people with epilepsy, eight of which are for 

temporal frequencies and the last for unknown, 

meaning either the Electronic Health Record 

(EHR) contained no reference to seizures (which is 

common) or the LLM could not determine the 

frequency of seizures, due to the ambiguity of the 

text. We arrived at the nine categories after 

reviewing other studies (mostly non-NLP research) 

that investigated the frequency of epilepsy seizures 

(Wie et al., 2023; Westrhenen et al., 2022; Hsieh et 

al., 2022; Choi et al., 2014; and van Hout et al., 

1997). Our aim was to stress test Llama 2 to gauge 

to what degree it could identify different seizure 

frequencies from unstructured text. We created 

shorthand labels for the nine seizure frequency 

categories for the annotation dataset (see Figure 1), 

mainly for ease-of-use when it came to writing 

Python code to evaluate the performance of Llama 

2. Subsequently, we found that Llama 2 could often 

provide answers on the temporal duration of    

 
2 https://www.langchain.com 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1: 3 seizure frequency categories and 

aggregation from 9 categories. 

 

seizure frequency in an EHR in the format of our 

shorthand category labels following few-shot 

prompting instructions. However, after discovering 

that Llama 2 did not generate accurate enough 

predictions of seizure frequency over the nine 

categories, we then aggregated these nine 

categories into three categories (without 

performing a new experiment), which in turn 

resulted in Llama 2 predictions that were more 

accurate and usable for the broader epilepsy 

research project (see Table 1). 

2.4 Llama 2: Model Development and 

Implementation 

We used LangChain as our development 

framework because it provides convenience and 

flexibility for building applications powered by 

LLMs.2 First, we deployed LangChain in our local 

environment, then we downloaded a 13B 

parameter version of Llama 2 from Hugging Face 

and loaded it into LangChain.3  LangChain offers 

simple interfaces for loading and initializing 

LLMs. After the model was loaded and initialized, 

we loaded various templates into LangChain, 

allowing us to perform multiple LLM operations in 

the local environment. While Meta provides 7B, 

13B, and 70B different-sized models of Llama 2, 

our GPU platform did not have the computing 

power to run the largest 70B model. We used a chat 

version of Llama 2 13B that had been quantized by 

GPTQ. Although Meta released Llama 3 in April 

2024, this did not provide enough time to run 

experiments using the latest Llama version in light 

of the submission deadline for this paper. 

3 https://huggingface.co/TheBloke/Llama-
2-13B-chat-GPTQ 

 

528



 
 

 
Figure 2: Query structure in 3 steps for Llama 2. 

 

As is well known with generative LLMs, the key 

issues with developing the model for seizure 

frequency extraction were prompt engineering and 

minimizing hallucinations. The problem of 

hallucinations – when LLMs generate plausible yet 

incorrect information – in clinical settings is 

explored at length in Pal et al., 2023, a study that 

found Llama 2’s 70B parameter model performed  

well in one of its tests. The free-text EHRs were 

passed without modification to the LLM.  

We found that the generally accepted default 

setting for the temperature, 0.7, was too ‘creative’ 

for our purposes, encouraging Llama 2 to generate 

overly colorful answers to our seizure frequency 

questions and, on occasions, even providing 

diagnostic advice, including medication 

prescriptions, for the person with epilepsy. In turn, 

this increased the false positives. On the other 

hand, we concluded that a minimal temperature of 

0.0001 was sufficient for the model to generate 

typically fact-based answers without excessive 

creativity and helped reduce the false positives.  

Three aspects of prompt engineering proved 

critical for usable output. First, few-shot prompting 

significantly improved Llama 2’s ability to identify  

seizure frequency in an EHR, and proved much 

better than zero-shot prompting. However, we 

required 11 examples to give the model enough 

instructions on how to make complex decisions  

 

 
Figure 3: Examples of context for epilepsy 

information in Electronic Health Records (excerpts 

from clinical letters). 

 

 

based on our nuanced nine categories of seizure 

frequency. Second, the characterization 

instructions in the prefix were a major factor in the 

model generating acceptable answers. Two key 

elements were instructing the model to act like a 

“professional neuroscientist who is responding to 

fellow neuroscientists” and to provide “succinct 

answers,” the latter helping to eliminate verbosity. 

Third, we discovered the query was optimally 

structured by asking the model to logically work 

through three numbered steps to determine seizure 

frequency, as distinct from asking a single question 

(see Figures 2 and 3). 

During initial iterations, we experimented with 

query structures that involved simpler instructions 

without an explicit logical sequence or numbered 

steps. The selection process involved group 

discussion evaluating the model’s output from 

different variations of prompts, which in turn 

developed the optimal query structure. Of course, 

in the future improved prompt strategies and new 

LLMs may enhance the model outputs for 

extracting seizure frequency from EHRs, and this 

warrants further investigation.  

The few-shot prompting examples provided 

Llama 2 with enough ‘education’ to generate 

answers that typically either matched, or closely 

resembled, our labels for the nine seizure frequency 

categories, thereby demonstrating the model’s 

Clear example: 

“We went through some of his seizures and in 

March he had two convulsions and three or 

four petit mal.” 

Seizure diary example: 

“Seizures: Partial seizures: July x 23, Aug x 0, 

Sept x 1, Oct so far x 7 ( x1 daily 7th to 10th, 

14th x1, 15th x 2, 18 x1.” 

Ambiguous example: 

“Louise and her mum confirm no seizures with 

her last seizure was possibly in November but 

they are not sure.” 

Read the following context then work 

through these 3 steps. 

1. Determine whether the context has 

any information about the frequency of 

the epilepsy patient's seizures. 

2. If the context does not have any 

information about the frequency of the 

epilepsy patient's seizures, then you 

answer: ‘I do not know.’  

3. If the context does have information 

about the frequency of the epilepsy 

patient's seizures, then you estimate the 

frequency of the epilepsy seizures and 

express the frequency in terms of per 

year, per month, per week, or per day, 

whichever is most relevant. 

529



 
 

ability to adapt its answers to idiosyncratic 

nomenclature. Of the 11 prompting examples, 

seven covered all but one of the temporal seizure 

frequency categories, two covered situations in 

which the patient did suffer seizures but the 

frequency of them was too difficult to determine 

from the EHR, and two covered situations in which 

the patient had not suffered seizures. We found 

during experimentation that doubling the last two 

kinds of prompts helped minimize hallucinations, 

or false positives. However, the model’s answers 

were far from uniformly exact, as it often created 

its own versions of our category labels, so we 

devised an algorithm to interpret the model’s 

answers if they either closely matched or were far 

from matching our labels. (See Appendix A for 

Llama 2 model architecture diagram.) 

 

2.5      Annotation Dataset 

The nine seizure frequency categories in the 

annotated dataset were dominated by unknowns, 

which comprised 71% of the 3,000 EHRs. In other 

words, only 29% of the annotated doctors’ and 

nurses’ reports contained any detectable 

information about seizure frequency. While some 

references to seizure frequency were clear and 

precise, especially if based on a patient’s seizure 

diary, unfortunately many others were vague and 

imprecise. Consequently, the available data is 

sparse in regard to the core topic, which in turn 

makes the application of NLP to this task all the 

more challenging. Moreover, the number of 

observations in the higher frequency categories of 

seizure frequency – e.g., ‘once or more per day’ and 

‘more than once per week, less than once per day’ 

– were roughly three times more common in the 

annotated dataset than those in the lower frequency 

categories (see Figure 1). This meant that Llama 2 

found the lower frequency seizure categories more 

difficult to identify than the higher frequency 

categories. 

2.6 BERT and RoBERTa: Model 

Development and Implementation 

For a comparison to our Llama 2 method, we also 

fine-tuned BERT Large (Devlin et al., 2019) and 

RoBERTa Large (Liu et al., 2019) models on the 

annotated dataset, which was reduced from 3,000 

EHRs to 1,720 EHRs to create a balanced dataset 

that was equally weighted between EHRs in which 

seizure frequency was known and EHRs in which 

seizure frequency was unknown. The unknown 

EHRs were reduced randomly to equal the 860 

known EHRs. In turn, this reduced annotated 

dataset was restricted to the EHR text and the nine 

seizure frequency categories. Finally, it was split on 

an 80:10:10 ratio to create training, validation, and 

test datasets, respectively. We assume independent 

splits, a normal distribution, and a 95% confidence 

interval. 

Both the BERT Large and RoBERTa models 

were used with PyTorch, an AdamW optimizer, 

threshold of 0.5 for the sigmoid, batch size of 4 

(due to GPU memory limitations), and a learning 

rate of 1𝑒−5. The optimal number of epochs varied 

for each model: 10 for BERT Large and 6 for 

RoBERTa Large. While the optimal dropout rate 

was 0.3 for BERT Large and 0.4 for RoBERTa 

Large. The maximum number of tokens for each 

EHR was set at 512, the upper limit for these two 

models.  

3 Results  

Our objective was to test an LLM against nine 

nuanced seizure frequency categories to determine 

how accurately they could identify seizure 

frequency from unstructured EHRs. The model F1 

score for Llama 2 on the full annotated dataset of 

3,000 EHRs was 0.73 and the model accuracy 0.94 

(see Table 3), although the accuracy figure is 

misleading because it is boosted by a high number 

of true negatives, hence we prefer F1 as a measure 

of performance. We found that Llama 2 did well in 

identifying letters that had no or ambiguous 

information about seizure frequency, recording an 

F1 score of 0.87, and did moderately well on the 

most common known categories (‘more than once 

a week’, 0.35; and ‘one or more daily’, 0.41). But 

Llama 2 struggled with the remaining six temporal 

categories, ranging from ‘once a week’ to ‘once a 

year’ (see Table 2). Therefore, we aggregated the 

nine seizure frequency categories into three 

categories (infrequent, frequent, and unknown) to 

improve the performance of the model (see Table 

4). Under the three categories, Llama 2 posted F1 

scores of 0.87 for the unknowns, 0.62 for frequent 

seizures, and a lower 0.30 for infrequent seizures. 

Results are the average of three different runs of 

Llama 2. The LLM’s output was highly consistent 

on each run, reflecting the low temperature of 

0.0001 that in turn minimizes ‘creativity’ in 

answers.  
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Table 3: Model performance for F1 and accuracy 

 

 

 

By comparison, Llama 2 performed better than 

BERT Large and RoBERTa Large, although it must 

be noted that our testing methodology for Llama 2 

was different to that for the pre-trained 

Transformers. Llama 2 was mainly tested against 

the full annotated dataset of 3,000 EHRs (Llama 2 

does not require fine-tuning), whereas BERT Large 

and RoBERTa Large, which required 80% of the 

balanced annotated dataset of 1,720 EHRs as a 

training dataset, were tested against a much smaller 

test dataset of 172 EHRs (or 10% of 1,720). Under 

this scenario, Llama 2’s model F1 score of 0.73 was 

higher than RoBERTa Large’s 0.58 and BERT 

Large’s 0.55 (the results of the pre-trained 

Transformers are the average of three different runs  

with the same random states). Moreover, Llama 2 

recorded a positive F1 score in all nine seizure 

frequency categories, whereas the pre-trained 

Transformers both posted F1 scores of zero in at 

least four categories, suggesting Llama 2 is better 

at identifying seizure frequency in the sparse 

categories. 

However, we also tested Llama 2’s performance 

on the same smaller test dataset of 172 EHRs used 

for BERT Large and RoBERTa Large. In this case, 

Llama 2’s model F1 score dropped to 0.54, broadly 

in line with the pre-trained Transformers, and 

Llama 2 recorded F1 scores of zero in three of the 

nine seizure frequency categories. There are two 

possible explanations for this apparent difference 

in performance. First, the small test dataset 

 

 

 

 

 

 

 

 

 
 

 

Table 4: Model performance evaluation on 3 seizure 

frequency categories. 

 

 

represents only 6% of the full annotated dataset of 

3,000 EHRs, therefore the latter is a better guide of 

actual model performance. Second, only 60% of 

EHRs in the small test dataset contained data on 

seizure frequency, and of those EHRs there was 

very little data on four categories (‘once per week’, 

‘once per month’, ‘once per six months’, ‘once per 

year’), therefore the paucity of data in the less 

common categories presented a greater challenge 

for the few-shot prompting structure for the LLM. 

Furthermore, other metrics demonstrate that 

even when evaluated on the small test dataset, 

Llama 2 was more reliable than the other two 

models. Llama 2 predicted that 59% of the EHRs 

in the test dataset contained either no, or vague, 

information about seizure frequency, which was 

higher than the annotators’ 40% but lower than 

RoBERTa Large’s 65% and BERT Large’s 71%. 

Also, while Llama 2 always made a prediction on 

every EHR, RoBERTa Large failed to make a 

prediction on average on 17% of the test EHRs and 

BERT Large failed on 30%.  

It is difficult to compare the results of our study 

to those of Xie et al. (2023, 2022a, and 2022b) 

because they provided an “overall accuracy” score 

of 0.88 for seizure frequency and did not break 

down accuracy for individual seizure frequency 

categories. However, in broad terms in appears our 

Llama 2 methodology produced at least similar 

performance given its model accuracy was 0.94 

Model Infrequent Frequent Unknown

LlaMA 2 13B 0.30 0.62 0.87

RoBERTa Large 0.43 0.76 0.74

BERT Large 0.39 0.77 0.76

Seizure Frequency 3 Categories: F1 Score

 

Table 2: Model performance evaluation on 9 seizure frequency categories. 

> once / 6 months > once / month > once / week

Model Once / year Once / 6 months < once / month Once / month < once / week Once / week < once / day 1 or more / day Unknown

LlaMA 2 13B 0.11 0.06 0.17 0.42 0.36 0.06 0.35 0.41 0.87

RoBERTa Large 0.00 0.00 0.61 0.00 0.63 0.00 0.48 0.59 0.74

BERT Large 0.00 0.00 0.47 0.00 0.36 0.00 0.55 0.58 0.76

Seizure Frequency 9 Categories: F1 Score

 

Model Model

Model F1 Score Accuracy

LlaMA 2 13B 0.73 0.94

RoBERTa Large 0.58 0.91

BERT Large 0.55 0.90
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and its accuracy rate for the infrequent category 

was 0.92 and for the frequent category 0.85.  

4 Discussion 

While our initial aim to determine whether the 

LLM could identify the frequency of seizures in 

unstructured outpatient reports for eight temporal 

categories proved too ambitious, when the 

temporal categories were reduced to frequent and 

infrequent the output of Llama 2 was much 

improved. The key objective of our broader 

epilepsy project is to track the effects of different 

combinations of anti-seizure medications on 

seizure frequency in individual patients and 

consequent changes. In this respect, Llama 2’s F1 

scores of 0.87 for the unknowns and 0.62 for 

frequent seizures is useful. Although the model’s 

F1 score was a lower 0.30 for infrequent seizures, 

we are mindful that the number of observations of 

frequent seizures is roughly three times that of 

infrequent seizures, as previously stated,  and so 

while more work is required to optimize the 

model’s output for infrequent seizures, its overall 

performance aids our broader objective. 

During experimentation it was clear that Llama 

2’s pre-training on vast general corpora had imbued 

it with a noticeable degree of expert knowledge 

about epilepsy. This may be one reason why Llama  

2 proved superior to the pre-trained Transformers 

in identifying seizure frequency in unstructured, 

free-text EHRs. Another reason is that Llama 2 is a 

much bigger language model – we used the 13B 

parameter version – than BERT Large with 336M 

parameters and RoBERTa Large with 356M 

parameters. 

Llama 2, like other generative LLMs, has three 

advantages over pre-trained Transformer language 

models. First, Llama 2 does not have to be fine-

tuned on an annotated dataset, which saves 

substantial time and resources by obviating 

annotations for a training dataset. Second, Llama 2 

does not have a built-in maximum token length for 

processing long texts. Third, Llama 2 is ‘guided’ on 

a particular language task by prompt engineering, 

which typically takes less time than adjusting 

multiple hyperparameters to optimize the 

performance of a pre-trained Transformer model. 

On the other hand, Llama 2 has a distinct 

disadvantage: because of its large size, the LLM 

requires a longer running time. In this case, Llama 

2 took on average 3.6 seconds to process one EHR, 

or about one hour for 1,000 EHRs. 

A drawback of this particular study, however, is 

that the results are not reproduceable by other 

researchers because the patient EHRs are 

confidential and can only be accessed via the 

hospital’s secure IT network. 

 

5 Conclusion 

Llama 2, as a popular LLM widely regarded as 

producing impressive performance on a variety of 

NLP tasks, performed well on the specific clinical 

NLP task of identifying seizure frequency from 

unstructured, free-text EHRs. This demonstrates 

that the new, generative LLMs are useful for 

epilepsy research in particular and clinical NLP 

research in general. The key question for our 

broader epilepsy research project was whether a 

new, generative LLM could identify seizure 

frequency among the EHRs to a sufficient degree 

to use the model’s predictions as a basis for further 

research into different anti-epilepsy medications 

and their effects on seizure frequency. Our 

conclusion is that Llama 2 can. 

Limitations 

The confidential nature of the EHRs creates two 

limitations of this study. First, the model outputs 

are not reproduceable by research teams outside the 

hospital where the authors worked because the data 

has to remain within the hospital’s secure IT 

network for regulatory reasons. Second, we could 

not experiment with LLMs such as OpenAI’s 

ChatGPT that are only available via an API to an 

off-site service due to privacy reasons. However, 

with more time we could have experimented with 

other open-source LLMs. Another limitation is 

that, because of time and resource constraints, our 

annotation methodology of having six expert 

annotators working on separate batches of the 

3,000, rather than having two annotators work on 

the same batch for moderation, did not allow for a 

measurement of inter-annotator agreement. Also, 

our research was also limited by the computing 

power generated by our GPU platform (eight 

Nvidia V100 GPUs). For example, this did not 

have the capacity to work with Llama 2’s 70B 

parameter version on our dataset. Finally, the 

dataset of epilepsy patients from King’s College 

Hospital may differ from datasets of epilepsy 

patients from other hospitals. 
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Ethical Considerations 

The main ethical consideration was that the 

confidential EHRs of patients had to remain within 

the hospital’s secure IT network. Therefore, 

researchers could only access the data and ingest 

the data into models via the hospital’s IT network. 

Researchers and clinicians required clearance from 

the hospital. The project operated under London 

593 South-East Research Ethics Committee 

(reference 18/LO/2048), approval granted to the 

King’s 595 Electronic Records Research Interface 

(KERRI). 
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Abstract
Large language models (LLMs) have recently
become the leading source of answers for users’
questions online. Despite their ability to of-
fer eloquent answers, their accuracy and reli-
ability can pose a significant challenge. This
is especially true for sensitive domains such
as biomedicine, where there is a higher need
for factually correct answers. This paper intro-
duces a biomedical retrieval-augmented gener-
ation (RAG) system designed to enhance the
reliability of generated responses. The system
is based on a fine-tuned LLM for the referenced
question-answering, where retrieved relevant
abstracts from PubMed are passed to LLM’s
context as input through a prompt. Its output is
an answer based on PubMed abstracts, where
each statement is referenced accordingly, allow-
ing the users to verify the answer. Our retrieval
system achieves an absolute improvement of
23% compared to the PubMed search engine.
Based on the manual evaluation on a small sam-
ple, our fine-tuned LLM component achieves
comparable results to GPT-4 Turbo in referenc-
ing relevant abstracts. We make the dataset
used to fine-tune the models and the fine-tuned
models based on Mistral-7B-instruct-v0.1 and
v0.2 publicly available.

1 Introduction

The idea of automated referencing dates back to
1970 when (Garfield, 1970) proposed an automatic
system where a computer evaluates the appropri-
ateness of references within an article. With the
emergence of generative large language models
(LLMs), numerous systems are being developed to
answer specific questions, supported by relevant

references (Huang and Chang, 2024; Menick et al.,
2022; Yang et al., 2023). Generative LLMs can
produce answers that appear coherent, confident
and articulate. However, the information conveyed
may not be correct or verifiable. Furthermore, the
limited internal knowledge of generative LLMs can
hinder their ability to deliver factually accurate an-
swers, particularly within specialized fields (Gravel
et al., 2023; Zheng et al., 2023). This issue is no-
tably concerning in the biomedical domain, where
accurate and factual answers are critical. The sci-
entific community has recognized the dangers of
factually incorrect or nonsensical information and
has been reluctant to utilize these models to their
potential. Providing an opportunity for scientists to
obtain correct and verifiable answers to questions
is an opportunity to increase scientific productivity
and its impact. Moreover, privacy, sovereignty and
security concerns in pharma and biomedicine often
necessitate building systems where all components
are controllable (e.g. deployed in-house), to avoid
reliance on third-party APIs such as OpenAI1, es-
pecially when secret data is concerned.

Incorporating domain-specific external knowl-
edge beyond LLM data is essential for mitigating
hallucinations in LLMs. The retrieval-augmented
generation (RAG) approach, which integrates the
generative capabilities of an LLM with a special-
ized retrieval system, enhances the model’s accu-
racy and relevance by grounding its responses in
verified information.

In this paper, we present a biomedical RAG
system consisting of a hybrid search based on

1https://openai.com
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PubMed2 and fine-tuned generative models for ref-
erenced question-answering (QA). We make both
the models and the dataset used to fine-tune the
models publicly available.

The remainder of this paper is organized as fol-
lows: Section 2 provides a review of related work
on reliability and verifiability of the LLM gener-
ated content and the approaches to generating texts
with references. Section 3 describes the design of
the IR and generative components. We evaluate
the components in Section 4, first individually and
then jointly. We end the paper with conclusions
and some future work remarks in Section 5.

2 Related work

Generative LLMs, such as GPT and similar archi-
tectures, have enabled question-answering (QA)
tasks across various domains, including medicine.
The current state of these models is characterized
by several challenges, particularly regarding the
verifiability and reliability of the information they
generate. By evaluating ChatGPT responses and
references in the medical domain, (Gravel et al.,
2023) found that 69% of generated references were
fabricated, while professionals rated the answers
at a median quality of 60%. Similarly, when (Liu
et al., 2023) conducted manual evaluations of four
prominent generative search engines Bing Chat,
NeevaAI, perplexity.ai, and YouChat, they found
that while the responses of these engines were flu-
ent and seemingly informative, only 51.5% of sen-
tences generated by these engines were fully sup-
ported by their citations, and merely 74.5% of cita-
tions accurately supported the statements they were
linked to. These results leave space for improve-
ment.

In general, there are two approaches to gen-
erating text with references (Huang and Chang,
2024). The first assumes training LLMs to pro-
duce references from parametric knowledge (infor-
mation internalized from the training data). The
second one assumes producing references from
non-parametric knowledge (content retrieved from
external sources).

The first approach, integrating citations directly
from LLM’s parametric knowledge, poses a signif-
icant technical challenge. Unlike search engines
and IR systems that rely on indices for data re-
trieval, LLMs encode information into hidden rep-
resentations during training, lacking a direct index.

2https://pubmed.ncbi.nlm.nih.gov

Therefore, referencing the sources of information
becomes intricate. Despite these challenges, ap-
proaches have been suggested to train LLMs to
include references using source identifiers (Taylor
et al., 2022). However, these methods exhibit cer-
tain limitations, including citation inaccuracies and
being restricted to academic citations.

The second approach, known as retrieval-
augmented generation (RAG), combines generative
LLMs with IR systems to form a hybrid system
(Lewis et al., 2020). Here, the model is trained to
recognize instances requiring citations, and the IR
system retrieves suitable sources to provide con-
text to the LLM. As a result, the LLM incorpo-
rates these sources as citations into its outputs, im-
proving the credibility and accuracy of responses.
While pre-trained and fine-tuned LLMs rely solely
on their parametric knowledge, RAG integrates a
customized external knowledge base without addi-
tional training, thus reducing hallucinations. More-
over, annotators often perceive RAG-enhanced an-
swers to be more factual and specific compared to
those from fine-tuned models (Lewis et al., 2020).

3 Method

The RAG system we propose in this paper is de-
signed to perform referenced QA in the biomedical
domain. It consists of two main components. The
IR component, based on hybrid semantic and lexi-
cal search, retrieves relevant PubMed abstracts and
provides a context for the generative LLM. The
final system output is an answer to the user query,
which contains a reference for each of the claims
extracted from the relevant abstracts. The overview
of the system architecture can be seen in Figure 1.

3.1 Information Retrieval Component

Our IR component uses data from PubMed
database3 containing citations and biomedical lit-
erature from several literature resources. The IR
system integrates both sparse vectors (lexical in-
dex) and dense vectors (semantic index), enabling
lexical and semantic search, and a hybrid combina-
tion of the two.

For the lexical retrieval, based on a ranking
function Best Matching 25 (BM25), we use the
OpenSearch4 to create an index for PubMed arti-
cles, by concatenation of title and abstract as an
indexed field. Also, we add authors’ names, pub-

3https://pubmed.ncbi.nlm.nih.gov/download/
4https://opensearch.org/
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Figure 1: Architecture of our RAG system.

lication dates, and journal names as metadata for
filtering.

For semantic retrieval, based on dense vectors,
we use the Qdrant5 vector database. Qdrant al-
lowed the usage of memory mapping of vectors to
a hard drive, reducing the memory (RAM) require-
ments of the system. To optimize semantic search
retrieval time, we used 8-bit quantized embeddings,
with the option to use full embeddings for rescoring
the results.

We use the Hierarchical Navigable Small World
(HNSW) indexing technique for Approximate
Nearest Neighbors with dot product metrics to per-
form vector comparisons (Malkov and Yashunin,
2018). To create vector embeddings we use a bi-
encoder sentence transformer model pre-trained
on the MSMarco dataset (Hofstätter et al., 2021),
which, at the time of indexing, had the best perfor-
mance on Passage Retrieval Task6.

In a corpus of 36,797,469 abstracts, 11,308,679
were found to be empty and thus omitted from the
index. These empty abstracts predominantly origi-
nate from articles published in the pre-digital era,
articles from journals that are not accessible for
free, or journals that do not require abstracts. After
eliminating these empty abstracts, we constructed
two indices in the offline mode, designed for subse-
quent use in online semantic and lexical searches.
The lexical index is created by indexing concate-

5https://qdrant.tech/
6https://www.sbert.net/docs/pretrained-models/

msmarco-v3.html

nated fields of titles and abstracts along with ad-
ditional fields from PubMed articles for filtering
purposes. The process of generating embeddings
for the semantic index includes the creation of em-
beddings for titles and abstract concatenation using
the model. This process is depicted in Figure 1,
marked with an asterisk. Before generating embed-
dings for semantic search, it was ascertained that
the average number of tokens within the dataset’s
title and abstract concatenation was 650. Given that
the maximum input size of the model employed for
embedding creation is 512 tokens, abstracts exceed-
ing this threshold were subdivided into segments
each containing no more than 512 tokens, and were
indexed separately. The split was made at the end
of the sentence before the 512th token.

In our case, hybrid search is a combination of
lexical and semantic IR components. To utilize the
hybrid search, we normalized scores from these
two IR methods to scales ranging from 0 to 1. The
scores from each of the search methods are then
multiplied by the importance weights for each of
the methods. This allows both the identification
of direct matches and greatly improves the abil-
ity to discover semantically related phrases and
text segments, even in the absence of exact textual
matches.

3.2 Generative Component
The generative component of our system is based
on the Mistral-7B model. Despite having fewer pa-
rameters, Mistral-7B shows superior performance
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over larger models such as Llama 2 13B across
all evaluated benchmarks and Llama 1 34B in rea-
soning benchmarks, maths, and code generation
(Jiang et al., 2023). Compared to its 0.1 version,
Mistral-7B v0.2 introduced an expanded context
window (32K to the previous 8K) and several other
adjustments (rope-theta = 1e6, no sliding-window
attention) contributing to more accurate and consis-
tent outputs, improved efficiency, and adaptability
to many different tasks (Anakin.ai, 2024).

For the sake of comparison, we opted for testing
both currently available instruction-tuned versions
of Mistral-7B (v0.17 and v0.28). We test both mod-
els in the zero-shot mode but also fine-tune them
using a custom dataset for referenced QA (see Sec-
tion 3.2.1).

The input for the generative component consists
of a user query and 10 abstracts retrieved by the
IR component as most relevant for the user query.
While generating the answer, the models perform
another relevance check and answer the question
using only the abstracts they find relevant. The final
output is a concise answer that contains an abstract
ID as a reference after each claim originating from
the 10 abstracts.

In the following subsections, we briefly describe
the dataset we used to fine-tune these models, as
well as the fine-tuning process.

3.2.1 Dataset
We created a custom dataset to fine-tune the LLMs
for the task of referenced QA. The dataset con-
sists of 9075 questions, where each question is
followed by 10 relevant abstracts (along with titles
and PMIDs) and referenced answers to the ques-
tions based on the provided abstracts.

The questions were randomly selected from the
PubMedQA dataset (Jin et al., 2019). The most
relevant abstracts for each of these questions were
retrieved from the PubMed repository using a com-
bination of entity and free text search. To create the
answers based on the retrieved abstracts, we used
GPT-4 Turbo, specifically gpt-4-1106-preview9, a
GPT-4 Turbo preview model featuring improved
instruction following. GPT-4 Turbo is currently the
number one model on the Chatbot Arena leader-
board, a crowdsourced open platform for LLM eval-

7https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

9https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

uation (Chiang et al., 2024). The prompt we used
to instruct GPT-4 Turbo to use references (PMIDs)
was as follows:

Answer the question using relevant abstracts pro-
vided, up to 300 words. Reference the statements
with the provided abstract_id in brackets next to
the statement.

To ensure the completeness of answers, GPT-
4 Turbo was further instructed to continue gener-
ating if there is more content to generate. The
answers were then automatically checked for com-
pleteness and incomplete final sentences were re-
moved, which finally led to the size of answers
ranging from 69 to 1221 tokens. In a small number
of cases (25 questions) there was no direct answer
in the abstracts so the answer does not contain any
references. The total input length in the dataset
(question + abstracts + answer) ranges from 1686
to 6987 tokens.

We name this dataset PQAref and make it avail-
able through Hugging Face10.

3.2.2 Fine-tuning the models
Both Mistral-7B instruction-tuned versions were
fine-tuned for the task of referenced QA using the
QLoRA methodology (Dettmers et al.), allowing us
to fine-tune the models on a single DGX NVIDIA
A100-40GB GPU in ∼32 hours. The parameters
we used for both models were standard loss, rank of
64, alpha of 16, and LoRA dropout of 0.1, resulting
in 27,262,976 trainable parameters in both cases.
Both models were fine-tuned over 2 epochs, using
a batch size of 1. The PQAref dataset split was
80:10:10, with most inputs in the size range of
4000 to 6000 tokens in all three splits (see Figure
2).

We make the QLoRA adapters for both models
available on Hugging Face as Mistral-7B-Instruct-
v0.1-pqa-1011 and Mistral-7B-Instruct-v0.2-pqa-
1012.

4 Results

4.1 Evaluation of IR Component

To evaluate our IR system, we utilized the BioASQ
dataset (BioASQ team, 2024). The BioASQ dataset

10https://huggingface.co/datasets/BojanaBas/
PQAref

11https://huggingface.co/BojanaBas/
Mistral-7B-Instruct-v0.1-pqa-10

12https://huggingface.co/BojanaBas/
Mistral-7B-Instruct-v0.2-pqa-10
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Figure 2: Distribution of answer length across train, val and test splits.

is designed for tasks that help drive advancements
in biomedical information retrieval and QA. It in-
cludes 5049 questions along with corresponding
gold-standard answers, relevant document snippets,
and the PubMed IDs (PMIDs) of articles that are
relevant to each question.

We compared the PMIDs retrieved by our system
against the gold-standard PMIDs provided in the
BioASQ dataset. This comparison was quantified
using the precision metric, measuring the propor-
tion of relevant identifiers retrieved by our system
out of the total PMIDs retrieved. We evaluate pre-
cision using 10 retrieved documents (P@10) and
mean average precision for 10 retrieved documents
(MAP@10). The evaluation of the retrieval com-
ponent is done using: (1) only lexical, (2) only
semantic, and (3) a combination of the two. Addi-
tionally, we experimented with different weights
for the lexical and semantic combinations.

For the lexical search, we experimented with
stopword removal from the query and obtained
better results compared to lexical search without
stopword removal as shown in Table 1.

For semantic search, we experimented with three
approaches: semantic search with full embeddings,
semantic search with compressed embeddings (us-
ing 8-bit quantization), and semantic search using
compressed embeddings with rescoring (using full
embeddings for rescoring).

Semantic search with full embeddings had an
average response time of 30 seconds, making it
inefficient and unusable for real-world applications.

For semantic search with rescoring, we used
compressed embeddings to retrieve 100 results,
then rescored the top 10 using full-size embeddings.
This method improved precision by 0.3% and was
only 52 milliseconds slower than the approach with-
out rescoring (see rows 1 and 2 in Table 1). Given
the minimal additional time required, we tested the
various weight combinations of hybrid search incor-

porating semantic search with rescoring. Parallel
execution of semantic and lexical search further
contributes to the time efficacy of the system (as
shown in Table 1), reducing the average execution
time from 489ms to 442ms.

Table 1: Our IR and PubMed search engine performance
evaluation on the BioASQ dataset.

P@10 MAP@10 time [ms]
1. Semantic without rescore 14.0% 25.7% 245
2. Semantic with rescore 14.4% 26.0% 297
3. Hybrid with rescore (lex. 0.1 sem. 0.9) 24.7% 32.5% 442
4. Hybrid with rescore (lex. 0.2 sem. 0.8) 24.7% 32.5% 442
5. Hybrid with rescore (lex. 0.3 sem. 0.7) 24.7% 32.5% 442
6. Hybrid with rescore (lex. 0.4 sem. 0.6) 24.7% 32.6% 442
7. Hybrid with rescore (lex. 0.5 sem. 0.5) 25.2% 41.0% 442
8. Hybrid with rescore (lex. 0.6 sem. 0.4) 30.7% 42.0% 442
9. Hybrid with rescore (lex. 0.7 sem. 0.3) 30.8% 42.5% 442
10. Hybrid with rescore (lex. 0.8 sem. 0.2) 30.8% 42.5% 442
11. Hybrid with rescore (lex. 0.9 sem. 0.1) 30.8% 42.6% 442
12. Lexical with stopwords removal 28.7% 41.1% 189
13. Lexical without stopwords removal 28.3% 40.1% 189
14. PubMed without MeSH Terms 9.2% 15.3% 698
15. PubMed with MeSH Terms 12.0% 19.1% 742

From the experiments detailed in Table 1, it is
evident that the performance of semantic search
alone is suboptimal, with notable enhancements
observed upon integration with lexical search. The
initial improvement is noted with the hybrid search
employing a 0.1 lexical search weight, followed
by a second significant enhancement achieved with
a 0.6 lexical search weight (yielding absolute im-
provements of 10.3% and 16.3% respectively). In-
creasing the lexical search weight beyond 0.6 does
not yield noticeably different outcomes. Assigning
a weight of 1 to lexical search in hybrid search ex-
cludes semantic search, effectively reducing the
system to pure lexical search, which produces
worse results.

As the subsequent generative component does
not account for the order of retrieved documents,
we employ the P@10 metric to determine the most
effective combination of parameters for hybrid
search. After evaluating various configurations, we
identified the optimal parameters for hybrid search:
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a lexical search weight of 0.7 and a semantic com-
ponent weight of 0.3. By allocating a higher weight
to the semantic search component (0.3 in row 9 in-
stead of 0.1 in row 11), we enhance the model’s
ability to capture and utilize the deeper, contextual
relationships inherent in biomedical texts. Con-
sequently, as shown in row 9, we choose these
parameter values to conduct a hybrid search in our
system.

Additionally, we evaluated the performance of
PubMed search engine on the BioASQ dataset and
got the P@10 of 9.2% and MAP@10 of 15,3%
when searching without MeSH terms and P@10 of
12% and MAP@10 of 19.1% when searching with
MeSH terms (rows 14 and 15 in Table 1).

4.2 Evaluation of the Generative Component

For the purpose of standalone evaluation of the gen-
erative component, we use the PQAref test set. We
conducted automated and manual evaluations for
the task of referenced QA, which involved analyz-
ing the total number of all references per answer
and relevant references per answer, checking the
correctness of IDs, and comparing the number of
relevant references to irrelevant ones in the models’
answers.

To obtain the referenced answers in the zero-shot
mode, we opted for the following prompt:

Respond to the Instruction using only the infor-
mation provided in the relevant abstracts under
Abstracts. Reference the statements with the
provided abstract_id in brackets next to the state-
ment (for example PUBMED:1235):
{instruction}

To obtain the referenced answers from the fine-
tuned models, we use the following prompt:

Respond to the Instruction using only the in-
formation provided in the relevant abstracts in
“‘Abstracts“‘ below.
{instruction}

Both prompts were chosen after extensive test-
ing of several different prompting strategies and
prompt versions.

We use default inference parameters for all four
models, except setting the repetition_penalty to 1.1
for the fine-tuned models and varying the values
of max_new_tokens (max_tokens for the zero-shot
mode) for all four models. Despite trying to add the
limit to the answers through the max_new_tokens

parameter or through trying to add a limit to the
prompt (e.g. "Answer in at most 300 words."),
all the models continuously generated an arbitrary
number of tokens. The same behavior was noticed
in GPT-4 Turbo during the creation of the PQAref
dataset. Token limitation, primarily imposed due
to the prolonged inference time for higher values,
often led to interrupted answers. Finally, the limit
was set to 1225, to slightly exceed the longest com-
plete answer length in the training dataset (see Sec-
tion 3.2.1).

We refer to the zero-shot results of these two
models as 0-M1 for v0.1 and 0-M2 for v0.2 and to
the results of the fine-tuned models as M1 for v0.1
and M2 for v0.2. In both prompts, the instruction
for the fine-tuned models consists of the user query
and 10 retrieved abstracts. An example of a ques-
tion and GPT-4 Turbo’s answer from the test set,
along with other four models’ answers to the same
question can be seen in Appendix A1.

Automated evaluation. The number of ref-
erenced abstracts in generated answers within
PQAref test set (containing 908 examples) can be
seen in Table 2. What can be observed is that 1
reference per answer is most common in GPT-4
Turbo answers from PQAref (241 answers). M1
and M2 have the highest number of answers with 3
references (185 cases for M1 and 178 for M2). In
the case of zero-shot results, both 0-M1 and 0-M2
most commonly did not reference any abstracts in
their responses: 527 occurrences (58% of all the
answers) for 0-M1 and 165 for 0-M2 (18.2% of
all the answers). M1 and M2 did not reference
any abstracts in 8 (0.9%) and 5 (0.5%) answers, re-
spectively. By manual inspection of these answers,
the models stated that none of the abstracts were
relevant, demonstrating their proficiency in task ex-
ecution. On the other hand, in most of the answers
without references 0-M1 and 0-M2 answered the
question but without providing any references to
their statements. Additionally, some 0-M2’s an-
swers (35 of them) repeated the first part of the
instruction, suggesting the need for further postpro-
cessing of its answers.

In the entire test set, comprising 908 examples
with a total of 9080 abstracts (10 abstracts per ex-
ample), 0-M2 has the highest average number of
references per answer of 4.74, followed by M2 with
4.2 and M1 with 4.01, while 0-M1 produced 2.51
references per answer.

To measure the relevance of the referenced ab-
stracts, we evaluated whether the models refer-
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Table 2: Number of referenced abstracts per model on
the PQAref test set. N: number of referenced abstracts
per answer. TOTAL: is the sum of referenced abstracts
per model. AVG: the average number of references per
answer.

Number of answers containing N references
N GPT-4 Turbo 0-M1 0-M2 M1 M2
0 2 527 165 8 5
1 241 27 11 86 105
2 76 66 47 138 112
3 128 28 92 185 178
4 126 17 114 172 169
5 119 25 110 117 124
6 87 28 94 72 75
7 45 26 61 66 34
8 29 47 64 27 34
9 31 47 83 22 23
10 24 70 67 15 49
TOTAL 3,464 2,285 4,307 3,648 3,816
AVG 3.81 2.51 4.74 4.01 4.20

enced at least the most relevant abstract for each
question. Our dataset contains questions from Pub-
MedQA, which in a number of cases originate from
actual PubMed abstract titles. This means that dur-
ing retrieval, the article whose title matches the
question is very likely to be retrieved as relevant.
In our test split, this indeed is the case in 823 out
of 908 inputs. We decided to take such abstracts as
the most relevant ones for those 823 inputs, which
allowed us to automatically measure the number
of times the models referenced that particular ab-
stract. Table 3 presents the number of missed and
referenced most relevant abstracts using this tactic.
When looking at the GPT-4 Turbo answers from
the test set, the most relevant article was missed
in only one case, suggesting it served as a good
referencing role model. M2 missed the relevant
abstract in 10 examples, while M1 missed it in
29 examples. Overall, both fine-tuned models do
reference the most relevant abstract in most cases
(96.5% and 98.8% respectively). On the other hand,
0-M1 missed the most relevant abstracts in 60.4%
answers and 0-M2 in 22.5% answers, which shows
a significantly weaker ability of the models to iden-
tify and extract the most relevant abstracts com-
pared to their fine-tuned versions.

We also evaluated whether all the IDs in the
models’ answers matched the PMIDs of context-
provided abstracts to verify none of them were hal-
lucinated. GPT-4 Turbo’s answers in the PQAref
dataset contained no hallucinated IDs. However,
both M1 and M2 produced hallucinated IDs, with a

notable discrepancy. M1 produced 79 hallucinated
IDs, while M2 produced only 3. The hallucinated
IDs differ from the actual IDs by one or two digits.
Upon manual inspection of the answer content and
referenced IDs, we found that M1 tended to blend
information from various abstracts, whereas M2
utilized information solely from the corresponding
abstract. This suggests that M2 exclusively halluci-
nated some of the digits from the existing abstract
ID, but not the content. This behavior remains con-
sistent across different temperature values of the
model. Looking at the zero-shot performance, 0-
M1 hallucinated 11 IDs. However, it also did not
reference any abstracts in 58% of cases, which then
presents an even higher number compared to the
number of answers containing references. 0-M2
hallucinated in case of 26 IDs. The results point to
a clear advantage of M2’s answers in this respect.

Manual evaluation. To perform manual evalu-
ation, we extracted 10 random examples from the
PQAref test set. We then manually assessed the
relevance of each of the abstracts in the examples.
We generally distinguished between two types of
abstracts: relevant and irrelevant. The abstracts we
considered relevant were the ones that covered all
the specific aspects of the question and thus pro-
vided direct answers. Among them, we defined
the abstracts whose title matched the question as
the most relevant (as mentioned for 823 examples
during automatic evaluation). On the other hand,
we identified two types of irrelevant abstracts. The
first type includes abstracts that miss the main topic
of the question (e.g. discuss heart failure instead of
knee problems), which we considered completely
irrelevant abstracts. The other type that discusses a
more general topic and thus does not cover all the
aspects of the question we considered partially ir-
relevant. This group could also be observed as the
one that contains additional information but does
not provide the direct answer to the question.

It is crucial to recognize that there can be two
types of mistakes when irrelevant abstracts are con-
cerned. If the model references a completely irrele-
vant abstract that is a clear mistake, however, if it
references a partially irrelevant abstract, whether it
is wrong may depend on the other references in the
answer. If the answer also contains the reference
that gives a direct answer to the question (relevant
abstract), this could be considered additional infor-
mation. If this is not the case, the model may have
missed the main point.

Finally, we examined how the models referenced
542



Table 3: The number of missed and referenced most relevant abstracts of 823 abstracts across the models.

GPT-4 Turbo 0-M1 0-M2 M1 M2
Relevant missed 1 (0.1%) 497 (60.4%) 185 (22.5%) 29 (3.5%) 10 (1.2%)
Relevant referenced 822 (99.9%) 326 (39.6%) 638 (77.5%) 794 (96.5%) 813 (98.8%)

the most relevant and irrelevant abstracts. For these
10 qualitatively observed examples, the fine-tuned
models referenced the most relevant abstracts every
time, meaning that they grasped the main point. On
the other hand, 0-M1 and 0-M2 failed to reference
these abstracts 4 and 2 times. Moreover, these an-
swers of 0-M1 and 0-M2 contained no references
whatsoever. None of the models referenced com-
pletely irrelevant abstracts. The general tendency
of all four models was to provide additional infor-
mation by referencing partially irrelevant abstracts.
In several situations, the models seemed to filter
the abstracts based on their understanding of a term
used in the question, thus excluding the abstracts
that use a different phrasing or an extended mean-
ing of the term (e.g. donation taken to refer only to
organ, tissue or bone marrow donation and not to
cell and blood donation).

We also conducted a quantitative analysis to
examine how well they identified all the relevant
abstracts. To overcome variations in the number
of relevant abstracts per document and document-
specific characteristics, we considered all 100 ab-
stracts, 10 for each of 10 questions, collectively.

Of these 100 abstracts, the evaluators identified
42 relevant and 58 irrelevant abstracts. We prior-
itized and calculated recall for relevant abstracts
for each model, as our primary concern is their
ability to correctly identify and reference relevant
abstracts. M1 exhibited the highest recall of 0.76,
followed by M2 with 0.67, 0-M2 with 0.62 and
0-M1 with 0.29. For reference, the recall mea-
sured on the GPT-4 Turbo answers from the test
set totalled 0.62. These results are summed up
in the first row of Table 4. The findings suggest
that, based on the analysis of these 10 manually
reviewed documents, M1 outperforms the other
models in terms of referencing abstracts deemed
relevant by evaluators, showing the highest benefit
from the fine-tuning process.

4.3 System evaluation

In this section, we provide the preliminary joint
evaluation of our system: the IR component (based
on hybrid lexical and semantic search) and the gen-

Table 4: Recall values for relevant abstracts on 10 ex-
amples from the PQAref test set and same 10 questions
with abstracts retrieved with our IR system.

GPT-4 Turbo 0-M1 0-M2 M1 M2
PQAref 0.62 0.29 0.62 0.76 0.67
IR 0.46 0.37 0.59 0.64 0.58

erative component using the outputs of our IR,
We manually evaluated the IR output on the

same 10 PQAref questions we chose for the evalua-
tion of the generative component in Section 4.2. To
retrieve the relevant abstract from indexed PubMed
articles, we utilized the best-performing hybrid
search parameter combination from Section 4.1
and retrieved 10 abstracts for each question. After
manually determining the abstract relevance, we
obtained 50% P@10. This metric underscores the
effectiveness of our IR component in locating doc-
uments for query responses. The fact that IR evalu-
ation on BioASQ reached the best performance of
P@10 30.8% with the same combination of weights
for hybrid search as manual evaluation on PQAref,
further corroborates the results obtained in manual
evaluation conducted on the PQAref dataset.

We then used the same prompt for GPT-4 Turbo
as in Section 3.2.1, and the ones used in Section
4.2 for 0-M1, 0-M2, M1 and M2, to generate ref-
erenced answers based on the retrieved documents.
We further computed the recall values for the rel-
evant abstracts in the 10 generated answers and
displayed them in the second row of Table 4. It
is noticeable that, once again, the model that per-
formed best is M1, with the recall of 0.64. This
model cites a greater number of abstracts that con-
tain the relevant answers compared to other mod-
els. Based solely on the recall, 0-M2 showed better
results compared to M2, albeit by only 0.01. How-
ever, in one of 10 examples it did not provide any
references to its elaborate answer. M2, as the third
best model with recall of 0.58 properly referenced
all the answers. From Table 2, we can also observe
that the model with most references is 0-M2, but
it also does not provide any references in 18.2%
of the answers. Taking this important aspect into
consideration, M2’s answers prove more reliable
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compared to 0-M2. M2 shows a slightly lower
recall compared to M1 because it has fewer refer-
ences to abstracts that provide direct answers to the
questions. Nonetheless, since the IR component
consistently finds documents related to the topic,
we give preference to M2’s answers since they in-
clude more additional citations, offering more elab-
orate answers on the same topics. Here, GPT-4
Turbo had the recall of 0.46, while 0-M1 had the
lowest recall of all the models (0.37), owing to a
large number of answers with no references (5 out
of 10).

5 Conclusions and future work

In this paper, we provide an overview of biomed-
ical generative search with answers grounded in
PubMed and referenced claims. Our aim was to de-
velop a system capable of generating accurate and
verifiable answers to biomedical questions while
maintaining user sovereignty and leveraging open-
source models.

Starting with our IR component, we discovered
that employing a combination of lexical and se-
mantic searches yields the highest precision score.
Our system demonstrates an absolute improve-
ment of 23.4% MAP@10 measure compared to
the PubMed search engine. Through separate eval-
uations, we found that lexical search alone out-
performs semantic search. However, integrating
both approaches is advantageous for identifying
instances lacking exact term matches, where se-
mantic search contributes significantly. To enhance
semantic search performance in IR, one future di-
rection is to fine-tune these models on domain-
specific data. This approach aims to improve the
quality of embeddings in the biomedical domain,
enabling them to encode domain-specific knowl-
edge better, enhance contextual understanding, and
ultimately improve IR performance.

Overall, the Mistral 7B Instruct models per-
formed comparatively to GPT-4 Turbo in terms
of the task of referenced QA. Based on the eval-
uation of the whole PQAref test set, M1 and M2
showed superior performance over 0-M1 and 0-M2
in referencing the most relevant abstracts, with M2
showing an improved performance of 2.3% over
M1, 21.3% over 0-M2 and 59.2% over 0-M1. As a
general trend, M2 includes more information in its
answers.

All four models showed hallucinations when
generating IDs of references. Once again, M2

performed best in this respect with only 3 mis-
matches in ID digits, followed by 0-M1 (11) and
0-M2 (26), with the worst performance of 79 hal-
lucinated answers coming from M1. While M2
was still using correct information from the corre-
sponding abstract, this point needs further attention.
Exchanging the IDs with numerals (1-10) for each
abstract during fine-tuning could potentially solve
this issue. This is something we plan to try in the
next iteration of the dataset and training.

In terms of recall values for relevant abstracts,
based on the manual evaluation of 10 examples
from PQAref test set both fine-tuned models per-
formed better, exhibiting a 47% and 5% improve-
ment over their versions in zero-shot mode. The
situation is slightly different for the same 10 ques-
tions with abstracts retrieved using our IR. While
recall values of M1 were still superior, especially
compared to 0-M1 with 27% improvement, 0-M2
performed slightly better than M2 (1% difference).
However, considering the number of hallucinations
and answers with no references, we give clear pref-
erence to the fine-tuned models.

It is worth noting that on a small test set, we
have achieved a comparable and sometimes even
better performance than GPT-4 Turbo with much
smaller, open-source and fine-tuned models. Hav-
ing an automated evaluation method of referenced
QA quality would allow us to make a more compre-
hensive comparison of our models to models such
as GPT-4 Turbo. To supplement manual evaluation
and speed up the evaluation process, (Gao et al.,
2023) created a benchmark for automatic evalua-
tion of citation quality and proposed an entailment
model as a method for automatic quality check of
references. We intend to further check the qual-
ity of answers on a larger sample using the same
method. At this point, M2 gives more reliable an-
swers, but the decision on which model to use in
our final pipeline will be made after this evaluation.
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Appendix A: Example answers of generative LLMs

Table A1: Models’ answers to the question "Does leisure time physical activity in early pregnancy protect against
pre-eclampsia?"

GPT-4 Turbo

The relationship between leisure time physical activity (LTPA) in early pregnancy and the risk of pre-eclampsia is not clearly
established, with studies showing mixed results. Some studies suggest that there may be a protective effect of LTPA against
pre-eclampsia, while others do not find a significant association or suggest an increased risk with high levels of activity.
A prospective cohort study in Denmark found that moderate levels of physical activity (1-270 minutes/week) in the first trimester
had no statistically significant association with the risk of pre-eclampsia, but high levels of activity (exceeding 270 minutes/week)
were associated with an increased risk of severe pre-eclampsia (PUBMED:19055653). Similarly, a population-based prospective
cohort study in Amsterdam reported that the amount of time or intensity of physical activity in leisure time was not associated
with a difference in risk of pre-eclampsia or gestational hypertension (PUBMED:19916877).
In contrast, a study from the New Haven, Connecticut area suggested that women who engaged in any regular LTPA during early
pregnancy were at decreased risk of pre-eclampsia (PUBMED:15466498). Another study found a tendency towards a lower risk
of pre-eclampsia in women with the highest degree of physical activity during leisure time, especially in overweight women,
although no significant associations were found (PUBMED:20121498).
A systematic review examining the association between LTPA before and/or during pregnancy and the risk of pre-eclampsia
found mixed results, with some studies suggesting that vigorous-intensity LTPA may reduce the risk of pre-eclampsia, while
one study reported an elevated risk with high amounts of LTPA (PUBMED:23836014). Another case-control study found that
women who performed regular LTPA during the first 20 weeks of pregnancy had a reduced risk of pre-eclampsia and gestational
hypertension (PUBMED:2592903).
In summary, the evidence is inconclusive regarding the protective effect of LTPA in early pregnancy against pre-eclampsia.
While some studies suggest a potential benefit, especially with moderate activity levels, others indicate no effect or an increased
risk with high levels of activity. It is important to consider the intensity and duration of LTPA when evaluating its impact on
pre-eclampsia risk.

0-M1

The instruction is to provide a response to the instruction using only the information provided in the abstracts. The instruction is:
"Does leisure time physical activity in early pregnancy protect against pre-eclampsia?"
Based on the provided abstracts, the answer is: No, leisure time physical activity in early pregnancy does not protect against
pre-eclampsia.
0-M2

The available evidence from the provided abstracts suggests that the relationship between leisure time physical activity (LTPA)
in early pregnancy and the risk of pre-eclampsia is not clear-cut. Some studies indicate a protective effect of LTPA against
pre-eclampsia, while others do not find a significant association or suggest an increased risk with high levels of activity.
One prospective cohort study in Denmark found that moderate levels of physical activity (1-270 minutes/week) in the first
trimester had no statistically significant association with the risk of pre-eclampsia, but high levels of activity (exceeding 270
minutes/week) were associated with an increased risk of severe pre-eclampsia (PUBMED:19055653). Another population-based
prospective cohort study in Amsterdam reported that the amount of time or intensity of physical activity in leisure time was not
associated with a difference in risk of pre-eclampsia or gestational hypertension (PUBMED:19916877).
However, a study from the New Haven, Connecticut area suggested that women who engaged in any regular LTPA during early
pregnancy were at decreased risk of pre-eclampsia (PUBMED:15466498). Another study found a tendency towards a lower risk
of pre-eclampsia in women with the highest degree of physical activity during leisure time, especially in overweight women,
although no significant associations were found (PUBMED:20121498).
A systematic review examining the association between LTPA before and/or during pregnancy and the risk of pre-eclampsia
found mixed results, with some studies suggesting that vigorous-intensity LTPA may reduce the risk of pre-eclampsia, while
one study reported an elevated risk with high amounts of LTPA (PUBMED:23836014). Another case-control study found that
women who performed regular LTPA during the first 20 weeks of pregnancy had a reduced risk of pre-eclampsia and gestational
hypertension (PUBMED:2592903).
In summary, the evidence is inconclusive regarding the protective effect of LTPA in early pregnancy against pre-eclampsia.
While some studies suggest a potential benefit, especially with moderate activity levels, others indicate no effect or an increased
risk with high levels of activity. It is important to consider the intensity and duration of LTPA when evaluating its impact on
pre-eclampsia risk. Further research is needed to clarify the relationship between LTPA and pre-eclampsia risk.
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M1

Based on the provided abstracts, leisure time physical activity in early pregnancy does not appear to protect against pre-eclampsia.
A prospective cohort study in Denmark found that the two highest levels of physical activity were associated with increased risk
of severe pre-eclampsia compared with the nonexercising group, suggesting that leisure time physical activity exceeding 270
minutes/week in first trimester may increase the risk of severe pre-eclampsia (PUBMED:19055653).
Another study in Amsterdam, The Netherlands, did not find any association between physical activity in leisure time early in
pregnancy and the incidence of preeclampsia or gestational hypertension (PUBMED:19916877). Similarly, a study in New Haven,
Connecticut, found that women who engaged in any regular leisure time physical activity, regardless of caloric expenditure, were
at decreased risk of preeclampsia, but there was no indication of a protective effect of workplace activity, leisure-time physical
activity, or unemployment (PUBMED:15466498). These findings suggest that while certain forms of physical activity may have
a protective effect on preeclampsia, the overall evidence does not support a clear protective effect of leisure time physical activity
in early pregnancy against this condition. Therefore, based on the available abstracts, leisure time physical activity in early
pregnancy does not protect against pre-eclampsia.

M2

Based on the provided abstracts, there is conflicting evidence regarding whether leisure time physical activity (LTPA) in early
pregnancy protects against pre-eclampsia. Some studies suggest that LTPA may offer protection against pre-eclampsia, while
others do not find a significant association or even indicate that excessive LTPA could increase the risk of severe pre-eclampsia.
For instance, one study found that women who engaged in any regular LTPA regardless of caloric expenditure were at
decreased risk of preeclampsia, although another study did not find a significant association between the amount of time or
intensity of physical activity in leisure time and the risk of preeclampsia or gestational hypertension (PUBMED:15466498;
PUBMED:19916877). Another study suggested that women who performed regular LTPA had a reduced risk of pre-eclampsia
and gestational hypertension, with the relative risks decreasing as the average time spent in LTPA increased (PUBMED:2592903).
However, another study documented an increased risk of severe pre-eclampsia with higher levels of LTPA (PUBMED:19055653).
Similarly, a systematic review reported that high-intensity LTPA before and/or during pregnancy or more than 4 hours per week
of LTPA may reduce the risk of pre-eclampsia, but also noted that one study found an elevated risk of severe pre-eclampsia with
high amounts of LTPA (PUBMED:23836014).
Furthermore, a case-control study indicated that women who performed regular LTPA had a reduced risk of pre-eclampsia and
gestational hypertension, with the relative risks decreasing as the average time spent in LTPA increased (PUBMED:26910608).
A systematic review and meta-analysis of RCTs and cohort studies supported the promotion of LTPA in pregnancy as a strategy
to improve maternal and child health, suggesting that participation in LTPA was associated with lower weight gain during
pregnancy, lower likelihood of gestational diabetes mellitus (GDM), and lower risk of preterm delivery (PUBMED:27282925).
In conclusion, while some studies suggest that LTPA in early pregnancy may protect against pre-eclampsia, particularly at
moderate intensities, the evidence is not consistent across all studies. Further research is needed to clarify the relationship
between LTPA and pre-eclampsia risk, taking into account the intensity and duration of physical activity, as well as individual
differences in susceptibility to the condition. Additionally, the potential influence of other factors such as prepregnancy BMI and
socioeconomic status should be considered (PUBMED:32093248).
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Abstract

Medical coding is the process by which stan-
dardized medical codes are assigned to patient
health records. This is a complex and challeng-
ing task that typically requires an expert human
coder to review health records and assign codes
from a classification system based on a standard
set of rules. Since health records typically con-
sist of a large proportion of free-text documents,
this problem has traditionally been approached
as a natural language processing (NLP) task.
While machine learning-based methods have
seen recent popularity on this task, they tend
to struggle with codes that are assigned less
frequently, for which little or no training data
exists. In this work we utilize the open-source
NLP programming language, NLP++, to design
and build an automated system to assign Inter-
national Classification of Diseases (ICD) codes
to discharge summaries that functions in the ab-
sence of labeled training data. We evaluate our
system using the MIMIC-III dataset and find
that for codes with little training data, our ap-
proach achieves competitive performance com-
pared to state-of-the-art machine learning ap-
proaches.

1 Introduction

Medical coding is the process by which healthcare
institutions assign standardized codes to patient
health records for downstream use in applications
such as statistical analysis, indexing patient health
records, coding medical billing claims (Moriyama
et al., 2011), and assessing quality of patient care
(O’Malley et al., 2005). While these systems of
classification represent a critical infrastructure with
extensive significance in the healthcare domain,
the success of their implementation largely rests
on the efficient and precise assignment of these
codes to a patient’s health record. We focus on
the task of assigning International Classification
of Diseases (ICD) codes to patient health records,
which is a complex, multi-stage process with many

possible points of failure, often resulting in improp-
erly assigned or missing codes. The Department
of Health and Human services found in 2010 that
approximately half of all claims for evaluation and
management services were incorrectly coded, re-
sulting in $6.7 billion in improper payments by
Medicare (Levinson et al., 2014). Medical coding
thus presents itself as a critical task which would
greatly benefit from increased automation.

Since much of the information required for as-
signing codes is contained within unstructured text
documents, the problem of medical coding has
traditionally been approached through the frame-
work of natural-language processing (NLP). Much
research has been conducted in this area but it
remains a challenging problem. Inherent limita-
tions of state-of-the-art approaches tend to restrict
their practical utility (Dong et al., 2022). Chal-
lenges include large label spaces and long docu-
ment lengths, user requirements for explainability,
and adaptability to local facility needs and medical
advances. Classical machine-learning and deep-
learning based approaches tend to be limited by
the need for quality labeled data for supervised
training. Due to restrictions on the distribution of
patient medical data, collecting and curating useful
datasets for these tasks is a major challenge (John-
son et al., 2016a; Searle et al., 2020; Johnson et al.,
2016b). Annotation costs to develop gold-standard
datasets can be prohibitive (Searle et al., 2020).

In this paper we propose a system for ICD cod-
ing that provides support for explainability and
functions without training data. Our system first
extracts medical entities from an input document,
then maps these entities to concepts in the Unified
Medical Language System (UMLS) (Bodenreider,
2004). Finally, we use these concepts as terms
to assign ranking scores to ICD-9 codes for the
input note. We use the openly available MIMIC-
III dataset to evaluate the performance of our sys-
tem and to compare to existing state-of-the-art ap-
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proaches to the task. Our contributions are to:

• Design and implement an automated end-to-
end scalable system using readily available
medical knowledge sources to assign ICD-9
codes to discharge summaries,

• Compare our approach to state-of-the-art deep
learning approaches, and

• Demonstrate the utility of knowledge-based
algorithms for low-resource ICD coding

2 Background

2.1 International Classification of Diseases

The ICD is a standardized nomenclature and clas-
sification system for diseases and medical proce-
dures, which was originally intended to facilitate
the statistical analysis of health data (Moriyama
et al., 2011). Each successive revision to the ICD,
typically spanning 10-20 years, has sought to ad-
dress new use cases while adapting to advances
in medicine and healthcare, and has continued to
grow in number of total codes. The tenth version,
ICD-10, has nearly 72,000 procedure codes. We
utilize the ICD-9-CM, a clinical modification of the
ICD-9 adapted for use in the US, which contains
well over 10,000 codes. Each entity within the ICD-
9-CM is encoded by a unique identification string
consisting of three to five digits and an optional sin-
gle letter prefix corresponding to a supplementary
category (see Figure 1). Practical applications of
the ICD in healthcare have expanded and now have
come to include the indexing of health record data
in hospitals, the coding of medical billing claims
(Moriyama et al., 2011), and the assessment of
quality of patient care (O’Malley et al., 2005).

2.2 MIMIC

To evaluate our approach to ICD coding we use
the Medical Information Mart for Intensive Care
(MIMIC) dataset (Johnson et al., 2016b). MIMIC
is an openly accessible database of de-identified
electronic health record data for patients admitted
to the intensive care unit of the Beth Israel Dea-
coness Medical Center. There are four releases
of the MIMIC dataset. Our work focuses on the
third release as full access to the fourth release was
not available until late in the project. The third
release, MIMIC-III, was published in 2016 and
contains data for 53,423 distinct hospital admis-
sions. Each hospital admission record is compre-
hensive and includes data in one of the following

categories: billing, descriptive, dictionary, interven-
tions, laboratory, medications, notes, physiologic,
and reports. MIMIC-III includes free text notes
and reports such as radiology reports and hospital
discharge summaries as well as ICD-9 codes for a
hospital admission, making it a useful resource for
the development and evaluation of automated code
extraction.

Figure 1: Example path in the ICD-9 hierarchy.

2.3 Unified Medical Language System

The UMLS is a repository of biomedical vo-
cabularies and associated tools that is developed
and maintained by the US National Library of
Medicine. The UMLS consists of the Metathe-
saurus, a biomedical thesaurus that links concepts
from different constituent vocabularies; the Seman-
tic Network, which defines semantic types and pro-
vides relationships between UMLS concepts; and
the SPECIALIST Lexicon, an English dictionary
that includes biomedical terms (US National Li-
brary of Medicine, 2009). The Metathesaurus is a
collection of source vocabularies including biomed-
ical thesauri, classification systems, coding sys-
tems, and controlled term lists such as SNOMED-
CT (Stearns et al., 2001). Terms in these vocabular-
ies are linked to standard identifiers using semantic
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or lexical information. The Semantic Network de-
fines 127 different semantic types for concepts as
well as 54 different relationships between them,
comprising a network in which types are the nodes
and relationships are the vertices. We leverage this
concept structure along with the relationships de-
fined in the Semantic Network to map key terms
found in the text to concepts in the UMLS.

The Specialist Lexicon is a dictionary contain-
ing both common English terms as well as domain-
specific medical terms that was developed with the
express purpose of aiding in natural language pro-
cessing of medical text (US National Library of
Medicine, 2009). The lexicon includes key linguis-
tic information for each term, including spelling
variations, conjugations or conjugation patterns,
plural forms, and more (Browne et al., 2000). The
NLM releases a set of utilities for working with
the specialist lexicon. Of these utilities, we use the
Lexical Variant Generator to generate variants and
synonyms of terms within the ICD-9 code titles.

2.4 NLP++

We select the natural language processing program-
ming language NLP++ to implement our system
(Deane et al., 2001). NLP++ utilizes a multi-
pass, multi-strategy architecture in which each user-
defined pass over the input text performs a specific
step in processing or parsing the text. Passes are
broken down into specific regions: rule regions,
code regions and declarative regions. Rule regions
perform operations on the parse tree using prede-
fined operators, code regions include code which
is executed at runtime, and declarative regions in-
clude user-defined functions that can be called from
both rule and code regions. The multi-pass strat-
egy constructs a single, best-first parse tree which
is refined by each successive pass. Sequences of
passes are grouped together as an analyzer tailored
to a particular application.

NLP++ also incorporates a hierarchical knowl-
edge base management system that allows the pro-
grammer to dynamically store and use information
extracted from input texts. The conceptual gram-
mar includes both knowledge bases and dictionar-
ies. Knowledge bases allow the user to store and
retrieve hierarchically structured information while
dictionaries consist of entries and corresponding
key/value pairs. After tokenization, a lookup is
performed on the parse tree. Nodes that match
dictionary entries are tagged with their respective

key/value pairs. This facility constitutes a key as-
pect of building effective analyzers for parsing text.

3 Related Work

Though research on automated medical coding
dates as least as far back as the 1970’s (Pows-
ner, 1978; Stanfill et al., 2010), access to data and
hardware limitations prevented the development
of large-scale solutions. The first work on ICD
coding was published in the 1990s (Larkey and
Croft, 1995). It treated the task as one of informa-
tion retrieval, employing k-nearest-neighbors, rele-
vance feedback, and Bayesian classifiers to select
and rank relevant codes. Other early approaches
leveraged biomedical entity recognition systems to
extract clinically-significant entities which could
then be linked to codes from the target coding sys-
tem (Barrows Jr et al., 2000; Friedman et al., 2004).
While these approaches saw some success on test
datasets, they were limited by their ability to gen-
eralize to new datasets and their ability to scale to
larger label spaces.

Medori and Fairon examined the automated as-
signment of ICD-9-CM codes to French language
clinical notes (Medori and Fairon, 2010). Their
system was bipartite, including an extraction step
using both dictionary-based and heuristic meth-
ods to identify relevant coding information and a
classification step using Naïve Bayes classifiers to
assign codes. Classifiers were built for codes that
appeared more than five times in the corpus, result-
ing in only 1,497 classifiers. The approach sepa-
rates the task into an extraction and classification
step and inspires our approach to isolating relevant
context which is then used for code classification.

Mullenbach et al. (Mullenbach et al., 2018) im-
plement an attentional convolutional network to
assign ICD-9 codes to discharge summaries in the
MIMIC-III dataset. They introduce train, devel-
opment and test splits for the Full set of MIMIC-
III discharge summaries as well as a Top 50 split
that includes only the 50 most frequently assigned
codes. Both the Full and Top-50 splits defined by
Mullenbach et al. have become the standard for
comparison in the literature (Yang et al., 2022). We
evaluate our system on the test set of these splits.

Yang et al. (Yang et al., 2022) address the long-
tail challenge of ICD coding by both defining a rare
code subset of the MIMIC-III dataset and introduc-
ing a training algorithm to improve performance
on rare codes. The rare disease subset, MIMIC-III-
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Full Top 50 Rare 50
Number of Notes 52,723 11,368 391

Number of Patients 41,126 10,356 386

Number of Unique Codes 8,922 50 50

Mean Codes per Note 15.9 5.7 1.0

Train/Dev/Test % 91/3/6 71/14/15 61/5/34

Table 1: Splits of the MIMIC-III dataset, including Full (Mullenbach et al., 2018), Top 50 (Mullenbach et al., 2018),
and Rare 50 (Yang et al., 2022).

rare50, includes less-common codes in MIMIC-III
and corresponding discharge summaries. The moti-
vation for this subset comes from the observation
that 4,115 of the 8,692 unique codes in the MIMIC-
III dataset occur fewer than 6 times (Yang et al.,
2022). To create this set, the authors first select
codes with fewer than 10 occurrences, then select
the top 50 from this set after splitting between train
and test. Common diseases are also manually re-
moved, resulting in 50 codes in total. Given the
reliance of pretrained language models on labeled
data, few- and zero-shot settings like those intro-
duced in the Rare-50 subset pose a challenging
problem. We use the Rare-50 split to evaluate our
system in a low-resource setting.

4 Methods

We extract all notes from the NOTEEVENTS table
in the MIMIC-III dataset (version 1.4) with CATE-
GORY field matching “Discharge Summary”, in-
cluding both reports and addenda. Notes where the
ISERROR flag is set are dropped and all addendum-
type discharge summaries are concatenated to their
corresponding original reports, following previous
work (Mullenbach et al., 2018). ICD9 codes are
then generated from the PROCEDURES_ICD and
DIAGNOSES_ICD tables using the subject and
hospital admission IDs.

4.1 Domain Knowledge Integration
The UMLS serves two key roles in our system.
The first is to identify clinically significant terms
within ICD-9 titles. The second is to resolve am-
biguous domain-specific language. To the first end,
we utilize the UMLS term mapping utility to nor-
malize terms within ICD-9 titles by mapping them
to alphanumeric lexical identifiers in the Special-
ist Lexicon, known as Entry Unique Identifiers
(EUIs). These terms can be single words or n-
grams within the title. For example, ICD-9 code

285.1 with title Acute posthemorrhagic anemia,
generates EUIs E0007202, acute posthemmorhagic
anemia; E0049207, posthemmorhagic; E0007127,
acute; and E0008920, anemia (Figure 2, Step 1).

In the second step, we leverage the normalized
terms identified in the first step to generate sets
of alternative forms of these terms (see Step 2 of
Figure 2). These alternative forms, or variants, in-
clude at minimum abbreviations, acronyms, plural
forms, conjugations, and spelling variations. To
accomplish this, we use the Lexical Variant Gen-
eration (LVG) command line utility included with
the Specialist Lexicon tools (Sherertz et al., 1989).
The LVG takes a term or list or terms as input and
outputs a list of variants according to the specified
flow control options. These options include normal-
ization methods like stripping punctuation and dia-
critics, and splitting ligatures as well as derivational
options like generating fruitful variants, inflections,
synonyms, and spelling variants. We utilize the
fruitful variants flag, which includes spelling vari-
ants, inflections, synonyms, acronyms and abbrevi-
ations, expansions of abbreviations and acronyms,
and derivations (Divita et al., 2014). This informa-
tion is aggregated and organized into knowledge
bases and dictionaries for downstream use in our
analyzer.

4.2 Note Processing

In the note processing stage, we take a set of notes,
in this case each of the test sets of MIMIC-III, and
output a set ICD-9 codes for each note. Our ap-
proach involves three steps: extraction, linking and
ranking. In the first step we decompose the input
text into structured sections. In the second step
we extract key terms and link these to central con-
cepts. In the third step we rank the set of extracted
codes using an inverse-document frequency-based
method. In this section we give an overview of the
analyzer structure and experimental setup to inves-
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Figure 2: Outline of the pipeline for term normalization and variant generation for ICD-9 titles.

tigate the effects of knowledge sources and ranking
formulations on overall ICD coding performance.

We first describe the general structure of the
NLP++ analyzer. Our analyzer consists of 27 dis-
tinct passes (for a comprehensive list with pass
types, see Appendix A) each of which performs a
distinct step in note processing. The first step for
NLP++ analyzers is the tokenization step in which
we perform tokenization of the input note using the
built-in Dictionary Tokenizer in NLP++. The Dic-
tionary Tokenizer uses a word-based tokenization
strategy which splits the text on whitespace and
punctuation. Additionally, strings containing both
digits and letters are split into tokens containing
either all letters or all numbers. The tokenization
pass also performs lookups in the dictionaries for
each token in the parse tree. If a token matches
an entry in one of the dictionaries, its attributes
are added to the corresponding parse tree node.
In the case that a multi-token phrase is matched,
the entire token sequence match is reduced to a
_phrase node in the parse tree. The output of the
tokenization step is a shallow parse tree consisting
of tokens from the input text which are tagged with
negation type and an integer EUI identifier, where
applicable.

The next three passes of the analyzer (i.e., KB-
Funcs, array_funcs, and pn_funcs) are declara-
tive passes that define functions which are called
throughout the analyzer. KBFuncs is a library pass
that provides useful functions for working with
knowledge bases. We utilize NLP++ built-in func-
tions to add unique strings, concepts, and values to
knowledge bases along with functions which facili-

tate exporting knowledge bases. In the array_funcs
pass we define functions to perform common array
operations, including array concatenation, element
swapping, QuickSort, binary search, duplicate fil-
tering, and conversion functions for interoperability
with knowledge base data structures. The pn_funcs
pass includes a single function that appends a value
to a parse tree node’s variable.

Passes 6 through 19 perform cleaning of the note
text and organization of the parse tree. Starting
with pass 6 we excise non-relevant information in-
cluding de-identified placeholder strings, headers
and footers, which empirical investigation suggests
predominantly contain metadata. After filtering,
we organize the parse tree into structural compo-
nents in order of increasing granularity: sections,
subsections, enumerated lists, and sentences. For
sections and subsections, header names (e.g., “His-
tory of Patient Illness” or “Chief Complaint”) are
added as attributes on the parent node when present.
Finally, we clean all whitespace from the parse tree,
including space characters, tabs, and newlines.

Pass 20, gather_negations, implements the
NegEx algorithm with a maximum distance of 5
nodes between a negation term and a clinical en-
tity. Our negation window size follows the original
NegEx implementation (Chapman et al., 2001) for
its relative effectiveness and ease of implementa-
tion, though some work has shown improvement
using a dynamic window size (Meystre and Haug,
2005). The first rule in the pass matches a leaf node
tagged as pre-negation, along with the next 5 sib-
ling nodes or up to the next _section /_subsection
/_sentence boundary, whichever comes first. Since
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compound medical terms are reduced to a single
_phrase node, they are treated as a single entity,
or node match. The next rule performs the same
operation for post-negation terms, instead excising
the preceding 5 nodes.

Passes 21-27 perform the term extraction and
ranking steps. The aim of these steps is to take the
structured parse tree with terms tagged for normal-
ization and rank the importance of the terms using a
term-frequency inverse-document-frequency based
method (Sparck Jones, 1972). The set of all ICD-9
titles is the reference corpus, C. We start by copy-
ing all tagged terms in the parse tree onto parent
nodes, so that each section, subsection, and sen-
tence node contains a list of all normalized terms,
represented by unique identifiers, contained within.

For any given ICD-9 code c ∈ C, we represent it
as a set of terms that occur within its title such that
Tc = {t1, t2, ..., tn} (for an example, see Figure
2). We then calculate the frequency of each unique
term within all ICD-9 titles, given by ft, to encode
the relative specificity of each term (lower corpus
frequency => higher specificity) (Sparck Jones,
1972). We then define the total weight of a code,
Wc, as the sum of the inverse document frequencies
(IDFs) of each of its constituent terms, t ∈ Tc over
the ICD-9 corpus, C, orWc =

∑|Tc|
i

fti
|C| . We then

use the same IDF term weights to calculate the
ranking score of a code with respect to a particular
note. Let G = t1, t2, ..., tm be the set of all terms
in the document of interest and H = G∩ Tc be the
set of codes in both the input text and the code c,
then the rank of code c with respect to the note,Rc,
is given by the following:

Rc =

|H|∑
j=1
WHj

Wc
(1)

By dividing by the total possible code weight, we
ensure that the ranking score for a code is not de-
pendent on the number of terms within its title.
Note that unlike TF-IDF, we are not taking into
account the frequency of a term within the note.

Since we are ranking a code based on the occur-
rence of its constituent terms within the target text,
we hypothesize that constraining term matches to
smaller sections of the text will lead to better per-
formance. To test this we re-formulate our ranking
function by assigning a weight to each code for
each section s and aggregate the ranking score for
each code by applying an aggregation function:

max, mean, or sum. We experiment with ranking
codes at the section and sentence level.

4.3 Evaluation
We evaluate all approaches on the test sets of the
Top 50 and Rare 50 splits of MIMIC-III (for a
comparison of these splits, see Table 1). Following
previous work (Mullenbach et al., 2018; Yang et al.,
2022), we use the receiver operating characteristic
area under the curve (ROC AUC), F1-score and
precision at k, for k = 5. Since ICD-coding is
a multi-class classification problem, we provide
ROC AUC and F1-score results using both macro-
and micro-averaging.

4.4 Execution Characteristics
The note processing stage is conducted in parallel
on the Clemson Palmetto HPC cluster using only
CPUs. Notes are first written to individual text files,
which are then mapped to available processes with
GNU Parallel (Tange, 2022). Each process runs
an instance of the note processing analyzer in the
NLP++ engine. The final pass in the analyzer, Pass
27, writes the analyzer results to a single-line CSV
file containing the hospital admission ID (HADM
ID) for the discharge summary followed by ranking
scores for all ICD-9 codes, in predetermined order.
Each of these output files is read and appended to a
single CSV file which is indexed by HADM ID and
has columns corresponding to ranking scores for
each ICD code. This final step is also performed
in parallel using GNU Parallel to coordinate the
process.

5 Results

We denote each of our methods as follows: LexSyn
refers to the use of lexical variants and synonyms
for normalization. The subscript refers to the aggre-
gation method-max, sum, or mean-and the scope
of term matches-sent for sentence-level, sect for
section level, and full for the full note.

5.1 Rare 50
Results for the Rare 50 split are shown in Ta-
ble 3. We find that our LexSyn-Sectionmax
analyzer achieves a level of performance com-
parable to recent state-of-the-art approaches in
terms of ROC AUC, falling within 4 points
of KEPTLongformerfinetuned, the best-performing
deep-learning model.

Despite the slight performance difference, we
identify a few key advantages which support the
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ROC AUC F1-Score Prec. @ k

Approach Micro Macro Micro Macro 5

CAML (Mullenbach et al., 2018) 91.1 87.5 52.4 60.6 61.1
PLM-ICD (Huang et al., 2022) 91.9 89.3 67.6 64.3 61.7
MSMN (Yuan et al., 2022) 94.7 92.8 72.2 68.1 67.6
KEPTLongformer (Yang et al., 2022) 94.2 92.0 72.7 68.5 67.4

LexSyn-Sectionmax 69.8 70.9 33.3 37.1 29.4
LexSyn-Sectionmean 67.8 68.9 30.1 33.7 26.3
LexSyn-Sectionsum 68.6 71.3 31.7 39.6 27.6
LexSyn-Sentmax 69.6 69.1 31.3 34.4 29.0
LexSyn-Sentmean 71.7 72.2 34.5 37.1 31.8
LexSyn-Sentsum 70.0 72.2 32.9 40.8 27.7
LexSyn-Full 68.0 68.0 31.9 38.5 29.6

Table 2: Results on the MIMIC-III Top 50 test set (Mullenbach et al., 2018). Results for all approaches are run to
completion. The best performing result for each metric from our approaches is bolded.

ROC AUC F1-Score

Approach Micro Macro Micro Macro

MSMNpretrained 76.2 75.3 17.1 17.2
MSMNzero-shot 48.9 52.3 3.5 4.0
MSMNfinetuned 44.0 58.2 3.3 4.2
KEPTLongformerp 82.3 81.4 30.9 25.8
KEPTLongformerz 76.5 74.9 16.7 15.2
KEPTLongformerf 83.3 82.7 32.6 30.4

LexSyn-Sectionmax 77.8 80.0 12.6 24.7
LexSyn-Sectionmean 76.7 77.2 12.4 23.4
LexSyn-Sectionsum 77.0 80.4 12.5 20.8
LexSyn-Sentmax 76.2 81.0 10.2 28.2
LexSyn-Sentmean 74.0 77.6 8.8 28.2
LexSyn-Sentsum 75.9 80.8 10.3 29.2
LexSyn-Full 77.8 80.0 12.2 23.6

Table 3: MIMIC-III Rare 50 test set results. Re-
sults for previous approaches from (Yang et al., 2022).
The best performing result for each metric from our
approaches is bolded.

utility of our analyzer in a clinical setting. The
first of these is the potential for explainability, as
described in the next section. Our system is fully
traceable and provides evidence from the text to
support a particular code assignment. Furthermore,
our approach does not require any training data
(labeled or unlabeled) which is advantageous in a
low-resource setting.

5.2 Top 50
Results for the Top 50 split are shown in Table
2. Results on the Top 50 split are comparable to
the results for the Rare 50 split but not as close
to recent state-of-the-art deep learning methods on
the Top 50 split. We note that the Top 50 split has

a smaller label space (50 labels vs 8,922 for the
full set) and a large number of samples per label,
making this dataset significantly less challenging
for deep learning methods than the Rare 50 and
Full sets. We nonetheless find that our approaches
achieve a reasonable performance baseline.

We perform additional analysis on individual
codes to explain the resulting code predictions. Ob-
servation of the per-code F1-scores is shown in
Figure 3. Performance for individual codes on the
Top 50 dataset is highly variable, with F1 scores
that range from nearly 0.9 to 0.0. We conduct anal-
ysis for the three ICD-9 codes with individual F1
scores equal to 0.0 (412, 285.1, and 39.61). We
plot the confusion matrices, seen in Figure 4, for
these codes and observe for these codes a positive
label is never or almost never predicted.

For code 412, “Old myocardial infarction”, man-
ual inspection reveals that this code is almost ex-
clusively assigned when “myocardial infarction”,
or its initialism MI, occurs in the Past Medical
History section of the discharge summary. In fact,
applying a simple matching rule for these terms
in the Past Medical History section significantly
outperforms our approach, with an F1 score on the
Top 50 test set of 58.2. Although our system does
not leverage code title information to restrict code
matches to sections in the text, our system does
provide support for incorporating this type of rule.

For code 285.1, “Acute posthemorrhagic ane-
mia”, we find that the terms themselves do not ap-
pear in the text. We suspect that the indicator of this
code comes from blood sample results, for which
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Figure 3: F1-score per code on the Top-50 dataset, sorted by decreasing F1-score. Bar colors represent frequency of
the code in the Top-50 training set.

Figure 4: Confusion matrices for the three codes in the
Top 50 set with F1-Score equal to 0.0.

abnormal red blood cell counts and hemoglobin
levels are marked by an asterisk. This type of infer-
ence from non-textual signifiers or numerical data
is outside the current scope of our analyzer, though
one could add a heuristic rule to help identify these
cases.

For code 39.61, “Extracorporeal circulation aux-
iliary to open heart surgery”, we find that the title
and key subphrases of the title do not occur as
such in the text. In the set of discharge summaries
selected for review, we observe the presence of
procedures which may classify as extracorporeal
circulation methods, for example “CPB”, an initial-
ism for cardiopulmonary bypass. Further investiga-
tion reveals that cardiopulmonary bypass (UMLS
CUI: C0007202) is defined as a narrower, or child,
concept of extracorporeal circulation (UMLS CUI:
C0015354). This suggests that leveraging onto-
logical information beyond just synonyms may be
helpful for improving performance.

5.3 Codes with Multiple Occurrences

For the Top 50 and Rare 50 datasets, our analyzer
generates code ranks for each sentence or section.

When the same code occurs in multiple sentences
or sections the result is a large number of ranking
scores for a code in the note. To handle the situation
in which a code occurs multiple times in the same
note, we use one of three aggregation methods: the
mean, the sum or the median of the ranks. However,
we suspect that noisy ranking scores for frequent
terms adversely affect performance.

6 Future Work

Our approach to extracting clinical entities does
not differentiate between semantic interpretations
of a particular medical entity. This is particularly
salient for abbreviations and acronyms, which often
require contextual clues to disambiguate (Savova
et al., 2008). Consider, for example, the term ‘ms’,
which maps to 12 unique concepts in the 2007AC
UMLS (Savova et al., 2008). Our system would, in
practice, give equal weight to each of these senses
of the term ‘ms’ without attempting to identify the
true sense of the term in the text. An lucrative path
for future work may be to incorporate heuristic
algorithms for word-sense disambiguation (WSD)
(Schuemie et al., 2005; Chasin et al., 2014) into the
entity extraction passes of the analyzer.

In our system we utilize the Lexical Variant Gen-
erator of the UMLS to identify variants of key
medical terms. This allows us to normalize these
variants in the text by mapping them to a central
concept. We experiment with different variant gen-
eration setups as outlined in Section 4.1. We find
the literature on lexical normalization for medical
entities to be sparse (Divita et al., 2014; Hedberg,
2013). An in-depth analysis of the downstream
impact of different variant generation setups would
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be a useful tool for guiding the construction of
systems that utilize the lexical tools. Additionally,
we hypothesize that our system could better lever-
age existing ontological information, including free
text descriptions and hierarchical relationships.

The dataset on which we evaluate our system,
MIMIC-III (Johnson et al., 2016b), is a large and
meticulously compiled dataset which has realized
significant progress toward the systematic study
of medical coding. Due to the increasing ubiquity
of MIMIC in the literature on medical coding, the
validation of ground truth labels in the dataset has
become supremely important (Searle et al., 2020).
As our system is developed and built entirely from
available medical sources using knowledge-based
algorithms, the system output is consistent and re-
producible. It is potentially usable as a companion
to deep learning based methods to aid in the de-
velopment of gold-standard labels for the MIMIC
dataset.

Perhaps the most critical area for future re-
search that we identify is the potential of our
approach to be utilized as an assistive software
for human coders. In this role our system does
not replace human coders but can be used as
a “first pass” to coding or to flag inconsisten-
cies for human verification. Code for our sys-
tem is made available at https://github.com/
ashtonomy/low_resource_icd_coding.

Limitations

Despite showing competitive performance in few-
or zero-shot settings, our analyzer is limited by its
performance in high-resource settings, such as the
Top 50 test set discussed in Section 5. More work
is needed to improve performance in this domain
before deployment in a clinical setting is consid-
ered. We also note that our system is evaluated on
medical notes sourced from a single hospital sys-
tem. In general, we find that more robust evaluation
on data from different source domains is needed to
more effectively gauge performance. As discussed
in 6, this is a challenge at present due to limited
access to openly available annotated medical notes.
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A Analyzer Pass Structure

# Pass Type

1 dicttokz Tokenizer

2 KBFuncs @DECL

3 array_funcs @DECL

4 pn_funcs @DECL

5 init_kb @CODE

6 clean_notes @RULES

7 get_negation @RULES

8 get_breaks @RULES

9 get_sections @RULES

10 get_loose_passages @RULES

11 group_loose_passages @RULES

12 remove_breaks @RULES

13 get_subsection_headers @RULES

14 get_subsections @RULES

15 get_list_itemsR @RULES

16 get_lists @RULES

17 get_sentences @RULES

18 sentences @RULES

19 remove_whitespace @RULES

20 gather_negations @RULES

21 shift_keywords @RULES

22 keyword_funcs @DECL

23 set_line_count @CODE

24 extract_codes @RULES

25 rank_codes @CODE

26 aggregate_and_predict @CODE

27 kb_out @CODE

Table 4: Pass structure in the NLP++ ICD-coding ana-
lyzer for MIMIC-III notes. Passes marked R are recur-
sive.
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Abstract

In emergency wards, patients are prioritized
by clinical staff according to the urgency of
their medical condition. This can be achieved
by categorizing patients into different labels
of urgency ranging from immediate to not
urgent. However, in order to train machine
learning models offering support in this regard,
there is more than approaching this as a multi-
class problem. This work explores the chal-
lenges and obstacles of automatic triage using
anonymized real-world multi-modal ambulance
data in Germany.

1 Introduction

The differentiation of treatment urgency is an im-
portant step in clinical emergency medicine. Vari-
ous validated triage systems have been established
for this purpose, and in Germany, their use is virtu-
ally mandatory. In practice, this means that within
the first 10 minutes of a patient’s arrival, assigning
a treatment priority and thus setting a time target
until contact with a medical professional is a re-
quired process.

According to the Manchester Triage System
(MTS), the possible triage level ranges from imme-
diate to non-urgent, which is mainly meant as guid-
ance to lead employees in the emergency rooms
(ER) in making their triage decisions. Although
only five triage levels exist, the problem is not as
straightforward as it seems. The triage model of
MTS follows a decision tree, where on the first
level, a so-called diagram or lead symptom (di-
agnosis) is determined, and on the second level,
indications (discriminator) specific to the selected
diagram are identified. The indications translate
to predefined triage levels, where the most urgent
triage level among them expresses the severity of
the case. Since the diagrams and indications are
not defined by sharp boundaries, it may well hap-
pen that a medical professional reaches the same

indication through different diagrams. So, the same
triage level can be decided on by choosing different,
but equally valid indications.

The data used in this work is a mixture of multi-
ple text fields describing the situation of the patient
and some first diagnosis (in the form of text), and
a large set of structured information, i.e. medical
measurement of vital signs, age or sex. In particu-
lar, vital signs such as temperature, oxygen satura-
tion, etc. are an essential part of the MTS model
defining an indication.

In this work, we have built prototypical machine
learning models using retrospective data for au-
tomatic triage in the emergency ward and exam-
ine the results and obstacles of our approaches.
More specifically, we examine to which extent a
transformer-based BERT model can address the
problem of noisy, unbalanced, semi-structured
multi-class real-world data. Different training
strategies are explored, particularly to deal with
the different interconnected classes as well as to
deal with the varying label frequencies. Moreover,
we investigate how we can extend a given BERT
model, which is normally only suitable for text data,
by additional structured information. Finally, we
test an approach to build up a hybrid model, com-
bining machine learning with a rule-based compo-
nent.

2 Related Work

Various studies so far have looked at the possibili-
ties of automatic triage but differ in terms of data,
models/solutions, target, and results. Stewart et al.
(2023) provide an overview of different triage use
cases strongly related to NLP. However, many ap-
proaches target, for instance, text (Bergman et al.,
2023) or a mix of structured and unstructured (text)
data (Klug et al., 2020; Arnaud et al., 2023) to
predict a binary label, such as mortality or hospital-
ization. Some others focus on a larger number of
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triage labels used in emergency care, such as Levin
et al. (2018); Sarbay et al. (2023). Depending on
the given data, solutions such as gradient-boosting
(Klug et al., 2020) or BERT-based approaches (Ar-
naud et al., 2023), also in a hybrid setup (Wang
et al., 2023), are popular. Also, with the rise of
large language models, LLM-based solutions have
been tested (Frosolini et al., 2024; Levine et al.,
2023; Sarbay et al., 2023). So far, however, there
are no studies that have automatically determined
treatment priorities based on data from emergency
services, nor are there any that predict such a large
number of different classes simultaneously as we
are trying to do.

In this work, we deal with different types of data
- (partly sequential) numerical, categorical, and text
data. To handle such data types, many different
approaches and architectures exist, to combine dif-
ferent ‘modalities’, such as for instance mapping all
different information into one vector space (Reth-
meier et al., 2020), the combination of transformers
with linear layers and LSTMs (Yang and Wu, 2021;
Deznabi et al., 2021), or LLMs with time series
(Jin et al., 2023). However, in this work, we rely
on a simple architecture based on transformers, in-
tegrating different data types and exploring how far
we can get.

3 Data and Methods

This work is based on anonymized ambulance re-
ports with triage assignments from a German emer-
gency ward covering two years and including more
than 18k cases. The data was recorded electroni-
cally and contains a wide variety of different infor-
mation—overall, about 600 different features exist,
ranging from binary to numeric and sequential (e.g.,
sequences of particular measurements during the
ride in the ambulance). The data includes informa-
tion such as age, sex, blood pressure, pain score,
information about consciousness, burns, medica-
tions, or motoric skills. In addition to the struc-
tured information, the data also includes text fields,
describing the emergency situations, an initial di-
agnosis, injuries, symptoms, as well as the original
cause of alarm. An example of a patient case is
provided in the Appendix.

The data represents real-world data and has been
labeled with the triage categories, consisting of a
diagram (diagnosis) and an indication (discrimina-
tor), by the emergency department staff in accor-
dance with the MTS. As mentioned, the selected

Figure 1: Distribution of diagrams and indications with
the two most frequent diagrams Discomfort in adults
(2480) and Falls (2104) and the two most frequent in-
dications Recent problem (3931) and Moderate pain
(3116). For more details see Table 13 and Table 14.

diagram limits the possible indications, and each in-
dication directly translates to a triage level. Several
different diagrams and indications may be valid,
but only one of each is annotated—in the case of
indications, it is the most urgent one. Even if sev-
eral equally serious indications may apply, only one
is labeled. According to MTS, 54 diagrams, 125
indications and 5 triage levels exist. However, due
to the real-world context of the data, some labels
do not occur in the dataset at all. Figure 1 provides
an overview of the label distribution of indications
and diagrams in the data. A more detailed overview
is provided in the Appendix.

3.1 Data Challenges

Due to the nature of the data properties and the
collection procedure, the dataset used in this work
poses non-trivial challenges. Since the data has
been gathered in the real-world, there is some
amount of noise incorporated into the data. The
text fields have been filled in by many different
paramedics and the abbreviations are not standard-
ized. In a few cases, patients’ symptoms resolved
between data collection and arrival at the hospi-
tal, resulting in a different label than suggested by
the data collected. Additionally, the distribution
of each of the three labels is unbalanced, with di-
agnosis and indication having many distinct labels
resulting in a long tail problem, as shown in Figure
1 and Tables 13 & 14.

Some of the diagram or indication categories are
similar to each other in how they are assessed but
differently impact the triage process. Extensive ex-
perience guide medical professionals in choosing
between these categories. For example, the two
indications Abnormal cardiac history and Cardiac
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pain, often only differ in how the medical profes-
sional assesses the state of the patient, while being
associated with different triage levels.

Moreover, in many cases, the text features are
not sufficient for the successful prediction of dia-
grams or indications. Non-text features like temper-
ature, oxygen saturation and others can be crucial
to identify certain diagrams or indications. For in-
stance, the Very Hot indication is given at a body
temperature above 41°C or Hyperglycemia is de-
fined as a glucose level above 17 mmol/l. This
limits the model’s ability to learn from text fea-
tures alone since these values are not necessarily
included in the text features. Since only a single
diagram and a single indication per data point were
labeled, although several may apply, the data is
less effective in training, as correlations between
the diagram or indication classes are not learnable.

3.2 Models

For all our experiments, we rely on medBERT.de
(Bressem et al., 2023) and examine different setups,
with respect to how we train the model, as well as
the input we consider. In Training we first differ-
entiate between using the standard cross-entropy
loss (normal), to establish a basic baseline, versus
weighted cross-entropy loss (weighted). In addi-
tion, we examine models trained independently on
each class (single) versus multi-task models (MT)
trained on all three classes at the same time. In the
MT setup, each class is trained together with the
other target classes, and during training the focus
(in terms of loss) slowly shifts towards the target
class, as depicted in Figure 2.

Figure 2: Training of a multi-task model with a focus
on triage class - with each epoch the loss contribution
optimizes towards triage class

In addition, we test different setups regarding
input data: as stated before, not all relevant infor-
mation for correct classification is given through
text data. We therefore examine how additional
structured information (pain score, temperature,
blood sugar level, heart rate, diastolic/syst. blood

pressure, age, sex) could be inserted into the BERT-
based solution. In the first setup, we translate
structured data into a single sentence using expert
knowledge and add these sentences to the standard
text data using [SEP] tokens. We refer to this ap-
proach as ‘extra as text’. For instance, the pain
score is translated into a sentence such as ‘Pat. has
[no/slight/moderate/severe/very severe/the worst
imaginable] pain.’1 The mapping of numeric val-
ues into categories is done by medical guidelines.

Figure 3: Overview of the architecture in the extra as fea-
ture approach - each extra feature is scaled-up through
a two-layer MLP and is then inserted, together with the
output of medBERT.de, into a classification head

Alternatively, in the second setup, we scale the
features through two-layer MLPs and process them
in a custom classification head together with the
BERT embeddings of the standard text data, as
depicted in Figure 3. We refer to this approach as
‘extra as feature’. An advantage of this approach
is that no bias is introduced through the manual
translation into sentences. Since many labels do
not occur frequently, the integration of a rule-based
component that processes structured information
seems helpful in certain scenarios. For this, we
examine if an external, rule-based component using
expert knowledge targeting vitals could be easily
integrated into our system. We refer to this data as
‘expert’. This data is also integrated into our model
through the use of [SEP] tokens. Every model,

1As we work with German we use this translated pattern:
‘Pat. hat [keine/leichte/mäßige/starke/sehr starke/stärkste
vorstellbare] Schmerzen.’. More examples can be found in
the Appendix.
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except the one using the standard cross-entropy
loss (normal), incorporates class weights to address
the dataset’s unbalanced label distribution.

4 Experiments

4.1 Setup
For our experiment, we randomly split the data into
training, development, and test sets (80/10/10%).
Patient cases that were missing labels were re-
moved, as well as labels that occurred only once.
All models have been trained with early stopping
and then applied to the test data and evaluated using
precision, recall, and F1 (weighted & macro).

4.2 Results
Table 1 presents the weighted and macro F1 scores
of different single-class and multi-task models.
As the data contains a large number of different
classes, which are unbalanced, it is not surprising
that macro scores are generally much lower than
weighted scores, particularly for indications, which
include more than 120 labels. In the single model
setup it is difficult to see any additional value of
training the BERT model with weighted loss. What
we can see, however, is that additional information
(extra (text/feat) and expert) seems to have a pos-
itive impact on the model performance. In many
cases, the impact is particularly visible in the case
of macro F1. Most notable here is the inclusion of
the simple, expert model.

Table 1: Performance according to F1 weighted (w) and
macro (m) of (upper part) single models and (middle and
lower part) multi-task models on triage data, including
the prediction of the triage label (P) and the deduction
of the triage label from the predicted indication (D).

Diagram Discrimin. Triage (P) Triage (D)
w m w m w m w m

normal 0.592 0.384 0.33 0.102 0.54 0.34 0.542 0.334
weighted 0.607 0.401 0.272 0.12 0.539 0.356 0.528 0.33
extra (text) 0.607 0.414 0.279 0.132 0.542 0.349 0.533 0.338
extra (feat.) 0.587 0.415 0.232 0.133 0.536 0.325 0.513 0.305
expert 0.608 0.416 0.303 0.147 0.55 0.362 0.545 0.379
MT weighted 0.588 0.377 0.325 0.145 0.55 0.363 0.564 0.354
MT extra-text 0.6 0.411 0.323 0.136 0.576 0.379 0.549 0.368
MT extra-feat 0.613 0.41 0.316 0.113 0.558 0.392 0.544 0.314
MT expert 0.6 0.415 0.331 0.152 0.574 0.415 0.554 0.367
MT exp.&ext.-text 0.612 0.428 0.328 0.157 0.575 0.403 0.552 0.35
MT exp.&ext.-feat 0.599 0.393 0.27 0.121 0.556 0.389 0.548 0.375

Comparing the single and multi-task models, the
table shows a clear tendency that multi-task models
perform better than the single models. Again, this
improvement can be particularly seen in the macro
F1 evaluation. More notable (only included in the
Appendix), is that our multi-task learning leads
to improvements for the given target class. The
multi-task models that combine the different expert

and extra features generally appear to provide the
best approach, especially the model including extra-
text.

Table 1 depicts two approaches to predict the
triage level: Triage (P) represents the direct pre-
diction of triage labels and Triage (D) represents
the deduction of the triage level from the predicted
indication label. In the emergency ward, Triage (D)
would be the regular way how to solve the problem.
In many cases Triage (P) provides slightly better
results, in terms of weighted and macro F1, com-
pared to the deduction. However, while the direct
approach sees triage labels as uncorrelated classes,
in reality they are correlated. It certainly makes a
difference, given a gold label red (immediate), if
we predict orange (very urgent) or green (standard),
as orange is closer to red and also more urgent. For
this reason, we calculate the MRSE (mean root
squared error) using the model MT expert & extra-
text and for Triage (P) achieve a value of 0.588,
and for Triage (D) a score of 0.525. This indicates
that the deduction might be the better choice, as the
deduction provides labels closer to the gold label.

Table 2: Top-3 performance according to F1 weighted
(w) and macro (m) of a selection of models.

Diagram Discrimin.
w m w m

normal 0.86 0.607 0.572 0.247
MT weighted 0.737 0.517 0.633 0.285
MT expert 0.859 0.612 0.628 0.293
MT exp. & ext.-text 0.843 0.589 0.624 0.28
MT exp. & ext.-feat 0.836 0.631 0.581 0.287

One of the challenges handling this data is that
multiple diagram and indication labels can be valid,
but only one is annotated. This can have an influ-
ence on the performance of our models in case we
predict valid labels different to the annotation in
the dataset. In order to examine this we evaluate
our models by considering the top-3 predictions
of diagrams and indications, as depicted in Table
2. The results show, in all cases, a very strong
boost in performance, particularly for diagrams. In
the case of indication, the weighted score achieves
0.633, while the macro score still remains below
0.3, which might be due to the long tail problem
and the fact that many indications require addi-
tional structured information.

4.3 Analysis & Discussion

As the data includes a large variety of labels with
a long tail problem - and many of the cases occur
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only a few times - the task is very challenging. At
the same time, many labels do not depend solely on
the text features. Therefore, it is difficult to detect
them unless the included text contains a clear hint.
For instance, for the indication Suspected Sepsis,
a patient needs to have at least two of the follow-
ing symptoms: new onset of confusion, increased
respiratory rate (above 22/min) or low blood pres-
sure (below 100 mmHg systolic), where the last
two symptoms depend on structured data. While
our top-3 approach tries to overcome the multiple
labels problem, the moderate results for top-3 in-
dications show the limitations of pure text-based
approaches for the triage classification problem.
We assume that more structured data needs to be
included in the model to better deal with labels
that are less connected to text data. Moreover, it
might be beneficial to include additional rule-based
components/predictions, in order to deal with the
long tail problem. Data-driven machine learning is
popular, but if data is sparse or expensive to gather
rule-based components might be a valid approach
to overcome its problems.

Figure 4: Confusion matrix of top-1 Triage (D) label
prediction from red to blue (very urgent to not urgent).

Instead of tackling the problem with a pure text-
based transformer approach, we achieve better re-
sults by integrating additional data. Text-based
integration appears to be more promising than the
feature-based approach. Unfortunately, the text-
based approach is not scalable, as we need to deal
with the model’s limited input size. Therefore, the
feature-based approach combining BERT embed-
dings with additional features might be the best
approach for using more structured features.

In addition to the missing labels and the existing

noise, many labels are generally difficult to pre-
dict because they are very abstract, such as Recent
Problem. According to the definition ‘A problem
that occurred within the last week is referred to as
a recent problem’. Although very general, it is, still
one of the most frequent labels in our data, and
similar others exist.

While unbalanced data is a problem for machine
learning, in a real-world setup for triage prediction,
it makes a difference if a patient is accidentally
predicted with a triage label that is too high or
too low. At the same time, particularly the very
urgent classes are most important to predict cor-
rectly. Figure 4 depicts the confusion matrix for
the top-1 triage label prediction. The figure shows,
for instance, that various cases are assigned with a
higher triage label and a similar number of cases
with a lower triage label, which could risk a pa-
tient’s life. Even more seriously, various of the
patients labeled as red (immediate treatment) are
labeled with a lower label. In order to introduce
a (hybrid) machine learning system for automatic
triage, this is the most important problem to ad-
dress. Figure 5 (Appendix) shows an alternative
confusion matrix when we apply the top-3 indica-
tion prediction, infer the triage level, and always
choose the most urgent one. This might be a pos-
sibility to reduce triage predictions below the gold
label. However this approach still offers space for
improvements.

5 Conclusion

In this work, we presented a challenging real-world
problem to support employees in an emergency
ward. Although the data is multi-modal (numer-
ical and text), we approached the problem with
text-based transformer solutions. Considering the
difficulties with noise, missing labels, the number
of different labels, and the long tail problem, the
results are promising. However, we foresee that
we need to include additional information as extra
features to further boost the performance and to
provide models with a more substantial benefit in
an emergency ward.

Limitations

The presented solution still has many limitations,
as presented in the discussion. Naturally noise
has some impact on the model’s performance, but
overall, we also need to investigate how to boost
the performance further and particularly examine
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how we perform in really urgent cases. While mis-
classification is negligible for uncritical cases, it is
certainly not in very critical ones.

Ethical Statement

Experiments have been conducted on retrospective
data. Therefore, our model does not directly im-
pact patient treatments. In the foreseen application,
the model is intended to be integrated into an as-
sistance and decision-support system (when good
enough), providing additional information for the
human performing the actual triage. Where possi-
ble, the medical personnel will be provided with
explanations and further details corroborating the
suggested categorizations.

The project is based on a comprehensive pro-
tocol to ensure privacy and data protection. For
the model’s training and testing, the retrospective
data has been completely anonymized and stripped
of any personal, local, and temporal information
that would allow reference to patients or medical
personnel involved.
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A Appendix

Table 3 to Table 12 depict how the generation of
the sentences is conducted in the case of text as
feature. This categorization is in line with medical
guidelines and how different indications are defined
(e.g., hypertension).

Table 13 to Table 15 provide an overview of
the frequency of the three different labels in our
dataset.

Table 16 presents the detailed results of Table
1 above. Table 3 to Table 12 present the medical
knowledge used to translate non-text features into
text features for the extra as-text models.

Figure 5: Confusion matrix of top-3 Triage (D) label
prediction, where only the most urgent color among
the top-3 predictions is counted, from red to blue (very
urgent to not urgent).
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Table 3: Translation of pain score into a template-based sentence: “Pat. hat pain_type Schmerzen.” (Pat. has
pain_type pain.)

pain score 0-1 2-3 4-5 6-7 8-9 10

pain_type “keine” “leichte” “mäßige” “starke” “sehr starke” “stärkste vorstellbare”
“no” “light” “moderate” “strong” “very strong” “strongest imaginable”

Table 4: Translation of sex value into a template-based sentence: “Pat. ist sex_type.” (Pat. is sex_type.)

sex value 0 1

sex_type “männlich” “weiblich”
“male” “female”

Table 5: Translation of diastolic value into a template-based sentence: “Pat. hat einen diastolischen Blutdruck von
XmmHg.” (Pat. has a diastolic blood pressure of XmmHg.)

diastolic value X

Table 6: Translation of age into a template-based sentence: “Pat. ist ein age_type im Alter von age.” (Pat. is a
age_type in the age of age.)

age ≤1 >1 & ≤3 >3 & <18 ≥18 & ≤40 >40 & ≤65 >65

age_type Baby Kleinkind Kind Erwachsener Erwachsener mittleren Alters Senior
baby toddler child adult middle-aged adult senior

Table 7: Translation of pulse value into a template-based sentence: “Pat. hat einen pulse_type Puls von pulse value.”
(Pat. has a pulse_type pulse of pulse value.)

pulse value ≤60 >60 & <100 ≥100 & ≤120 >120

pulse_type “zu niedrigen” “normalen” “erhöhten” “stark erhöhten”
“too low” “normal” “elevated” “highly elevated”

Table 8: Translation of temperature value into a template-based sentence: “Pat. ist temp_type mit einer Körpertem-
peratur von temp value Grad Celsius.” (Pat. is temp_type with a body temperature of temp value degrees Celsius.)

temperature value ≤35 >35 & <37.5 ≥37.5 & <38.5 ≥38.5 & <41 ≥41

temp_type “unterkühlt” “normal” “überwärmt” “heiß” “sehr heiß”
“undercooled” “normal” “overheated” “hot” “very hot”

Table 9: Translation of spo2 value into a template-based sentence: “Pat. hat eine spo2_type Sauerstoffsättigung von
spo2 value%.” (Pat. has a spo2_type oxygen saturation of spo2 value%.)

spo2 value <90 ≥90 & <95 ≥95

spo2_type “sehr niedrige” “niedrige” “normal”
“very low” “low” “normal”

Table 10: Translation of blood sugar value into a template-based sentence: “Pat. hat einen bs_type Blutzuckerspiegel
von bs valuemg/dl.” (Pat. has a bs_type blood sugar level of bs valuemg/dl.)

bs value ≤54 >54 & <70 ≥70 & ≤100 >100 & <306 ≥306

bs_type “zu niedrigen” “niedrigen” “normalen” “erhöhten” “zu hohen”
“too low” “low” “normal” “increased” “too high”
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Table 11: Translation of systolic value into a template-based sentence: “Pat. hat einen systolic_type systolischen
Blutdruck von systolic valuemmHg.” (Pat. has a systolic_type systolic blood pressure of systolic valuemmHg.)

systolic value <90 ≥90 & <100 ≥100 & ≤120 >120 & ≤140 >140

systolic_type “zu niedrigen” “niedrigen” “normalen” “hohen” “zu hohen”
“too low” “low” “normal” “high” “too high”

Table 12: Translation of heart frequency value into a template-based sentence: “Pat. hat eine hf_type Herzfrequenz
von heart frequency value.” (Pat. has a hf_type heart frequency of heart frequency value.)

heart frequency value <40 ≥40 & ≤60 >60 & ≤100 >100 & <140 ≥140 & <160 ≥160

hf_type “zu niedrige” “niedrige” “normale” “hohe” “zu hohe” “extrem hohe”
“too low” “low” “normal” “high” “too high” “extremely high”

Table 13: Frequency of diagram (diagnosis) labels in the dataset

diagram label # in dataset

Unwohlsein bei Erwachsenen Discomfort in adults 2480
Stürze Falls 2104
Extremitätenprobleme Limb problems 1735
Atemproblem bei Erwachsenen Respiratory problem in adults 1369
Abdominelle Schmerzen bei Erwachsenen Abdominal pain in adults 1123
Thoraxschmerz Thoracic pain 1120
Kopfverletzung Head injury 808
Urologisches Problem Urological problem 765
Wunden Wounds 586
Herzklopfen Palpitations 554
Kollaps Collapse 537
Rückenschmerz Back pain 402
Betrunkener Eindruck Drunken impression 392
Durchfälle und Erbrechen Diarrhea and vomiting 244
Generelle Indikatoren General indicators 234
Gastrointestinale Blutung Gastrointestinal bleeding 207
Angriff (Zustand nach) Attack (condition after) 179
Überdosierung und Vergiftung Overdose and poisoning 143
Körperstammverletzung Trunk injury 142
Schweres Trauma Severe trauma 127
Diabetes Diabetes 118
Nackenschmerz Neck pain 116
Allergie Allergy 106
Auffälliges Verhalten Abnormal behavior 98
Kopfschmerz Headache 89
Besorgte Eltern Concerned parents 68
Atemproblem bei Kindern Breathing problem in children 67
Selbstverletzung Self-harm 57
Krampfanfall Seizure 56
Psychiatrische Erkrankung Psychiatric illness 48
Abdominelle Schmerzen bei Kindern Abdominal pain in children 45
Unwohlsein bei Kindern Malaise in children 41
Abszesse und lokale Infektionen Abscesses and local infections 38
Bisse und Stiche Bites and stings 32
Verbrennungen und Verbrühungen Burns and scalds 30
Fremdkörper Foreign bodies 24
Gesichtsprobleme Facial problems 24
Asthma Asthma 21
Hodenschmerz Testicular pain 20
Halsschmerz Sore throat 12
Hautausschläge Skin rashes 9
Unwohlsein bei Neugeborenen Discomfort in newborns 7
Chemikalienkontakt Chemical contact 7
Augenprobleme Eye problems 6
Vaginale Blutung Vaginal bleeding 3
Unwohlsein bei Säuglingen Discomfort in infants 2
Ohrenprobleme Ear problems 2
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Table 14: Frequency of indication (discriminator) labels
in the dataset

indication label # in dataset

Recent problem 3931
Moderate pain 3116
Unstoppable minor bleeding 1322
Recent mild pain 1049
Low O2 saturation 625
Rapid onset 579
Report of unconsciousness 377
Abnormal cardiac history 334
Inappropriate history 321
New abnormal pulse 311
Altered state of consciousness can be fully explained by alcohol consumption 267
Cardiac pain 248
Swelling 242
Hot 214
–None 211
Gross misalignment 203
Persistent palpitations 191
Severe pain 152
Very low O2 saturation 151
Tarry stools or fresh blood accumulation 131
Altered state of consciousness 124
Colicky pain 121
Vomiting 118
Urinary retention 118
Conspicuous injury mechanism 108
Tendency to bleed 91
Pleural pain 84
Macrohematuria 74
Shock 71
Overheated 66
Abnormal psychiatric history 63
Wheezing 61
Report of acute vomiting of blood 58
Conspicuous hematological or metabolic anamnesis 58
Fresh neurological deficit 51
Suspected sepsis 50
Moderate risk of (future) self-harm 48
Cannot speak in complete sentences 48
Hyperglycemia 46
Inadequate breathing 42
Signs of dehydration 41
Compromised airway 39
Fresh or old blood stools 38
State of exhaustion 35
High risk of (future) self-harm 33
Moderate pain or itching 33
Conspicuous respiratory history 33
Direct neck trauma 32
Recent injury 32
Scalp hematoma 32
New state of confusion 29
Noticeable restlessness 29
Productive cough 28
Unstoppable major bleeding 27
Local infection 24
Vomiting of blood 23
Malposition 22
Dysuria 20
Unable to walk 19
Acute neurological deficit 19
Hypoglycemia 19
Smoke exposure 19
Local inflammation 18
Hypothermia 18
Recent mild pain or itching 15
Direct back trauma 13
Altered state of consciousness 12
Persistent vomiting 12
Extensive secretions or vesicle formation 11
Inhalation trauma 10
Impaired (distal) circulation 10
Facial edema 10
Scrotal swelling/redness 10
Low peak flow 8
Known or suspected immunosuppression 8
Acute respiratory distress 8
Moderate lethality 8
Report of overdose or intoxication 8
Inadequate history (of alcohol consumption) 7
Hyperglycemia with ketosis 7
Abnormal history of GI bleeding 6
Life-threatening hemorrhage 6
Report of head injury 6
Persistent seizure 5
Tongue edema 5
Electrical accident 5
No response to own asthma medication 5
Radiation of pain into the shoulder 5
Critical skin condition 5
Open fracture 5
Very low peak flow 5
Very hot 4
Pain radiating to the back 4
Overheated joint 3
Stridor 3
Moderately lethal animal bite 3
...

Table 15: Frequency of triage labels in the dataset

triage label # in dataset

red 187
orange 1551
yellow 8785
green 5684
blue 190
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Table 16: Performance Metrics Top-3

Diagnose Indication Triage (direct) Triage (indirect)
recall precision F1 recall precision F1 recall precision F1 recall precision F1

w m w m w m w m w m w m w m w m w m w m w m w m
MT expert dia 0.621 0.412 0.605 0.455 0.6 0.415 0.344 0.11 0.279 0.201 0.251 0.126 0.587 0.419 0.56 0.432 0.566 0.418 0.541 0.388 0.551 0.363 0.533 0.365
top2 0.795 0.552 0.792 0.587 0.791 0.561 0.541 0.209 0.437 0.302 0.427 0.219 0.884 0.712 0.887 0.639 0.884 0.664 0.509 0.326 0.468 0.358 0.433 0.298
top3 0.861 0.622 0.862 0.625 0.859 0.612 0.646 0.304 0.54 0.386 0.541 0.307 0.976 0.918 0.977 0.833 0.976 0.868 0.502 0.298 0.394 0.34 0.359 0.241
MT expert tri 0.599 0.377 0.571 0.45 0.565 0.394 0.367 0.106 0.291 0.171 0.264 0.111 0.579 0.45 0.573 0.399 0.574 0.415 0.55 0.399 0.567 0.334 0.545 0.351
top2 0.789 0.563 0.772 0.597 0.774 0.561 0.551 0.175 0.466 0.263 0.456 0.188 0.889 0.744 0.896 0.621 0.89 0.667 0.516 0.321 0.485 0.34 0.446 0.291
top3 0.863 0.67 0.856 0.672 0.857 0.658 0.647 0.294 0.572 0.367 0.569 0.294 0.979 0.95 0.979 0.821 0.978 0.871 0.479 0.298 0.426 0.356 0.377 0.262
MT expert & extra (feat.) dia 0.604 0.379 0.601 0.42 0.599 0.393 0.319 0.105 0.255 0.185 0.23 0.115 0.579 0.404 0.541 0.439 0.55 0.413 0.531 0.341 0.54 0.339 0.527 0.335
top2 0.778 0.554 0.779 0.576 0.776 0.551 0.532 0.205 0.425 0.298 0.421 0.214 0.876 0.709 0.876 0.66 0.876 0.681 0.52 0.33 0.484 0.374 0.454 0.311
top3 0.839 0.648 0.839 0.636 0.836 0.631 0.633 0.268 0.527 0.346 0.533 0.27 0.973 0.915 0.973 0.825 0.972 0.862 0.541 0.325 0.428 0.363 0.398 0.267
MT expert & extra (text) tri 0.627 0.405 0.593 0.474 0.591 0.422 0.357 0.106 0.301 0.186 0.269 0.121 0.586 0.418 0.571 0.408 0.575 0.403 0.542 0.41 0.56 0.338 0.535 0.354
top2 0.798 0.526 0.783 0.591 0.785 0.545 0.549 0.177 0.47 0.27 0.453 0.193 0.893 0.727 0.898 0.642 0.894 0.676 0.522 0.355 0.496 0.362 0.453 0.318
top3 0.868 0.611 0.862 0.646 0.862 0.616 0.646 0.267 0.575 0.348 0.568 0.274 0.98 0.944 0.981 0.804 0.98 0.855 0.531 0.337 0.426 0.367 0.384 0.274
MT expert & extra (feat.) disc 0.602 0.39 0.572 0.46 0.575 0.404 0.335 0.113 0.283 0.169 0.27 0.121 0.569 0.397 0.544 0.419 0.549 0.403 0.548 0.409 0.561 0.359 0.548 0.375
top2 0.77 0.508 0.747 0.57 0.751 0.516 0.528 0.198 0.459 0.263 0.46 0.207 0.887 0.75 0.891 0.675 0.888 0.706 0.544 0.364 0.52 0.385 0.495 0.346
top3 0.833 0.578 0.821 0.62 0.822 0.582 0.628 0.277 0.576 0.343 0.581 0.287 0.967 0.92 0.968 0.846 0.967 0.877 0.506 0.318 0.448 0.374 0.411 0.287
MT expert disc 0.547 0.352 0.51 0.416 0.503 0.363 0.353 0.16 0.335 0.179 0.331 0.152 0.561 0.4 0.546 0.396 0.55 0.393 0.551 0.385 0.565 0.357 0.554 0.367
top2 0.709 0.455 0.671 0.519 0.673 0.468 0.517 0.242 0.505 0.252 0.5 0.225 0.869 0.669 0.877 0.6 0.871 0.626 0.529 0.344 0.517 0.358 0.493 0.33
top3 0.782 0.528 0.755 0.565 0.757 0.526 0.639 0.317 0.636 0.31 0.628 0.293 0.953 0.845 0.955 0.807 0.953 0.824 0.532 0.333 0.47 0.353 0.419 0.283
MT extra (feat.) tri 0.605 0.367 0.575 0.442 0.563 0.384 0.349 0.103 0.291 0.18 0.254 0.113 0.582 0.45 0.552 0.402 0.558 0.392 0.527 0.442 0.544 0.314 0.52 0.333
top2 0.774 0.496 0.754 0.554 0.756 0.507 0.544 0.195 0.454 0.27 0.435 0.198 0.895 0.753 0.894 0.66 0.893 0.681 0.521 0.34 0.484 0.335 0.451 0.293
top3 0.855 0.626 0.846 0.65 0.848 0.625 0.632 0.259 0.547 0.337 0.535 0.26 0.983 0.957 0.983 0.818 0.981 0.858 0.519 0.329 0.423 0.354 0.384 0.269
MT expert & extra (feat.) tri 0.602 0.362 0.567 0.445 0.559 0.381 0.361 0.096 0.293 0.173 0.267 0.108 0.574 0.48 0.553 0.384 0.556 0.389 0.556 0.509 0.566 0.331 0.543 0.352
top2 0.788 0.538 0.769 0.59 0.772 0.545 0.541 0.189 0.452 0.272 0.435 0.195 0.888 0.781 0.891 0.629 0.888 0.674 0.517 0.341 0.487 0.347 0.448 0.301
top3 0.86 0.629 0.848 0.649 0.85 0.62 0.627 0.254 0.546 0.337 0.536 0.257 0.982 0.97 0.982 0.826 0.981 0.877 0.501 0.329 0.429 0.356 0.385 0.275
MT expert & extra (text) disc 0.574 0.376 0.538 0.452 0.539 0.392 0.363 0.15 0.327 0.183 0.328 0.157 0.561 0.393 0.548 0.39 0.55 0.389 0.552 0.363 0.565 0.345 0.552 0.35
top2 0.741 0.482 0.716 0.535 0.721 0.493 0.53 0.237 0.5 0.263 0.501 0.234 0.879 0.688 0.885 0.613 0.88 0.642 0.546 0.334 0.519 0.343 0.493 0.311
top3 0.821 0.602 0.81 0.623 0.812 0.6 0.641 0.292 0.625 0.309 0.624 0.28 0.959 0.838 0.96 0.811 0.959 0.819 0.537 0.324 0.461 0.344 0.41 0.267
MT extra (text) disc 0.541 0.34 0.48 0.377 0.477 0.337 0.344 0.159 0.324 0.143 0.323 0.136 0.563 0.422 0.52 0.378 0.52 0.381 0.546 0.425 0.555 0.344 0.549 0.368
top2 0.707 0.44 0.646 0.469 0.655 0.437 0.531 0.266 0.523 0.24 0.514 0.233 0.853 0.679 0.851 0.605 0.846 0.612 0.545 0.408 0.543 0.394 0.537 0.394
top3 0.784 0.527 0.738 0.551 0.747 0.518 0.655 0.344 0.654 0.29 0.64 0.292 0.937 0.839 0.938 0.757 0.935 0.768 0.529 0.336 0.49 0.362 0.445 0.303
MT extra (text) tri 0.615 0.407 0.579 0.48 0.577 0.421 0.348 0.107 0.295 0.169 0.266 0.112 0.582 0.419 0.576 0.368 0.576 0.379 0.55 0.418 0.57 0.32 0.546 0.342
top2 0.8 0.548 0.782 0.594 0.785 0.553 0.549 0.201 0.465 0.263 0.456 0.201 0.884 0.716 0.893 0.583 0.886 0.627 0.521 0.351 0.496 0.358 0.457 0.318
top3 0.87 0.607 0.863 0.642 0.863 0.61 0.653 0.29 0.577 0.33 0.576 0.276 0.979 0.951 0.98 0.801 0.978 0.848 0.509 0.32 0.43 0.35 0.381 0.264
MT expert & extra (text) dia 0.621 0.42 0.615 0.462 0.612 0.428 0.333 0.107 0.257 0.19 0.237 0.119 0.569 0.386 0.546 0.384 0.552 0.378 0.535 0.345 0.552 0.318 0.534 0.325
top2 0.799 0.56 0.802 0.553 0.797 0.541 0.555 0.201 0.438 0.277 0.444 0.208 0.877 0.709 0.884 0.597 0.879 0.635 0.524 0.343 0.493 0.353 0.468 0.316
top3 0.845 0.61 0.848 0.589 0.843 0.589 0.651 0.298 0.557 0.365 0.565 0.299 0.976 0.955 0.976 0.806 0.975 0.859 0.507 0.323 0.427 0.356 0.388 0.274
MT extra (text) dia 0.606 0.403 0.601 0.444 0.6 0.411 0.327 0.095 0.256 0.184 0.232 0.108 0.563 0.404 0.54 0.372 0.545 0.371 0.529 0.335 0.546 0.312 0.529 0.318
top2 0.789 0.541 0.794 0.539 0.788 0.529 0.557 0.185 0.445 0.285 0.446 0.198 0.873 0.707 0.877 0.618 0.874 0.651 0.537 0.365 0.49 0.359 0.462 0.323
top3 0.847 0.641 0.851 0.605 0.845 0.605 0.646 0.262 0.544 0.349 0.551 0.269 0.973 0.942 0.974 0.815 0.973 0.864 0.534 0.333 0.415 0.352 0.384 0.267
MT extra (feat.) dia 0.621 0.405 0.616 0.447 0.613 0.41 0.362 0.107 0.249 0.183 0.229 0.11 0.578 0.421 0.526 0.376 0.529 0.37 0.518 0.347 0.537 0.296 0.519 0.306
top2 0.805 0.58 0.796 0.579 0.793 0.548 0.564 0.196 0.413 0.283 0.421 0.198 0.874 0.725 0.876 0.655 0.874 0.682 0.524 0.368 0.496 0.353 0.467 0.325
top3 0.851 0.661 0.847 0.629 0.843 0.623 0.644 0.246 0.51 0.334 0.524 0.249 0.973 0.922 0.974 0.834 0.973 0.871 0.508 0.339 0.442 0.357 0.409 0.292
MT weighted dia 0.587 0.368 0.598 0.399 0.588 0.377 0.336 0.112 0.249 0.177 0.233 0.113 0.562 0.517 0.549 0.348 0.548 0.369 0.528 0.369 0.549 0.296 0.527 0.31
top2 0.716 0.495 0.727 0.502 0.717 0.485 0.523 0.193 0.396 0.274 0.4 0.194 0.886 0.767 0.895 0.548 0.885 0.595 0.515 0.363 0.501 0.339 0.463 0.314
top3 0.737 0.535 0.747 0.526 0.737 0.517 0.629 0.26 0.519 0.342 0.53 0.26 0.975 0.985 0.974 0.781 0.971 0.836 0.53 0.345 0.426 0.336 0.38 0.264
MT weighted tri 0.62 0.401 0.583 0.464 0.581 0.408 0.337 0.106 0.282 0.185 0.247 0.118 0.561 0.426 0.547 0.358 0.55 0.363 0.54 0.44 0.555 0.314 0.532 0.33
top2 0.79 0.534 0.77 0.579 0.772 0.534 0.552 0.196 0.458 0.278 0.445 0.204 0.885 0.778 0.889 0.597 0.884 0.643 0.526 0.387 0.495 0.341 0.453 0.308
top3 0.856 0.647 0.847 0.657 0.848 0.633 0.648 0.272 0.562 0.35 0.556 0.279 0.98 0.956 0.981 0.794 0.98 0.848 0.519 0.35 0.432 0.35 0.386 0.274
expert 0.617 0.409 0.612 0.453 0.608 0.416 0.358 0.142 0.302 0.178 0.303 0.147 0.571 0.601 0.551 0.348 0.55 0.362 0.541 0.383 0.549 0.375 0.545 0.379
top2 0.807 0.57 0.807 0.548 0.804 0.546 0.53 0.216 0.473 0.253 0.481 0.219 0.904 0.861 0.909 0.542 0.898 0.577 0.52 0.323 0.488 0.369 0.476 0.318
top3 0.863 0.622 0.868 0.583 0.863 0.59 0.648 0.272 0.608 0.297 0.615 0.267 0.983 0.964 0.983 0.77 0.981 0.829 0.499 0.316 0.441 0.386 0.406 0.29
expert & extra (feat.) 0.604 0.388 0.601 0.428 0.595 0.393 0.338 0.121 0.315 0.148 0.316 0.122 0.525 0.417 0.54 0.333 0.529 0.36 0.531 0.356 0.545 0.34 0.537 0.347
top2 0.783 0.522 0.788 0.511 0.782 0.504 0.529 0.213 0.512 0.238 0.51 0.208 0.684 0.699 0.692 0.584 0.682 0.624 0.532 0.341 0.517 0.369 0.497 0.334
top3 0.824 0.572 0.829 0.549 0.822 0.547 0.642 0.285 0.634 0.283 0.628 0.261 0.714 0.776 0.72 0.706 0.71 0.729 0.537 0.322 0.48 0.36 0.425 0.275
weighted 0.611 0.41 0.61 0.426 0.607 0.401 0.344 0.114 0.282 0.16 0.272 0.12 0.541 0.507 0.552 0.325 0.539 0.356 0.522 0.35 0.54 0.318 0.528 0.33
top2 0.743 0.538 0.74 0.52 0.736 0.506 0.546 0.205 0.472 0.244 0.478 0.202 0.688 0.741 0.694 0.572 0.683 0.63 0.528 0.34 0.513 0.354 0.488 0.324
top3 0.774 0.596 0.772 0.572 0.768 0.56 0.662 0.282 0.613 0.303 0.62 0.27 0.709 0.783 0.716 0.731 0.705 0.743 0.518 0.317 0.457 0.357 0.412 0.276
MT weighted disc 0.606 0.4 0.567 0.433 0.576 0.402 0.366 0.138 0.33 0.186 0.325 0.145 0.57 0.4 0.538 0.353 0.542 0.355 0.561 0.429 0.574 0.334 0.564 0.354
top2 0.78 0.512 0.757 0.531 0.764 0.511 0.537 0.217 0.505 0.261 0.505 0.221 0.874 0.711 0.874 0.604 0.869 0.632 0.515 0.348 0.506 0.338 0.491 0.325
top3 0.84 0.578 0.827 0.583 0.831 0.568 0.652 0.285 0.633 0.32 0.633 0.285 0.959 0.852 0.957 0.79 0.956 0.798 0.511 0.341 0.477 0.356 0.436 0.305
extra (text) 0.618 0.403 0.613 0.456 0.607 0.414 0.344 0.124 0.284 0.18 0.279 0.132 0.56 0.393 0.544 0.346 0.542 0.349 0.538 0.344 0.546 0.348 0.533 0.338
top2 0.808 0.576 0.802 0.574 0.798 0.554 0.542 0.196 0.471 0.265 0.472 0.21 0.904 0.863 0.91 0.567 0.899 0.609 0.534 0.325 0.486 0.358 0.454 0.294
top3 0.864 0.663 0.863 0.646 0.858 0.638 0.658 0.285 0.599 0.33 0.604 0.282 0.982 0.957 0.983 0.742 0.979 0.794 0.532 0.321 0.416 0.363 0.377 0.257
expert & extra (text) 0.594 0.388 0.595 0.435 0.589 0.397 0.374 0.12 0.288 0.196 0.267 0.128 0.551 0.385 0.546 0.333 0.545 0.345 0.549 0.332 0.548 0.349 0.542 0.335
top2 0.769 0.546 0.771 0.554 0.764 0.535 0.564 0.192 0.455 0.284 0.456 0.204 0.881 0.708 0.893 0.544 0.882 0.587 0.539 0.322 0.464 0.37 0.446 0.293
top3 0.803 0.601 0.805 0.581 0.797 0.574 0.666 0.258 0.571 0.338 0.578 0.265 0.973 0.964 0.973 0.817 0.972 0.875 0.516 0.297 0.365 0.346 0.341 0.226
normal 0.596 0.404 0.603 0.401 0.592 0.384 0.325 0.113 0.348 0.113 0.33 0.102 0.54 0.411 0.546 0.322 0.54 0.34 0.537 0.386 0.552 0.315 0.542 0.334
top2 0.798 0.58 0.802 0.538 0.794 0.541 0.474 0.222 0.488 0.198 0.472 0.192 0.806 0.684 0.81 0.521 0.802 0.559 0.524 0.352 0.505 0.335 0.492 0.321
top3 0.863 0.648 0.866 0.598 0.86 0.607 0.577 0.284 0.587 0.25 0.572 0.247 0.905 0.881 0.902 0.713 0.9 0.764 0.502 0.306 0.42 0.312 0.392 0.252
MT extra (feat.) disc 0.556 0.352 0.504 0.38 0.511 0.345 0.345 0.112 0.315 0.132 0.316 0.113 0.552 0.386 0.534 0.331 0.533 0.335 0.538 0.341 0.557 0.303 0.544 0.314
top2 0.733 0.462 0.691 0.487 0.703 0.455 0.523 0.191 0.5 0.229 0.501 0.193 0.875 0.72 0.882 0.585 0.872 0.623 0.527 0.345 0.524 0.336 0.506 0.327
top3 0.804 0.552 0.779 0.552 0.785 0.531 0.642 0.303 0.634 0.319 0.631 0.293 0.968 0.953 0.968 0.798 0.966 0.845 0.525 0.333 0.49 0.329 0.44 0.285
extra (feat.) 0.631 0.412 0.593 0.462 0.587 0.415 0.335 0.124 0.252 0.202 0.232 0.133 0.534 0.348 0.538 0.315 0.536 0.325 0.518 0.309 0.521 0.311 0.513 0.305
top2 0.806 0.539 0.793 0.576 0.795 0.546 0.545 0.189 0.418 0.272 0.417 0.201 0.754 0.68 0.76 0.577 0.756 0.617 0.516 0.304 0.458 0.335 0.433 0.273
top3 0.872 0.594 0.87 0.614 0.869 0.594 0.662 0.269 0.548 0.344 0.559 0.278 0.796 0.798 0.8 0.718 0.796 0.748 0.536 0.306 0.38 0.336 0.355 0.228
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Abstract

Acquiring annotated corpora for medical NLP
is challenging due to legal and privacy con-
straints and costly annotation efforts, and using
annotated public datasets may do not align well
to the desired target application in terms of an-
notation style or language. We investigate the
approach of utilizing Wikipedia and WikiData
jointly to acquire an unsupervised annotated
corpus for named-entity recognition (NER). By
controlling the annotation ruleset through Wiki-
Data’s ontology, we extract custom-defined an-
notations and dynamically impute weak anno-
tations by an adaptive loss scaling. Our valida-
tion on German medication detection datasets
yields competitive results. The entire pipeline
only relies on open models and data resources,
enabling reproducibility and open sharing of
models and corpora. All relevant assets are
shared on GitHub1.

1 Introduction

A major reoccurring pain point in natural language
processing (NLP) remains the issue of lacking re-
sources regarding text corpora, including adequate
annotation information in particular. Especially in
medical and clinical NLP environments, the sit-
uation is notoriously difficult due to privacy and
legal restrictions on data use and sharing; render-
ing efforts to share open datasets from the clini-
cal domain complex and cumbersome. Yet there
are notable and important attempts to provide text
resources close to the clinical domain to the pub-
lic research domain, e.g. MIMIC-III/-IV (Pollard
and Johnson, 2016; Johnson et al., 2023). While
these resources are extremely valuable, a single
annotated dataset is governed by pre-defined pa-
rameters: First, the actual language, which may
not align with the desired target language, and
may pose another challenge regarding cross-lingual

1https://github.com/frankkramer-lab/
WikiOntoNERCorpus

transfer. Second, the domain-dependent linguistic
text properties and styles may vary from corpus
to corpus. Third, the provided annotation data are
usually tied to a certain ontology in entity linking,
or label classes in named-entity recognition (NER).
Forth, even if the label classes appear identical
across multiple corpora, the underlying annotation
guidelines that were employed as rulesets for an-
notation decision-making are usually not identical
or consistent with annotation guidelines from other
datasets. While the language and the text style are
inherently fixed, new annotation data for a given
corpus could be manually created if a custom an-
notation guideline is needed. However, a manual
annotation is costly, resource-intensive and may
remain non-reproducible to a certain degree due to
the human-provided input. Hence, creating such
an alternative annotation layer is not feasible in
practice. In this work, we investigate the practi-
cality of applying a fully unsupervised approach
for annotated data acquisition in the medical con-
text, yielding a corpus that is subsequently used as
training material for an NER model. To achieve
this, we compose several steps to obtain our final
results. Our approach combines two public knowl-
edge sources, Wikipedia2 and WikiData (Vrandečić
and Krötzsch, 2014)3, to extract text data and an-
notation information, whereas the core annotation
ruleset can be defined by leveraging the graph-like
ontology structure of WikiData. The crafted dataset
is used to train a conventional NER model. To
demonstrate the feasibility of our approach, we
evaluate our trained NER models on several ex-
ternal public datasets. Since our approach is in
particular of interest for medium- to low-resource
languages, we choose German as our non-English
target language, but it is also motivated by the fact
that external annotated datasets are available in that

2https://www.wikipedia.org/ (accessed July 5th,
2024)

3https://www.wikidata.org/ (accessed July 5th, 2024)
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language for a final evaluation.
Due to its simple availability, quality and text

size, Wikipedia has been subject to NLP research
in the past decade, in particular exploited further to
obtain NER corpora. Therefore, it has been applied
in numerous works for generic NER (Ghaddar and
Langlais, 2017; Ryu et al., 2017; Nothman et al.,
2008; Nothman et al., 2013; Hahm et al., 2014;
Kim et al., 2012; Richman and Schone, 2008; Ni
and Florian, 2016; Krishnan et al., 2021; Tsai et al.,
2016; Alves et al., 2021), mostly using Wikipedia
text or features, while others also include struc-
tured knowledge bases like DBpedia (Mendes et al.,
2012) or FreeBase (Bollacker et al., 2008). Similar
to our work, Jiang et al. 2021 also cover English
biomedical NER for weak annotation data by mod-
ifying the loss function to be "noise-aware" and ap-
plying annotation imputation. Yet they also include
a set of small, manually fully-annotated labels, and
use PubMed texts with automatic dictionary-based
label synthesis instead of Wikipedia resources. Re-
garding open domain NER, Liang et al. 2020 tackle
the challenge by a similar two-stage self-training
approach using WikiData, but do not further cover
any custom Wikipedia parsing. To the best of our
knowledge, no work using Wikipedia and Wiki-
Data has been reported so far in the German, medi-
cal domain.

2 Methods

2.1 Mapping Wikipedia and WikiData

Throughout this work, we consider Wikipedia as
a language-dependent set of text documents iden-
tified by unique titles. The text documents are
encoded in WikiText, a domain-specific language
in markup style, which we mainly treat as plain
text sequences along with span-oriented text refer-
ences to other Wikipedia documents. In contrast,
WikiData is a language-agnostic knowledge base
which encodes its knowledge in a graph structure
with typed, directed edges ("statements") between
individual nodes. Each node is a WikiData en-
tity, uniquely identified by its QID number, and
either represents an actual concept (e.g. cancer
(Q12078)) and therefore may be referenced to its
corresponding language-specific Wikipedia page,
or is part of a virtual concept that encodes certain
ontology-inspired hierarchy structures (e.g. class
of disease (Q112193867)). Note that the corre-
spondences between the WikiData entities to their
language-specific Wikipedia pages are bijective in

most cases. We utilize these references to estab-
lish a mapping between WikiData and Wikipedia
entries.

2.2 Extracting Annotations from Wikipedia
The WikiText markup language, which is used to
encode the Wikipedia pages, facilitates the use of
references to other Wikipedia pages from the same
language. These kinds of references are eventually
rendered as hyperlinks in web browsers, and are
used to link certain terms within a Wikipedia page
text to pages that address the mentioned concepts
as their main topic. Given a set of concepts we are
interested in, defined as a set of Wikipedia pages in
practice, we parse the language-specific Wikipedia
dump to extract all sentences that contain refer-
ences to our set of concepts of interest while we
retain the reference information of each of the ex-
tracted sentences with regard to the text span of
the link and its target page. Note that for each ex-
tracted sentence, we also keep the information on
references that were not part of our set of concepts
as negative mentions. Finally, we obtain an an-
notated corpus in a certain language that contains
annotation information for mentions of concepts
of our interest. However, since not every men-
tioned concept is usually referenced in the Wiki-
Text and concepts worth referencing are usually
only reference at the first occurrence on a page, the
obtained corpus only contains weakly-annotated
labels. Using the corpus as training resource to
directly train an NER model therefore is expected
to yield a model with high precision, yet very low
recall scores due to the weak annotation.

2.3 Graph-defined Entity Selection using
SPARQL

To enable the use of the WikiData ontology to de-
fine a set of concepts of interest, we leverage the
SPARQL interface4, an RDF query language, to de-
termine all WikiData entities of interest. By these
means, we can make use of more complex queries
that take full advantage of the WikiData ontology
structures, and thus it yields an explainable and
well-defined output. We further resolve the Wiki-
Data entities into their language-specific Wikipedia
pages by the mapping we established before, and
extract all relevant sentences with annotations, as
described earlier. The entire process is illustrated
in Figure 1.

4https://query.wikidata.org/ accessed May 3rd,
2024
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Figure 1: Conceptual design of the weakly-annotated dataset creation for a certain SPARQL query on WikiData.

2.4 Dataset Imputation of Weak Annotations

Since NER can be framed as a token classification
task, we can stratify our evidence about a token
class into three cases: First, if the token is an ac-
tual part of a reference to a page from our set of
concepts, it is considered a positive token. Second,
if the token is also part of a reference, but does
not link to our desired concept set, we consider
it a negative token. Any other token without any
reference is declared as unknown, for which we
assume the token to not belong to any named en-
tity class similar to negative tokens, yet due to the
weak annotation its actual class remains unclear.
To mitigate the weak label signal during training,
we dynamically scale the gradient loss for each
token by the factor ω according to the following
schema:

Lscaled =





ωposL if token ∈ positive
ωnegL if token ∈ negative
ωunkL if token ∈ unknown

(1)

We balance the loss scaling weights ω accordingly.

ωpos =
#tokensneg
#tokenspos

, ωneg =
#tokenspos
#tokensneg

(2)

ωunk remains choosable as a hyperparameter.
Given the actual positive tokens, the negative to-
kens serving as contrastive samples, as well as the

unknown token samples, we can train an NER
model while maintaining the dynamic loss scal-
ing at each token position. Given the trained NER
model, it can be re-applied to the weakly-annotated
corpus in order to impute missing annotation spans
to subsequently obtain a silver standard, fully-
annotated corpus as shown in Figure 2.

3 Results

Regarding our implementation, significant portions
are re-purposed from existing work (Frei et al.,
2022). To assess our proposed approach in med-
ical, non-English NER, we mimic a medication
detection task in German texts due to the avail-
ability of public datasets with annotations includ-
ing label classes semantically related to drug or
medication, namely BRONCO150 (Kittner et al.,
2021), CARDIO:DE (Richter-Pechanski et al.,
2023), GPTNERMED (Frei and Kramer, 2023),
GERNERMED++ (Frei et al., 2023), and GGPOnc
2 (Borchert et al., 2022) (with short, fine annotation
layer). To address the medication detection task,
our simple entity selection strategy hereby filters all
WikiData entries that have an ATC code assigned
through the WikiData property P267 to eventu-
ally obtain a weakly-annotated corpus. Based on
this corpus, we fine-tune an NER model with the
Huggingface Transformers (Wolf et al., 2020) li-
brary for different ωunk scalars while ωpos/ωneg
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Transformer-based
NER Model

Figure 2: Illustration of the dataset imputation process for the annotation data using dynamic token loss scaling.

remains balanced (1.337/0.748). In order to retain
a generic, non-medical setup for the dataset impu-
tation, we use GottBERT (Scheible et al., 2020), a
non-domain-specific German RoBERTa model as
encoder model for our NER token classifier. To ob-
tain a fully-annotated corpus, we apply the dataset
imputation on the weakly-annotated corpus using
the fine-tuned NER model. The statistics of the
corpus in various configurations are provided in Ta-
ble 1. Finally, we simulate a traditional but domain-
aware NER fine-tuning setup that assumes an or-
dinary, fully-annotated corpus by training on the
imputed corpus and use the default NER training
setup of SpaCy (Montani et al., 2023) with Ger-
MedBERT’s medBERT.de (Bressem et al., 2024),
a German medical language model, as BERT en-
coder without applying any token loss scaling. The
scores on the external datasets are evaluated using
BratEval5 in overlap mode, and shown in Table
2. The results for all ωunk values are provided in
Table 3 in the appendix.

The results on the BRONCO150, GERN-
ERMED++, and GPTNERMED datasets indicate
best and robust F1 scores in cases of ωunk < 0.8,
whereas for CARDIO:DE the scores are evidently
rather modest, to rather poor in case of GGPOnc2.
The impact of the token loss scaling ωunk is, as
expected, clearly noticeable as it consistently in-
creases the recall rates at lower ωunk values at the
expense of minor precision losses. A preliminary
lookup into the annotation disagreements in CAR-
DIO:DE and GGPOnc reveals that the models tend
to perform poorly on corpora with sparse, less fre-

5https://github.com/READ-BioMed/brateval/tree/
v0.3.2 (Commit c4f5fff) accessed May 3rd, 2024

Property Value
#Samples 84478
#Sents 90918
#Tokens 2023187
#Labels (pos), raw 105207
#Labels (neg), raw 145492
#Labels (pos), ωunk = 0.01 135795
#Labels (pos), ωunk = 0.05 127950
#Labels (pos), ωunk = 0.1 128157
#Labels (pos), ωunk = 0.2 120973
#Labels (pos), ωunk = 0.5 114339
#Labels (pos), ωunk = 0.8 110237
#Labels (pos), ωunk = 1.0 110024

Table 1: Statistics of the obtained datasets for different
ωunk settings. The corpora are based on the SPARQL
query that identifies all WikiData entities with assigned
ATC codes. The query is given in the appendix.

quent annotations, especially on samples without
any annotation. However, another apparent factor
remains the conceptual disagreements, for instance
"Thrombozyten" was detected due to its assigned
ATC code in its WikiData entity Q101026, however
it was not annotated by the Gold standard annota-
tion.

4 Discussion and Limitations

While a conclusive verdict is not feasible based on
the pure evaluation scores due to the diverse and
incoherence issues of the external datasets, the fact
that the entire data process operates solely on open
data yet can perform surprisingly well, even on
external corpora, encourages further efforts to fos-
ter open NLP resources and models, especially for
more sparse, non-English domains. Comparing our
results with related work, the GGPOnc 2 baseline
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ωunk Dataset Pr Re F1
0.01 BRONCO150 0.8103 0.7505 0.7792
0.2 (Kittner et al., 2021) 0.8014 0.7538 0.7768
1.0 [MEDICATION] 0.8537 0.5983 0.7035

0.01 GERNERMED++ 0.8104 0.7897 0.7999
0.2 (Frei et al., 2023) 0.8453 0.7526 0.7963
1.0 [Drug] 0.8831 0.6841 0.771

0.01 GPTNERMED 0.8002 0.8802 0.8383
0.2 (Frei and Kramer, 2023) 0.8553 0.8537 0.8545
1.0 [Medikation] 0.8336 0.8172 0.8253

0.01 CARDIO:DE 0.5402 0.7266 0.6197
0.2 (Richter-Pechanski et al., 2023) 0.5352 0.7107 0.6106
1.0 [DRUG, ACTIVEING] 0.5634 0.5924 0.5775

0.01 GGPOnc 2 0.1908 0.7257 0.3021
0.2 (Borchert et al., 2022) 0.2324 0.6635 0.3442
1.0 [Clinical_Drug] (short, fine) 0.2425 0.5702 0.3402

Table 2: Performance scores on external datasets using
BratEval in overlap mode for Precision, Recall and
F1 score for different ωunk values. See Table 3 in the
appendix for all ωunk values. The harmonized label
classes are given in square brackets.

NER model is reported to achieve .91 F1-score on
its test set on the Clinical_Drug label class, like-
wise CARDIO:DE achieves .85/0.81 F1-scores for
the ACTIVEING/DRUG label classes. However,
major disagreements are reported in cross-corpus
model transfer. For instance, (Richter-Pechanski
et al., 2023) report a .21 F1-score for the DRUG
class when applying the GGPOnc 2 NER model
to the held-back part of the CARDIO:DE corpus,
highlighting certain innate limitations when com-
paring F1-scores across different datasets and an-
notation guidelines, as well as the need for the use
of multiple datasets during evaluation. As for an-
other, less severe instance, (Frei et al., 2023) and
(Frei and Kramer, 2023) report .73/.72. F1-scores
respectively on the BRONCO150 corpus for the
MEDICATION label class, hinting towards more
consistent mutual annotation agreements.

Other factors in NER are not further addressed
in this work, such as efforts towards support for
nested entities or discontinuous annotations or the
support for label classes beyond medication de-
tection. The latter aspect may be achieved by the
use of an updated SPARQL query definition for
certain label classes that align well to the annota-
tion schema from Wikipedia articles but may fail
for other label classes like strength- or frequency-
related entities which may not be covered well by
Wikipedia or WikiData. In this regard, potential
limitations within the WikiData knowledge base
are not investigated that may influence the quality
of our results in other domains. Other limiting fac-
tors such as the quality of the pre-trained language
models are not quantified in isolation. However,

in general, the effective use of more sophisticated
SPARQL queries for entity selection may unlock
further potential gains, as well as its application
in other languages and domains since our method
is not inherently bound to the medical field. Yet,
these aspects only serve as motivation for future
work.

5 Conclusion

In this work, we demonstrated an unsupervised ap-
proach for creating an annotated dataset for medical
NER for the German language defined by the Wiki-
Data ontology structure using exclusively open data
resources. The proof of concept of the proposed
method in practical scenarios was shown on a set of
external datasets, yielding surprisingly well results.
We also discussed further potential but currently
underexplored factors such as improved SPARQL
queries as future work. Relevant assets are pub-
lished on GitHub6, including a web interface that
enables external users to create new corpora from
custom SPARQL queries for independent experi-
ments.
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A Complete NER Results

The results for all ωunk values are provided in Ta-
ble 3.
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0.1 0.1855 0.7026 0.2935
0.2 0.2324 0.6635 0.3442
0.5 0.2085 0.6265 0.3128
0.8 0.2143 0.5805 0.3131
1.0 0.2425 0.5702 0.3402

Table 3: Performance scores on external datasets using
BratEval in overlap mode for Precision, Recall and F1
score for all different ωunk values. The harmonized
label classes are given in square brackets.

B Setup Parameters

B.1 SPARQL Query for Entity Selection

The SPARQL query that has been used for the
entity selection. The query selects all WikiData
entities with an assigned ATC code.

# Anything that has an assigned ATC code
SELECT ?item
WHERE
{

?item wdt:P267 ?atccode .
}

The query was performed on the WikiData

SPARQL query service7 on April 17th, 2024.

B.2 Training Configuration

B.2.1 First-stage NER with Dynamic Loss
Scaling

We use the Transformers (Wolf et al., 2020) library
to train the first NER model used for dataset impu-
tation during successive steps. The entire dataset
(for ATC) was split into train+dev set (90%) and
test set (10%), and the train+dev set was split into
train set (80%) and dev set (20%). The following
Huggingface Transformers parameters were used
for training.

"evaluation_strategy": "epoch",
"per_device_train_batch_size": 32,
"per_device_eval_batch_size": 32,
"gradient_accumulation_steps": 1,
"learning_rate": 5e-05,
"weight_decay": 0.0,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"adam_epsilon": 1e-08,
"max_grad_norm": 1.0,
"num_train_epochs": 3,
"lr_scheduler_type": "linear",
"warmup_ratio": 0.0,
"warmup_steps": 0,
"save_strategy": "epoch",
"seed": 42,
"load_best_model_at_end": true,
"metric_for_best_model": "loss",
"optim": "adamw_torch",

As a pre-trained encoder, we used
uklfr/gottbert-base (Scheible et al., 2020)
from the Huggingface Hub. The final model was
picked according to the lowest loss on the dev set.

B.2.2 Output Token Decoding for Dataset
Imputation

For the decoding of the output probabilities from
the first-stage NER model for the dataset imputa-
tion, we used a greedy decoding strategy to predict
the IOB2 labels (O, B-LABEL, I-LABEL). How-
ever, invalid outputs were set to -inf prior to the
final token decoding.

B.2.3 Second-stage NER on Imputed Dataset
For the training on the imputed dataset using
SpaCy (Montani et al., 2023), the initial default
configuration was created with the CLI command:

7https://query.wikidata.org/
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python3 -m spacy init config base.cfg -l
de -p ner -G -o accuracy. The following
modifications were made to the base configuration:

• In [components.transformer.model], set
name = "GerMedBERT/medbert-512"

• In [training.optimizer.learn_rate],
set initial_rate = 5e-5

• In [training], set max_epochs = 10

• In [training], set max_steps = -1

• In [training], set seed = 0

The final configuration was created with the
CLI command: python3 -m spacy init
fill-config base.cfg final.cfg. Similar to
the first-stage NER training, the entire dataset was
split into train+dev set (90%) and test set (10%),
and the train+dev set was split into train set (80%)
and dev set (20%). After training, the best model
was picked according to the best (internal) F1 score
on the dev set, as this is the default SpaCy ap-
proach.

C Data Versioning

C.1 NLP Tools

The Python libraries from pypi.org in the following
versions were used for the experiments:

• Huggingface Transformers: transformers:
4.36.2

• SpaCy: spacy: 3.7.4

• SpaCy-Transformers:
spacy-transformers: 1.3.4

C.2 Wikipedia and WikiData Dumps

The dumps for WikiData and Wikipedia were ac-
cessed by the web references at the following time:

• Wikipedia / German: https:
//dumps.wikimedia.org/dewiki/latest/
dewiki-latest-pages-meta-current.
xml.bz2 on February 22, 2024.

• Wikipedia / English: https:
//dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-meta-current.
xml.bz2 on February 26, 2024.

• Wikipedia / French: https://dumps.
wikimedia.org/frwiki/latest/
frwiki-latest-pages-meta-current.
xml.bz2 on February 26, 2024.

• Wikipedia / Spanish: https:
//dumps.wikimedia.org/eswiki/latest/
eswiki-latest-pages-meta-current.
xml.bz2 on February 26, 2024.

• WikiData: https://dumps.wikimedia.
org/wikidatawiki/entities/ on February
23, 2024.

D Annotated Text Samples

To visualize the effect of the annotation imputation
stage, several samples from the datasets are shown
in Table 4. The datasets are based on the SPARQL
query which applies the ATC code assignment filter.
While in most instances, the added entities can be
considered correct, some ambiguities persist even
after manual inspection. For instance, the words
"calcium-" and "magnesiumhaltigen" may refer to
"calcium carbonate" (Q23767) and "magnesium
carbonate" (Q407931) and ATC codes are assigned
to their corresponding WikiData entities. However,
the correspondent WikiData items for "calcium"
(Q706) and "magnesium" (Q660) lack any ATC
code.
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Setup Text Sample

raw (neg)
Dabei wird das Kollagen des Fleischbindegewebes durch Säuren, Tannine und weitere

Bestandteile des Weins angegriffen, gelockert und teilweise gelatiniert, wodurch das Fleisch zarter
wird und Geschmack freigesetzt wird.

raw (pos)
Dabei wird das Kollagen des Fleischbindegewebes durch Säuren, Tannine und weitere

Bestandteile des Weins angegriffen, gelockert und teilweise gelatiniert, wodurch das Fleisch zarter
wird und Geschmack freigesetzt wird.

ωunk = 0.01 (imp)
Dabei wird das Kollagen des Fleischbindegewebes durch Säuren, Tannine und weitere

Bestandteile des Weins angegriffen, gelockert und teilweise gelatiniert, wodurch das Fleisch zarter
wird und Geschmack freigesetzt wird.

ωunk = 0.2 (imp)
Dabei wird das Kollagen des Fleischbindegewebes durch Säuren, Tannine und weitere

Bestandteile des Weins angegriffen, gelockert und teilweise gelatiniert, wodurch das Fleisch zarter
wird und Geschmack freigesetzt wird.

ωunk = 1.0 (imp)
Dabei wird das Kollagen des Fleischbindegewebes durch Säuren, Tannine und weitere

Bestandteile des Weins angegriffen, gelockert und teilweise gelatiniert, wodurch das Fleisch zarter
wird und Geschmack freigesetzt wird.

raw (neg)
Die klinische Entwicklung bei Depression wurde jedoch eingestellt, da Rolipram im Vergleich zu

herkömmlichen Antidepressiva keinen Zusatznutzen zeigen konnte.

raw (pos)
Die klinische Entwicklung bei Depression wurde jedoch eingestellt, da Rolipram im Vergleich zu

herkömmlichen Antidepressiva keinen Zusatznutzen zeigen konnte.

ωunk = 0.01 (imp)
Die klinische Entwicklung bei Depression wurde jedoch eingestellt, da Rolipram im Vergleich zu

herkömmlichen Antidepressiva keinen Zusatznutzen zeigen konnte.

ωunk = 0.2 (imp)
Die klinische Entwicklung bei Depression wurde jedoch eingestellt, da Rolipram im Vergleich zu

herkömmlichen Antidepressiva keinen Zusatznutzen zeigen konnte.

ωunk = 1.0 (imp)
Die klinische Entwicklung bei Depression wurde jedoch eingestellt, da Rolipram im Vergleich zu

herkömmlichen Antidepressiva keinen Zusatznutzen zeigen konnte.

raw (neg) Durch die Gabe von calcium- und magnesiumhaltigen Antacida nach oraler Überdosierung von
Ofloxacin kann die Resorption infolge Bildung schwerlöslicher Komplexe verzögert werden.

raw (pos) Durch die Gabe von calcium- und magnesiumhaltigen Antacida nach oraler Überdosierung von
Ofloxacin kann die Resorption infolge Bildung schwerlöslicher Komplexe verzögert werden.

ωunk = 0.01 (imp) Durch die Gabe von calcium- und magnesiumhaltigen Antacida nach oraler Überdosierung von
Ofloxacin kann die Resorption infolge Bildung schwerlöslicher Komplexe verzögert werden.

ωunk = 0.2 (imp) Durch die Gabe von calcium- und magnesiumhaltigen Antacida nach oraler Überdosierung von
Ofloxacin kann die Resorption infolge Bildung schwerlöslicher Komplexe verzögert werden.

ωunk = 1.0 (imp) Durch die Gabe von calcium- und magnesiumhaltigen Antacida nach oraler Überdosierung von
Ofloxacin kann die Resorption infolge Bildung schwerlöslicher Komplexe verzögert werden.

raw (neg) Bei einer Überdosierung von Fenetyllin werden große Mengen der Neurotransmitter
Noradrenalin und Dopamin aus den Speichervesikeln im zentralen Nervensystem freigesetzt.

raw (pos) Bei einer Überdosierung von Fenetyllin werden große Mengen der Neurotransmitter Noradrenalin
und Dopamin aus den Speichervesikeln im zentralen Nervensystem freigesetzt.

ωunk = 0.01 (imp) Bei einer Überdosierung von Fenetyllin werden große Mengen der Neurotransmitter
Noradrenalin und Dopamin aus den Speichervesikeln im zentralen Nervensystem freigesetzt.

ωunk = 0.2 (imp) Bei einer Überdosierung von Fenetyllin werden große Mengen der Neurotransmitter
Noradrenalin und Dopamin aus den Speichervesikeln im zentralen Nervensystem freigesetzt.

ωunk = 1.0 (imp) Bei einer Überdosierung von Fenetyllin werden große Mengen der Neurotransmitter Noradrenalin
und Dopamin aus den Speichervesikeln im zentralen Nervensystem freigesetzt.

Table 4: Original text samples (raw) and their annotation-imputed instances for certain ωunk values. The text in
bold denotes the annotated entities. The samples were chosen for illustration purposes. The annotation granularity
reflects the token structure from the subword tokenizer of the GottBERT model.
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Abstract

Healthcare professionals often manually ex-
tract information from large clinical documents
to address patient-related questions. The use
of Natural Language Processing (NLP) tech-
niques, particularly Question Answering (QA)
models, is a promising direction for improv-
ing the efficiency of this process. However,
document-level QA from large documents is
often impractical or even infeasible (for model
training and inference). In this work, we solve
the document-level QA from clinical reports
in a two-step approach: first, the entire report
is split into segments and for a given question
the most relevant segment is predicted by a
NLP model; second, a QA model is applied
to the question and the retrieved segment as
context. We investigate the effectiveness of
heading-based and naive paragraph segmenta-
tion approaches for various paragraph lengths
on two subsets of the emrQA dataset (Pampari
et al., 2018). Our experiments reveal that an av-
erage paragraph length used as a parameter for
the segmentation has no significant effect on
performance during the whole document-level
QA process. That means experiments focus-
ing on segmentation into shorter paragraphs
perform similarly to those focusing on entire
unsegmented reports. Surprisingly, naive uni-
form segmentation is sufficient even though it
is not based on prior knowledge of the clinical
document’s characteristics.

1 Introduction

Healthcare professionals spend a lot of time go-
ing through extensive clinical documents, such as
discharge summaries, to find specific answers to
questions about their patients (Demner-Fushman
et al., 2009). This process could be aided by Ques-
tion Answering (QA) models, that search for sub-
strings in the text of a clinical document to provide
an evidence for a given question (Pampari et al.,
2018).

Currently, encoder-based language models
demonstrate strong performance in solving QA
tasks (Lan et al., 2020; Zhang et al., 2020), even
when we are looking for substrings in a multi-
paragraph clinical context (Yue et al., 2020). How-
ever, the training process and inference of large
language models (LLMs) on document-level QA
require significant computational resources that are
not always available. In addition, encoder-based
and decoder-based models face difficulties in un-
derstanding and processing longer documents (Liu
et al., 2023). A possible solution might be working
with segments (paragraphs) of the document rather
than full text.

To achieve this, we must first segment the doc-
ument into paragraphs, then identify the relevant
paragraph for a given question, and then apply an
QA model only to the selected paragraph as the
context instead of the full document text. This
alone significantly facilitates healthcare profession-
als’ work in finding answers in clinical texts, which
is another reason why it is worth addressing the
paragraph retrieval issue.

Clinical texts often lack structure (Richter-
Pechanski et al., 2024; Gallego Donoso and
Veredas, 2023) and contain information that is
not expressed in natural language (Pampari et al.,
2018). Moreover, each clinical text, authored by
distinct doctors from various hospitals and even dif-
ferent countries, is arranged uniquely. Therefore,
the task of segmenting a document into natural lan-
guage paragraphs is inherently non-trivial. How-
ever, the question arises: is it necessary to segment
clinical text into such structured paragraphs? Will
a naive uniform segmentation without knowledge
of the text itself have a similar performance?

Our work addresses QA on differently-sized
paragraphs of clinical documents. First, given clin-
ical document paragraphs and a given question,
retrieve the most relevant paragraph. In the second
step, we perform QA on that paragraph. In addi-
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tion, we investigate the potential performance of
the model on the QA task if the relevant paragraph
is always predicted correctly.

We work with two subsets of the emrQA dataset:
Medication and Relations (Pampari et al., 2018).
We propose a heading-based segmentation into sec-
tions regarding different average paragraph lengths
over all training clinical documents. We analyze
the optimal average paragraph length to achieve
the best performance and ensure that we preserve
the context while keeping the paragraph as concise
as possible. We then compare the performance of
the encoding-based models on these segmentations
with their performance on a naive segmentation
approach. Finally, we demonstrate how LLMs per-
form under the same training conditions as encoder-
based models. Our main contributions are the fol-
lowing:

• We demonstrate the feasibility of simplifying
the document-level Question Answering (QA)
challenge into a two-step task combining para-
graph retrieval and paragraph-level QA.

• We propose a novel heading-based paragraph
segmentation approach of emrQA data and
compare its performance with naive segmen-
tation.

• We present a comparative analysis of encoder-
based and decoder-based models on the QA
task, thus enriching the discussion on the opti-
mal choice of architecture.

2 Related Work

The problem of question answering encompasses
several different subtypes. One of them is to return
an answer for a given question without any context
(Berant et al., 2013). Another subtype involves text
comprehension. For a given question and some
context (such as a document or a paragraph), the
task is to answer the question based on the content
of the context, but the actual formulation of an
answer is not restricted (Joshi et al., 2017). In our
work, however, we focus on finding substrings in
a given context that serve as both evidence and
answer to a given question.

A significant resource in this field is the SQuAD
dataset (Rajpurkar et al., 2016), containing ques-
tions, context paragraphs based on Wikipedia arti-
cles, and answer substrings. The dataset has been
used to train and compare various neural meth-
ods, including encoder-based and decoder-based

architectures (Lan et al., 2020; Zhang et al., 2020;
Schmidt et al., 2024). This dataset was later ex-
tended into SQuAD v.2 (Rajpurkar et al., 2018),
which also includes questions and corresponding
paragraphs that do not contain an answer for a
given question. As an alternative to this dataset in
the clinical domain, the emrQA dataset (Pampari
et al., 2018) was published. The emrQA dataset
contains synthetically generated questions and sub-
string answers for clinical reports from the n2c2
dataset (previously called i2b2). The emrQA con-
sists of 5 subsets: Medication, Relations, Heart
disease, Obesity, and Smoking, each focusing on
different aspects and different complexity. From
the emrQA dataset, the emrqa-msquad dataset (Ela-
dio and Wu, 2024) was derived by summarizing
clinical reports into single paragraphs as contexts
and providing new manual annotated substring an-
swers. However, this process removes the natural-
ness of clinical notes written by healthcare profes-
sionals. There is also the QA reading comprehen-
sion dataset in the medical scientific domain, which
is BioASQ (Tsatsaronis et al., 2015). The dataset
includes instances consisting of a question, ideal
answer, PubMed medical article abstracts contain-
ing the answer, and the substring answers of all
such related article abstracts.

In our work, we exploit the emrQA dataset (Pam-
pari et al., 2018). Yue et al. (2020) analyzed the
two largest subsets from the emrQA dataset in de-
tail: Medication and Relations. They preprocessed
and filtered these two subsets and trained encoder-
based models, such as BERT-base (Devlin et al.,
2018), BioBERT (Lee et al., 2019), and Clinical-
BERT (Alsentzer et al., 2019), and then compared
their performance. However, developments in the
field have introduced other medically pre-trained
encoder-based models, such as MedCPT (Jin et al.,
2023), designed specifically for biomedical infor-
mation retrieval, or BioLORD (Remy et al., 2024).
Although the emrQA dataset authors perceive the
analysis provided by Yue et al. (2020) as mislead-
ing due to the use of only 2 out of 5 subsets, for
the purposes of our work, these two subsets with
the same preprocessing and filtering are equally
suitable. Therefore, our work indirectly follows up
on the analysis conducted by Yue et al. (2020).

Another type of QA task involves multiple-
choice questions. In the field of medicine, there is
a PubMedQA dataset (Jin et al., 2019), which con-
tains questions related to PubMed article abstracts.
Furthermore, exam-like multiple-choice question
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Medication Relations
Number of questions 222,957 904,590
Number of reports 262 426

Table 1: Basic statistics of both Medication and Rela-
tions subsets. Each question contains at least one answer
present in the report.

datasets such as MedQA (Jin et al., 2020), MedM-
CQA (Pal et al., 2022), MMLU (Hendrycks et al.,
2021) were published. These datasets have been
used as benchmarks for LLMs, such as MediTron
(Chen et al., 2023) and BioMistral-7B (Labrak
et al., 2024), which are open-source LLMs pre-
trained on medical data. In addition to medical
scientific and exam-like multiple-choice question
datasets, Richter-Pechanski et al. (2024) focused
on multiple-choice questions on German doctors’
letters.

3 Setup

We solve the task of document-level QA on the
emrQA dataset by a two-step method combining
paragraph retrieval and paragraph-level QA. We
analyze performance of the two tasks in combina-
tion and also separately. We follow the work of
Yue et al. (2020) focusing on the Medication and
Relations subsets only and applying the same data
preprocessing. Table 1 shows the basic statistics
of the two subsets. However, our results are not
directly comparable due to the different random
split into training, development, and test sets.

Throughout the rest of our study, we refer to
these definitions:

• Paragraph Retrieval (PR): Given a question
and n paragraphs (i.e. report segmented into
n paragraphs) as input, the objective is to rank
the paragraphs based on the confidence that
they contain relevant information. The task
is evaluated using precision at top 1 (P@1),
precision at top 2 (P@2), and precision at top
3 (P@3) paragraphs. Ground truth relevant
paragraphs are those containing an answer
evidence to a given question defined in the
emrQA dataset.

• Oracle Paragraph-driven Question An-
swering (Oracle-QA): Given a question and
an Oracle paragraph (guaranteed to contain
the answer) the objective is to identify and
extract a minimal substring from the para-
graph that precisely addresses or answers the

given question. The task is evaluated using
the official SQuAD metrics (Rajpurkar et al.,
2016), which are F1 and Exact Match scores.
We compare our predictions with the original
form of the testing dataset generated by the
filtration of Yue et al. (2020), i.e., with the
dataset before the segmentation process.

• Paragraph Retrieval–Question Answering
(PR-QA): Given a question and n paragraphs
(i.e. report segmented into n paragraphs), the
goal is to identify and extract a substring from
one of the paragraphs that precisely addresses
or answers a given question. Evaluation of
the task is based on the F1 and Exact Match
scores the same way as in the Oracle-QA task.

Yue et al. (2020) concluded that it is sufficient
to use only 20% and 5% of training data to train
models of the Medication and Relations subsets,
respectively. Since a larger amount of training data
has no effect, we use the same ratio of data sam-
ples for training. Their data instances consisted of
triples of document+question+answer where the
answer was guaranteed to be present in the docu-
ment. Our data instances were generated as triples
paragraph+question+answer where the answer was
also guaranteed to be present in the paragraph and
pairs paragraph+question where the corresponding
answer was not present in the paragraph. For each
question in a sampled training subset of a given
report, we randomly select a paragraph from the
same report that does not contain an answer. Thus,
we have a balanced dataset where the number of
paragraphs containing an answer matches the num-
ber of paragraphs without them.

In our experiments, we train the ClinicalBERT
(Alsentzer et al., 2019) and BERT-base (Devlin
et al., 2018) models, just as Yue et al. (2020) did.
Additionally, we measure the performance of the
MedCPT Article Encoder (Jin et al., 2023) model.
Since we are working with a balanced dataset, it
is necessary to specify how to handle cases where
the answer is missing in the context. If there is no
response in the dataset sample, the model is trained
to predict the CLS token as a response prediction.
During the inference, we apply the softmax func-
tion to the output logits and use its negative value as
confidence that the paragraph contains the answer.
Then, for a given question and segmented report
into paragraphs, the model solves the QA problem
for all paragraphs (we evaluate the Oracle-QA task
using the ground truth relevant paragraph), ranks
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PAST SURGICAL HISTORY: Notable for

the above , as well as debridements

...

DISCHARGE MEDICATIONS: Vancomycin

1250 mg IV q d , Ofloxacin 200

...

LABORATORY DATA :

White count 12.6 , hematocrit 28.9

...

PHYSICAL EXAMINATION :

On admission vital signs were

...

Figure 1: Example of report paragraph headings of both
Medication and Relations subsets.

all results by confidence, and selects the substring
of the paragraph with the highest confidence as
the final answer prediction (and then the PR and
PR-QA tasks are evaluated as well).

4 Document Segmentation

Our goal is to design a method for segmenting re-
ports into natural language paragraphs that each
contain all necessary context while minimizing un-
necessary information. As Pampari et al. (2018)
pointed out, the segmentation of clinical reports
into sentences is not straightforward. These com-
plications arise from factors such as the frequent
use of dots in acronyms, list items, and values and
the irregular alternation of uppercase and lower-
case letters. Because our goal is to create concise
paragraphs without losing context, we must ensure
that paragraph boundaries do not disrupt sentence
cohesion or, worse, do not appear in the middle of
a word. Therefore, our initial step is to split each
report into groups of complete sentences, ensuring
that no sentence is fragmented across groups and
that no substring of a response is split into two
paragraphs.

To achieve this, we leverage the structure of the
official emrQA dataset (Pampari et al., 2018). In
this dataset, each report text is stored as a list of
lines, with the answer evidence (in our case, the
answer substring) being one of the report lines.
Therefore, we set the condition that none of the
sentence groups starts or ends in the middle of
any line, ensuring that no answer substring is split
into two paragraphs. We then split the Medication
subset into groups of sentences if the following
pattern for the end of a line is satisfied: a dot at the

end of a line, preceded by five characters that are
neither dots nor uppercase letters, and the next line
starting with an uppercase letter (eventually this
second line can also be an item of a numbered list,
which means it could start with a number instead of
an uppercase letter). Clinical notes in the subset of
Relations are structured more clearly. Dots marking
the end of a sentence are surrounded by spaces,
while dots forming part of abbreviations are not.
Thus, such space-surrounded dots at the end of
a line indicate a sentence group boundary in the
context of the Relations subset.

Another pattern we utilize as a criterion for seg-
mentation contains a sequence of characters ending
with a colon, indicating headings followed by cor-
responding content, as shown in Figure 1. Using
the end of the previous line of such heading lines
as a sentence group separator makes sense. To de-
crease the risk of detecting not-heading lines, we
only consider uppercase titles for Medication when
determining sentence group boundaries. In the case
of the Relations subset, only lines ending with a
colon preceded by space are considered, similar to
the situation with dots.

Finally, we need to determine how we will group
sentence groups together to create a final paragraph
segmentation. By using the following regex pattern

(^([0 -9]+[\s]*[\.\)][\s]*)?[A-Z][a-zA-Z\s\(\)]*:)

we identify all potential headings at the beginning
of all sentence groups. Subsequently, we calculate
how often these headings appear in the training
data. We assume that frequently used titles sig-
nify sections generally discussed in clinical notes
by healthcare professionals that do not need any
additional context. Therefore, the question arises:
what is the minimum number of occurrences of
headings in the training data that we want to use
for paragraph separations?

We call such segmentation as heading-based
segmentation. As the range of possible headings
serving as paragraph boundaries increases, the av-
erage length of paragraphs decreases. As shown
in Table 2, segmenting reports using all detected
headings yields PR-QA results comparable to those
from unsegmented reports. Therefore, as part of
our analysis, where we evaluate how frequently
headings should be used as boundaries in segmen-
tation, we assess our three tasks (PR, Oracle-QA,
PR-QA) across different segmentations based on
varying heading frequencies, resulting in different
average segment lengths. This helps us understand
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Medication Relations
F1 EM F1 EM

MedCPT - unsegmented reports 68.33 27.48 94.69 87.68
MedCPT - heading-based PR-QA 64.79 26.63 94.05 88.44
BERT-base - unsegmented reports 70.09 30.07 95.04 89.32
BERT-base - heading-based PR-QA 68.19 30.23 95.15 91.28
ClinicalBERT - unsegmented reports 72.24 31.13 96.45 90.93
ClinicalBERT - heading-based PR-QA 70.80 31.19 96.44 92.69
Doc Reader (Yue et al. (2020)) 70.45 25.68 94.85 86.94
Human-labled (Yue et al. (2020)) 74.70 26.0 95.40 92.00

Table 2: Comparison of the results of pre-trained BERT models for QA applied to unsegmented reports and PR-QA
applied to heading-based segmentations with the shortest possible average segment lengths. We also include the best
results by Yue et al. (2020) evaluated on a test set sampled with a different random seed and their human-labeled
analysis evaluated on a sampled subset of the test set.

the challenges involved in distinguishing relevant
paragraphs from finding exact substring answers.

Despite the structured nature of the emrQA
dataset, the rules for splitting the Medication and
Relations subsets into paragraphs can be general-
ized to other clinical datasets with caution. Al-
though different countries, hospitals, and doctors
may structure their reports differently, there are of-
ten similar paragraphs and even common headings
across various discharge summaries. This observa-
tion allows us to take the list of headings collected
from the segmentation process of emrQA and use it
when segmenting other discharge summaries. How-
ever, some level of preprocessing and postprocess-
ing will always be necessary, as this method is not
a one-size-fits-all solution for all clinical reports.

4.1 Medication

The newly created segmented datasets derived from
the Medication subset need to be analyzed first.
When segmenting reports into shorter paragraphs,
more paragraph+question+answer triples are gen-
erated. This is because some questions have mul-
tiple possible answers in different document parts.
By breaking the text into paragraphs, these ques-
tion+answer pairs can be split into two or more.
Figure 3 shows this expansion is minimal, only
about 3−5%. However, this phenomenon does not
affect the results since we compare our predictions
with the original unsegmented reports. For ques-
tions with answers in multiple paragraphs, only
answer, the most confident one, is selected for the
evaluation. Figure 4 displays a list of 542 discov-
ered headings sorted by their frequency of occur-
rence. We can see that the first third of the headings
appear more frequently in all training reports. In

contrast, two-thirds of the headings found do not
appear to refer to traditional clinical sections. The
average lengths of the segmented paragraphs are
shown in Figure 5. Even though we collected head-
ings only from training reports, it did not signifi-
cantly impact the development and test sets. Any-
way, it is still interesting to observe the wide range
of segmented paragraph lengths.

We segmented the Medication subset into para-
graphs with varying average lengths from hundreds
to thousands of characters and evaluated the per-
formance of ClinicalBERT (Alsentzer et al., 2019)
model on all 3 tasks: PR, Oracle-QA, and PR-QA.
We sampled the training dataset and trained the
model with three different seeds. The results can
be seen in the first row of Figure 2. Results are
shown for segmentations with different average
paragraph lengths corresponding to the x-axis.

The shorter the paragraphs, the easier the Oracle-
QA task, but at the same time, the more paragraphs
correspond to one report, making the PR task more
challenging. Although the Oracle-QA task tends to
perform better in both F1 and Exact Match scores
for shorter paragraphs, the difference is not that
significant. For an average paragraph length of
2500 characters and less, the model is not always
confident in its top selection for the PR task. On
the other hand, considering two or three top pre-
dictions, the correct paragraph is almost certainly
included. After combining the predictions into
the PR-QA chart, the resulting curve for the Ex-
act Match remains constant for all possible average
paragraph lengths. The curve of the F1 score is also
constant, except for the shortest paragraphs. How-
ever, overall, the challenging part of the PR-QA is
the Oracle-QA prediction.
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Figure 2: The comparison of heading-based and naive segmentation approaches for different average paragraph
lengths using the ClinicalBERT (Alsentzer et al., 2019) model regarding all three tasks (PR, Oracle-QA, PR-QA) on
the Medication subset. All values are computed as an average of three experiments based on different training seeds.
The dashed lines visualize the range of score values.

Figure 3: Number of paragraph+question+answer
triples of the Medication subset in terms of the min-
imal occurrence frequency of headings we consider for
segmentation for the training, development, and test
sets.

4.2 Relations

Although Medication and Relations are different
subsets with different complexities, Figures 7, 8,
and 9 indicate that the header-based segmentation
approach behaves similarly for both. However, in
this case, we found 953 headings, which we use for
segmentation.

We conducted the same experiments on the Rela-
tions subset as we did in the case of the Medication
section. The results, illustrated in the first row of
Figure 6, cover the performance of the Clinical-

Figure 4: Histogram of heading occurrence frequencies
for the Medication training set. The x-axis represents
the heading positions within the sorted list of headings
based on their occurrence frequency. Each point on
the x-axis corresponds to a specific heading, with the y-
value indicating its occurrence frequency. In total, there
are 542 headings, with the most common appearing
over 200 times. Many headings appear only once in the
training data.

BERT model (Alsentzer et al., 2019) on segmen-
tations of Relations subset with varying average
paragraph lengths. Given the lower complexity of
the Relations subset compared to the Medication,
the model performed better in all three tasks. The
PR task achieved better than 98% of P@1, even
for the shortest paragraphs. The Oracle-QA task
indicates that the model performs notably better on
shorter paragraphs so that PR-QA results could be
improved. Following the combination, i.e., PR-QA
task, a constant F1 curve was observed. Further-
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Figure 5: Average paragraph lengths regarding mini-
mal occurrence frequency of headings we consider for
Medication subset segmentation. The dashed lines show
the minimum and maximum lengths of the segmented
paragraphs.

more, there is a slight improvement in the Exact
Match score by 1–2% when the shortest paragraphs
are taken into account.

5 Is Segmentation into Paragraphs
Necessary?

We have shown that heading-based paragraph seg-
mentation has no significant effect on the PR-QA
task except for improving the Exact Match score of
the Relations when segmenting into shorter para-
graphs. However, most clinical texts are unstruc-
tured and use unique text formatting; sometimes,
finding a segmentation into coherent sections in
the sense of meaning as well as syntax is not easy
or even possible. To determine its necessity, we
conduct experiments with naive segmentation.

We choose a target average segment length t
to create the naive segmentation. Then, we cal-
culate each report’s length n and determine the
rounded number of segments in the report as p =
round(n/t). Subsequently, we compute the actual
average segment length of the report for the value
of p as r = n/p. Finally, the report is divided
into segments of r characters. Postprocessing is
then applied across all segments and all answers in
the report. In cases where an answer substring is
part of two separate segments, we adjust the seg-
ment boundaries so that the entire answer is in one
segment only.

The target average segment length t for naive
segmentation is chosen to match the average seg-
ment lengths of the headings-based segmentation
experiments. Specifically, for each measured seg-
mentation level of the headings-based approach,
we also measure the naive segmentation using a

target average segment length equal to the aver-
age segment length of the given headings-based
segmentation.

In Figures 2 and 6, we visualize the comparison
between ClinicalBERT (Alsentzer et al., 2019) us-
ing heading-based and naive approaches. Except
for segmentation with the shortest paragraphs, the
choice of segmentation method has no noticeable
effect on the PR-QA task. In the case of the short-
est paragraphs of the Relations subset, the naive
approach begins to decline in PR-QA performance,
while the heading-based approach becomes more
accurate. The reason for that is worse performance
on the PR task as well as the Exact Match on the
Oracle-QA. The performance of naive segmenta-
tion on the PR task is significantly worse. On the
other hand, the Oracle-QA naive segmentation ex-
periments show better results. The most confident
segment contains less relevant content compared
to heading-based segmentation, making it easier
to find the correct substring as an answer (fewer
relevant and potential words in the segment) if the
segment itself is predicted correctly. Overall, the
PR-QA performance of both heading-based and
naive approaches is similar.

6 Paragraphs and LLMs

Considering the impact of segmentation into
shorter paragraphs on the scores, it is noteworthy
that it does not significantly affect them and may
even enhance them. This observation suggests the
potential for leveraging LLMs without the neces-
sity for unlimited computational resources in future
applications. In this study, we evaluate the perfor-
mance of BioMistral-7B (Labrak et al., 2024) in
the Oracle-QA task and compare it with MedCPT
(Jin et al., 2023), BERT-base (Devlin et al., 2018),
and ClinicalBERT (Alsentzer et al., 2019) mod-
els. BioMistral-7B (Labrak et al., 2024) is trained
on question+paragraph+answer triplets where each
paragraph contains an answer. Negative examples
are omitted to focus solely on the Oracle-QA task.
The model prompt is shown in Figure 10. For eval-
uation, the model’s response is parsed into a JSON
object, and the value of the "answer" field is ex-
tracted.

Table 3 presents the F1 and Exact Match results
of the Oracle-QA task using heading-based seg-
mentation with the shortest possible paragraphs,
categorized into Medication and Relations sub-
sets. The results demonstrate that BioMistral-7B
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Figure 6: The comparison of heading-based and naive segmentation approaches for different average paragraph
lengths using the ClinicalBERT (Alsentzer et al., 2019) model regarding all three tasks (PR, Oracle-QA, PR-QA) on
the Relations subset. All values are computed as an average of three experiments based on different training seeds.
The dashed lines visualize the range of score values.

Figure 7: Number of paragraph+question+answer
triples of the Relations subset in terms of the minimal
frequency of occurrence of headings we consider for
segmentation for the training, development, and test
sets.

(Labrak et al., 2024) achieves competitive perfor-
mance but still lags behind encoder-based models
such as ClinicalBERT (Alsentzer et al., 2019) and
BERT-base (Devlin et al., 2018). BioMistral-7B
(Labrak et al., 2024) shows not only promising
Exact Match scores compared to MedCPT (Jin
et al., 2023), highlighting its potential in clinical
QA tasks. However, further exploration is needed
to optimize prompts and explore larger models to
enhance performance.

Figure 8: The histogram of heading occurrence frequen-
cies for the Relations training set. The x-axis represents
the heading positions within the sorted list of headings
based on their occurrence frequency. Each point on
the x-axis corresponds to a specific heading, with the y-
value indicating its occurrence frequency. In total, there
are 953 headings, with the most common appearing
almost 200 times.

7 Conclusions

Our study explores the efficiency of language
models in addressing clinical document-level QA.
We described an approach to perform heading-
based segmentation and extract clinical report head-
ings and found that segmenting documents into
shorter sections through heading-based or naive
approaches does not decline the performance of
ClinicalBERT (Alsentzer et al., 2019), BERT-base
(Devlin et al., 2018), or MedCPT (Jin et al., 2023)
models. Paragraph length has no significant impact
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Figure 9: Average paragraph lengths regarding mini-
mal occurrence frequency of headings we consider for
Relations subset segmentation. The dashed lines show
the minimum and maximum lengths of the segmented
paragraphs.

Figure 10: The prompt used for BioMistral-7B train-
ing and inference in the Oracle-QA task for extracting
answers from a context given a particular question.

on the QA task. Furthermore, knowledge of clini-
cal document characteristics is unnecessary since
naive segmentation performs similarly to heading-
based segmentation. The main difference is that
naive segmentation is more challenging for para-
graph retrieval but easier for question answering.
In both cases, however, we observe that the correct
segment containing the answer is almost always
found within the three most confident paragraph
retrieval predictions.

Leveraging LLMs like BioMistral-7B (Labrak
et al., 2024) shows potential for document-level
clinical QA tasks even when computational re-
sources are limited. However, there is still room
for improvement and it is necessary to explore
other pre-trained LLMs with different training ap-
proaches. It remains an open question how the

m-F1 m-EM r-F1 r-EM
MedCPT 70.7 28.3 96.7 91.5
BERT-base 73.0 31.9 97.5 94.0
ClinicalBERT 74.4 32.5 97.9 94.4
BioMistral 66.6 29.8 94.4 89.0

Table 3: F1 (F1) and Exact Match (EM) Oracle-QA
results using the heading-based segmentation of the
shortest possible paragraphs for both Medication (m)
and Relations (r) subsets.

segmented paragraph approach would affect results
and behavior on more complex tasks or datasets.
Further research is needed to evaluate these meth-
ods in more challenging QA scenarios to fully un-
derstand their impact and potential.

Acknowledgments

This work has received support and funding from
the European Union’s Horizon Europe research and
innovation programme project RES-Q plus (Grant
Agreement No. 101057603).

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Associ-
ation for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine
Bosselut. 2023. Meditron-70b: Scaling medical
pretraining for large language models. Preprint,
arXiv:2311.16079.

Dina Demner-Fushman, Wendy W. Chapman, and
Clement J. McDonald. 2009. What can natural lan-
guage processing do for clinical decision support?
Journal of Biomedical Informatics, 42(5):760–772.
Biomedical Natural Language Processing.

588



Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jimenez Eladio and Hao Wu. 2024. emrqa-msquad:
A medical dataset structured with the squad v2.0
framework, enriched with emrqa medical informa-
tion. Preprint, arXiv:2404.12050.

Fernando Gallego Donoso and Francisco Veredas. 2023.
Icb-uma at biocreative viii @ amia 2023 task 2
symptemist (symptom text mining shared task). In
Proceedings of the BioCreative VIII Challenge and
Workshop: Curation and Evaluation in the era of
Generative Models.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2020. What dis-
ease does this patient have? A large-scale open do-
main question answering dataset from medical exams.
CoRR, abs/2009.13081.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Qiao Jin, Won Kim, Qingyu Chen, Donald C Comeau,
Lana Yeganova, W John Wilbur, and Zhiyong Lu.
2023. Medcpt: Contrastive pre-trained transformers
with large-scale pubmed search logs for zero-shot
biomedical information retrieval. Bioinformatics,
39(11):btad651.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-
Antoine Gourraud, Mickael Rouvier, and Richard
Dufour. 2024. Biomistral: A collection of open-
source pretrained large language models for medical
domains. Preprint, arXiv:2402.10373.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2020. Albert: A lite bert for self-supervised
learning of language representations. Preprint,
arXiv:1909.11942.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
CoRR, abs/1901.08746.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Preprint, arXiv:2307.03172.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248–260. PMLR.

Anusri Pampari, Preethi Raghavan, Jennifer J. Liang,
and Jian Peng. 2018. emrqa: A large corpus for
question answering on electronic medical records.
CoRR, abs/1809.00732.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

François Remy, Kris Demuynck, and Thomas De-
meester. 2024. BioLORD-2023: semantic textual
representations fusing large language models and
clinical knowledge graph insights. Journal of the
American Medical Informatics Association, page
ocae029.

Phillip Richter-Pechanski, Philipp Wiesenbach, Do-
minic M. Schwab, Christina Kiriakou, Nicolas Geis,
Christoph Dieterich, and Anette Frank. 2024. Clini-
cal information extraction for low-resource languages
with few-shot learning using pre-trained language
models and prompting. Preprint, arXiv:2403.13369.

Maximilian Schmidt, Andrea Bartezzaghi, and
Ngoc Thang Vu. 2024. Prompting-based synthetic
data generation for few-shot question answering.
Preprint, arXiv:2405.09335.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael Alvers, Dirk Weißenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artieres,
Axel-Cyrille Ngonga Ngomo, Norman Heino, Eric
Gaussier, Liliana Barrio-Alvers, and Georgios

589



Paliouras. 2015. An overview of the bioasq large-
scale biomedical semantic indexing and question an-
swering competition. BMC Bioinformatics, 16:138.

Xiang Yue, Bernal Jimenez Gutierrez, and Huan Sun.
2020. Clinical reading comprehension: A thorough
analysis of the emrQA dataset. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4474–4486, Online. Asso-
ciation for Computational Linguistics.

Zhuosheng Zhang, Junjie Yang, and Hai Zhao. 2020.
Retrospective reader for machine reading comprehen-
sion. Preprint, arXiv:2001.09694.

590



Proceedings of the 23rd Workshop on Biomedical Language Processing, pages 591–596
August 16, 2024. ©2024 Association for Computational Linguistics

CID at RRG24: Attempting in a Conditionally Initiated Decoding of
Radiology Report Generation with Clinical Entities

Yuxiang Liao*, Yuanbang Liang*, Yipeng Qin, Hantao Liu, Irena Spasić
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Abstract

Radiology Report Generation (RRG) seeks to
leverage deep learning techniques to automate
the reporting process of radiologists. Current
methods are typically modelling RRG as an
image-to-text generation task that takes X-ray
images as input and generates textual reports
describing the corresponding clinical observa-
tions. However, the wording of the same clini-
cal observation could have been influenced by
the expression preference of radiologists. Nev-
ertheless, such variability can be mitigated by
normalizing textual reports into structured rep-
resentations such as a graph structure. In this
study, we attempt a novel paradigm for incorpo-
rating graph structural data into the RRG model.
Our approach involves predicting graph labels
based on visual features and subsequently initi-
ating the decoding process through a template
injection conditioned on the predicted labels.
We trained and evaluated our model on the
BioNLP 2024 Shared Task on Large-Scale Ra-
diology Report Generation and submitted our
results to the ViLMedic RRG leaderboard. Al-
though our model showed a moderate ranking
on the leaderboard, the results provide prelim-
inary evidence for the feasibility of this new
paradigm, warranting further exploration and
refinement.

1 Introduction

Radiology Report Generation (RRG) seeks to lib-
erate radiologists from the repetitive reporting pro-
cess, allowing them to focus on revising the reports
and thereby enhancing the accuracy and efficiency
of clinical communication. As a multi-modality
task, RRG models usually employ the encoder-
decoder architecture, where the encoder is a vision
model that is responsible for extracting visual fea-
tures from radiology images while the decoder is a
language model that is responsible for converting
visual features into narrative reports. Compared

*Contributed equally.

with the general image captioning task, the clinical
observations in radiology images are more subtle.
Moreover, the wording of the same clinical observa-
tion could have been influenced by the expression
preference of radiologists. This raises a challenge
to the model’s learning ability in terms of extracting
fine-grained visual features and generate accurate
clinical narratives.

Our recent review of this field proposed that
structured reports can alleviate the inherent diver-
sity of natural language, thus contributing to more
accurate results in the model training and evalu-
ation (Liao et al., 2023). Benefiting from the ad-
vent of RadGraph (Jain et al., 2021), a graph-based
representation of clinically significant fine-grained
information extracted from reports, recent research
has commenced utilising such structured represen-
tation of reports to enhance the RRG models. Rel-
evant studies can be broadly classified into two
paradigms. One paradigm fuses the graph features
with visual features, letting the decoder learn how
to generate the next word from a given input and
the fused features (Wang et al., 2022; Yan et al.,
2023; Yang et al., 2022; Li et al., 2023). Another
paradigm focuses on graph generation based on the
visual features and decouples the visual features
from the decoding stage, allowing the language
model to learn solely how to generate text based
on the predicted graph (Nooralahzadeh et al., 2021;
Xiong et al., 2024).

This has sparked our interest, as it raises a
research question of whether there exists a new
paradigm that can explicitly leverage graph struc-
tures to improve the quality of generative language
models, while also enabling visual features to sup-
plement the predicted graph with missing infor-
mation. Based on this idea, we attempt a novel
approach, whereby the predicted graphs are fed
into a template prompt, replacing the traditional
special token as the initial input to the decoder,
aiming to enable a clearer query to the associated
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image features during the generation process.

2 Related Work

In early research on RRG, many studies introduced
disease labels to enhance their models (Jing et al.,
2018; Yin et al., 2019; Yuan et al., 2019; Harzig
et al., 2019; Wang et al., 2018). As research pro-
gressed, some studies began to explore the use of
graph to replace disease labels as it can represent
more fine-grained information (Zhang et al., 2020;
Li et al., 2019). The graph is considered as a nor-
malized representation of a report in terms of the
the key information entities and their relationships
(Jain et al., 2021).

To utilise graph data, Nooralahzadeh et al. (2021)
and Yan et al. (2023) proposed modelling RRG as a
pipeline of image-to-graph and graph-to-text tasks.
Xiong et al. (2024) followed the same paradigm
although their study contained only the first part.
In contrast, Wang et al. (2022) interpreted the RRG
as an image-to-text task where a graph prediction
module was appended to the visual encoder. Ad-
ditionally, the graph features were combined with
visual features and passed to the text decoder, al-
lowing the text decoder to learn to attend to differ-
ent features. Yang et al. (2022) and Li et al. (2023)
employed a similar feature fusion approach, yet
their graph was not directly predicted from visual
features, but rather retrieved from the paired report
of a similar image identified by comparing their
visual features.

3 Method

3.1 Vision Encoder Decoder Model
Our model comprises a pre-trained Transformer-
based vision model as the encoder and a pre-trained
language model as the decoder. A cross-attention
layer and a language model head are appended to
the decoder to support generation.

Let I denote a radiology image and T denote
the corresponding report text. A cross-attention
feature ΦT,I is computed by Attention(Q,K,V),
where the query Q represents the encoded text fea-
tures ΦT , and the key K and value V represent the
encoded visual features ΦI . During the training
stage, ΦT,I is passed to a language model head to
generate a complete text sequence T̂ at once. The
model is updated by the cross-entropy loss between
the probability of the predicted tokens in T̂ and the
target tokens in T . During the inference stage, the
model takes an image as the encoder input and a

special token as the decoder input and generates
the next token through an auto-regressive decoding
process.

In this architecture, the prevailing methods that
combine the graph or label features with visual
features can be interpreted as providing more in-
formation to K and V to be queried. However, we
assume that the visual features have sufficient infor-
mation, thus, we aim to enhance Q to better utilise
the information from the visual features.

3.2 Graph Label Selection
We first customized a structured reporting tool
based on RadGraph to preprocess the raw text.
RadGraph is an information extraction tool that
can convert narrative radiology reports into graphs.
In RadGraph, each node is an entity that cor-
responds to a continuous span of text. Each
edge is a uni-directional relation that connects
two entities. Entities are assorted into four types:
Anatomy, Observation-Present/Absent/Uncertain.
Relations are assorted into three types: Suggestive-
Of, Located-At, and Modify. We refer the reader
to the original paper for details (Jain et al., 2021).
We refined RadGraph by combining the Observa-
tion and Anatomy nodes that are linked with a
Located-At edge such as "lung hyperinflate", while
the other nodes were omitted. Label’s text con-
tent was lemmatized. We selected labels that have
appeared in more than 5,000 reports, resulting in
79, 22 and 10 label classes representing present,
absent, and uncertain, respectively. For any other
label, we assigned a dummy label to represent the
corresponding category. Therefore, each report can
be enhanced by 114 informative labels.

3.3 Multi-label Classification
Let the Lctg denote the labels of a specific cat-
egory ctg = {present, absent, uncertain} ex-
tracted from a report T . We first introduced an
auxiliary task of multi-label classification (MLC)
between the encoding-decoding process:

pctg = σ(FFNN(θctg;ΦI)), (1)

where FFNN represents a feed-forward neural net-
work classifier with learning parameters θ that pre-
dicts the probability distribution pctg of labels in
a specific category ctg, taking the average pooled
visual features ΦI as input to get optimised θctg.
The classification loss is computed by the cross-
entropy loss between the predicted probabilities
and the target labels for all categories.
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By incorporating the MLC task into the model,
the overall objective is thus to optimize the text gen-
eration loss and label classification loss, denoted
as Lall = λTLT + λMLCLMLC , where λT and
λMLC are pre-defined weights that balance two
losses.

3.4 Conditionally Initiated Decoding

To enhance the query Q in the cross-attention layer,
we inject the labels directly into the decoder as its
initial input. Specifically, the labels are rewritten as
a label text sequence via a template: "Observation
present: []; absent: []; uncertain: []. Describe them
in detail: ". Each label string is filled into one of the
brackets according to its category while the dummy
label is filled as "others".

During training, we employ a teacher-forcing
approach that uses the target labels as the source
labels to fill the template. Therefore, the decoder
input sequence is formed as "<BOS>label text se-
quence<EOS><EOS>report text sequence<EOS>".
During the inference stage, we combine the pre-
dicted labels from the three classifiers and select no
more than top-k labels with probabilities exceeding
the threshold as the source label for the template.
Therefore, the initial decoder input is transformed
into "<BOS>label text sequence<EOS><EOS>"
and the next token is generated through an auto-
regressive decoding process. A workflow of our
model is illustrated in Figue 1.

3.5 Batch Inference

When performing batch inference on the data, the
inconsistency in the number and length of the ac-
tivated label poses an alignment issue when con-
structing the input tensor. To address this, we em-
ploy left padding during the inference stage to en-
sure the generated tokens and the initial decoder
input are semantically continuous. Furthermore,
the padding tokens are also marked out from the
decoder attention mask to prevent them from influ-
encing other tokens.

4 Experiments

4.1 Experimental Settings

Our experiments are conducted on the BioNLP
2024 Shared Task on Large-Scale Radiology Re-
port Generation (Xu et al., 2024), which proposes
the first standard to the community regarding the
use of the dataset and evaluation metrics.

4.1.1 Datasets

This shared task provides the first large-scale col-
lection of RRG datasets based on MIMIC-CXR
(Johnson et al., 2019), CheXpert (Chambon et al.,
2024), OpenI (Demner-Fushman et al., 2015), Pad-
Chest (Bustos et al., 2020) and CANDID-PTX
(Vayá et al., 2020). Each data item represents a
radiology examination consisting of at least one
X-ray image and two pieces of text correspond-
ing to the findings and impression sections of the
radiology report. Any non-English reports were
translated into English via GPT-4. The provided
dataset has been split into training, validation, test-
ing subsets. Testing data were further split into
public and hidden subsets.

4.1.2 Metrics

The models are automatically evaluated by the
ViLMedic metric package (Delbrouck et al.,
2022b) using the following metrics: Bertscore
(Zhang et al., 2019), Bilingual Evaluation Under-
study: 4-gram (BLUE-4) (Papineni et al., 2002),
Recall-Oriented Understudy for Gisting Evalua-
tion: Longest Common Subsequence (ROUGE-
L) (Lin, 2004), F1-RadGraph: partial (Delbrouck
et al., 2022a) and all-micro-F1-CheXbert (Smit
et al., 2020).

4.1.3 Implementation Details

Our model uses Swinv2-base (Liu et al., 2022) as
the visual encoder and Roberta-base (Liu et al.,
2019) as the text decoder. The encoder takes only
the first image as input for each data. The decoder
input sequence accepts a maximum of 512 tokens,
where any surplus tokens are truncated. The de-
coder input sequences are padded to the longest
sequence in each batch. We trained the model on
the finding and impression respectively. In all ex-
periments, the model was trained on NVIDIA RTX
4090 24G for 30 epochs using a learning rate of
1e-4 and a batch size of 12. A weight decay of 0.01
is set to the encoder and decoder. We updated the
model with the AdamW optimizer using a linear
scheduler with a warmup ratio of 0.1, and a gra-
dient clipping set to 1. λT and λMLC are set to
1 and 5, respectively. During inference, we adopt
the beam search strategy and set the beam size to
3 and the maximum generation length to 128. For
the conditionally initiated decoding, we selected no
more than 10 labels with probabilities exceeding
0.5.
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Figure 1: The workflow of our model during training (left) and inference (right). The blue text represents the
conditionally initiated decoder input, which substitutes the original special token that functioned as the decoder’s
first input.

4.2 Results and Discussion

The performance of our model in generating the
findings and impression sections of a report are il-
lustrated in Table 1. The performance gap between
the findings and impression sections is mainly due
to the early termination of training to meet the sys-
tem submission deadline. Although our model only
exhibits a medium result on the ViLMedic RRG
leaderboard (Delbrouck et al., 2022b), we assume
this prototype model is feasible and has the poten-
tial to be improved.

Table 1: Model performance on the public and hidden
test subsets.

Data subsets BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
Public test-set
Findings 8.29 24.38 52.28 51.13 22.26
Impression 5.25 18.71 41.72 42.86 15.13

Hidden test-set
Findings 7.46 23.3 50.89 50.47 21.45
Impression 7.13 20.41 43.67 39.64 15.19

Firstly, we utilised only the first image from each
data item as the encoder input. Given that a radi-
ologist may refer to multiple images when com-
posing a report, using the image features extracted
from a single image may result in information loss
when multiple images are available. However, the
number of available images for each data item is
uncertain, raising a challenge to the visual model
in terms of its adaption.

Secondly, properly utilising the graph data re-
mains unexplored yet has direct impacts on various
aspects of the model. For example, the selection
of graph labels can directly affect the learning dif-
ficulty of multi-label classification (MLC). If the
number of labels is too small, the amount of in-

formation provided to the Conditionally Initiated
Decoding (CID) may be limited even with good
MLC performance. Conversely, if the number of
labels is too large, the MLC performance may be
significantly affected, making it impossible to pro-
vide accurate information to the CID during infer-
ence. Currently, our MLC on the finding section
achieved precision/recall of 76%/40%, 63%/39%
and 31%/15% on the present, absent, and uncertain
labels, respectively. The trade-off between these
factors requires further study. Besides, the impact
of the label text template on the decoder remains
unclear.

Thirdly, the current selection of model hyperpa-
rameters and the base pre-trained models for the
encoder and decoder was based on experience. Due
to time constraints, we did not systematically ex-
plore other combinations. Comprehensive experi-
ments with the hyperparameters and the pre-trained
models are also required in future work.

5 Conclusion

In this study, we propose a novel approach for uti-
lizing graph structural data to support RRG. This
approach involves predicting graph labels based on
visual features and leveraging the predicted labels
to initialize the decoder input through a template
injection. We evaluated our model following the
BioNLP 2024 Shared Task 1: Radiology Report
Generation, where the results have been submitted
to the ViLMedic RRG leaderboard. We discuss the
limitations of our preliminary RRG model and the
initial experiments and outline several directions
for improving our model. Our model and codes are
available on GitHub (Liao, 2024).
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6 Limitations

Firstly, our model only accepts a single radiology
image per data item as input, whereas the data
item could contain multiple images, resulting in
the loss of significant input information. Secondly,
it remains uncertain to what extent the quality of
the generated text is influenced by the decoder in-
put initialized with graph-structured data. Thirdly,
the selection of current hyperparameters and pre-
trained models is based on intuition rather than
appropriate experimentation. More details have
been discussed in Section 4.2.

Finally, our model requires an additional GPU-
CPU-GPU switch during inference, leading to in-
creased time costs. Specifically, the Conditionally
Initiated Decoding process requires switching to
the CPU to dynamically construct the decoder in-
put with a tokenizer for each batch. However, we
suppose that this issue can be addressed by pre-
tokenizing and caching the template text and all
graph labels. The improvement the model effi-
ciency will be conducted in our future work.
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Abstract

This paper discusses the participation of the
MSR MAIRA team in the Large-Scale Radi-
ology Report Generation Shared Task Chal-
lenge, as part of the BioNLP workshop at ACL
2024. We present a radiology-specific multi-
modal model designed to generate radiologi-
cal reports from chest X-Rays (CXRs). Our
proposed model combines a CXR-specific im-
age encoder RAD-DINO (Pérez-García et al.,
2024) with a Large Language Model (LLM)
based on Vicuna-7B, via a multi-layer percep-
tron (MLP) adapter. Both the adapter and the
LLM have been fine-tuned in a single-stage
training setup to generate radiology reports. Ex-
perimental results indicate that a joint training
setup with findings and impression sections im-
proves findings prediction. Additionally, incor-
porating lateral images alongside frontal im-
ages when available further enhances all met-
rics. More information and resources about
MAIRA can be found on the project website:
http://aka.ms/maira.

1 Introduction

An impactful application of natural language gen-
eration in the medical field involves the creation
of support systems that interpret patient X-ray im-
ages and produce a draft report detailing the clin-
ical findings in these images. Such systems have
the potential to enhance and expedite radiology re-
porting workflows. In this regard, a Shared Task
Challenge for Radiology Report Generation has
been organised as part of the ACL 2024 BioNLP
workshop1 (RRG24; Xu et al., 2024). This shared
task challenge uses the first large-scale collection
of radiology report generation datasets based on

1https://stanford-aimi.github.io/RRG24/

MIMIC-CXR (Johnson et al., 2019), CheXpert
(Chambon et al., 2024), PadChest (Bustos et al.,
2020), BIMCV-COVID19 (Vayá et al., 2020), and
Open-i (Nguyen et al., 2022) datasets. This pa-
per covers the participation of the MAIRA (Mul-
timodal AI for Radiology Applications) team at
Microsoft Research in this challenge.

We build on the architecture and training ap-
proach from our earlier work MAIRA-1 (Hyland
et al., 2024). This approach combines a CXR-
specific image encoder (RAD-DINO, Pérez-García
et al. (2024)) with a pretrained LLM (Vicuna-7B
1.5, Chiang et al. (2023)) via an adapter which is
an MLP of 4 layers. Both LLM and adapter are
finetuned in a single stage for the task of radiol-
ogy report generation, while the image encoder is
pretrained following the self-supervised DINOv2
approach (Oquab et al., 2024). For this competition,
we produce a variant of MAIRA-1 which is trained
only on public data, and further extended it to in-
corporate lateral images. We share the following
outcomes:

1. A joint training setup for findings and impres-
sion prediction improves the metrics for find-
ings generation.

2. Coupling lateral views with frontal views
when available shows improvement in both
the clinical and lexical metrics.

3. We show that scaling the model size from
Vicuna-7B to 13B further helps to improve
all the metrics. We also show that smaller
models like Phi-3-mini with 3.8B parameters
is on-par with the larger models.
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Table 1: Number of studies with a given section across the data sources and splits in the RRG24 challenge dataset.

Split Section MIMIC-CXR CheXpert Open-i PadChest BIMCV-COVID19

Train Findings 148 374 45 491 3252 101 752 45 525
Impression 181 166 181 619 3628 – –

Validation Findings 3799 1112 85 2641 1202
Impression 4650 4589 92 – –

2 Method

2.1 Dataset

The dataset statistics of the RRG24 challenge are
available in Table 1. Each study can have multiple
frontal and/or lateral images. We processed this
dataset into two versions: frontal-only (Table 2),
where each record contains only one frontal im-
age, and frontal-with-laterals (Table 3), where each
record contains one frontal or a frontal and a lateral
image. Hence, each record in the RRG24 dataset
may be split into more than one record in these
datasets.

Table 2: RRG24 frontal-only dataset. Each record cor-
responds to exactly one frontal image.

Section Train Test Val. Hidden

Findings 359 351 2900 9215 1133
Impression 381 075 3205 9691 1495

Total 740 426 6105 18 906 2628

Table 3: RRG24 frontal-with-laterals dataset. Each
record corresponds to a frontal image (F) with or without
a lateral image (L).

Section View Train Test Val. Hidden

Findings
F 174 977 1193 4420 562
F+L 196 023 1897 5081 629

Impression
F 226 673 1392 5792 825
F+L 165 835 2005 4193 734

Total 763 508 6487 19 486 2750

The image encoder is trained using the im-
ages from the MIMIC-CXR (Johnson et al., 2019),
CheXpert (Chambon et al., 2024), PadChest (Bus-
tos et al., 2020), NIH-CXR (Wang et al., 2017), and
BRAX (Reis et al., 2022) datasets. Both frontal
and lateral view images were used. The dataset
statistics by source are available in Table 4. The

Table 4: Training datasets for the image encoder.

Source View No. of images

MIMIC-CXR Frontal, lateral 367 932
CheXpert Frontal, lateral 218 180
PadChest Frontal, lateral 156 432
NIH-CXR Frontal 112 120
BRAX Frontal, lateral 41 260

images in the validation and test sets of RRG24
challenge were excluded.

2.2 Model architecture

We leverage the MAIRA-1 (Hyland et al., 2024)
architecture that consists of a CXR-specific image
encoder, an adapter layer and an LLM. The im-
age encoder (Pérez-García et al., 2024) is a ViT-B
model (Dosovitskiy et al., 2020). The input image
resolution is 518×518. The LLM is Vicuna-7B 1.5
(Chiang et al., 2023). The adapter is an MLP with
4 layers with a hidden size of 1024 for all the layers.
The prompt setup we used is available in Table 5.

2.3 Training details

For the image encoder training, we follow RAD-
DINO (Pérez-García et al., 2024) and use an image-
level objective, a patch-level objective, and a reg-
ulariser to encourage uniform span of the features
within a batch. We initialised the model with the
weights of the pre-trained DINOv2 ViT-B (Oquab
et al., 2024) and trained with the chest X-ray im-
ages in Table 4 for an additional 60k training steps,
with an effective batch size of 640. We used the
AdamW optimizer with a base learning rate of
0.001 and a cosine learning rate scheduler with
linear warm-up.

For MAIRA-RRG24 training, we keep the im-
age encoder frozen. We just train the adapter and
the LLM with a standard auto-regressive language
modelling loss. We use a cosine learning rate sched-
uler with a warm-up of 0.03 and learning rate of

598



Table 5: Prompt for the different tasks. F: frontal, L: lateral.

Setting View Prompt

Findings F Given the frontal image {image_tokens}, provide a description of the findings
in the radiology study.

F+L Given the frontal image {image_tokens} and the lateral image
{lateral_image_tokens}, provide a description of the findings in the
radiology study.

Impression F Given the frontal image {image_tokens}, provide a summary impression in
the radiology study.

F+L Given the frontal image {image_tokens} and the lateral image
{lateral_image_tokens}, provide a summary impression in the radi-
ology study.

Table 6: Experimental settings. F: frontal, L: lateral.

Setting View Task

Findings (F) F findings prediction
Findings + Impression (F) F findings and impression prediction (multi-task)
Findings (F+L) F+L findings prediction
Findings + Impression (F+L) F+L findings and impression prediction (multi-task)

2 × 10−5. We train for 3 epochs with a global
batch size of 128. During evaluation, as there could
be multiple predictions for a study (a study could
have more than one frontal/lateral images), we use
GPT-4 with the prompt defined in Table 10 to select
the best prediction.

2.4 Evaluation metrics
We use the vilmedic package (Delbrouck et al.,
2022b) for computing the metrics. ROUGE-L
(Lin, 2004), BLEU-4 (Papineni et al., 2002) and
BERTScore (Zhang et al., 2019) were used to mea-
sure the lexical performance. F1-CheXbert (Smit
et al., 2020) and F1-Radgraph (Delbrouck et al.,
2022a) were used to measure the clinical perfor-
mance.

3 Experiments

We perform experiments in four settings as de-
fined in Table 6: single-task training for find-
ings generation, joint(multitask) training for find-
ings and impression generation, and combinations
of both with or without lateral images alongside
frontal images. We use dataset versions in Ta-
ble 2 and Table 3 when we train for frontal only
setup and frontal and lateral setup respectively. We
call the model trained with the multitask setting
for findings and impression prediction using the

frontal and lateral images as MAIRA-RRG24. We
also trained MAIRA-RRG24 with a smaller LLM,
Phi-3-mini-4k-instruct (Abdin et al., 2024)
with 3.8B parameters. We also performed an ad-
ditional scaling experiment for the findings gen-
eration task with laterals (third setting in Table 6)
using the Vicuna 7B and 13B versions.

3.1 Results

The results of the experiments are available in Ta-
ble 7. We find that a joint training setup involving
findings and impression prediction tasks shows a
slight improvement in the findings prediction met-
rics compared to training for findings prediction
alone. Additionally, training with lateral images
in addition to frontal images further improves all
the metrics. The best experimental setup, which
is the Findings+Impression (F+L) setting involves
joint training for findings and impression predic-
tion tasks, along with the inclusion of lateral im-
ages when available. The results of our best setting
on the hidden test set are presented in Table 9. We
also trained our best setting, with a smaller model
Phi-3-mini-4k-instruct and got better or com-
petitive results in all the metrics. The results of
the model scaling experiment in Table 8 demon-
strate that a larger model size helps to improve the
metrics.
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Table 7: MAIRA-RRG24 – Experimental results for findings generation task on the public-test set.

Setting BLEU-4 ROUGE-L BERTScore F1-CheXbert F1-RadGraph

Findings (F) 10.61 26.70 54.54 52.64 24.57
Findings+Impression (F) 10.88 26.86 54.50 55.55 24.68
Findings (F+L) 11.20 26.59 54.53 56.95 24.84
Findings+Impression (F+L) 12.26 28.00 55.76 59.71 26.33
Findings+Impression (F+L)
(Phi-3-mini-4k-instruct)

14.84 29.17 58.91 55.87 27.07

Table 8: MAIRA-RRG24 – Model scaling experiment. Public test results for Findings (F+L) setting.

LLM BLEU-4 ROUGE-L BERTScore F1-CheXbert F1-RadGraph

vicuna-7b-v1.5 11.20 26.59 54.53 56.95 24.84
vicuna-13b-v1.5 12.17 27.86 55.62 59.66 26.21

Table 9: MAIRA-RRG24 – Hidden test set results for the Findings+Impression (F+L) setting.

Task BLEU-4 ROUGE-L BERTScore F1-CheXbert F1-RadGraph

Findings Generation 11.24 26.58 54.22 57.87 25.48
Impression Prediction 11.66 28.48 51.62 53.27 25.26

Table 10: GPT-4 prompt for selecting the best report for
a study when there are multiple records.

You are an AI assistant who helps to select the best
radiology report from multiple reports written for
the same patient. User will send you a list of
reports. You will select the best report based on
the below criteria.
1. It has the best complete list of findings that
contains the findings from other reports as well.
2. Do not contain hallucinations like comparison
to a previous report and other noisy details.
3. The writing style matches closely with that of
a radiologist.
Return just the number of the index of the list
corresponding to the best report. The index starts
with 0.

4 Limitations

MAIRA-RRG24 does not have access to the prior
studies and hence it may generate ‘hallucinated’
references to prior studies (Bannur et al., 2023).

5 Conclusion

We have presented MAIRA-RRG24, a radiology-
adapted large multimodal model based on the
MAIRA-1 architecture (Hyland et al., 2024) with a
RAD-DINO-like (Pérez-García et al., 2024) image
encoder, trained exclusively with the data available
for the RRG24 challenge (Xu et al., 2024). It ex-

hibits competitive performance in both lexical and
clinical metrics. It benefits from a domain-specific
image encoder, a joint training setup for findings
and impression prediction leveraging lateral images
when available.
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Abstract

We present a new approach to generat-
ing the “Findings” and “Impression” sec-
tions in the chest X-rays radiology reports,
developed as part of the shared radiol-
ogy task at BioNLP 2024. By integrat-
ing a DINOv2 vision encoder trained on
medical data with specialized biomedical
large language model using the LLaVA
framework, our method addresses com-
plex medical semantics and diverse find-
ings in imaging. We use datasets from
PadChest, BIMCV-COVID19, CheXpert,
OpenI, and MIMIC-CXR. The evaluation
metrics demonstrate our method’s effec-
tiveness and the potential for automating
the generation of radiology reports.

1 Introduction

The automatic generation of radiology reports
from chest X-rays is a challenging and signifi-
cant task in the field of biomedical natural lan-
guage processing (BioNLP). The growing volume
of medical imaging data and the limited number
of radiologists necessitate the development of ro-
bust automated systems to assist in report gener-
ation. Such systems not only have the potential
to improve clinical workflow efficiency but also to
ensure consistency and comprehensiveness in ra-
diological interpretations.

In recent years, advancements in deep learning
and natural language processing have paved the
way for innovative approaches to tackle this task.
The new approaches typically involve the inte-
gration of convolutional neural networks (CNNs)
or visual transformers for image feature extrac-
tion with recurrent neural networks (RNNs) or
transformers for text generation (Selivanov et al.,
2023). Despite the progress, challenges such as

∗V.S., M.M., and D.U. contributed equally.

capturing complex medical semantics, handling
diverse imaging findings, and ensuring the clini-
cal accuracy of generated reports remain.

This paper explores a new method for generat-
ing the Findings and Impression sections of radi-
ology reports from chest X-rays. Our approach is
to combine a vision encoder, self-trained on medi-
cal data, with specialized biomedical LLM for text
generation, using LLaVA framework. This work
was done as a part of Radiology Report Generation
ahared task at BioNLP 2024 Workshop (Xu et al.,
2024) using the data provided by the organizers.
The metrics were calculated using the ViLMedic
platform (Delbrouck et al., 2022b).

2 Data

2.1 Training and validation data
The data from 5 datasets where combined to
create the competition training and validation
datasets: PadChest(Bustos et al., 2020), BIMCV-
COVID19(Vayá et al., 2020), CheXpert(Chambon
et al., 2024), OpenI(Demner-Fushman et al.,
2012) and MIMIC-CXR(Johnson et al., 2019).
The training and validation sets are grouped by
study but not by subjects. The official language of
PadChest and BIMCV-COVID19 is Spanish, and
their reports have been translated using GPT-4 by
the shared task organizers.

The data consists of radiology studies, each
containing one or more chest X-ray images in var-
ious projections. Each study also includes Impres-
sion and Finding texts. Some studies have only
the Impression or only the Findings section, while
others have both.

2.2 Testing Data
The studies in the test sets are unseen studies pro-
vided by organizers. Public test sets for impres-
sion and findings contain both study images and
ground truth texts while private test set contains
only images.
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Dataset Findings Impressions
PadChest 101,752 -
BIMCV-COVID19 45,525 -
CheXpert 45,491 181,619
OpenI 3,252 3,628
MIMIC-CXR 148,374 181,166
Total 344,394 366,413

Table 1: Training dataset statistics.

Dataset Findings Impressions
CheXpert 1,112 4,589
BIMCV-COVID19 1,202 -
PadChest 2,641 -
OpenI 85 92
MIMIC-CXR 3,799 4,650
Total 8,839 9,331

Table 2: Validation dataset statistics.

Dataset Findings Impressions
public test-set 2,692 2,967
hidden test-set 1,063 1,428

Table 3: Testing datasets statistics

2.3 Data preprocessing

Due to technical limitations, we only used the first
two images from each study. Studies with only
one image were not further processed. For studies
with more than one image, the first two images
were stitched together horizontally. No additional
preprocessing was applied to the texts.

3 Evaluation metrics

In the evaluation of radiology report summariza-
tion systems, several metrics are commonly used
to assess the performance and accuracy of the gen-
erated summaries. These metrics ensure that the
summaries produced by the models are not only
syntactically and semantically correct but also fac-
tually accurate. The metrics used in this competi-
tion where BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), BERTScore (Zhang et al., 2019), F1-
CheXbert (Smit et al., 2020), and F1-RadGraph
(Delbrouck et al., 2022a).

3.1 BLEU (Bilingual Evaluation Understudy)

BLEU-4: This metric is widely used for evaluat-
ing machine translation systems. It measures the
precision of n-grams in the generated summary by
comparing it to one or more reference summaries.

BLEU-4 specifically considers 4-gram overlaps,
providing a robust measure of how many 4-grams
in the generated text appear in the reference texts.
However, it does not account for recall or the con-
textual meaning of words.

3.2 ROUGE (Recall-Oriented Understudy
for Gisting Evaluation)

ROUGE-L: ROUGE is predominantly used
for evaluating automatic text summarization.
ROUGE-L measures the longest common subse-
quence (LCS) between the generated summary
and the reference summary. This metric empha-
sizes recall by capturing the longest sequence
of words that appear in both the generated and
reference summaries, thus reflecting the ability of
the summary to include important information.

3.3 BERTScore
BERTScore: This metric computes the similar-
ity between the generated and reference texts us-
ing pre-trained BERT embeddings. It calculates
a similarity score for each token in the candi-
date sentence with each token in the reference
sentence. BERTScore accounts for the semantic
meaning of words, making it more robust against
synonyms and paraphrasing compared to BLEU
and ROUGE.

3.4 F1-CheXbert
F1-CheXbert: This metric evaluates the factual
correctness of the generated summaries with a fo-
cus on specific medical conditions mentioned in
radiology reports. CheXbert is a specialized tool
designed to extract medical observations from ra-
diology reports. The F1 score is calculated based
on the precision and recall of these extracted ob-
servations, ensuring that the generated summaries
accurately reflect the medical conditions described
in the reference summaries.

3.5 F1-RadGraph
F1-RadGraph: Similar to F1-CheXbert, this
metric evaluates the factual correctness of the
summaries using the RadGraph dataset. Rad-
Graph focuses on extracting entities and the
relations between them from radiology reports.
The F1-RadGraph score measures the accuracy
of these extractions, comparing the generated
summaries to the reference summaries to ensure
that the critical entities and their relationships are
accurately captured.
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These metrics collectively provide a compre-
hensive evaluation framework for radiology report
summarization systems. BLEU and ROUGE
focus on the surface-level n-gram overlaps, while
BERTScore provides a deeper semantic evalu-
ation. F1-CheXbert and F1-RadGraph ensure
the factual accuracy of medical details, which is
crucial for clinical applications.

4 Methods and Results

We used the LLaVA model (Liu et al., 2024)
with a DINOv2 encoder (Oquab et al., 2023) and
OpenBio-LLM-8B (Ankit Pal, 2024) as a text de-
coder. The whole pipeline was implemented using
HuggingFace’s transformers (Wolf et al., 2020)
and trl (von Werra et al., 2020) libraries.

For image encoding we used a DINOv2 Model
with the following parameters:

• Model: ViT-base 14, initialized from
torch.hub’s dinov2 vitb14

• Patch size: 14
• Number of parameters: 86M
• Time and Resources: 4xA100 80GB GPUs,

Training Total Time: 2 days
• Dataset: MIMIC-CXR Train, downsampled

to 518 px
• Batch size per GPU: 50
• Base Learning Rate: 0.001

For text generation, we used OpenBioLLM-8B,
an open-source language model designed specifi-
cally for the biomedical domain.

• Training type: LoRA on LLM’s Attention
matrices (r=64, alpha=16) + MM projector

• Architecture: OpenBio-LLM-8B + in-house
DINOv2 trained on MIMIC-CXR Train

• Time and Resources: 5 epochs, 8xH100
80GB GPUs, DeepSpeed Zero-3; Training
Total Time: 2 days

• Batch size per GPU: 8, gradient accumula-
tion: 2

• Base Learning Rate: 0.001, cosine sched-
ule, warmup: 0.15

• Optimizer: Adam

Vanilla approach to fine-tune LLaVA model
with language model unfreezed resulted in rapid
overfitting, thus we opted for PEFT methods
(Mangrulkar et al., 2022), namely LoRA (Hu et
al., 2022).

We used the same model for generating both im-
pression and findings, using different prompts: ei-
ther ”Write findings for this X-ray.” or ”Write im-
pression for this X-ray.”.

We used the following system prompt, inspired
by LLaVA-Med (Li et al., 2024):”You are a large
language and vision assistant. You are designed to
assist human with a variety of medical visual con-
tent and clinical research tasks using natural lan-
guage. Follow the instructions carefully and pro-
vide clinically valid answers.”

Our results on hidden test sets are presented in
Table 4 and Table 5.

Table 4: Findings - hidden test set (1063 samples)
Metric e-health csiro maira airi
BLEU4 11.68 11.24 9.97
ROUGEL 26.16 26.58 25.82
Bertscore 53.80 54.22 52.42
F1-cheXbert 57.49 57.87 54.25
F1-RadGraph 28.67 25.48 25.29

Table 5: Impressions - hidden test set (1428 sam-
ples)

Metric e-health csiro maira airi
BLEU4 12.33 11.66 10.91
ROUGEL 28.32 28.48 27.46
Bertscore 50.94 51.62 49.55
F1-cheXbert 56.97 53.27 52.32
F1-RadGraph 27.83 25.26 24.67

Our relatively simple model demonstrates
strong performance in generating radiology re-
ports. We attribute this success to the use of a
specialized image encoder and a specialized large
language model. Future improvements can be re-
alized by employing larger models and fully us-
ing the available image data, which would likely
enhance the competition metrics of the generated
reports.
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Abstract

This paper presents the approach of the iHealth-
Chile-1 team for the shared task of Large-Scale
Radiology Report Generation at the BioNLP
workshop, inspired by progress in large mul-
timodal models for processing images and
text. In this work, we leverage LLaVA, a
Visual-Language Model (VLM), composed of a
vision-encoder, a vision-language connector or
adapter, and a large language model able to pro-
cess text and visual embeddings. We achieve
our best result by enriching the input prompt of
LLaVA with the text output of a simpler report
generation model. With this enriched-prompt
technique, we improve our results in 4 of 5
metrics (BLEU-4, Rouge-L, BertScore, and
F1-RadGraph,), only doing in-context learning.
Moreover, we provide details about different
architecture settings, fine-tuning strategies, and
dataset configurations. Models parameters can
be found in HuggingFace 1.

1 Introduction

The task of radiology report generation (RRG)
from medical imaging through deep neural net-
works is an active area of research (Monshi et al.,
2020; Messina et al., 2022). For one thing, ad-
dressing and solving this task can help radiologists
in identifying anomalies from one or more input
images, as well as save them time on administra-
tive chores like typing text reports. Thus, doctors
can spend more time with patients rather than clini-
cal software (Topol, 2019). There have been sev-
eral methods introduced in recent years to address
this task but only recently the progress in open-
source multimodal generative systems has opened
the room for improving performance by integrating
different modalities (text and images) in the same
model. In this article, we describe our work lever-
aging the multimodal model LLaVA (Liu et al.,
2023) to address this task.

1https://huggingface.co/dcampanini

There are several options to leverage LlaVA for
this challenge, such as utilizing the original ver-
sion LLaVA-1.0 (Liu et al., 2023), the clinically
finetuned version LLaVA-Med (Li et al., 2023), as
well as the newest version LLaVA-1.5 (Liu et al.,
2024). Due to hardware limitations, in this chal-
lenge, we used the language model component with
7 billion parameters (LLaMA 1.0 and Vicuna) and
we tested several configurations focusing on the
findings generation task.

In this document, we describe details of sev-
eral configurations tested, including different vi-
sion encoders (CLIP and BiomedCLIP), VL pro-
jector (matrix and MLP) and language model for
text decoding (LLaMA1.0 and Vicuna-7b). Among
our findings, we highlight that integrating the out-
put of another method as input context for LLaVA
resulted in our best version for the challenge.

2 Task Description

2.1 Datasets

The data provided by the challenge (Xu et al.,
2024) consists of 5 datasets PadChest (Bustos
et al., 2020), BIMCV-COVID19 (Vayá et al., 2020),
CheXpert (Chambon et al., 2024), OpenI, and
MIMIC-CXR (Johnson et al., 2019). All of them
have a medical report with at least the finding sec-
tion, in total, we have 344, 394 training samples.

In the present work, we focus only on the finding
generation, in each training step we use the findings
section, of the official train datasets. We do not use
any extra dataset or data augmentation techniques.

The results reported in this work are measured
in the challenge hidden test set which has 1, 063
samples for the generation of the finding section.

3 Methodology

3.1 Model Architecture

The architecture used in this work is known
as Large Language and Vision Assistant for
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BioMedicine (LLaVA-Med Li et al., 2023), we fine-
tuned this system following different approaches
described in the section 3.2.

The LLaVA-Med system has 3 main blocks (Fig-
ure 1), the first is a vision encoder, then a vision-
language connector to project the image features
into the word embedding space, and finally, a Large
Language Model (LLM) that processes visual and
language tokens to generate a final answer.

Vision
Encoder

Write the finding
section of a chest x-
ray radiology report

Tokenizer
and

Embedding

Vision
Language
Projector

Large Language Model

PA and lateral views of the chest are
obtained. There is a mild pectus deformity

noted on the lateral view. The lungs appear
well expanded without focal consolidation,

effusion, or pneumothorax.

Figure 1: LLaVA-Med architecture used in this work.
The Large Language Model (LLM) processes the fea-
tures extracted from the image and the prompt.

There are different options for each block, in
our case, we use 3 different vision encoders all of
them based on CLIP (Radford et al., 2021), they
are clip-vit-L-patch14, clip-vit-large-patch14-336,
and BiomedCLIP (Zhang et al., 2023). For the con-
nector, we choose a projection matrix and a 2 layer
MLP. Finally, for the LLM we select LLaMA1.0-
7B, and Vicuna-7b-v1.5. Table 1 summarizes the 3
model versions used during the challenge.

3.2 Training Strategy

We train our models in 2 stages, similar to the
strategy proposed in Liu et al., 2023, but adapted
for report generation, and not for instruction tuning.
The stages are detailed as follows:

• Stage 1 or alignment: the image encoder and
the LLM are frozen, and the MLP or projec-
tion matrix are trained.

• Stage 2 or fine-tuning: the MLP or projec-
tion matrix and the LLM are trained.

For both stages, we train with samples formed by
one image and the respective finding section. Our
models process one image at a time. Therefore,
we manipulate the training dataset when more than
one image is associated with a medical report.

For the dataset MIMIC-CXR, for each medical
report we select the Anterior Posterior (AP) im-
age or the Posterior Anterior (PA) image, and the
finding section.

We use the image’s name to select the frontal
images for CheXpert, which indicates the view
presented in the X-ray exam (frontal or lateral).

For the last 3 datasets PadChest, BIMCV-
COVID19, and OpenI, we take the first image in
the array of images associated with each medical
report, which was, in general, a frontal view.

For the Model-1.0 (Table 1) we start the fine-
tuning from a LLaVA-Med checkpoint shared in
the official GitHub repository2, and we update the
linear matrix and the LLM using different combina-
tions of the official train datasets. Stage 1 is omitted
for this model since the based model was trained in
biomedical data extracted from PMC-15M (Zhang
et al., 2023) an image-text dataset extracted from
scientific publications.

For Model-1.1 and Model-1.2 (Table 1) we train
following the 2 stages strategy, for the stage 1 we
use the complete challenge train dataset, consider-
ing only one image per finding section, we employ
more training samples in this stage since is more
general than stage 2, so more broad data can help
the final model performance.

On the other hand, for stage 2, we only use
MIMIC-CXR. This decision is discussed in the
section 4. For these 2 models, we have to execute
stage 1, since we don’t have a projector specialized
in medicine to connect the vision-encoder with the
LLM embedding space.

For stage 1 we always use a learning rate of 1×
10−3 and a cosine learning rate with a warmup ratio
of 3%. Similarly, for stage 2 we employ the same
scheduling and warmup ratio but with a learning
rate of 1 × 10−4. Every stage is performed in a
GPU NVIDIA RTX A6000 with 48 GB of memory.

2https://github.com/microsoft/LLaVA-Med
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Model version Vision-encoder VL Projector LLM
Model-1.0 clip-vit-L-patch14 Matrix LLaMA1.0-7b
Model-1.1 clip-vit-large-patch14-336 MLP Vicuna-7b-v1.5
Model-1.2 BiomedCLIP MLP Vicuna-7b-v1.5

Table 1: Configuration of the 3 model architectures used during the challenge.

3.3 Text Prompt

The prompt given to the LLMs performs an impor-
tant role in getting a solid model performance. In
our work, the LLM can receive as input the image
feature and the prompt.

For stage 1, we follow the strategy mentioned in
Chaves et al., 2024 and we use only the image to
train the projector, no prompt or extra information
is provided to the model, in this way, we force the
LLM to focus on the images.

On the other hand, for stage 2, the prompt is
formed by the model context and the instruction,
with the first we can control for example the model
personality, asking to be polite, and in our case,
we also define that the LLM does not have to pro-
vide dates, hours or text with enumeration in the
report. The final instruction to the LLM is: Write
the finding section of a chest x-ray radiology re-
port. The complete prompt (context + instruction)
is described in the following paragraph:

• Context: You are LLaVA-Med, a large lan-
guage and vision assistant. Write in the style
of a radiologist, write one fluent text without
enumeration, dates, or hours of the day, be
concise, and don’t provide explanations.

• Instruction: Write the finding section of a
chest x-ray radiology report.

The previously described prompt is used in stage
2 and inference.

Additionally, we have considered making an-
other test, improving the prompt using as extra
information other findings sections, generated by a
multilabel classifier and a group of templates (Pino
et al., 2021). This different system consists of a
DenseNet-121 CNN trained to classify 13 patholo-
gies for chest X-ray images, and then using the out-
put labels, we generate the finding section based on
a group of template sentences. The LLM receives
as input the image features and the new prompt
with extra information, which we call enriched-
prompt. The new prompt instruction looks as fol-
lows:

• Instruction: Write the finding section of a
chest x-ray radiology report using the image,
and the following information: the lungs are
clear. heart size is normal the cardiomedi-
astinal silhouette is normal. there is noted left
sided or right sided , small, moderate, or large
pneumothorax in the lung no pleural effusions.
there is no evidence of fibrosis no displaced
fracture is seen there is a noted right sided or
left sided picc or tube

4 Experiments and Results

In Table 2 we report the results of the 3 model ver-
sions trained with different dataset configurations
and performing or not stage 1. All results are only
for the finding generation task.

The metrics outline in Table 2 are BLEU4 (B4
Papineni et al., 2002), ROUGEL (RL Lin, 2004),
Bertscore (BS Zhang et al., 2019), F1-cheXbert
(F1-cXb Smit et al., 2020), and F1-RadGraph (F1-
RG Delbrouck et al., 2022a), the last column rep-
resents the average between these metrics. All the
values are calculated using the official leaderboard
web page with the framework VilMedic (Delbrouck
et al., 2022b).

The first result in Table 2 is for the Model-1.0
without any posterior finituning or training, which
is the original LLaVa-Med shared in the official
repository, it has a poor performance generating
finding. It is by far our worst model, so it should be
fine-tuned to get good results even in tasks inside
the biomedical domain.

From our experiments with Model-1.0, we see
that considering only MIMIC-CXR we have good
enough results comparable to using MIMIC-CXR
+ CheXpert, and consistently outperforming the
same Model-1.0 trained with the complete chal-
lenge datasets (Table 2). For this reason, the train-
ing of the other models is performed only employ-
ing MIMIC-CXR for stage 2.

When we make use of BiomedClip (Zhang et al.,
2023) we see a clear improvement in 6.31 per-
centual points for F1-cheXbert in comparison with
the second-best model in this metrics (29.37 vs
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Stage1 Ep Stage2 Ep B4 RL BS F1-cXb F1-RG Avg
Model-1.0 Clip LLaMA1.0-7B
None 0 None 0 0.95 11.69 27.79 15.46 4.15 12.01
None 0 MIMIC-CXR 1 4.67 19.58 48.74 18.00 16.29 21.46
None 0 MIMIC-CXR 3 5.05 19.13 47.51 23.06 15.77 22.10
None 0 MIMIC-CXR + CheXpert 1 4.78 19.19 47.57 20.25 15.47 21.45
None 0 All 1 3.24 15.45 42.12 18.11 11.79 18.14
Model-1.1 Clip-336 Vicuna1.5-7B
All 1 MIMIC-CXR 1 5.16 19.68 47.92 11.61 16.78 20.23
All 1 MIMIC-CXR 3 3.92 19.75 48.06 5.92 16.06 18.74
Model-1.1 Clip-336 Vicuna1.5-7B Enriched-prompt
All 1 MIMIC-CXR 1 6.46 20.51 49.23 9.35 18.59 20.83
Model-1.2 BiomedClip Vicuna1.5-7B
All 1 MIMIC-CXR 1 3.48 16.31 35.49 29.37 15.51 20.03

Table 2: Results on the hidden test set, for all 3 model versions without applying enriched-prompt, and the
Model-1.1 improved through the enriched-prompt technique. All numbers are calculated using Vilmedic on the
official challenge web page.

Model B4 RL BS F1-cXb F1-RG Avg
Model-1.1 Clip-336 Vicuna1.5-7B 5.16 19.68 47.92 11.61 16.78 20.23
DenseNet-121 classifier + templates 4.81 15.96 44.03 33.69 18.41 23.38
Model-1.1 Clip-336 Vicuna1.5-7B +
enriched prompt from DenseNet-121 classifier

6.46 20.51 49.23 9.35 18.59 20.83

Table 3: Efects of the enrich-prompt technique. The last row represents the metrics of the resulting system, which
is the Model-1.1 but enhanced with the enriched prompt coming from the DenseNet-121+templates system.

Model B4 RL BS F1-cXb F1-RG Avg
Model-1.1 Clip-336 Vicuna1.5-7B 5.16 19.68 47.92 11.61 16.78 20.23
DenseNet-121 classifier + templates v1 4.81 15.96 44.03 33.69 18.41 23.38
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v1 6.46 20.51 49.23 9.35 18.59 20.83
DenseNet-121 classifier + templates v2 4.74 16.17 47.28 27.44 13.08 21.74
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v2 5.94 19.40 47.20 7.15 16.87 19.31
DenseNet-121 classifier + templates v3 5.50 17.11 48.97 26.26 14.47 22.46
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v3 5.10 19.98 48.94 8.11 17.47 19.92
DenseNet-121 classifier + templates v4 4.18 17.05 42.91 27.20 19.42 22.15
Model-1.1 Clip-336 Vicuna1.5-7B + DenseNet-v4 5.21 20.80 50.14 5.90 18.51 20.11

Table 4: Impact of the enriched prompt technique using different template models, and the same multimodal model
highlighted in gray. The resulting model’s metrics are pointed out in yellow.

23.06). This suggests that the feature extracted
from the image with this vision encoder allows to
the model classify properly more pathologies than
the previous vision encoders, considering that F1-
cheXbert is a metric focus in the classification of
14 labels.

We apply the enriched-prompt technique to the
model with the best F1-RadGraph, which is the
Model-1.1 Clip-336 Vicuna1.5-7B, the result of em-
ploying this procedure is an improvement in BLEU-

4, Rouge-L, Bert-Score, and F1-RadGraph, but a
big fall in F1-cheXbert (Table 2, 3), this indicates
that the model is not good at classifying the 14
classes considered by the metric.

Table 3 shows the change in the metrics for 2
base models, combined across the prompt. When
we apply in-context learning to the Model-1.1 Clip-
336 Vicuna1.5-7B adding to the prompt the reports
generated by the DenseNet-121+templates, the re-
sulting model overcomes the metrics of both previ-
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ous systems, except for F1-cheXpert.
Another consequence of implementing an en-

riched prompt is the generation of shorter findings
in comparison with those generated by the other
model versions and by the classifier plus template
sentences.

In Table 4 we show more evidence of the en-
riched prompt technique. The most consistent ef-
fect over the two base models is observed in the
F1-RadGraph metric, improving up to 1.81 percent-
age points (pp) in the base multimodal model, and
up to 3.79 pp for the template models. For Rouge-
L, and Bert-Score we can also see an enhancement
in the based models, the most outstanding result
is the increase of 7.23 pp in Bert-Score for the
DenseNet-121 classifier + templates v4. The dif-
ferent versions of the template models consider
distinct types of templates and classifier hyperpa-
rameters, more detail about it can be found in the
paper of iHealth-Chile-3&2. On the other hand,
the effect of the enriched prompt technique in F1-
cheXbert is always a big fall.

5 Conclusion

In this work, we performed an analysis of different
model architectures based on LLaVA-Med, we con-
clude that using the best possible vision-encoder,
and LLM we can improve some specific aspects of
the system, such as the NLP overlapping (BLEU-4
and Rouge-L) or the more classification related met-
rics (F1-cheXbert), nevertheless to see more con-
sistent results we suggest that more quality data is
needed, particularly for alignment (stage 1). More-
over, since the promising results in F1-cheXbert
obtained with BiomedCLIP is convenient to de-
velop a vision-encoder custom to x-ray images.

Finally, the enriched-prompt techniques show
auspicious results. It can work as a guide for the
LLM, it shows good metrics when we calculate
BLEU-4, Rouge-L, BertScore, and F1-RadGraph,
but it should be complemented with an accurate
classifier system to improve the F1-cheXbert.

Limitations

There are some limitations in the system that we
propose. For instance, our model is unable to use
multiple images, however, the medical reports for
chest x-rays are usually formed by two or three
views of the patient chest, so we are missing poten-
tially important information.

The quality of the medical report generated with

the enriched prompt technique should be analyzed
in more depth, especially because of the large drop
in the F1-cheXbert metric.

Another limitation is that our approach is com-
putationally expensive, which limits the quantity
of experiments that we can perform. Finally, our
reports are not hallucinations free, for example in
some cases, the model generates findings referring
to another report for the same patient, but this is a
problem because the model does not know previous
patient exams.
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Abstract
This paper presents the approaches of the
iHealth-Chile-3 and iHealth-Chile-2 teams for
the shared task of Large-Scale Radiology Re-
port Generation at the BioNLP workshop. In-
spired by prior work on template-based report
generation, both teams focused on exploring
various template-based strategies, using pre-
dictions from multi-label image classifiers as
input. Our best approach achieved a modest
F1-RadGraph score of 19.42 on the findings
hidden test set, ranking 7th on the leaderboard.
Notably, we consistently observed a discrep-
ancy between our classification metrics and
the F1-CheXbert metric reported on the leader-
board, which always showed lower scores. This
suggests that the F1-CheXbert metric may be
missing some of the labels mentioned by the
templates.

1 Introduction

The generation of radiology reports (RRG) from
medical imaging using deep learning represents a
significant area of ongoing research (Messina et al.,
2022). Successfully implementing this task can
help reduce the workload and time spent on ad-
ministrative duties, such as composing text reports.
This efficiency enables physicians to focus more on
patient interaction (Topol, 2019) and in identifying
anomalies from multiple input images.

There is a pressing need for eXplainable AI
(XAI) (Gunning et al., 2019) in critical domains
like medicine. In the context of report genera-
tion, the explainability aspect remains understudied
(Messina et al., 2022). Some models address this
issue by generating saliency maps that highlight
important pixels, using techniques such as Grad-
CAM (Selvaraju et al., 2019) for CNN networks
or visualizing attention maps for Transformer net-
works. However, some authors argue against rely-
ing solely on saliency maps as explanations. For
instance, Rudin (2019) advocates for using inher-
ently interpretable models that are constrained by

domain knowledge, making them transparent and
understandable for humans.

To enhance transparency and understandability
of our implementation in the Shared task (Xu et al.,
2024), we use a simple template-based report gen-
eration model. Specifically, we reimplement and
modify the template-based strategy proposed by
Pino et al. (2021). The team iHealth-Chile-3 fo-
cused on meticulously reproducing Pino et al.’s
approach, employing DenseNet-121 and a conven-
tional multilabel classification layer for 13 CheX-
pert classes (excluding "No Findings"), as shown
in Figure 2. Meanwhile, team iHealth-Chile-2
developed a different image classifier that com-
bines DenseNet-121 with text embeddings of fac-
tual statements, which can be both classified and
visually grounded, leveraging very recent work on
fact extraction and encoding from radiology reports
(Messina et al., 2024). This approach, shown in
Figure 3, can be seen as a more general version of
stage 1 of CheXfusion (Kim, 2023), the winning
method in the ICCV CVAMD 2023 Shared Task on
CXR-LT: Multi-Label Long-Tailed Classification
on Chest X-Rays (Holste et al., 2023).

2 Task Description

2.1 Datasets

The data provided by the challenge consists of five
datasets: PadChest (Bustos et al., 2020), BIMCV-
COVID19 (Vayá et al., 2020), CheXpert (Cham-
bon et al., 2024), OpenI (Demner-Fushman et al.,
2016), and MIMIC-CXR (Johnson et al., 2019).
Each of these datasets includes radiology reports
paired with at least one image. The entire train-
ing set comprises 344, 394 reports with at least the
Findings section and 366, 413 reports with at least
the Impression section. Additionally, the challenge
permitted the use of VinDr-CXR (Nguyen et al.,
2022), which contains 18, 000 frontal chest X-ray
images with labels and bounding box annotations,
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but no reports.
In this participation, iHealth-Chile-3 focused on

training using only MIMIC-CXR and CheXpert,
utilizing the CheXpert labels (Irvin et al., 2019)
from both datasets. For training the CNN, this team
only used the 13 labels associated with findings
(excluding the "No Findings" label) and treated the
uncertain label (-1) as negative (0). iHealth-Chile-
3 did not employ any additional datasets or data
augmentation techniques.

On the other hand, iHealth-Chile-2 leveraged
concurrent work on fact extraction and encoding
from radiology reports, which includes 591,920
factual statements extracted from MIMIC-CXR ra-
diology reports. A representative subset of these
facts was sampled, and with the assistance of a Nat-
ural Language Inference (NLI) system (the expla-
nation of which is beyond the scope of this paper),
negative facts were identified for all the reports.
Furthermore, by combining 78 classes from the
Chest ImaGenome dataset (Wu et al., 2021) and
the 26 classes from the CXR-LT 2023 challenge
(Holste et al., 2023) and removing the overlap, a
total of 93 classes were exhaustively annotated by
the same NLI system, providing more standard-
ized supervision for MIMIC-CXR. iHealth-Chile-2
also utilized CheXpert, with the 14 classes adapted
as short factual statements, VinDr-CXR, with its
28 classes adapted for fact classification, and the
22 bounding box classes used for visual ground-
ing supervision. OpenI was also adapted for fact
classification by converting its manual and auto-
matic tags into short sentences with the assistance
of GPT-4.

The results reported in this work are measured
using the challenge’s hidden test set, which con-
tains 1, 063 samples for the generation of the Find-
ings section.

3 Methodology

3.1 Model Architecture

The approaches followed by both teams are summa-
rized in Figure 1. Essentially, an image classifier is
trained for multi-label classification. This classifier
is then used to make predictions over one or more
views, which are processed by a rule-based algo-
rithm to build the final report. Both teams used the
PyTorch implementation of DenseNet-121 (Huang
et al., 2017) as the visual backbone of their models,
outputting 1024-D feature vectors.

The specific implementation by iHealth-Chile-3

is shown in Figure 2. This approach strictly follows
Pino et al.’s straightforward implementation (Pino
et al., 2021). A fully connected layer predicts 13
classes. For each classified label, there is a pair of
fixed sentences: one for when the label is classified
as present and another for when it is absent. These
sentences are then concatenated to form the final
report.

In contrast, iHealth-Chile-2 replaces the fully
connected layer with a more sophisticated attention-
based pooling mechanism conditioned on a fact
embedding, as shown in Figure 3. This approach
has the added advantage that the attention can be
supervised with ground-truth visual grounding an-
notations if available, such as bounding boxes in
the case of VinDr-CXR. Furthermore, its use of text
embeddings to indicate the fact to classify allows
the model to work as an open-vocabulary multi-
label classifier, which can be easily applied to an
arbitrary number of datasets with different number
of classes or factual statements.

3.2 Training Strategy and Implementation
Details

iHealth-Chile-3. This team trained models on
MIMIC-CXR and CheXpert using CheXpert la-
bels, selecting the first image in the array of images
associated with each medical report, which was
generally a frontal view.

To address class imbalance, a Weighted Binary
Cross Entropy Loss was employed. The model
was optimized using Adam with a learning rate of
0.0001 and a weight decay of 0.00001. Addition-
ally, a learning rate scheduler reduced the learning
rate by a factor of 0.1 if the monitored metric did
not improve for three consecutive epochs. This
dynamic adjustment helps refine the training pro-
cess and achieve better convergence based on the
model’s performance. The input images were re-
sized to 256 × 256 and normalized with a mean and
standard deviation of 0.5.

The model was trained for 12 epochs with a
batch size of 110, using an NVIDIA RTX A6000
GPU, with an estimated training time of 42 hours.

iHealth-Chile-2. This team utilized the MIMIC-
CXR, CheXpert, VinDr-CXR, and OpenI datasets.
To ensure a more balanced sampling of all datasets
in subsequent batches, a multi-dataset dataloader
was implemented. This dataloader sampled from
each dataset with a weight of 5.0 for MIMIC-
CXR and 1.0 for each of the other datasets, giving
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Figure 1: Overview of the template-based approach followed by both teams. During training, a single-view image
classifier is trained for multi-label classification. During inference, the image classifier is used to predict labels for
one or all the views associated with a given report to generate. These classification predictions are then processed
by a handcrafted rule-based algorithm that builds the final report.

DenseNet-121

d …

DenseNet-121

0 1 0 0 1 0 1 1 1 0 0 10

13 labels
Heart size is normal

Choose template
Cardiomegaly Edema …Pneumonia

Pulmonary edema is seen …
Concatenate

Heart size is normal. Pulmonary edema is seen.
No evidence of pneumonia. …

Final Report

Figure 2: Template-Based Architecture of iHealth-
Chile-3. The DenseNet is trained to classify the 13
labels as shown in the scheme. After the training is
complete, in inference, the DenseNet is frozen and clas-
sifies the 13 labels for an input image. For each label, a
template sentence is chosen depending on the absence
or presence of the label. Finally, the chosen template
sentences are concatenated into a final report.

MIMIC-CXR more weight due to its larger number
of facts to classify, as discussed in Section 2.1.

For CheXpert and VinDr-CXR, a hybrid loss
combining standard BCE, Weighted by Class BCE,
and Focal Loss was used because these datasets
have a fixed number of classes. For MIMIC-CXR
and OpenI, BCE + Focal Loss was employed. In
the case of VinDr-CXR, the Mean Absolute Error
(MAE) between the predicted attention map and the
ground-truth bounding boxes is used as attention
supervision loss for visual grounding of the clas-
sified facts. The AdamW optimizer (Loshchilov
and Hutter, 2019) was used with a cyclic exponen-
tial learning rate varying from 1e-4 to 1e-6 over
8 epochs. Each epoch consisted of approximately
800 batches. The model was trained for about 20
hours, after which no significant gains in valida-
tion metrics were observed. The batch size was

13 images per batch, with about 40 facts sampled
per image. Combined with 10 gradient accumula-
tion steps, the effective batch size was 130 images.
Images were resized to 416 × 416.

All experiments were implemented using Python
3.10.10 with PyTorch version 1.13.1+cu117
(Paszke et al., 2017). The experiments were
conducted on a computing node equipped with
a 20-core Intel(R) Core(TM) i9-9900X CPU @
3.50GHz, three NVIDIA GPUs—two GeForce
RTX 2080 Ti with 11GB memory and one GeForce
RTX 3090 with 24GB memory. The system was
complemented by 125GB of RAM.

3.3 Report Generation using Templates

For report generation, curated sets of two sentences
per abnormality were manually selected to indicate
presence and absence. These sets are categorized
into different types of templates (Pino et al., 2021):
Mimic Style, Ambiguous, Fusion, and Fusion +
Groups.

The Mimic Style sentences correspond to a sim-
ple template shown in Appendix Table 5, while the
Ambiguous sentences correspond to the template
shown in Appendix Table 6. On the other hand, the
Fusion template combines the absent template sen-
tences from Mimic Style with the present template
sentences from Ambiguous.

The Fusion + Groups template functions differ-
ently from the other templates. Instead of replacing
a sentence for each label, it groups labels together.
If a group of labels matches the value of abnormal-
ities specified in a grouped template (see Appendix
Table 7), that template is added to the final report.
After iterating through all grouped templates, the
remaining abnormalities are addressed using the
Fusion template for each individual disease, thus
giving the template its name Fusion + Groups.
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Figure 3: Fact Classifier architecture of iHealth-Chile-2. CXRFE stands for Chest X-Ray Fact Encoder, an improved
version of CXR-BERT (Boecking et al., 2022) via several NLP tasks, as outlined in a concurrent publication (Messina
et al., 2024). This Fact Classifier is an experimental architecture, that seeks to generalize the stage-1 classifier of
CheXfusion (Kim, 2023). Unlike iHealth-Chile-3, the Fact Classifier is trained on all views, and during inference
the predictions from all views are aggregated via max-pooling.

Table 1: Classification metrics on the MIMIC-CXR
and CheXpert validation sets using the CNN trained by
iHealth-Chile-3.

Precision Recall F1-Micro F1-Macro
0.36 0.74 0.48 0.36

4 Experiments and Results

iHealth-Chile-3. After training the CNN, we ob-
tained the classification results shown in Table 1.
We achieved a precision of 0.36, which, being rela-
tively low, immediately impacts our performance
on the NLP metrics discussed later in this section.
Furthermore, the significantly lower value of F1-
Macro compared to F1-Micro suggests that the
model performs notably weaker on specific labels,
likely due to class imbalance.

Table 2 presents the results of report generation
on the findings and impression hidden test sets. The
metrics detailed are BLEU4 (B4 Papineni et al.,
2002), ROUGE-L (RL Lin, 2004), BERTScore
(BS Zhang et al., 2019), F1-CheXbert (chX Smit
et al., 2020), and F1-RadGraph (RG Delbrouck
et al., 2022a). All values were calculated using the
official leaderboard web page with the VilMedic
framework (Delbrouck et al., 2022b). By examin-
ing Table 2, we can observe that the Template Type
which most increases the F1-RadGraph score is the
Ambiguous Template type, improving this score
by at least 2 points compared to the Mimic Style
Template. This improvement is likely due to the
inclusion of location-specific terms like "left" and
"right." However, there is a corresponding decrease
in BLEU4, possibly because the ground-truth re-
port specifies the location of the disease, and the

addition of terms like "left" and "right" might in-
troduce inaccuracies.

Additionally, Table 2 reveals that the best
Template for the findings section, based on F1-
RadGraph, is the Fusion + Groups template, while
for the impression section, the best is the Fusion
Template.

On the other hand, the F1-CheXbert score is
lower than the F1-Macro and F1-Micro scores for
the classification of CheXpert labels. This suggests
that the BERT model used for the F1-CheXbert
metric may not accurately detect some of the labels
encoded in the template-generated sentences, even
if they are simple, making this metric potentially
unreliable for this task. A similar issue is observed
with BERTScore, which does not consistently align
with the other metrics.

iHealth-Chile-2. Table 3 presents the classifica-
tion and template-based report generation metrics
on the MIMIC-CXR and CheXpert validation sets.
We highlight two notable results from this Table:
(1) The Fact Classifier achieves significantly higher
scores when evaluated with labels produced by the
same tool used to annotate the training set (i.e.,
VisualCheXbert for CheXpert and the NLI labeler
for MIMIC-CXR); and (2) The performance drops
when the CheXpert labeler and CheXbert evaluate
a template-based report built from the classifica-
tions, particularly with F1-CheXbert (macro and
micro). This provides further evidence that the met-
ric may be missing some of the labels mentioned
in the templates.

Additional evidence of the impact of the labeling
tool on the evaluation is provided in Appendix Ta-
ble 8. One evaluation considers 78 classes from the
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Table 2: iHealth-Chile-3’s metrics on the hidden test sets. All metrics are calculated using Vilmedic on the official
challenge web page. The abbreviations used are: B4 (BLEU4), RL (ROUGE-L), BS (Bertscore), cXb (F1-cheXbert),
and RG (F1-RadGraph).

Template Type
Findings Hidden Test Set Impression Hidden Test Set

B4 RL BS cXb RG B4 RL BS cXb RG
Mimic Style 4.74 16.17 47.28 27.44 13.08 1.72 9.41 36.18 24.55 8.30
Ambiguous 3.58 14.65 44.99 29.35 15.85 1.64 9.84 37.38 26.84 10.34
Fusion 4.80 16.88 46.73 28.20 18.70 1.66 10.21 37.21 25.82 11.58
Fusion + Groups 4.18 17.05 42.91 27.20 19.42 1.42 10.13 33.01 24.91 11.53

Table 3: Classification and Template-based Report Generation results on the validation sets of MIMIC-CXR and
CheXpert. The classes considered are the 14 classes of the CheXpert dataset. On MIMIC-CXR we consider two
sources of ground-truth labels for evaluation: the CheXpert labeler and our own NLI labeler. In the case of CheXpert,
we use the labels produced by VisualCheXbert (Jain et al., 2021) that were released with the dataset. The reports
were produced with the Fusion + Groups technique.

Classification: CheXpert labeler / VisualCheXbert Classification: NLI labeler (ours) Template-based Report Generation

F1
(micro)

F1
(macro)

PRC-
AUC

(micro)

PRC-
AUC

(macro)

F1
(micro)

F1
(macro)

PRC-
AUC

(micro)

PRC-
AUC

(macro)

F1-
CheXp
(micro)

F1-
CheXp
(macro)

F1-
CheXb
(micro)

F1-
CheXb
(macro)

MIMIC-CXR validation set (9178 images)
0.491 0.405 0.418 0.416 0.628 0.519 0.668 0.557 0.510 0.424 0.430 0.372

CheXpert validation set (5468 images)
0.679 0.554 0.719 0.717 - - - - 0.539 0.417 0.442 0.358

Table 4: iHealth-Chile-2’s metrics on the findings-hidden-test-set and impression-hidden-test-set.

Dataset Method B4 RL BS cXb RG

findings-hidden-test-set Fact Classifier + Templates (Fusion + Groups) 4.81 15.96 44.03 33.69 18.41
findings-hidden-test-set Fact Classifier + BART (findings, v1) 2.33 14.22 43.39 28.00 14.48
findings-hidden-test-set Fact Classifier + BART (findings, v2) 2.78 14.29 43.40 31.00 14.74

impression-hidden-test-set Fact Classifier + BART (impression) 2.28 11.33 35.98 20.87 7.59

Chest ImaGenome dataset (Wu et al., 2021), while
the other considers the 26 classes from the CXR-LT
2023 challenge (Holste et al., 2023). Noticeably,
the performance drops significantly when evalu-
ated with the original labels compared to the labels
generated by our NLI system. This discrepancy
suggests that either our NLI system is incorrect, or
the labels provided by the original datasets, which
were also extracted from reports, are inaccurate.
This issue warrants further investigation in future
work.

Lastly, Table 4 presents all submissions by
iHealth-Chile-2 to the hidden test set (findings and
impression). The best approach is clearly based
on templates. However, for completeness, we also
include unsuccessful attempts at producing reports
generatively using BART (Lewis et al., 2020), a
sequence-to-sequence model, by training it to gen-
erate reports from templates. This approach de-
graded performance, so we advise against it.

5 Conclusions and Future Work

We have presented the results of the iHealth-Chile-
3 and iHealth-Chile-2 teams in the Large-Scale Ra-
diology Report Generation shared task. Both teams
used a template-based method, where an image
classifier predicts specific classes, which are then
used to generate a report with predefined templates.
The performance in the challenge was modest. In-
terestingly, despite the templates being tailored for
CheXpert classes, the F1-CheXbert metrics were
consistently lower than the classification metrics.

Based on these results, future work should fo-
cus on: (1) Thoroughly evaluating report genera-
tion metrics to identify and address limitations in
existing ones; (2) Improving chest X-ray image
classifiers, particularly for long-tail classes; and (3)
Developing more advanced report generation sys-
tems that surpass rigid templates while preserving
classifier accuracy for long-tail classes.
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6 Limitations

The iHealth-Chile-3’s approach has several limita-
tions that warrant discussion. Firstly, this approach
is restricted in its ability to specify the location
of detected abnormalities. It can only confirm the
presence or absence of these abnormalities without
providing detailed localization within the images.
This spatial limitation may affect clinical applica-
bility, where precise localization is often critical.

Secondly, the overall performance of the reports
generated by this approach is inherently tied to the
performance of the multi-label classifier employed.
Any deficiencies or inaccuracies in the classifier
directly impact the quality and reliability of the gen-
erated reports. Moreover, even if the multi-label
classifier were to achieve perfect performance, the
scope of the reports would still be confined to the
13 specific labels used in this approach. This means
that any abnormalities outside these predefined cat-
egories would go unreported, potentially missing
other clinically significant findings.

Additionally, the resolution of the images used
in this study, limited to 256x256 pixels, could fur-
ther constrain the performance. Lower resolution
images may lack the necessary detail for accurate
detection and classification of certain abnormali-
ties, leading to potential misclassification or over-
sight. Future work could explore the impact of
using higher resolution images to determine if this
enhances the diagnostic accuracy and overall utility
of the approach.

The strategy adopted by iHealth-Chile-2 has no-
table limitations as well. Firstly, it is based on
an experimental architecture still under develop-
ment and unpublished at the time of this writing.
It also depends on an auxiliary Natural Language
Inference (NLI) system that is being developed con-
currently, with significant involvement of GPT-4.
As discussed in Section 4, the discrepancies be-
tween the original labels from source datasets and
our NLI-based labels highlight the need for further
investigation. We aim to elaborate on these aspects
in future publications.

The Fact Classifier tested by iHealth-Chile-2
may also be limited by its use of DenseNet-121
as its visual backbone. Given the advances in archi-
tectures based on vision transformers, such as the
Swin Transformer (Liu et al., 2021), DenseNet-121
might not be the optimal choice. This limitation is
also shared by iHealth-Chile-3.

Lastly, a significant limitation in the classifica-

tion approach itself followed by both teams is the
lack of a clear strategy for translating classifications
into a final natural language report. Even if an opti-
mal open-vocabulary classifier were to accurately
identify a comprehensive list of abnormalities with
good visual grounding, it remains unclear how to
convert these predictions into a report that scores
well according to the challenge metrics. This gap
between classification/visual grounding and report
generation warrants further investigation.
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A Appendix

A.1 Templates used by Health-Chile-3’s
approach

The Mimic Style template set, shown in Table 5,
corresponds to sentences which simply indicate
presence or absence of the labels. This template set
was named Mimic Style because the sentences were
chosen manually to imitate the sentences found in
the MIMIC-CXR reports.

The Ambiguous template set, shown in Table 6,
corresponds to sentences which when they indicate
presence are ambiguous. For example, they can
be ambiguous in terms of location, indicating the
presence of an abnormality on the left or right side
of the image.

Finally, the Group template set (not to be con-
fused with the Fusion + Groups template approach)
serves as an auxiliary template to be combined with
the simpler templates that indicate the single pres-
ence of labels. This template set is shown in detail
in Table 7.
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Table 5: Sentences in the Mimic Style template set.

Abnormality Absence template Presence template
Cardiomegaly Heart size is normal The heart is enlarged
Enlarged Cardiomed. The mediastinal contour is normal The cardiomediastinal silhouette is enlarged
Consolidation No focal consolidation There is focal consolidation
Lung Opacity The lungs are free of focal airspace disease One or more airspace opacities are seen
Atelectasis No atelectasis Appearance suggest atelectasis
Pleural Effusion No pleural effusion Pleural effusion is seen
Pleural Other No fibrosis Pleural thickening is present
Pneumonia No pneumonia There is evidence of pneumonia
Pneumothorax No pneumothorax is seen There is pneumothorax
Edema No pulmonary edema Pulmonary edema is seen
Lung Lesion No pulmonary nodules or mass lesions identified There are pulmonary nodules or mass identified
Fracture No fracture is seen A fracture is identified
Support Devices - A device is seen

Table 6: Sentences in the Ambiguous template set.

Abnormality Absence template Presence template
Cardiomegaly no cardiomegaly the heart is stable, mild, moderate, severe or enlarged in size
Enlarged Cardiomed. mediastinal contour is normal the cardiomediastinal silhouette is unchanged, enlarged or widened
Consolidation no consolidation there is observed left or right lung consolidation
Lung Opacity free of focal airspace disease there are left or right present lung airspace opacities
Atelectasis no atelectasis there is observed left or right lung present atelectasis
Pleural Effusion no pleural effusion there is an observed left, right or bilateral, small, moderate or large

pleural effusion
Pleural Other no fibrosis there is present left or right, minimal, mild or severe pleural thick-

ening
Pneumonia no pneumonia observed process left or right lung pneumonia
Pneumothorax no pneumothorax there is noted left sided or right sided, small, moderate or large

pneumothorax in the lung
Edema no pulmonary edema there is noted mild, moderate or severe pulmonary edema
Lung Lesion no pulmonary nodules there are left or right pulmonary lung nodules observed
Fracture no fracture there is a rib or clavicular left or right sided fracture
Support Devices there is no picc line there is a noted right sided or left sided picc or tube

Table 7: Sentences for Group Template.

Abnormalities Value of labels Template Group Sentence
’Lung Lesion’, ’Lung Opacity’,
’Edema’, ’Consolidation’, ’Pneu-
monia’, ’Atelectasis’

0 (all absent) the lungs are clear

’Consolidation’, ’Pleural Effu-
sion’, ’Pneumothorax’

0 (all absent) there is no focal consolidation , pleural effusion , or
pneumothorax .

’Pneumothorax’, ’Pleural Effu-
sion’

0 (all absent) there is no pleural effusion or pneumothorax .

’Pneumothorax’, ’Consolidation’ 0 (all absent) there is no focal consolidation or pneumothorax .
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Table 8: Fact classification results on MIMIC-CXR test set. These results are shown for illustrative purposes only.
The performance achieved by the fact classifier according to the labels produced by our NLI labeler is significantly
higher than the performance according to the original labeling tools of the datasets.

Original Labeler NLI labeler
F1

(micro)
F1

(macro)
F1

(micro)
F1

(macro)
CXR-LT (26 classes)

0.451 0.306 0.620 0.454
Chest ImaGenome (78 classes)

0.321 0.261 0.533 0.355
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Abstract
We introduce a radiology-focused visual lan-
guage model designed to generate radiology
reports from chest X-rays. Building on pre-
vious findings that large language models
(LLMs) can acquire multimodal capabilities
when aligned with pretrained vision encoders,
we demonstrate similar potential with chest X-
ray images. This integration enhances the abil-
ity of model to understand and describe chest
X-ray images. Our model combines an image
encoder with a fine-tuned LLM based on the
Vicuna-7B architecture, enabling it to generate
different sections of a radiology report with no-
table accuracy. The training process involves
a two-stage approach: (i) initial alignment of
chest X-ray features with the LLM (ii) followed
by fine-tuning for radiology report generation1.

1 Introduction

Radiology reports constitute the primary medium
through which radiologists convey the findings
and conclusions derived from radiography, such
as chest X-rays. These reports play a pivotal role
in the diagnostic and therapeutic processes across
a wide range of diseases, emphasizing their sig-
nificance in contemporary medical practice (Engle
et al., 2021). Structured to enhance clarity and effi-
cacy in medical communication, radiology reports
primarily feature FINDINGS and IMPRESSIONS
sections (Kahn et al., 2009). The FINDINGS sec-
tion details the critical observations of the radiolo-
gist on the image, while the IMPRESSIONS sec-
tion summarizes the conclusions and recommenda-
tions of the radiologist. These sections collectively
ensure that radiology reports are indispensable in
diagnostic and therapeutic decision-making, com-
bining image analysis and clinical insight. Table 1
shows an example generated by GPT-4 (OpenAI
et al., 2024), which delineates these sections.

* Corresponding author.
1https://github.com/Glasgow-AI4BioMed/

RRG-BioNLP-ACL2024.

FINDINGS
There has been an increase in size of the left
pleural effusion compared to the prior exam.
The right lung remains clear with no evidence
of consolidation or pneumothorax. The heart
size is mildly enlarged but stable. The medi-
astinum appears unremarkable. Mild degener-
ative changes are noted in the thoracic spine
and ribs. The upper abdomen is without re-
markable findings.
IMPRESSIONS
Increase in left pleural effusion compared to
prior. Stable mild cardiomegaly. No evidence
of right lung pathology.

Table 1: FINDINGS and IMPRESSIONS in a synthetic
radiology report generated by GPT-4.

Radiology report generation (RRG) is crucial
for advancing future medical artificial intelligence
systems (Monshi et al., 2020). This task involves
transforming images into text, necessitating align-
ment between imaging and textual data. Signifi-
cant advancements in natural language processing
have driven progress in this area, with large gen-
erative visual language models like LLaVA (Liu
et al., 2023), InstructBLIP (Dai et al., 2023), and
Flamingo (Alayrac et al., 2022) leading the way.

The prevailing visual language models, such as
those mentioned above, aim to address the chal-
lenge of multimodal alignment by leveraging large-
scale pretraining. Typically, this involves adapting
a vision encoder for integration with a pretrained
LLM. To meet specific task requirements, various
degrees of finetuning are applied. For example,
LLaVA (Liu et al., 2023) represents a novel end-
to-end trained large multimodal model for general-
purpose visual and language understanding, achiev-
ing impressive chat capabilities. However, in the
context of our work, the focus is on fine-tuning
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image-text pairs, specifically for tasks related to
medical images, to enhance the capability of the
visual language model in radiology report genera-
tion.

In the specialized area of radiographic report
generation, it is paramount for models to discern
nuanced details within multiple medical images.
These details include subtle variations in opac-
ity against a backdrop of overlapping structures
(Panayides et al., 2020). Therefore, the radio-
graphic report generation task extends beyond the
mere extraction of details from a single image.
Models must interpret the clinical implications of
these nuances to generate precise and medically
rigorous text in reports. This is a particularly cru-
cial capability for radiographic report generation
models, since it enhances the clinical utility and
effectiveness of radiology reports and ensures their
accuracy and relevance in clinical settings.

General-domain models have proven inadequate
for generating findings in radiology reports (Hy-
land et al., 2024). In this work, we propose a
radiology-specific visual language model designed
for solving the radiology report generation task by
fine-tuning across various sections of medical re-
ports. Our model utilizes a two-stage fine-tuning
process that significantly enhances its performance.
In particular, we initially align the large language
model with image embedding through a pretrain-
ing phase. In the second stage, we further fine-tune
the LLM using Low-Rank adaptation (LoRA) tech-
niques (Hu et al., 2021). Both stages are trained on
the dataset in this workshop (Xu et al., 2024).

Additionally, we use a straightforward strategy
of merging and stitching multiple images to form
a single cohesive input, enabling the model to ef-
fectively process and integrate information from
multiple X-ray images. Using the dataset provided
by this workshop, which includes a collection of
chest X-rays and their corresponding sections, we
fine-tune our model to enhance the accuracy and
specificity of the generated radiology reports.

This paper investigates the fine-tuning of visual
instruction for a visual language model in the spe-
cific domain of radiology report generation. We
describe the training of two distinct models devel-
oped for the Shared Task on Large-Scale Radiol-
ogy Report Generation (RRG24) at the BioNLP
2024 Workshop (Xu et al., 2024). In the public
test set, we achieved an F1-RadGraph score (Del-
brouck et al., 2022a) of 24.13 and 22.79 in the
Findings and Impressions sections, respectively.

In the hidden test set, we achieved F1-RadGraph
scores (Delbrouck et al., 2022a) of 24.13 and 22.10
in the Findings and Impressions sections, respec-
tively, which places us 4th on the leaderboard at
the time of submission. The contributions of this
research are as follows:

• We enhance domain adaptation for radiol-
ogy by implementing visual instruction tun-
ing, which further fine-tunes the visual lan-
guage model specifically for image-to-text
tasks. This approach optimizes performance
in interpreting and translating visual data into
descriptive, clinically relevant text.

• We adopt a method of stitching multiple im-
ages together, allowing a single image encoder
to process multiple image inputs simultane-
ously. This strategy obviates the need for sep-
arate encoding of each image, enabling the
model to adapt to varying numbers of image
inputs using limited resources.

2 Related Work

Nowadays, exemplified by open-source projects
such as LLaVA (Liu et al., 2023), the effective-
ness of self-supervised vision-language models
(VLMs) using parallel data has been demonstrated
in different research domains. These VLMs, when
instruction-tuned with multimodal inputs, align
well with human intentions and perform robustly
in various downstream tasks, including converting
images to text (Park and Kim, 2023).

However, the unique characteristics of biomedi-
cal image-text pairs significantly differ from those
in general domains. Biomedical images often con-
tain subtle and complex features that require pre-
cise interpretation, while the corresponding text
must convey highly specific medical information
(Huff et al., 2021). In biomedical settings, VLMs
designed for general domains often fail to meet
these specialized needs, as they lack the ability
to accurately interpret medical data and generate
relevant clinical descriptions (Chang et al., 2023).
This discrepancy underscores the urgent need for
domain-specific fine-tuning. By tailoring VLMs to
the distinct demands of the biomedical field, such
fine-tuning can enhance their ability to capture and
convey the intricate details necessary for accurate
medical interpretations and reports.

Recent advancements have been made in adapt-
ing general-purpose foundation models for med-
ical applications, particularly in radiology. The
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Med-Flamingo (Moor et al., 2023), an extension
of the OpenFlamingo framework (Awadalla et al.,
2023), leverages images and captions from medi-
cal textbooks to enhance few-shot visual question-
answering capabilities. Similarly, the Med-PaLM
M, developed by Tu et al. (2023), fine-tuned the
PaLM-E model (Driess et al., 2023) using compre-
hensive biomedical datasets. LLaVA-Med, pro-
posed by Li et al. (2023), modifies the LLaVA
(Liu et al., 2023) framework with image-text pair-
ings and multimodal instructions from PubMed
data. Additionally, the ELIXR model, developed
by Xu et al. (2023), integrates the SupCon CXR
encoder (Sellergren et al., 2022) with the PaLM
2-S model (Anil et al., 2023) to support classifi-
cation, semantic search, question answering, and
quality assurance. Finally, the Radiology-GPT, cre-
ated by Liu et al. (2024), utilizes radiology reports
from MIMIC-CXR (Johnson et al., 2019) to facili-
tate the generation of findings-to-impression text,
based on the Alpaca instruction-tuning framework
(Taori et al., 2023).

Historically, research in radiology report genera-
tion has varied, with some studies focusing exclu-
sively on either the Findings or the Impressions sec-
tions (Jin et al., 2024; Yan et al., 2023), while others
have addressed both. Notably, Endo et al. (2021)
and Bannur et al. (2023) specialized in generating
only the Impressions section. In contrast, studies
by Miura et al. (2021), Delbrouck et al. (2022a),
Tanida et al. (2023), Nicolson et al. (2023), and Tu
et al. (2023) concentrated on the Findings section.
Comprehensive analyses by Yu et al. (2023) and
Jeong et al. (2023) covered all settings, demonstrat-
ing that the choice of sections significantly influ-
ences reported performance metrics, complicating
comparative evaluations across different study de-
signs.

However, these existing models have limitations.
Most notably, they are typically designed to pro-
cess single images and often fall short in gener-
ating reports that match the depth and detail of
those written by human radiologists. Additionally,
they do not fully replicate the workflow of med-
ical professionals, who often reference multiple
images to enhance report accuracy. Our work ad-
dresses these gaps by developing a model capable
of handling multiple images simultaneously and
generating comprehensive radiology reports. This
approach aims to more closely mimic the process
used by medical professionals, thereby improving
the accuracy and quality of the generated reports.

3 Methodology

In our study, we follow the observations from
LLaVA-Med (Li et al., 2023), suggesting superior
performance when initiating with a language-only
pretrained LLM rather than a multimodal-trained
base. Our model architecture incorporates an im-
age encoder and a learnable adapter placed atop the
image outputs, mirroring the LLaVA-1.5 model de-
sign (Liu et al., 2023). We adopt an auto-regressive
language modelling approach using cross-entropy
loss (Graves, 2014) and align hyperparameters with
those from LLaVA-1.5, including a joint tuning
phase for the LLM and adapter (Liu et al., 2023). In
alignment with LLaVA-1.5 protocols, we initially
pretrain the adapter alone for one epoch, followed
by a full training cycle lasting three epochs, em-
ploying Low-Rank Adaptation of Large Language
Models techniques (LoRA) (Hu et al., 2021) for
efficient parameter tuning.

3.1 Task Description

A key application of natural language generation
in medicine is developing support systems that pro-
duce written reports from X-ray images, detailing
clinical findings. Such systems are highly valu-
able, potentially reducing the routine workload of
radiologists and improving the efficacy of clinical
interactions. The objective of this shared task is to
generate radiology reports from one or more chest
X-rays taken during a single study, specifically tar-
geting two sections: ‘Findings’ and ‘Impressions’
(as shown in Table 1).

Consequently, our team is dedicated to the task
of exclusively producing either the ‘Findings’ or
‘Impressions’ sections of the report. We have de-
veloped separate models for each section because
their focuses are different. The ‘Findings’ section
provides a factual description based on the images,
while the ‘Impressions’ section offers the radiolo-
gist’s conclusions and recommendations. By sep-
arating the models, we can tailor each to better
address its specific requirements.

For the radiology report section generation, han-
dling multiple images is crucial as it allows the
model to provide a detailed and accurate descrip-
tion of the observed facts, similar to how radiol-
ogists analyze multiple images to form a compre-
hensive understanding. This approach enhances
the model’s ability of to mimic the actual work-
flow of medical professionals, who often reference
multiple images.
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Figure 1: Our two-stage training framework. In the first stage, visual features are aligned with LLM. In the second
stage, the model focuses on the training of radiology report generation tasks.

3.2 The Proposed Models

To solve the RRG24 shared task, we fine-tune a
large visual language model for radiology report
generation based on the provided dataset. Specif-
ically, we propose two separate models, called
Med-CXRGen-F and Med-CXRGen-I, fine-tuned
on Findings and Impressions sections respectively.

We use CLIP (Radford et al., 2021) as an image
encoder and Vicuna-1.5 (Chiang et al., 2023) as a
large language model. Our adaptation module con-
sists of a multi-layer perceptron (MLP) featuring
GELU activations (Hendrycks and Gimpel, 2023)
and a uniform hidden size of 1024 across all layers.

The interaction with the model involves alternat-
ing system messages linked with the corresponding
image. The training objective of the model is to
generate accurate responses. Initially, we convert
the image into a series of image patch tokens via
the image encoder, selecting embeddings from the
penultimate layer. These image features are then
processed by the MLP adapter, aligning them to
the input specifications of the LLM.

The instructional prompt of the report gener-
ation task we employed is: "Provide a descrip-
tion of the findings/impressions from the radiology
<image>\n image." In this prompt, "<image>\n"
represents the image holder token, as shown in Fig-
ure 1, which indicates to the LLM that it should

base its generation on the input image.

3.3 Training
The same network architecture is utilized for dif-
ferent radiology report sections, where an MLP
adapter connects the vision encoder and the lan-
guage model. For model training, we use a two-
stage procedure: (as shown in Figure 1)

• Stage 1: Chest X-ray Feature Alignment
In the first epoch training phase on the pro-
vided dataset, each sample, accompanied by
instructions and image input, prompts the
model to predict the original caption. Dur-
ing this stage, we keep the visual encoder and
LLM weights unchanged, focusing solely on
updating the MLP adapter. This approach
aligns the features from chest X-ray images
with their textual embeddings in the LLM.
Training is limited to a single epoch, which
facilitates the expansion of the vocabulary of
aligned image-text tokens specific to the radi-
ology domain.
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• Stage 2: Fine-tune for Radiology Report
Generation
In the second phase, the visual encoder
weights and adapter are kept frozen while
continuing to update the pre-trained LLM
weights using LoRA (Hu et al., 2021) tech-
nology. Further fine-tuning is conducted on
the provided dataset through visual instrumen-
tal tuning with three epochs.

4 Evaluation

4.1 Dataset

We fine-tune and evaluate our models using the
RRG24 dataset hosted on the BioNLP ACL’24 (Xu
et al., 2024), which includes data from MIMIC-
CXR (Johnson et al., 2019), CheXpert (Cham-
bon et al., 2024), PadChest (Bustos et al., 2020),
BIMCV-COVID19 (de la Iglesia Vayá et al., 2020),
and OpenI, with their statistics shown in Table 2.

Dataset FINDINGS IMPRESSIONS

training 344,394 366,413
validation 8,839 9,331
test-public 2,692 2,967
test-hidden 1,063 1,428

Table 2: Distribution of shared task on Large-Scale
Radiology Report Generation.

We conducted training in two stages (refer to
section 3.3). To ensure consistency between train-
ing and inference processes, we analysed the word
count distribution, as shown in Table 3. Conse-
quently, we have set a maximum length of 1024
for both the text input and inference output to min-
imise computational expense. On the other hand,
as illustrated in Table 4, some datasets contain mul-
tiple images, therefore, we select up to the first four
images for the image input. We merge multiple
images horizontally to form a single-image input,
which is proven to be robust in our experiments.

Dataset FINDINGS IMPRESSIONS

training 259 (±180) 216 (±153)
validation 257 (±176) 217 (±155)
test-public 380 (±161) 257 (±224)

Table 3: Average word count and standard deviation on
Large-Scale Radiology Report Generation.

Dataset FINDINGS IMPRESSIONS

training 1.57 (±0.63) 1.45 (±0.62)
validation 1.58 (±0.62) 1.45 (±0.62)
test-public 1.70 (±0.71) 1.67 (±0.71)

Table 4: Average number of images and standard devia-
tion on Large-Scale Radiology Report Generation.

4.2 Metrics

We assess the generated reports through a dual
approach involving both general lexical metrics
and specialized radiology metrics. Focusing on the
accuracy of described medical findings, radiology-
specific metrics provide a deeper insight into the
clinical relevance of the reports, beyond surface-
level phrasing variations. According to the RRG24
guidelines, we consider five evaluation metrics for
this work, including BLEU4 (Papineni et al., 2002),
ROUGEL (Lin, 2004), BERT score (Zhang et al.,
2020), F1-cheXbert (Smit et al., 2020), and F1-
RadGraph (Delbrouck et al., 2022a).

4.3 Training details

We evaluated our two proposed models, i.e. Med-
CXRGen-F and Med-CXRGen-I, on the workshop
evaluation datasets, based on a computational in-
frastructure utilizing an A6000 GPU (48GB mem-
ory each) with the Deepspeed zero-3 configuration
(Rajbhandari et al., 2020) with BF16 enabled. We
employ a cosine learning rate scheduler that begins
with a warm-up phase of 0.03 and sets the learn-
ing rate at 1 · 10−5. The global batch size for our
experiments is set at 16. Observations of the small-
est loss on the evaluation dataset throughout the
training process guide us to select this as the final
checkpoint for all runs. For inference on the test
dataset, we decode in 32-bit precision up to 150
tokens, consistent with the baseline model on the
leaderboard (Delbrouck et al., 2022b). Each model
required approximately 215 hours of training.

5 Results

We report the performance of our two proposed
models over five evaluation metrics in Table 5. As
shown in Table 5, in the public test set, we achieved
an F1-RadGraph score (Delbrouck et al., 2022a) of
24.13 and 22.79 in the Findings and Impressions
sections, respectively. In the hidden test set, we
achieved F1-RadGraph scores (Delbrouck et al.,
2022a) of 24.13 and 22.10 in the Findings and
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Model Dataset Section BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph

Med-CXRGen-F
validation Findings 7.02 23.33 48.93 40.42 21.94
test-public Findings 8.07 24.90 53.45 45.91 24.13
test-hidden Findings 7.65 24.35 52.69 46.21 24.13

Med-CXRGen-I
validation Impressions 10.18 28.10 51.78 50.51 26.65
test-public Impressions 7.10 25.11 47.39 47.43 22.79
test-hidden Impressions 9.60 25.27 48.60 46.74 22.10

Table 5: Evaluation results on different datasets.

Impressions sections, respectively, which places
us 4th on the leaderboard2 at the time of submis-
sion. Additionally, our model achieved notable
Bertscore results in the test-public set, with 53.45
for Findings and 47.39 for Impressions. These re-
sults demonstrate the effectiveness of our approach
in generating high-quality medical reports across
different datasets.

6 Discussion

Performance disparities observed between the Find-
ings and Impressions sections of the test results can
be attributed to several factors. Firstly, the Impres-
sion and Findings sections address distinct medical
purposes, resulting in performance disparities. The
Findings section offers an objective description of
symptoms, while the Impressions are oriented to-
wards diagnostic conclusions. The variability in
word count between these sections also affects the
complexity of model inference, as reflected in the
lexical evaluation scores.

Additionally, significant discrepancies in the
medical evaluation metrics highlight a varied dis-
tribution of diseases within the test set. This het-
erogeneity could impact the generalisability and
accuracy of the model. Furthermore, our analy-
sis indicates that the performance may be compro-
mised in multi-image inference scenarios where
it does not account for superfluous images. Such
factors are essential to consider when assessing the
diagnostic accuracy and reliability of the model in
clinical settings. Enhancing the ability of model
to differentiate between relevant and superfluous
images could significantly improve diagnostic ac-
curacy.

Furthermore, exploring domain-specific adap-
tations and fine-tuning strategies tailored to the
unique characteristics of medical data could further
enhance model performance. Incorporating tem-
poral dynamics into the model to capture changes

2https://vilmedic.app/misc/bionlp24/leaderboard

over time and developing more sophisticated frame-
works for generating multi-modal radiology reports
are other promising avenues for future research.
These advancements are expected to enhance both
the practicality and accuracy of our model within
clinical scenarios.

7 Conclusion

In this work, we have developed a vision-language
model capable of processing multiple images.
Through visual instruction tuning, we achieved
alignment between two modalities and further fine-
tuning for specific downstream tasks. Notably, our
system attained a commendable fourth-place stand-
ing across four diverse test datasets at the RRG24 at
BioNLP 2024 workshop (Xu et al., 2024), substan-
tiating the practicality of vision-language models
within specialized medical tasks.

Moving forward, we intend to conduct in-depth
research into more sophisticated methods for gen-
erating multi-modal radiology reports. This will
involve incorporating temporal dynamics and de-
veloping frameworks specifically focused on text
generation. Such advancements are expected to
enhance both the practicality and accuracy of our
model within the clinical scenario.
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8 Limitations

The following section outlines the limitations iden-
tified in our study:

1. Prevalence of certain conditions: Some dis-
eases are more easily detected, which may
lead to artificially high medical assessment
scores.

2. Imaging modalities and anatomical struc-
tures: There is a notable imbalance in the
imaging modalities and anatomical structures
covered in the training dataset. Variations
such as the number of images per patient and
the considerable disparity in the length of med-
ical reports exacerbate this imbalance.

3. Radiologist and radiology department pref-
erences: Preferences and writing styles vary
among radiologists and radiology depart-
ments. This diversity adds complexity to med-
ical reports by introducing inconsistencies
and uncertainties that are, to a certain extent,
human-induced. For example, the dataset pro-
vided in this workshop demonstrates that even
the same radiology section descriptions have
varying styles. These elements significantly
complicate the task of report generation.

These limitations highlight areas for improvement
and the need for methodological refinements to
enhance model effectiveness and reliability in clin-
ical environments. These challenges were not ad-
dressed within the scope of this workshop.
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Abstract

Radiology report generation (RRG) aims to
create free-text radiology reports from clinical
imaging. Our solution employs a lightweight
multimodal language model (MLLM) en-
hanced with a two-stage post-processing strat-
egy, utilizing a Large Language Model (LLM)
to boost diagnostic accuracy and ensure patient
safety. We introduce the "First, Do No Harm"
SafetyNet, which incorporates X-Raydar, an
advanced X-ray classification model, to cross-
verify the model outputs and specifically ad-
dress false negative errors from the MLLM.
This comprehensive approach combines the ef-
ficiency of lightweight models with the robust-
ness of thorough post-processing techniques,
offering a reliable solution for radiology report
generation. Our system achieved fourth place
on the F1-Radgraph metric for findings genera-
tion in the Radiology Report Generation Shared
Task (RRG24).1

1 Introduction

Radiology is indispensable in healthcare, offer-
ing non-invasive methods to diagnose and mon-
itor medical conditions. Central to this practice
are radiology reports, which provide detailed in-
terpretations of medical images crucial for clinical
decision-making (Mityul et al., 2018). However,
writing these reports is a meticulous process that de-
mands significant domain expertise (Hartung et al.,
2020). Radiologists must manually review images
and formulate descriptive narratives, a task that is

1https://stanford-aimi.github.io/RRG24/

not only time-consuming but also susceptible to
variability and errors, potentially affecting patient
care and outcomes (Alexander et al., 2022).

One of the primary challenges in radiology re-
port writing is the sheer volume of imaging studies
that radiologists must interpret (Bruls and Kwee,
2020; Zhan et al., 2020). With the increasing use of
imaging modalities such as computed tomography
(CT), magnetic resonance imaging (MRI), and X-
ray, radiologists are facing a growing workload that
exceeds their capacity to provide timely and accu-
rate reports (Winder et al., 2021; Bruls and Kwee,
2020). This challenge is further compounded by
the rising demand for imaging services due to an
aging population and the increasing prevalence of
chronic diseases.

Another imperative issue in radiology report gen-
eration is the variability in report quality and consis-
tency (Minn et al., 2015; Pool and Goergen, 2010).
Different radiologists may interpret the same set
of images differently, leading to inconsistencies
in the information provided in the reports. This
variability can stem from differences in writing
styles, experience levels, and individual biases, all
of which can have significant implications for pa-
tient care (Plumb et al., 2009; Naik et al., 2001;
Brady et al., 2012). Inconsistencies in reports may
lead to missed diagnoses or incorrect treatment de-
cisions, underscoring the importance of standard-
ized and automated approaches to report genera-
tion.

To address these challenges, Automated systems
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have the potential to enhance the efficiency and
accuracy of radiology report generation (Liao et al.,
2023; Pang et al., 2023; Liu et al., 2023). These
systems can reduce the time and effort required
by radiologists while standardizing reporting prac-
tices to ensure consistency and relevance in reports.
Moreover, automation can help address the increas-
ing workload and demand for imaging services.

As Large Language Models (LLMs) have be-
come widely available, numerous studies have
explored the development of Multimodal LLMs
(MLLMs) capable of natively processing additional
modalities, such as images (Lu et al., 2023; Yang
et al., 2023). Although there have been significant
advancements in the development of MLLMs for
various tasks (Chen et al., 2023; Wu et al., 2023),
none have specifically focused on lightweight mod-
els for the medical domain.

Local deployment is critical as many hospitals
are concerned that uploading images to the cloud
for AI processing may violate privacy laws such as
the General Data Protection Regulation (GDPR) in
Europe or the Personal Data Protection Act (PDPA)
in Thailand. Addressing this issue is essential to en-
sure that patients can receive enhanced medical ser-
vices while maintaining their privacy. Additionally,
most hospitals in developing countries are GPU-
constrained and lack access to high-end GPUs
which are typically required for deployment. There-
fore, it is imperative to develop lightweight models
capable of performing inference on-premise using
consumer-grade GPUs.

Motivated by these challenges, we investigate
various architectures with a focus on identifying
models that offer the optimal cost-to-performance
ratio for local deployment. For the purposes of
this study, we concentrate on the task of findings
generation.

Our contributions are summarized as follows:
• We developed and trained a lightweight Mul-

timodal Large Language Model (MLLM) for
the radiology report generation task using a
two-stage training strategy, achieving perfor-
mance metrics comparable to those of larger
models.

• We introduced a novel two-stage post-
processing strategy. The first stage enhances
the readability and clarity of the reports. The
second stage, "First, Do No Harm" SafetyNet,
employs the X-Raydar classification model to
cross-verify the model outputs, significantly
improving diagnostic accuracy and ensuring

patient safety.

2 Methodology

2.1 Model Architecture
Impressed by its superior performance, which
surpasses even some larger models despite its
lightweight nature in general domain, we decided
to follow model architecture design of Bunny for
this study (He et al., 2024). Our model components
include the SigLIP-so400m2 (Zhai et al., 2023) as
the visual encoder, a two-layer Multi-layer percep-
tron (MLP) with a GELU activation as the vision-
language connector, and the Phi-2 2.7B as our LLM
(Hughes, 2023).

The SigLIP visual encoder extracts meaning-
ful features from chest X-ray images, enabling
the model to capture relevant visual information.
The MLP integrates these visual features with lan-
guage representations. Phi-2, a 2.7 billion param-
eter lightweight language model trained on high-
quality data, achieves performance metrics com-
parable to substantially larger models. It demon-
strates exceptional proficiency in benchmarks such
as commonsense reasoning, language comprehen-
sion, question-answering, and coding tasks, fre-
quently surpassing models with significantly more
parameters.

2.2 Training Strategy & Datasets
We employ a two-stage training strategy to opti-
mize our model’s performance. In the first stage,
we train only the MLP connector using the LLaVa-
Med alignment 500k dataset (Li et al., 2023; Zhang
et al., 2023), while keeping the rest of the model
frozen. LLaVa-Med is a large-scale dataset specif-
ically curated for medical vision-language tasks,
containing a diverse collection of medical imaging
modalities and tasks. By pretraining on this dataset,
the MLP connector learns to effectively map visual
features to language representations in the medical
domain.

The second stage involves fine-tuning both
the vision-language connector and the Language
Model (LLM), while keeping the visual encoder
frozen. This fine-tuning process utilizes the
interpret-cxr dataset (Xu et al., 2024) comprising a
mixture of multiple chest X-ray datasets: CheXpert
(Chambon et al., 2024), PadChest (Bustos et al.,
2020), BIMCV COVID-19 (Vayá et al., 2020), and
MIMIC-CXR-JPG (Johnson et al., 2019). This

2SigLIP HuggingFace Link
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dataset includes chest X-ray images along with
their corresponding radiology reports, providing
task-specific training data. For our study, we com-
bined both findings and impressions into a single
dataset, totaling 710,807 image-text pairs. In our
preliminary study, retaining only the first image
from each study outperformed using all images, as
shown in 3. Therefore, we heuristically kept only
the first image to preserve report diversity.

2.3 Two-Stage Post-Processing Strategy

In addition to our model’s architecture and training
strategies, we implement a crucial post-processing
strategy, wherein the model outputs undergo se-
quential processing to enhance the overall qual-
ity of the reports (See Appendix C for detailed
prompts).

2.3.1 First stage: Report Refinement
In the first stage, we utilize a Large Language
Model (LLM) to enhance the comprehensiveness
of the findings reports. Our key objectives are to
improve readability and clarity, eliminate nonsensi-
cal words, and remove duplicated sentences from
the model hallucinations. For normal chest X-ray
(CXR) findings, we provide detailed, standardized
explanations to clarify the condition. We use a rec-
ommended vocabulary list to maintain consistency
across reports. Our methodology promotes concise
reporting by focusing on critical findings, while
still adhering to a professional radiology report for-
mat. This includes transforming simple statements
like "No significant findings" into comprehensive
and detailed descriptions.

2.3.2 Second stage: "First, Do No Harm"
SafetyNet

This post-processing strategy, termed "First, Do
No Harm" SafetyNet, involves using an advanced
X-ray classification model, X-Raydar, to provide
a second opinion on chest X-ray images. This
methodology mirrors the practice of doctors con-
sulting with colleagues to validate the diagnoses,
thereby mitigating the risk of errors that could po-
tentially harm patients.

X-Raydar Integration X-Raydar, a state-of-the-
art X-ray classification model, is trained on a sub-
stantial dataset of 1.8 million chest X-rays, cover-
ing a wide range of pathologies (Cid et al., 2024).
By integrating X-Raydar into our post-processing
strategy, we leverage its robust performance to
cross-verify and refine the outputs generated by

our MLLM.
Second Opinion Inference A major challenge

in findings generation is the occurrence of false neg-
ative errors, such as incorrectly reporting "lungs
are clear" or "no cardiomegaly" To mitigate this is-
sue, we use Llama3 70B3 with a specially designed
prompt to detect and correct such critical errors.
The prompt incorporates the classification results
from X-Raydar to specifically address common
false negative errors. For example, if X-Raydar
identifies signs of cardiomegaly but the initial re-
port states "no cardiomegaly," our tailored prompt
for Llama3 ensures that the final report accurately
reflects the patient’s condition. This dual-check
strategy significantly increases agreement with the
ground truth report, thereby improving diagnostic
accuracy and enhancing patient safety.

3 Experimental Setup

3.1 Evaluation

We evaluated our approach using metrics for natu-
ral language generation (NLG) quality and clinical
accuracy, as implemented by the Vilmedic frame-
work (Delbrouck et al., 2022b).

NLG Metrics
• BLEU measures the precision of n-grams in

the generated text compared to a reference
text (Papineni et al., 2002).

• ROUGE-L focuses on the longest common
subsequence between the generated and refer-
ence texts (Lin, 2004).

• BERTscore uses contextual embeddings to
compare semantic similarity between the gen-
erated and reference texts (Zhang et al., 2019).

Clinical Accuracy Metrics
• F1-CheXbert computes the F1 score based

on the similarity of indicator vectors for 14
pathologies (Smit et al., 2020).

• F1-RadGraph calculates the overlap in clin-
ical entities and relations extracted from the
reports (Delbrouck et al., 2022a).

These metrics provide a comprehensive evaluation
of our model’s performance in generating accurate
and clinically relevant radiology reports.

3.2 Model Architecture Ablations

To investigate the complex relationship between
model architecture and overall performance across

3LLaMa3 70B Instruct HuggingFace Link
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Table 1: Performance of Various LLM and Visual Encoder Combinations on the Public Findings Benchmark (One
Epoch ≈ 5000 Steps)

Model Step BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
Phi-2 + SigLIP 4000 5.83 20.98 46.72 49.69 19.21
Phi-2 + SigLIP 8000 6.93 23.41 50.81 55.70 22.05
Phi-2 + SigLIP 12000 6.96 23.26 51.63 52.91 22.86
Phi-2 + SigLIP (S2) 4000 5.08 19.85 45.67 47.96 18.53
Phi-2 + SigLIP (S2) 8000 7.47 23.38 50.56 55.30 22.32
Phi-2 + SigLIP (S2) 12000 7.3 22.9 50.82 52.84 21.93
Llama3 (OpenBio) + SigLIP (S2) 4000 2.26 16.03 41.42 37.49 12.98
Llama3 (OpenBio) + SigLIP (S2) 8000 5.21 20.32 47.06 45.78 18.11
Llama3 (OpenBio) + SigLIP (S2) 12000 6.01 20.75 48.24 49.72 18.09

various metrics and tasks, we designed and con-
ducted the following series of experiments to iso-
late specific architectural elements and their effects:

• Language Model:
– Phi-2 2.7B
– Llama3-OpenBioLLM 8B4

• Visual Encoder:
– SigLIP
– SigLIP with S2-Wrapper

In addition to our base model, Phi-2 2.7B with
the SigLIP visual encoder, we conducted further
ablation studies to understand the impact of differ-
ent model architectures. For the language model
(LLM), we selected Llama3-OpenBioLLM 8B as
our larger model to investigate whether initializing
from a medical LLM could enhance the perfor-
mance of a MLLM on findings generation task.
The model was fine-tuned using a comprehensive
dataset of high-quality biomedical data, allowing
it to comprehend and generate text with precise
domain-specific accuracy and fluency. The Llama3-
OpenBioLLM 8B demonstrated exceptional per-
formance on multiple medical LLM benchmarks5,
surpassing even some larger models.

For the visual encoder, we employed the S2-
Wrapper, an extension designed to extract multi-
scale features from images (Shi et al., 2024). This
approach was chosen to evaluate the impact of
multi-scale feature extraction on the findings gener-
ation task. The integration of the S2-Wrapper aims
to enhance the model’s ability to handle complex
visual features and improve the overall accuracy of
the generated reports.

4 Results & Discussion

4.1 Model Architecture Ablations

Our best architecture, Phi-2 combined with SigLIP
visual encoder, demonstrates superior performance
as indicated by the F1-Radgraph metric as pre-
sented in Table 1. Notably, this configuration

4LLaMa3 OpenBioLLM 8B HuggingFace Link
5OpenLLM Leaderboard

outperforms the S2-wrapper extension. We hy-
pothesize that the general domain SigLIP visual
encoder encounters difficulties in effectively ex-
tracting useful information from X-ray images at
multiple scales. Additionally, this architecture sur-
passes the performance of the larger medical do-
main Llama3-OpenBioLLM 8B, suggesting that
the success in this specific findings generation task
may be more dependent on the quality of image
information extracted by the visual encoder rather
than the pretrained knowledge of LLMs.

4.2 Post-processing

Table 2: Performance improvement of each post-
processing stage on Hidden Findings Benchmark.

Model F1-RadGraph
Phi-2 + SigLIP 22.61
Phi-2 + SigLIP (Stage 1) 23.11 (+0.5)
Phi-2 + SigLIP (Stage 1&2) 24.62 (+1.51)

Our two-stage post-processing strategy markedly
improves the performance metrics for our findings
generation task, as demonstrated by the hidden-
findings test results in Table 2. In the first stage,
report refinement increased the F1-Radgraph met-
ric from 22.61 to 23.11 (+0.5). The incorporation
of the "First, Do No Harm" SafetyNet in the second
stage further elevated the F1-Radgraph metric from
23.11 to 24.62 (+1.51), resulting in a total improve-
ment of 2.01 points over the default model. This
comprehensive approach not only enhances report
readability but also significantly boosts diagnos-
tic accuracy and patient safety, leading to higher
quality radiology reports.

5 Conclusion

We present our approach to the Radiology Report
Generation task in the BioNLP 2024 shared task.
This study investigates various training configu-
rations and data mixtures to develop lightweight
models for generating radiology reports from chest
X-ray images. Our findings demonstrate that even
a smaller model, such as the Phi-2 language model,
can perform comparably to larger models in the
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report generation task. Additionally, incorporating
post-processing techniques significantly enhances
the quality of the reports and ensures patient safety.
This is particularly crucial for hospitals in resource-
constrained settings. By focusing on models that
can be fine-tuned on a single A100 GPU and oper-
ated on-premises with a consumer-grade GPU, we
address privacy concerns and improve the accessi-
bility of this technology.

Limitations

In this work, we utilized the Llama3-70b-instruct
model on HuggingChat for post-processing in both
stages, demonstrating that it improves the metric
(F1-RadGraph) of the generated reports. However,
we did not explicitly analyze the quality of post-
processing with smaller LLMs to determine if they
can achieve similar results. Future research could
explore post-processing with multiple LLM sizes
to understand the impact of model size on per-
formance. Additionally, our current approach in-
volves sequential two-stage post-processing, which
may not fully leverage the LLM’s capabilities and
could introduce unnecessary complexity and la-
tency. Combining these stages into a single step
could reduce latency and streamline the overall
process.
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A Preliminary Study

To investigate the impact of data composition and
transfer learning on model performance, we con-
ducted the following experiments:

A.1 Initialization and Training Strategies:

We explored two initialization and training strate-
gies:

• Initialization from MLLM Pretrained on Gen-
eral Domain: This approach involves contin-
ually fine-tuning the pretrained multimodal
language model (MLLM) on the interpret-cxr
dataset, focusing solely on the final stage of
training (stage 2).

• Initialization from LLM and Randomly Ini-
tialized Adapter: In this method, the language
model (LLM) is pretrained on the LLaVa-
MED dataset (stage 1) with a randomly initial-
ized adapter, followed by fine-tuning on the
interpret-cxr dataset (stage 2). This two-stage
process aims to leverage domain-specific pre-
training to enhance performance.

Our results indicated that this two-stage ap-
proach, which leverages domain-specific knowl-
edge from LLaVa-MED, is beneficial and enhances
performance.

A.2 Image Selection

We examined the effect of different image selection
techniques:

• Reusing the Same Report When Multiple Im-
ages Are Provided: This technique involves
using all available images for a given report,
resulting in 1 million image-text pairs. This
approach aims to maximize the amount of vi-
sual information provided to the model.

• Using Only the First X-ray Image When Mul-
tiple Images Are Provided: Here, only the
first image from each study is used, leading
to a dataset of 700,000 image-text pairs. This
method is intended to reduce redundancy and
potential bias in the reports by focusing on the
most relevant image.

Our data mixture study revealed that using only
the first image from each study yielded slightly
better performance than using all images, ensuring
the diversity of the radiology reports.

B Dataset Cleaning

In the preliminary inspection of the dataset, we ob-
served that numerous reports within the interpret-

cxr dataset contained sentences with information
that could not be derived solely from the X-ray
images. These sentences included details such as
dates, doctor information, references to other imag-
ing modalities, and comparisons with previous find-
ings. Such extraneous information introduces noise
that may lead the model to hallucinate incorrect
dates, numbers, and comparisons with non-existent
prior studies (Chen et al., 2024).

To mitigate this issue, we attempted to utilize
GPT-3.5 Turbo to remove this irrelevant informa-
tion from the dataset. The dataset cleaning prompts
and examples are detailed in Appendix B.1 and
B.2. However, during the evaluation, we observed
a slight decline in performance metrics, as illus-
trated in Table 4, following the removal of these
sentences. We suspected that the public-test and
hidden-test datasets did not undergo similar clean-
ing procedures, resulting in uncleaned test sets.
Therefore, to maximize of our performance met-
rics, we decided to use the original dataset without
data cleaning for the remaining of our study.

B.1 Cleaning Prompt
We provide the prompt used for preprocessing and
cleaning the training dataset to remove information
that cannot be obtained solely from X-ray images.
Findings: "Remove non-x-rays discernible infor-
mation from chest x-ray findings i.e. date, previous
report mentions and comparison, and information
from other imaging modality. Keep all remaining
sentences unchanged:"
Impression: "Remove non-x-rays discernible in-
formation from chest x-ray impression i.e. date,
doctor information, previous report mentions and
comparison, and information from other imaging
modality. Keep all remaining sentences unchanged.
But if there is nothing left, return |None| and stop
generating:"

B.2 Examples
B.2.1 Comparison with previous report
Original: Compared with the previous one, the
x-ray is slightly inspired. no lung consolidations or
pleural effusion are observed.
Clean: No lung consolidations or pleural effusion
are observed.

B.2.2 Date Mentions
Original: AP chest radiograph on 12/11/08 at
2315 demonstrates a dual lead AICD. Stable car-
diomegaly and stable left basilar opacities, likely
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Table 3: Preliminary Evaluation of Initialization Strategies and Image Selection for Radiology Report Generation.
This table compares the performance metrics of models initialized from a pretrained MLLM versus those initialized
from an LLM with a randomly initialized adapter, as well as the impact of using only the first image from each study
versus using all provided images. The results indicate that initializing from an LLM with a randomly initialized
adapter yields better performance, and selecting the first image from each study slightly improves the metrics.
Consequently, we heuristically retained only the first image to reduce redundancy and maintain report diversity.

LLM + Visual Encoder Train Data Epoch BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
Phi-2 + SigLIP (init from Bunny) LLaVa-Med + CXR 1 4.84 20.05 45.81 48.39 18.13
Phi-2 + SigLIP LLaVa-Med + CXR 1 5.74 20.72 47.32 49.46 19.13
Phi-2 + SigLIP LLaVa-Med + CXR (First) 1 5.45 21.17 47.43 51.10 19.52

Table 4: Results of the dataset cleaning experiment on findings and impressions. We performed stage 2 finetuning
on the SigLIP and Phi-2 2.7B model architecture with different data mixtures for this experiment. "Raw" refers to
the original interpret-cxr dataset, while "Clean" denotes the dataset cleaned by GPT-3.5 Turbo using the specified
cleaning prompt.

Report Type Train Data Epoch BLEU4 ROUGEL Bertscore F1-cheXbert F1-RadGraph
findings Raw 1 6.19 24.49 47.61 43.91 18.08
findings Clean 1 5.84 24.17 47.14 44.19 17.83
impression Raw 1 9.87 27.65 50.57 51.80 23.96
impression Clean 1 6.62 23.66 50.74 49 24.62

atelectasis. Persistent right-sided pleural effusion.
Diffuse reticular opacities, mild interstitial edema.
Elevation of the left hemidiaphragm. Hiatal hernia.
Partially visualized abdominal aortic stent graft.
AP chest radiograph on 12-11-2008 at 3:11 a.m.
demonstrates no significant interval change in car-
diopulmonary status.
Clean: AP chest radiograph demonstrates a dual
lead AICD. Stable cardiomegaly and stable left
basilar opacities, likely atelectasis. Persistent right-
sided pleural effusion. Diffuse reticular opacities,
mild interstitial edema. Elevation of the left hemidi-
aphragm. Hiatal hernia. Demonstrates no signifi-
cant interval change in cardiopulmonary status.

B.2.3 Other Modalities Mentions
Original: Chest x-ray. bilateral bronchiectasis
with a predominance on the right side, noting an in-
crease in density around these right basal bronchiec-
tasis in relation to consolidations described in previ-
ous ct. there is no pleural effusion. cardiomedasti-
nal silhouette and hila are within normal limits.
biapical caps. bone and soft parts without notable
findings.
Clean: Chest x-ray. Bilateral bronchiectasis with a
predominance on the right side. There is no pleural
effusion. Cardiomedastinal silhouette and hila are
within normal limits. Biapical caps. Bone and soft
parts without notable findings.

B.2.4 Doctor information
Original: 1.Interval development and resolution
of a right upper lobe opacification, possibly rep-
resenting interval resolution of right upper lobe
aspiration or asymmetric pulmonary edema. 2. Per-
sistent small bilateral pleural effusions. ""Physi-

cian to Physician Radiology Consult Line: (753)
619-1110"" I have personally reviewed the images
for this examination and agreed with the report
transcribed above.
Clean: 1.Interval development and resolution of a
right upper lobe opacification, possibly represent-
ing interval resolution of right upper lobe aspira-
tion or asymmetric pulmonary edema. 2. Persistent
small bilateral pleural effusions."

C LLM Prompts

We provide a template of our post-processing
prompt for the LLM to enhance diverse aspects
generated report. The Report Refinement prompt
enhance the readability and clarify the report while
the "First, Do No Harm" SafetyNet prompt of
Llama3 combines the results of our MLLM model
and the classification results from X-Raydar.
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Prompt 1: First Stage: Report Refinement

Radiology Reporting Instructions
You are an experienced radiologist tasked with interpreting CXR images and generating reports from free-text descrip-
tions. Your primary objectives are to:

• Enhance readability and clarity of the text.

• Conduct Radgraph sterilization to ensure data integrity and accuracy.

When processing normal CXR findings, provide detailed explanations to clarify the condition. For instance:

Input Examples
• No significant findings.

• No acute cardiopulmonary findings.

• No acute cardiopulmonary abnormality.

• The heart is normal in size. The mediastinum is unremarkable. The lungs are clear.

• The heart size and pulmonary vascularity appear within normal limits. The lungs are free of focal airspace disease.
No pleural effusion or pneumothorax is seen.

• No acute cardiopulmonary findings.

Expected Output
• The lungs are clear. No cardiomegaly. The cardiomediastinal and hilar contours are normal. There is no focal

consolidation, pleural effusion, or pneumothorax. The pulmonary vascular markings are normal. No free air
beneath the diaphragm.

Use a recommended vocabulary list to standardize report language and maintain consistency across reports. This list
includes [’AC’, ’Bony’, ’Borderline’, ’CHF’, ’Calcified’, ’Cardiac’, ’Cardiomediastinal’, ’Cardiomegaly’, ’Clips’,
’Dense’, ’Dobbhoff’, ’Esophageal’, ’Extensive’, ’Heart’, ’Healing’, ’Hilar’, ’Hyperinflated’, ’IJ’, ’Increase’, ’Increased’,
’Interval’, ’Interposition’, ’Lung’, ’Lungs’, ’Lucency’, ’Minimal’, ’Moderate’, ’Mild’, ’Mildly’, ’Monitoring’, ’Multi-
ple’, ’Nasogastric’, ’Nearly’, ’New’, ’Normal’, ’Orphaned’, ’PICC’, ’Pneumomediastinum’, ’Pneumothorax’, ’Port - A -
Cath’, ’Pulmonary’, ’Right-sided’, ’Small’, ’Slight’, ’Slightly’, ’Stable’, ’Subcutaneous’, ’Tip’, ’Venous’, ’Widespread’,
’Worsening’, ’Zone’, ’accessory’, ’acute’, ’adenocarcinoma’, ’air’, ’air-filled’, ’airspace’, ’along’, ’angles’, ’anterior’,
’anteriorly’, ’apparent’, ’appearance’, ’appropriately’, ’area’, ’areation’, ’artifact’, ’atelectasis’, ’axilla’, ’benign’,
’bibasal’, ’bilaterally’, ’blunting’, ’borderline’, ’bowel’, ’bronchovascular’, ’caliber’, ’calcification’, ’calcified’, ’cancer’,
’cardiac’, ’cardiomegaly’, ’central’, ’change’, ’chest’, ’chf’, ’clavicle’, ’clavicular’, ’clear’, ’clips’]
Reports should be styled succinctly, focusing on critical findings and summarizing significant observations without
omitting essential details. Each report should follow the professional radiology report format:

Example of Good Reports
• The lungs are clear without focal consolidation. No pleural effusion or pneumothorax is seen. Heart size is

top-normal. The mediastinal silhouette is unremarkable.

• Portable frontal radiograph of the chest demonstrates a right chest tube in unchanged position ending at the right
apex. The right basilar pneumothorax continues to decrease in size. The pneumomediastinum is also decreasing.
Extensive subcutaneous emphysema persists. Stable heart size and mediastinal contours. Small left pleural
effusion is unchanged.

• The cardiac, mediastinal and hilar contours appear stable. Streaky left basilar opacity suggests minor atelectasis.
The lateral view depicts a greater degree of right middle lobe atelectasis than before, more coalescent. There is no
definite pleural effusion or pneumothorax.

• Persistent hila with a congestive appearance possibly due to pulmonary edema, but without evidence of significant
consolidations or pleural effusion. to be correlated clinically.

• Cardiac silhouette is unchanged. Aortic arch calcification seen. Pulmonary vascularity is within normal limits.
There is trace right pleural effusion noted. Bibasilar atelectasis is seen. There is no pneumothorax. Multilevel
degenerative changes seen in the thoracic spine.

(answer only summarize report to text paragraph)
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Prompt 2: "Second Stage: First, Do No Harm" SafetyNet

Refine ’Input’ with ’Refine information’ indicating that the patient has conditions as refine infor-
mation with the following conditions:

1. If the input and refined information have mismatched information, such as Refine informa-
tion indicating an additional pathology not mentioned in the input, prioritize the refined
information.

2. However, if the ’Refine information’ suggests a pathology already included in the ’Input’, we
will not refine the input.

3. We will remove the sentence "lungs are clear" if there is any abnormality in the lung, pul-
monary, or pleura.

Example 1:
Input = The lungs are clear. No cardiomegaly. The cardiomediastinal and hilar contours are
normal. There is no focal consolidation, pleural effusion, or pneumothorax. The pulmonary
vascular markings are normal.
Refine information = This patient has cardiomegaly and pleural effusion.
Output should be = There is cardiomegaly. The cardiomediastinal and hilar contours are normal.
There is pleural effusion. There is no focal consolidation or pneumothorax. The pulmonary
vascular markings are normal.
Example 2:
Input = The lungs are clear. No cardiomegaly. The cardiomediastinal and hilar contours are
normal. There is no focal consolidation, pleural effusion, or pneumothorax. The pulmonary
vascular markings are normal.
Refine information = This patient has cardiomegaly.
Output should be = There is cardiomegaly. The lungs are clear. The cardiomediastinal and hilar
contours are normal. There is no focal consolidation, pleural effusion, or pneumothorax. The
pulmonary vascular markings are normal.
Your answer should provide only the ’Output’ format and not include any other comments.

644



Proceedings of the 23rd Workshop on Biomedical Language Processing, pages 645–657
August 16, 2024. ©2024 Association for Computational Linguistics

Shimo Lab at “Discharge Me!”: Discharge Summarization by
Prompt-Driven Concatenation of Electronic Health Record Sections

Yunzhen He∗ 1 Hiroaki Yamagiwa∗ 1 Hidetoshi Shimodaira1,2

1 Kyoto University 2 RIKEN AIP
he.yunzhen.25d@st.kyoto-u.ac.jp,

hiroaki.yamagiwa@sys.i.kyoto-u.ac.jp,shimo@i.kyoto-u.ac.jp

Abstract

In this paper, we present our approach to the
shared task “Discharge Me!” at the BioNLP
Workshop 2024. The primary goal of this
task is to reduce the time and effort clinicians
spend on writing detailed notes in the electronic
health record (EHR). Participants develop a
pipeline to generate the “Brief Hospital Course”
and “Discharge Instructions” sections from the
EHR. Our approach involves a first step of ex-
tracting the relevant sections from the EHR. We
then add explanatory prompts to these sections
and concatenate them with separate tokens to
create the input text. To train a text generation
model, we perform LoRA fine-tuning on the
ClinicalT5-large model. On the final test data,
our approach achieved a ROUGE-1 score of
0.394, which is comparable to the top solutions.

1 Introduction

Electronic health records (EHR) eliminate the need
for end-users to write medical records by hand and
provide easy access to digital records (Menachemi
and Collum, 2011). However, the use of EHR some-
times increases the burden on end-users (Shanafelt
et al., 2016; Liu et al., 2022; Gao et al., 2023).
With this in mind, there has been active research
in recent years into applying natural language pro-
cessing (NLP) to EHR to reduce the burden on
end-users (Dong et al., 2022; Houssein et al., 2023;
Veen et al., 2023).

To explore the potential of NLP in EHR, the
shared task “Discharge Me!” (Xu et al., 2024) at
the BioNLP Workshop 2024 evaluates the ability
to generate discharge summaries. The goal of this
task is to reduce the time and effort clinicians spend
on writing detailed notes in the EHR. Participants
develop a pipeline that leverages the EHR data to
generate discharge summaries.

∗ The first two authors contributed equally to this work.
Our code is available at https://github.com/

githubhyz/DischargeMe_BioNLP2024.

ClinicalT5-L
fine-tuned for 
Brief Hospital

Course

Input Text

EHR

Discharge
Instructions

Brief Hospital
Course

Section Extraction &
Prompt Addition &

<sep> Concatenation
Input Text Generation

ClinicalT5-L
fine-tuned for 

Discharge
Instructions

Figure 1: Overview of our pipeline. To create input
text, we extract sections from the EHR, add explanatory
prompts, and then concatenate them with <sep> tokens.
We then generate discharge summaries using ClnicalT5-
large, which has been fine-tuned for each target.

In this paper, we present our approach to the
shared task. Fig. 1 provides an overview of our
pipeline. We preprocess the EHR, as illustrated in
Fig. 2, by removing noise and extracting sections
that are essential for the target summary. The sec-
tions are selected based on a predetermined priority.
For extracted sections, we prepend the prompt from
Table 2 to the beginning of the text, concatenate
these sections using <sep> tokens, and thus pre-
pare the input text. We also removed noise from the
target text. We then fine-tuned ClinicalT5 (Lu et al.,
2022), which is pre-trained on clinical texts. On the
final test data, our approach achieved a ROUGE-
1 score of 0.394, which is comparable to the top
solutions.

2 Related work

2.1 Text generation models in clinical domain

Decoder. ClinicalGPT (Wang et al., 2023),
whose base model is BLOOM-7B (Le Scao et al.,
2022), uses LoRA (Hu et al., 2022) for fine-tuning
and applies the reinforcement learning process used
in InstructGPT (Ouyang et al., 2022). BioMistral-
7B (Labrak et al., 2024) underwent additional pre-
training of the Mistral-7B (Jiang et al., 2023) model
on PubMed Central (Roberts, 2001) and showed
good performance on the clinical knowledge QA
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Name:  ___                 Unit No:   ___
 
Admission Date:  ___              Discharge Date:   ___
 
Date of Birth:  ___             Sex:   M
 
Service: SURGERY
 
Allergies: 
Codeine / Levaquin

Attending: ___.
 
Chief Complaint:
Abdominal pain
 
Major Surgical or Invasive Procedure:
None

History of Present Illness:
Mr. ___ is a ___ male with PMHx significant for 
stage IIIb supraclavicular melanoma s/p supraclavicular and 
[...]
He also complains of left ankle pain after a fall and has been 
taking ibuprofen.  
 
Past Medical History:
1.right acoustic neuroma (deafness right ear)
2.s/p repair right biceps tendon rupture (___)
[...]
2. Bicep tendon repair.
3. Acoustic neuroma followed with serial MRIs.
 
Social History:
___
Family History:
FAMILY HISTORY:
1.  Sister with uterine cancer.
[...]
5.  Maternal aunt with colon cancer.
6.  Maternal first cousin with melanoma.
 
Physical Exam:
Admission Physical Exam:
VS: 
98.2 F  72 HR 140/67  20  98% RA 
[...]
palpation. 
Skin: No gross abnormalities noted 

Discharge Physical Exam:
VS: 98.4, 75, 120/72, 24, 95 RA
GEN: Well appearing, sitting up in bed with family at bedside.
[...]
Neuro: A&Ox3. Follows commands and moves all extremities
equal 
and strong. speech is clear and fluent. 
 
Pertinent Results:
___ 10:30AM BLOOD WBC-12.3* RBC-3.81* Hgb-11.2* Hct-34.0* 
MCV-89 MCH-29.4 MCHC-32.9 RDW-13.0 RDWSD-42.2 Plt ___
[...]
agreement with the discharge plan. He was instructed to follow 
up with a colonoscopy outpatient in ___. 
 
[Brief Hospital Course]

Medications on Admission:
tadalafil (CIALIS) 5 mg daily PRN 
indomethacin 25 mg capsule TID

Discharge Medications:
1.  Acetaminophen 1000 mg PO TID 
Do not exceed 4 grams/ 24 hours  
[...]
RX *metronidazole 500 mg 1 tablet(s) by mouth three times a day 
Disp #*30 Tablet Refills:*0 

Discharge Disposition:
Home
 
Discharge Diagnosis:
Perforated appendicitis

Discharge Condition:
Mental Status: Clear and coherent.
Level of Consciousness: Alert and interactive.
Activity Status: Ambulatory - Independent.

[Discharge Instructions]

Followup Instructions:
___

Figure 2: An example of the EHR with the location of
the target discharge summaries. To show the sections
used for the input text, the rounded rectangle is for the
“Brief Hospital Course”, the dashed rounded rectangle is
for the “Discharge Instructions”, and the rectangles are
for both targets. The symbol “[...]” indicates omissions.

task.

Encoder-decoder. ClinicalT5 (Lu et al., 2022;
Lehman et al., 2023), whose base model is T5 (Raf-
fel et al., 2020), is the model pre-trained on clin-
ical texts1. Lu et al. (2022) performed additional
pre-training of the SciFive-PubMed-PMC (Phan
et al., 2021) model on MIMIC-III (Johnson et al.,
2016). Meanwhile, Lehman et al. (2023) pre-
trained T5 from scratch using MIMIC-III and
MIMIC-IV (Johnson et al., 2023c).

2.2 Clinical text summarization
Discharge Summarization. Williams et al.
(2024) showed that although 33% of the discharge
summaries generated by GPT-4 (Achiam et al.,
2023) from the EHR were error-free, some con-
tained hallucinations and omitted relevant informa-
tion. Note, however, that the shared task does not
allow data to be sent to third parties via an API.

Problem List Summarization (ProbSum).
ProbSum (Gao et al., 2022) is a task aimed at
generating a list of problems in a patient’s daily
care plan based on hospital records. In the BioNLP
2023 shared task (Gao et al., 2023) focused on
ProbSum, the ensemble of ClinicalT5 models
demonstrated robust performance (Manakul
et al., 2023), and the approach combining Flan-
T5 (Chung et al., 2022) with GPT2XL (Radford
et al., 2019) also yielded strong results (Li et al.,
2023). In the experiments using the shared task
dataset, LLMs adapted to the medical domain
demonstrated performance equal to or better than
medical experts (Van Veen et al., 2024).

3 Task overview

3.1 Task description
Participants use an EHR dataset from MIMIC-
IV (Johnson et al., 2023c) and develop a pipeline
to generate two discharge summaries: the “Brief
Hospital Course” section for patients and the “Dis-
charge Instructions” section for clinicians. Table 1
shows an example of both sections.

3.2 Dataset description
The original datasets (Xu, 2024) include training,
validation, phase I test, and phase II test sets. Par-
ticipants use the training and validation sets to de-
velop their pipeline, with the final evaluation per-

1Both of Lu et al. (2022) and Lehman et al. (2023) refer to
their models as ClinicalT5.

646



Brief Hospital Course Discharge Instructions

Mr. ___ is a ___ yo M with medical history significant for \\
stage IIIb supraclavicular melanoma and prostate cancer admitted \\
to the Acute Care Surgery Service on ___ with worsening \\
abdominal pain, frequent stools, and subjective fevers. He was \\
transferred from ___ for further management with a CT \\
abdomen showing a 5 x 6 x 7 cm right mid abdominal inflammatory \\
phlegmon. He was admitted to the surgical floor for IV \\
antibitoics and further evaluation.\\
\\
Gastroenterology was consulted for duodenal thickening. Given \\
his current infection the wall thickening is likely secondary to \\
the infection. Repeat imaging was recommended to evaluate \\
evolution of the phlegmon as well as outpatient colonoscopy once \\
antibiotic treatment is complete. \\
\\
The remainder of the hospital course is summarized below:\\
Neuro: The patient was alert and oriented throughout \\
hospitalization; pain was initially managed with a IV dilaudid. \\
He had left ankle pain and swelling consistent with gout that \\
was managed with PO indomethacin.. \\
CV: The patient remained stable from a cardiovascular \\
standpoint; vital signs were routinely monitored.\\
Pulmonary: The patient remained stable from a pulmonary \\
standpoint. Good pulmonary toilet, early ambulation and \\
incentive spirometry were encouraged throughout hospitalization. \\
\\
GI/GU/FEN: The patient was initially kept NPO. On HD3 he was \\
given a clear liquid diet. On HD4 he was advanced to regular \\
diet with good tolerability. Patient’s intake and output were \\
closely monitored\\
ID: The patient’s fever curves were closely watched for signs of \\
infection, of which there were none. He was initially given IV \\
zosyn and transitioned to oral flagyl and ciprofloxacin upon \\
discharge to complete a 2 week course of antibiotics. \\
HEME: The patient’s blood counts were closely watched for signs \\
of bleeding, of which there were none.\\
Prophylaxis: The patient received subcutaneous heparin and ___ \\
dyne boots were used during this stay and was encouraged to get \\
up and ambulate as early as possible.\\
\\
At the time of discharge, the patient was doing well, afebrile \\
and hemodynamically stable. The patient was tolerating a diet, \\
ambulating, voiding without assistance, and pain was well \\
controlled. The patient received discharge teaching and \\
follow-up instructions with understanding verbalized and \\
agreement with the discharge plan. He was instructed to follow \\
up with a colonoscopy outpatient in ___.

Dr. ___,\\
\\
You were admitted to the Acute Care Surgery Service on ___ \\
with abdominal pain. You had a CT scan of your abdomen that \\
showed likely a perforated appendicitis. You were given IV \\
antibiotics and had improvement in your symptoms. An attempt was \\
made to drain the infection but it is not amenable to a drain at \\
this time. You were transitioned to oral antibiotics with \\
continued good effect.\\
\\
While in the hospital you had a flair up of gout in your left \\
ankle. You were given indomethacin with improvement in your \\
symptoms.\\
\\
You are now doing better, tolerating a regular diet, and ready \\
to be discharged to home to continue your recovery.\\
\\
Please note the following discharge instructions:\\
\\
Please call your doctor or nurse practitioner or return to the \\
Emergency Department for any of the following:\\
*You experience new chest pain, pressure, squeezing or \\
tightness.\\
*New or worsening cough, shortness of breath, or wheeze.\\
*If you are vomiting and cannot keep down fluids or your \\
medications.\\
*You are getting dehydrated due to continued vomiting, diarrhea, \\
or other reasons. Signs of dehydration include dry mouth, rapid \\
heartbeat, or feeling dizzy or faint when standing.\\
*You see blood or dark/black material when you vomit or have a \\
bowel movement.\\
*You experience burning when you urinate, have blood in your \\
urine, or experience a discharge.\\
*Your pain in not improving within ___ hours or is not gone \\
within 24 hours. Call or return immediately if your pain is \\
getting worse or changes location or moving to your chest or \\
back.\\
*You have shaking chills, or fever greater than 101.5 degrees \\
Fahrenheit or 38 degrees Celsius.\\
*Any change in your symptoms, or any new symptoms that concern \\
you.\\
\\
Please resume all regular home medications, unless specifically \\
advised not to take a particular medication. Also, please take \\
any new medications as prescribed.\\
\\
Please get plenty of rest, continue to ambulate several times \\
per day, and drink adequate amounts of fluids.

Table 1: An example of the “Brief Hospital Course” and “Discharge Instructions” sections. “\\” means line breaks.

Section Prompt Brief Hospital Course Discharge Instructions

Name The patient’s name is provided as follows: 1 1
Sex Gender details are as follows: 2 2
Service The service details are as follows: 9 9
Allergies Information on any allergies is detailed as follows: 7 6
Chief Complaint The primary reason for the visit is summarized as follows: 3 3
Major Surgical or Invasive Procedure Details on any major surgeries or invasive procedures are as follows: 8 7
History of Present Illness An overview of the current illness’s history is provided as follows: 4 4
Past Medical History A summary of the patient’s past medical history is as follows: 6 5

Pertinent Results Clinically significant findings impacting the treatment and diagnosis are as follows: 5 –

Medications on Admission Medications upon admission are detailed as follows: – 8
Discharge Diagnosis The final diagnosis at discharge is as follows: – 10
Discharge Disposition The disposition at discharge is provided as follows: – 11
Discharge Condition The patient’s condition upon discharge is described as follows: – 12
Discharge Medications Medications prescribed at discharge are as follows: – 13

Table 2: Prompts for each section and their priorities in each target discharge summary. The priority is used to order
the sections in the input text.

formed on a subset of 250 samples from the phase
II test set. See Appendix A for more details.

Note that although the datasets include metadata
such as radiology reports in addition to the EHR
and discharge summaries, we did not use this infor-
mation in designing a simple pipeline. For more
details, see the task website2.

2https://stanford-aimi.github.io/
discharge-me/

We created a new split with a 4:1 training-to-
validation ratio using the original training and vali-
dation sets. Note that the EHR in the dataset con-
tains the target texts: the “Brief Hospital Course”
and the “Discharge Instructions” sections. As
shown in Fig. 2, the “Brief Hospital Course” sec-
tion is usually located in the middle of the discharge
summary, while the “Discharge Instructions” sec-
tion is generally located at the end of the EHR.
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Rank Team Overall BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON

1 WisPerMed 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411
2 HarmonAI Lab at Yale 0.300 0.106∗ 0.423 0.180∗ 0.284 0.412 0.381 0.265∗ 0.353∗

3 aehrc 0.297∗ 0.097 0.414 0.192 0.284 0.383∗ 0.398 0.274∗ 0.332∗

4 EPFL-MAKE 0.289∗ 0.098 0.444 0.155 0.262∗ 0.399 0.336∗ 0.255∗ 0.360∗

5 UF-HOBI 0.286∗ 0.102∗ 0.401∗ 0.174∗ 0.275∗ 0.395 0.289 0.296 0.355∗

6 de ehren 0.284∗ 0.097 0.404∗ 0.166∗ 0.265∗ 0.389∗ 0.376 0.231 0.339∗

7 DCT_PI 0.277∗ 0.092 0.401∗ 0.158 0.256∗ 0.378∗ 0.363 0.247 0.320
8 IgnitionInnovators 0.253 0.068 0.370∗ 0.131 0.245 0.360∗ 0.314 0.215 0.324
9 Shimo Lab (Ours) 0.248 0.063 0.394∗ 0.131 0.252∗ 0.351∗ 0.312 0.210 0.276
10 qub-cirdan 0.221 0.024 0.377∗ 0.106 0.205 0.300 0.332∗ 0.174 0.254
11 Roux-lette 0.206 0.030 0.319 0.084 0.182 0.289 0.287 0.195 0.265
12 UoG Siephers 0.191 0.017 0.341 0.109 0.209 0.268 0.247 0.143 0.193
13 mike-team 0.188 0.022 0.290 0.076 0.163 0.258 0.294 0.182 0.223
14 Ixa-UPV 0.183 0.016 0.259 0.057 0.144 0.282 0.284 0.210 0.215
15 MLBMIKABR 0.170 0.039 0.210 0.092 0.131 0.186 0.306 0.205 0.191
16 cyq 0.104 0.002 0.197 0.016 0.106 0.179 0.106 0.132 0.091
17 AIMI-Baseline 0.102 0.015 0.126 0.052 0.113 0.138 0.089 0.167 0.121

Table 3: The evaluation metrics values for the final test data. The higher values are better, and the highest value is
highlighted in bold. Values that are at least 90% of the highest value are underlined, and values that are at least
80% of the highest value are marked with (∗).

Brief Hospital Course Discharge Instructions

Mr. ___ is a __ yo M with PMHx significant for stage IIIb supraclavicular melanoma s/p
supraclavicle and right anterior neck dissection and prostate cancer presenting with abdominal
pain. The remainder of the hospital course is summarized below: - Neuro: The patient was alert
and oriented throughout hospitalization; pain was initially managed with a IV dilaudid. He
had left ankle pain and swelling consistent with gout that was managed with PO indomethacin.
CV: The patient remained stable from a cardiovascular standpoint; vital signs were routinely
monitored. Pulmonary: - The patient stayed stable from an pulmonary standpoint. Good
pulmonary toilet, early ambulation and incentive spirometry were encouraged throughout
hospitalization - GI/GU/FEN: The patient is initially kept NPO. On HD3 he was given a clear
liquid diet. On HD4 he was advanced to regular diet with good tolerability. - Patient’s intake
and output were closely monitored ID: The patient’s fever curves were closely watched for
signs of infection, of which there were none. He was initially given IV zosyn and transitioned
to oral flagyl and ciprofloxacin upon discharge to complete a 2 week course of antibiotics.
HEME: The patient received subcutaneous heparin and dyne boots were used during this stay
and was encouraged to get up and ambulate as early as possible. At the time of discharge, the
patient was doing well, afebrile and hemodynamically stable. The patient was tolerating a diet,
ambulating, voiding without assistance, and pain was well controlled. The patient received
discharge teaching and follow-up instructions with understanding verbalized and agreement
with the discharge plan. He was instructed to follow up with a colonoscopy outpatient in
_______________________________

Dear Mr. ___, You were admitted to the hospital with abdominal pain. You were found to have
a perforated appendicitis. You were treated with bowel rest and intravenous antibiotics. You
are now ready to be discharged home to continue your recovery with the following instructions:
Please call your doctor or nurse practitioner or return to the Emergency Department for any
of the following: *You experience new chest pain, pressure, squeezing or tightness. *New
or worsening cough, shortness of breath, or wheeze. *If you are vomiting and cannot keep
down fluids or your medications. *You are getting dehydrated due to continued vomiting,
diarrhea, or other reasons. Signs of dehydration include dry mouth, rapid heartbeat, or feeling
dizzy or faint when standing. *You see blood or dark/black material when you vomit or have a
bowel movement. *You experience burning when you urinate, have blood in your urine, or
experience a discharge. *Your pain in not improving within 12 hours or is not gone within 24
hours. Call or return immediately if your pain is getting worse or changes location or moving
to your chest or back. *You have shaking chills, or fever greater than 101.5 degrees Fahrenheit
or 38 degrees Celsius. *Any change in your symptoms, or any new symptoms that concern you.
Please resume all regular home medications, unless specifically advised not to take a particular
medication. Also, please take any new medications as prescribed. Please get plenty of rest,
continue to ambulate several times per day, and drink adequate amounts of fluids. Avoid lifting
weights greater than __- lbs until you follow-up with your surgeon. Avoid driving or operating
heavy machinery while taking pain medications.

Table 4: Our generated texts for the “Brief Hospital Course” and “Discharge Instructions” sections in Table 1.

3.3 Evaluation metrics
In this task, the following eight evaluation met-
rics3 are used to compare the generated texts with
the target texts: BLEU-4 (Papineni et al., 2002),
ROUGE-1, ROUGE-2, ROUGE-L (Lin, 2004),
BERTScore (Zhang et al., 2020), METEOR (Baner-
jee and Lavie, 2005), AlignScore (Zha et al., 2023),
MEDCON (Yim et al., 2023). The overall score
is calculated by first averaging the scores for each
target, and then averaging these values.

4 Pipeline

4.1 Input text preparation
We removed the target discharge summaries from
the EHR as preprocessing. As shown in Fig. 2, the
EHR contains redundant line breaks and detailed
data. When the EHR is used directly as input text,
this redundancy can increase the length of the input

3https://github.com/Stanford-AIMI/
discharge-me/tree/main/scoring.

text. To mitigate this, we removed the noise from
the EHR and selectively extracted the relevant sec-
tions for each target, thus avoiding the excessive
length of the input text4. These sections were se-
lected by excluding those with detailed data, such
as timestamps5, or those without specific informa-
tion, such as the “Admission Date” section. Note
that, in the case of preparing the input text for the
model generating the “Brief Hospital Course” sec-
tion, given the actual workflow of writing discharge
summaries, we did not use the sections following
this section in the input text.

For sections extracted from the EHR, we added
an explanatory prompt to the beginning of each sec-
tion and then concatenated the sections using the

4The criteria for section selection are ad hoc, as mentioned
in the Limitations section.

5Although the “Pertinent Results” section contains times-
tamps, we exclude them and use this section as input for the
“Brief Hospital Course” section. See the Appendix B.3 for
details.
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<sep> tokens to create the final input text. Table 2
shows the prompts and priorities of the selected
sections used in the input text for each target dis-
charge summary. The sections in the input text
were ordered according to the specified priorities,
rather than their original order in the EHR. The in-
put text was truncated if it exceeded the maximum
text length6.

In Appendix B, examples of input texts are
shown in Tables 6 and 7, respectively, for “Brief
Hospital Course” and “Discharge Instructions”.
These input texts were prepared from the EHR in
Fig. 2. Histograms of the length of the input text
are shown in Fig. 3.

4.2 Target text preparation

As shown in Table 1, the target texts contain many
unnecessary line breaks. To prevent the line breaks
from hindering the learning of the model, we re-
moved them during preprocessing. In Appendix C,
the texts before and after preprocessing for “Brief
Hospital Course” are shown in Table 9, and those
for “Discharge Instructions” are shown in Table 10.
Histograms of the length of the target text are
shown in Fig. 4.

4.3 Text generation

Using the input and target texts prepared in Sec-
tions 4.1 and 4.2, we performed LoRA (Hu et al.,
2022) fine-tuning on the ClinicalT5-large7 model
published by Lu et al. (2022). The ClinicalT5-large
model has 770M parameters with 24 layers. In
Appendix D, the hyperparameters for fine-tuning
and LoRA are shown in Tables 13 and 14. The
hyperparameters to generate each target discharge
summary are shown in Table 15.

5 Experiments

5.1 Results for the final test data

Table 3 presents the evaluation metrics values of the
participating teams for the final test data. While our
method did not achieve the highest scores of Wis-
PerMed (Damm et al., 2024), it demonstrated rel-
atively good performance in ROUGE-1, ROUGE-
L, and BERTScore. In particular, we achieved a
ROUGE-1 score of 0.394, which is comparable to
top solutions such as those of HarmonAI Lab at
Yale and aehrc.

61596 tokens
7https://huggingface.co/luqh/

ClinicalT5-large

5.2 Qualitative observation
Table 4 presents the summaries generated by our
pipeline from the EHR for the target summaries in
Table 1. While the detailed progress reports and
discharge instructions may differ, the overall gist
remains the same. In addition, unnecessary line
breaks that were present in the original target sum-
maries do not appear in the generated summaries.

6 Conclusion

We presented our approach to the shared task “Dis-
charge Me!” at the BioNLP Workshop 2024. Ex-
tracting the relevant sections from the EHR, we
added explanatory prompts to these sections and
concatenated them with <sep> tokens to create the
input text. We then performed LoRA fine-tuning
on the ClinicalT5-large model. On the final test
data, our approach achieved a ROUGE-1 score of
0.394, which is comparable to the top solutions.

Limitations

• Our pipeline cannot be applied to an EHR
with different formats, resulting in a lack of
generalizability. In fact, even in this shared
task dataset, the lack of consistency in the
original data sometimes makes it impossible
to extract sections, resulting in incomplete
summaries.

• When preparing the input text, adding prompts
for each extracted section results in a longer
length than simply concatenating sections
with <sep> tokens.

• The effectiveness of our pipeline is not tested
against other text generation models such as
BioMistral-7B (Labrak et al., 2024) and the
ClinicalT5-large model published by Lehman
et al. (2023).

• While the selection and prioritization of the
EHR sections used in the input text is some-
what ad-hoc, since extensive experiments
would be required to compare the selection
and prioritization, we did not conduct them
in this study due to time and resource con-
straints.

• While the cleaned target texts are used for
training, the original target texts with many
line breaks are used for evaluation. This leads
to a discrepancy between the target text distri-
butions of training and evaluation.
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A Details of datasets

In this task, we use the dataset created by the
MIMIC-IV’s submodules MIMIC-IV-ED (John-
son et al., 2023a) and MIMIC-IV-Note (Johnson
et al., 2023b). The dataset is available on Phys-
ioNet (Goldberger et al., 2000), and its use requires
completion of the CITI9 training and credentialing
process. Table 5 lists the number of samples for
the data splits.

B Details of input text

This section first explains the detailed preprocess-
ing required to create input text from the EHR. It
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The patient’s name is provided as follows: ___.<sep>Gender details are as follows: Male.<sep>The primary reason for the visit is summarized as follows: Abdominal pain.<sep>An
overview of the current illness’s history is provided as follows: Mr. ___ is a ___ male with PMHx significant for stage IIIb supraclavicular melanoma s/p supraclavicular and right
anterior neck dissection and prostate cancer s/p radical prostatectomy, presenting with abdominal pain. The pain began two weeks ago and has been worsening in the last few days. His
pain is localized to the right periumbilical region. He endorses having chills, inability to sleep and eat due to pain and a 6 lb weight loss in the past few days. He has been passing flatus
and having loose and frequent non-bloody stools. He has also been having night sweats. He denies fever, nausea or vomiting. He was seen at ___ and transferred to ___ ED for further
management after his CT abdomen showed a 5 x 6 x 7 cm right mid abdominal inflammatory phlegmon. His last colonoscopy was ___ years ago which revealed some polyps. He also
complains of left ankle pain after a fall and has been taking ibuprofen.<sep>Clinically significant findings impacting the treatment and diagnosis are as follows: MCV-89 MCH-29.4
MCHC-32.9 RDW-13.0 RDWSD-42.2 Plt ___ MCV-88 MCH-29.8 MCHC-34.1 RDW-12.7 RDWSD-40.3 Plt ___ MCV-88 MCH-29.9 MCHC-33.8 RDW-12.5 RDWSD-40.2 Plt ___
MCV-88 MCH-29.5 MCHC-33.5 RDW-12.4 RDWSD-39.8 Plt ___ K-3.8 Cl-103 HCO3-24 AnGap-18 K-3.6 Cl-99 HCO3-24 AnGap-20 K-3.5 Cl-97 HCO3-24 AnGap-19 K-3.8
Cl-96 HCO3-21* AnGap-22* Glucose-NEG Ketone-80 Bilirub-NEG Urobiln-NEG pH-6.0 Leuks-NEG Epi-0 **FINAL REPORT ___. URINE CULTURE (Final ___: NO GROWTH.
RADIOLOGY: * Phlegmon/ multiloculated fluid collection with surrounding. extensive inflammatory changes is indistinguishable from the distal portion of the appendix. Findings are
concerning for perforated appendicitis. Possibility of underlying mass is difficult to exclude, particularly in this patient with history of melanoma. * Duodenal wall thickening may be
inflammatory secondary to the. adjacent phlegmon. * Duodenum does not cross the midline, consistent with. intestinal malrotation. * Cholelithiasis. * Nonspecific bulbous appearance
of the uncinate process of the. pancreas without discrete lesion identified. No pancreatic ductal dilatation. * Unorganized fluid/phlegmonous collection within the right. lower quadrant,
surrounding the appendix, appears minimally enlarged since the reference study from ___. The findings favor ruptured appendicitis or a ruptured appendiceal mucocele. A neoplastic
source relating to known history of melanoma would be atypical. Continued short-term imaging surveillance is recommended. * Congenital bowel malrotation, without volvulus or.
obstruction. * Cholelithiasis. The remainder of the hospital course is summarized below: Neuro: The patient was alert and oriented throughout hospitalization; pain was initially
managed with a IV dilaudid. He had left ankle pain and swelling consistent with gout that was managed with PO indomethacin.. CV: The patient remained stable from a cardiovascular
standpoint; vital signs were routinely monitored. Pulmonary: The patient remained stable from a pulmonary standpoint. Good pulmonary toilet, early ambulation and incentive
spirometry were encouraged throughout hospitalization. GI/GU/FEN: The patient was initially kept NPO. On HD3 he was given a clear liquid diet. On HD4 he was advanced to
regular diet with good tolerability. Patient’s intake and output were closely monitored. ID: The patient’s fever curves were closely watched for signs of infection, of which there were
none. He was initially given IV zosyn and transitioned to oral flagyl and ciprofloxacin upon discharge to complete a 2 week course of antibiotics. HEME: The patient’s blood counts
were closely watched for signs of bleeding, of which there were none. Prophylaxis: The patient received subcutaneous heparin and ___ dyne boots were used during this stay and was
encouraged to get up and ambulate as early as possible. At the time of discharge, the patient was doing well, afebrile and hemodynamically stable. The patient was tolerating a diet,
ambulating, voiding without assistance, and pain was well controlled. The patient received discharge teaching and follow-up instructions with understanding verbalized and agreement
with the discharge plan. He was instructed to follow up with a colonoscopy outpatient in ___.<sep>A summary of the patient’s past medical history is as follows: 1.right acoustic
neuroma (deafness right ear) 2.s/p repair right biceps tendon rupture (___) 3.s/p right supraclavicular lymph node biopsy (___). PAST MEDICAL HISTORY: Stage IIIb melanoma
diagnosed in ___ with findings of a positive right supraclavicular node, status post right anterior neck dissection revealing ___ additional positive nodes. He had adjuvant interferon
therapy with Dr. ___ completed in ___, 36 weeks of this treatment. Bicep tendon repair. Acoustic neuroma followed with serial MRIs.<sep>Information on any allergies is detailed as
follows: Codeine / Levaquin.<sep>Details on any major surgeries or invasive procedures are as follows: None.<sep>The service details are provided as follows: SURGERY.

Table 6: Input text from the EHR shown in Fig. 2 to generate the “Brief Hospital Course” section. The prompts used
in both targets are highlighted in green and the prompt used only for “Brief Hospital Course” is highlighted in blue.

The patient’s name is provided as follows: ___.<sep>Gender details are as follows: Male.<sep>The primary reason for the visit is summarized as follows: Abdominal pain.<sep>An
overview of the current illness’s history is provided as follows: Mr. ___ is a ___ male with PMHx significant for stage IIIb supraclavicular melanoma s/p supraclavicular and right
anterior neck dissection and prostate cancer s/p radical prostatectomy, presenting with abdominal pain. The pain began two weeks ago and has been worsening in the last few days. His
pain is localized to the right periumbilical region. He endorses having chills, inability to sleep and eat due to pain and a 6 lb weight loss in the past few days. He has been passing
flatus and having loose and frequent non-bloody stools. He has also been having night sweats. He denies fever, nausea or vomiting. He was seen at ___ and transferred to ___ ED
for further management after his CT abdomen showed a 5 x 6 x 7 cm right mid abdominal inflammatory phlegmon. His last colonoscopy was ___ years ago which revealed some
polyps. He also complains of left ankle pain after a fall and has been taking ibuprofen.<sep>A summary of the patient’s past medical history is as follows: 1.right acoustic neuroma
(deafness right ear) 2.s/p repair right biceps tendon rupture (___) 3.s/p right supraclavicular lymph node biopsy (___). PAST MEDICAL HISTORY: Stage IIIb melanoma diagnosed in
___ with findings of a positive right supraclavicular node, status post right anterior neck dissection revealing ___ additional positive nodes. He had adjuvant interferon therapy with
Dr. ___ completed in ___, 36 weeks of this treatment. Bicep tendon repair. Acoustic neuroma followed with serial MRIs.<sep>Information on any allergies is detailed as follows:
Codeine / Levaquin.<sep>Details on any major surgeries or invasive procedures are as follows: None.<sep>Medications upon admission are detailed as follows: tadalafil (CIALIS)
5 mg daily PRN indomethacin 25 mg capsule TID.<sep>The service details are provided as follows: SURGERY.<sep>The final diagnosis at discharge is as follows: Perforated
appendicitis.<sep>The disposition at discharge is provided as follows: Home.<sep>The patient’s condition upon discharge is described as follows: Mental Status is Clear and coherent.
Level of Consciousness is Alert and interactive. Activity Status is Ambulatory - Independent.<sep>Medications prescribed at discharge are as follows: * Acetaminophen 1000 mg PO
TID. Do not exceed 4 grams/ 24 hours. * Ciprofloxacin HCl 500 mg PO Q12H. monitor for s/sx of allergic reaction RX *ciprofloxacin HCl 500 mg 1 tablet(s) by mouth twice a day.
Disp #*20 Tablet Refills:*0 * Indomethacin 25 mg PO TID. RX *indomethacin 25 mg 1 capsule(s) by mouth three times a day. Disp #*42 Capsule Refills:*0 * MetroNIDAZOLE 500
mg PO Q8H. RX *metronidazole 500 mg 1 tablet(s) by mouth three times a day. Disp #*30 Tablet Refills:*0.

Table 7: Input text from the EHR in Fig. 2 to generate the “Discharge Instructions” section. The prompts used
in both targets are highlighted in green and the prompts used only for “Discharge Instructions” are highlighted in
orange.
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Figure 3: Histograms of the text length (in tokens) of the EHR and the input texts for the training and validation sets.
The dashed line is the mean. The maximum text length is 1596 tokens, and see Table 12 in Appendix D for more
details.
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Brief Hospital Course Discharge instructions
EHR Input EHR Input

Min 101 80 101 115
Max 8725 5664 8725 5774
Mean 1330 554 1330 639

Table 8: Statistical information (in tokens) for histograms in Fig. 3.

then provides examples and statistical information
before and after preprocessing.

B.1 Extraction of simple sections

This section explains the process for extracting the
“Sex”, “Service”, “Allergies”, “Chief Complaint”,
and “Major Surgical or Invasive Procedure” sec-
tions.

To extract these sections, we used specific regu-
lar expressions such as Sex: (\w+)\n.

B.2 Extraction of complex sections

This section explains the process for extracting the
“History of Present Illness”, “Past Medical History”,
“Pertinent Results”, “Medications on Admission”,
“Discharge Medications”, “Discharge Disposition”,
“Discharge Diagnosis”, and ”Discharge Condition”
sections.

We performed more detailed processing
and pattern matching to efficiently extract
the text of these sections. For example,
for the “Discharge Condition” section, we
used the regular expression Discharge
Diagnosis:\s∗\n(.∗?)(?=Discharge
Condition:) and it matches the diagnosis text
up to the “Discharge Condition” section.

B.3 Detailed processing of each section

“Name”. The patient’s name is given as “___”
and we used it directly.

“Sex”. We converted “M” to “Male” and “F” to
“Female”.

“Pertinent Results”. Timestamps in lines like
“__ 08:00AM BLOOD __” were removed using
regular expressions. In addition, list sections are
converted to “*” format to maintain text consis-
tency and clarity.

“Medications on Admission”. List sections are
converted to “*” format to maintain text consis-
tency and clarity.

“Discharge Condition”. We changed a colon in
the extracted text to “is”. For example, “Condition:
Stable” is changed to “Condition is Stable”.

“Discharge Medications”. List sections are con-
verted to “*” format to maintain text consistency
and clarity.

B.4 Other processing

We ensure textual continuity by replacing line
breaks with spaces and trimming excess spaces. In
cases where no matching text is found, the default
response is designated as “Unknown”.

B.5 Examples of input text

Tables 6 and 7 show examples of input text. These
examples illustrate that the ClinicalT5-large model
is fine-tuned with different input text for each target
discharge summary.

B.6 Statistical information

Fig. 3 shows histograms of the text length (in to-
kens) of the EHR and the input texts for the training
and validation sets. Table 8 shows the statistical
information for these histograms. As shown in
Fig. 3 and Table 8, the preprocessing significantly
reduces the length of the text.

C Details of target text

C.1 Extraction and concatenation of segments

In the first process of segment extraction, we di-
vide the text into segments based on blank lines
and identify the distinct segments. We then remove
spaces and line breaks from each segment and dis-
card empty segments to retain only meaningful
segments. Multiple consecutive spaces within each
segment are replaced by a single space to improve
readability. Finally, we reassemble the cleaned seg-
ments with line breaks to make them more suitable
for training language models.
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Text Cleaned Text

Mr. ___ is a ___ yo M with medical history significant for \\
stage IIIb supraclavicular melanoma and prostate cancer admitted \\
to the Acute Care Surgery Service on ___ with worsening \\
abdominal pain, frequent stools, and subjective fevers. He was \\
transferred from ___ for further management with a CT \\
abdomen showing a 5 x 6 x 7 cm right mid abdominal inflammatory \\
phlegmon. He was admitted to the surgical floor for IV \\
antibitoics and further evaluation.\\
\\
Gastroenterology was consulted for duodenal thickening. Given \\
his current infection the wall thickening is likely secondary to \\
the infection. Repeat imaging was recommended to evaluate \\
evolution of the phlegmon as well as outpatient colonoscopy once \\
antibiotic treatment is complete. \\
\\
The remainder of the hospital course is summarized below:\\
Neuro: The patient was alert and oriented throughout \\
hospitalization; pain was initially managed with a IV dilaudid. \\
He had left ankle pain and swelling consistent with gout that \\
was managed with PO indomethacin.. \\
CV: The patient remained stable from a cardiovascular \\
standpoint; vital signs were routinely monitored.\\
Pulmonary: The patient remained stable from a pulmonary \\
standpoint. Good pulmonary toilet, early ambulation and \\
incentive spirometry were encouraged throughout hospitalization. \\
\\
GI/GU/FEN: The patient was initially kept NPO. On HD3 he was \\
given a clear liquid diet. On HD4 he was advanced to regular \\
diet with good tolerability. Patient’s intake and output were \\
closely monitored\\
ID: The patient’s fever curves were closely watched for signs of \\
infection, of which there were none. He was initially given IV \\
zosyn and transitioned to oral flagyl and ciprofloxacin upon \\
discharge to complete a 2 week course of antibiotics. \\
HEME: The patient’s blood counts were closely watched for signs \\
of bleeding, of which there were none.\\
Prophylaxis: The patient received subcutaneous heparin and ___ \\
dyne boots were used during this stay and was encouraged to get \\
up and ambulate as early as possible.\\
\\
At the time of discharge, the patient was doing well, afebrile \\
and hemodynamically stable. The patient was tolerating a diet, \\
ambulating, voiding without assistance, and pain was well \\
controlled. The patient received discharge teaching and \\
follow-up instructions with understanding verbalized and \\
agreement with the discharge plan. He was instructed to follow \\
up with a colonoscopy outpatient in ___.

Mr. ___ is a ___ yo M with medical history significant for stage IIIb supraclavicular melanoma
and prostate cancer admitted to the Acute Care Surgery Service on ___ with worsening ab-
dominal pain, frequent stools, and subjective fevers. He was transferred from ___ for further
management with a CT abdomen showing a 5 x 6 x 7 cm right mid abdominal inflammatory
phlegmon. He was admitted to the surgical floor for IV antibitoics and further evaluation.\\
\\
Gastroenterology was consulted for duodenal thickening. Given his current infection the
wall thickening is likely secondary to the infection. Repeat imaging was recommended to
evaluate evolution of the phlegmon as well as outpatient colonoscopy once antibiotic treatment
is complete.\\
\\
The remainder of the hospital course is summarized below:\\
Neuro: The patient was alert and oriented throughout hospitalization; pain was initially man-
aged with a IV dilaudid. He had left ankle pain and swelling consistent with gout that was
managed with PO indomethacin.. CV: The patient remained stable from a cardiovascular
standpoint; vital signs were routinely monitored.\\
Pulmonary: The patient remained stable from a pulmonary standpoint. Good pulmonary toilet,
early ambulation and incentive spirometry were encouraged throughout hospitalization.\\
\\
GI/GU/FEN: The patient was initially kept NPO. On HD3 he was given a clear liquid diet. On
HD4 he was advanced to regular diet with good tolerability. Patient’s intake and output were
closely monitored\\
ID: The patient’s fever curves were closely watched for signs of infection, of which there were
none. He was initially given IV zosyn and transitioned to oral flagyl and ciprofloxacin upon
discharge to complete a 2 week course of antibiotics. HEME: The patient’s blood counts were
closely watched for signs of bleeding, of which there were none.\\
Prophylaxis: The patient received subcutaneous heparin and ___ dyne boots were used during
this stay and was encouraged to get up and ambulate as early as possible.\\
\\
At the time of discharge, the patient was doing well, afebrile and hemodynamically stable.
The patient was tolerating a diet, ambulating, voiding without assistance, and pain was well
controlled. The patient received discharge teaching and follow-up instructions with understand-
ing verbalized and agreement with the discharge plan. He was instructed to follow up with a
colonoscopy outpatient in ___.

Table 9: The text of the “Brief Hospital Course” section in Table 1 and its cleaned text by preprocessing. “\\” means
line breaks.
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Figure 4: Histograms of the text length (in tokens) of the target texts before and after preprocessing for the training
and validation sets. The dashed line is the mean. The maximum text length is 832 tokens for “Brief Hospital Course”
and 792 tokens for “Discharge Instructions”, see Table 12 in Appendix D for more details.

C.2 Examples of preprocessed target text

Tables 9 and 10 show examples of the target text
before and after preprocessing. These examples
illustrate that redundant line breaks are removed
after preprocessing.

C.3 Statistical information

Fig. 4 shows histograms of the text length (in to-
kens) of the target texts before and after prepro-
cessing for the training and validation sets. Ta-
ble 11 shows the statistical information for these
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Text Cleaned Text

Dr. ___,\\
\\
You were admitted to the Acute Care Surgery Service on ___ \\
with abdominal pain. You had a CT scan of your abdomen that \\
showed likely a perforated appendicitis. You were given IV \\
antibiotics and had improvement in your symptoms. An attempt was \\
made to drain the infection but it is not amenable to a drain at \\
this time. You were transitioned to oral antibiotics with \\
continued good effect.\\
\\
While in the hospital you had a flair up of gout in your left \\
ankle. You were given indomethacin with improvement in your \\
symptoms.\\
\\
You are now doing better, tolerating a regular diet, and ready \\
to be discharged to home to continue your recovery.\\
\\
Please note the following discharge instructions:\\
\\
Please call your doctor or nurse practitioner or return to the \\
Emergency Department for any of the following:\\
*You experience new chest pain, pressure, squeezing or \\
tightness.\\
*New or worsening cough, shortness of breath, or wheeze.\\
*If you are vomiting and cannot keep down fluids or your \\
medications.\\
*You are getting dehydrated due to continued vomiting, diarrhea, \\
or other reasons. Signs of dehydration include dry mouth, rapid \\
heartbeat, or feeling dizzy or faint when standing.\\
*You see blood or dark/black material when you vomit or have a \\
bowel movement.\\
*You experience burning when you urinate, have blood in your \\
urine, or experience a discharge.\\
*Your pain in not improving within ___ hours or is not gone \\
within 24 hours. Call or return immediately if your pain is \\
getting worse or changes location or moving to your chest or \\
back.\\
*You have shaking chills, or fever greater than 101.5 degrees \\
Fahrenheit or 38 degrees Celsius.\\
*Any change in your symptoms, or any new symptoms that concern \\
you.\\
\\
Please resume all regular home medications, unless specifically \\
advised not to take a particular medication. Also, please take \\
any new medications as prescribed.\\
\\
Please get plenty of rest, continue to ambulate several times \\
per day, and drink adequate amounts of fluids.

Dr. ___,\\
\\
You were admitted to the Acute Care Surgery Service on ___ with abdominal pain. You had
a CT scan of your abdomen that showed likely a perforated appendicitis. You were given
IV antibiotics and had improvement in your symptoms. An attempt was made to drain the
infection but it is not amenable to a drain at this time. You were transitioned to oral antibiotics
with continued good effect.\\
\\
While in the hospital you had a flair up of gout in your left ankle. You were given indomethacin
with improvement in your symptoms.\\
\\
You are now doing better, tolerating a regular diet, and ready to be discharged to home to
continue your recovery.\\
\\
Please note the following discharge instructions:\\
\\
Please call your doctor or nurse practitioner or return to the Emergency Department for any of
the following:\\
*You experience new chest pain, pressure, squeezing or tightness.\\
*New or worsening cough, shortness of breath, or wheeze.\\
*If you are vomiting and cannot keep down fluids or your medications.\\
*You are getting dehydrated due to continued vomiting, diarrhea, or other reasons. Signs of
dehydration include dry mouth, rapid heartbeat, or feeling dizzy or faint when standing.\\
*You see blood or dark/black material when you vomit or have a bowel movement.\\
*You experience burning when you urinate, have blood in your urine, or experience a dis-
charge.\\
*Your pain in not improving within ___ hours or is not gone within 24 hours. Call or return
immediately if your pain is getting worse or changes location or moving to your chest or back.\\
*You have shaking chills, or fever greater than 101.5 degrees Fahrenheit or 38 degrees Celsius.\\
*Any change in your symptoms, or any new symptoms that concern you.\\
\\
Please resume all regular home medications, unless specifically advised not to take a particular
medication. Also, please take any new medications as prescribed.\\
\\
Please get plenty of rest, continue to ambulate several times per day, and drink adequate
amounts of fluids.

Table 10: The text of the “Discharge Instructions” section in Table 1 and its cleaned text by preprocessing. “\\”
means line breaks.

Brief Hospital Course Discharge instructions
Original Target Cleaned Target Original Target Cleaned Target

Min 2 1 10 10
Max 4614 4452 5025 4861
Mean 428 419 201 195

Table 11: Statistical information (in tokens) for histograms in Fig. 4.

Brief Hospital Course Discharge instructions

Input Text 1596

Generated Text 832 792
Text 832 792

Table 12: Maximum text length (tokens).

histograms. As shown in Fig. 4 and Table 11, the
preprocessing slightly reduces the length of the
text.

D Details of fine-tuning

We used Pytorch (Paszke et al., 2019) and hugging-
face transformers (Wolf et al., 2020) to implement
and fine-tune our models. We also use peft (Man-
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Batch size 2
Epochs 4
Learning rate 1e-4
Precision setting FP16
Weight decay 0.01

Table 13: Hyperparameters for fine-tuning.

Dropout probability 0.05
Rank 4
Target modules Query & Value
α 16

Table 14: Hyperparameters for LoRA.

Min length 10
Num beams 4
Do sample True
Length penalty 1.1
No repeat n-gram size 4

Table 15: Hyperparameters to generate each target dis-
charge summary.

grulkar et al., 2022) for LoRA.
Table 12 shows the text length (in tokens) used

by our models. Table 13 shows the hyperparame-
ters used for fine tuning. Table 14 shows the hy-
perparameters used for LoRA. Table 15 shows the
hyperparameters to generate each target discharge
summary.

657



Proceedings of the 23rd Workshop on Biomedical Language Processing, pages 658–663
August 16, 2024. ©2024 Association for Computational Linguistics

Ixa-Med at Discharge Me! Retrieval-Assisted Generation for Streamlining
Discharge Documentation

Jordan Koontz
HiTZ Center - Ixa

UPV/EHU
jkoontz001@ikasle.ehu.eus

Maite Oronoz
HiTZ Center - Ixa

UPV/EHU
maite.oronoz@ehu.eus

Alicia Pérez
HiTZ Center - Ixa

UPV/EHU
alicia.perez@ehu.eus

Abstract

In this paper we present our system for the
BioNLP ACL’24 "Discharge Me!" task on au-
tomating discharge summary section genera-
tion. Using Retrieval-Augmented Generation,
we combine a Large Language Model (LLM)
with external knowledge to guide the gener-
ation of the target sections. Our approach
generates structured patient summaries from
discharge notes using an instructed LLM, re-
trieves relevant "Brief Hospital Course" and
"Discharge Instructions" examples via BM25
and SentenceBERT, and provides this context
to a frozen LLM for generation. Our top sys-
tem using SentenceBERT retrieval achieves an
overall score of 0.183, outperforming zero-shot
baselines. We analyze performance across dif-
ferent aspects, discussing limitations and future
research directions.

1 Introduction

Generating detailed clinical notes in Electronic
Health Records (EHRs) is a time-consuming task
that can lead to clinician burnout and operational
inefficiencies in healthcare systems. The BioNLP
ACL’24 Shared Task, "Discharge Me!" (Xu et al.,
2024), aims to automate the generation of criti-
cal discharge summary sections using natural lan-
guage processing (NLP). While large language
models (LLMs) like GPT-4 (OpenAI et al., 2024)
and Llama-3 (Meta, 2024) have advanced NLP ca-
pabilities, they can produce hallucinations when en-
countering out-of-distribution queries (Zhang et al.,
2023).

The Retrieval-Augmented Generation (RAG)
framework aims to mitigate hallucinations in large
language models (LLMs) by combining external
knowledge retrieval with LLM generation (Lewis
et al., 2020; Ma et al., 2023). A Naive RAG ap-
proach involves indexing data into vectors, retriev-
ing relevant vectors for a given query, and provid-
ing the retrieved context to a frozen LLM. How-

ever, this naive implementation often suffers from
limitations in retrieval precision, recall, and gen-
eration quality. Notwithstanding, we evaluate the
efficacy of a Naive RAG framework for the "Dis-
charge Me!" task. Section 3 describes our system
methodology and presents our results. Section 4
analyzes the limits of our approach and outlines
prospective research areas for improvement.

2 Task Description

The BioNLP ACL’24 Shared Task, ‘Discharge
Me!", focuses on streamlining the clinical docu-
mentation process by automating the generation of
two critical sections in discharge summaries: "Brief
Hospital Course" and "Discharge Instructions". By
reducing the time and effort clinicians expend on
writing these detailed notes in electronic health
records (EHRs), we can alleviate administrative
burden, minimize clinician burnout, and ultimately
improve operational efficiencies and patient care
quality.

2.1 Dataset Description

For this shared task, participants are provided
with a dataset derived from the MIMIC-IV-Note
and MIMIC-IV-ED submodules. The shared task
dataset contains 109, 168 visits to the Emergency
Department (ED). Each visit consists of chief com-
plaints documented by ED physicians, ICD diag-
nosis codes (either ICD-9 or ICD-10), at least one
associated radiology report, and the full discharge
summary text which includes the "Brief Hospital
Stay" and "Discharge Instructions" sections, among
others. The dataset is split into training (68, 785
samples), validation (14, 719 samples), phase I test-
ing (14, 702 samples), and phase II testing (10, 962
samples). The chief goal is to develop a system
that can generate the two target sections given the
available data for each visit.
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2.2 Evaluation

For evaluating the participants’ systems, a hidden
subset of 250 samples from the test phase I and
test phase II is used. The evaluation framework is
composed of a diverse array or metrics that cap-
ture both textual similarity and factual correctness
aspects of the generated texts. Concretely, the
following metrics are used: BLEU-4 (Papineni
et al., 2002), ROUGE-1, ROUGE-2, ROUGE-L
(Lin, 2004), BERTScore (Zhang et al., 2020), Me-
teor (Banerjee and Lavie, 2005), AlignScore (Zha
et al., 2023), and MEDCON (Yim et al., 2023).
The final overall system score is a composite mea-
sure derived by combining the scores across all
evaluation metrics and both target sections.

3 Methods & Results

3.1 Structured Patient Summary Generation

The first step in our approach involved generat-
ing structured JSON summaries from the patient
discharge summaries. This process extracted and
organized relevant information for generating the
"Brief Hospital Course" and "Discharge Instruc-
tions" sections, critical components of discharge
documentation..

We leveraged the capabili-
ties of an LLM, specifically1 the
mistralai/Mistral-7B-Instruct-v0.2 model,
to facilitate this preprocessing step. The vllm
(Kwon et al., 2023) library was utilized for interact-
ing with the LLM, while the lmformatenforcer2

library ensured character-level parsing and schema
enforcement.

Our pipeline consisted of the following steps:

1. Data Masking: To ensure that the LLM gen-
erated summaries based solely on the avail-
able information, we masked the "Discharge
Instructions" and "Brief Hospital Course" sec-
tions from the input discharge summaries.

2. Prompt and Schema Design: A carefully
crafted prompt template, presented in table 1,
was designed to guide the LLM in generating
structured JSON summaries. Additionally, we
defined a Pydantic data model to serve as the
schema for the desired JSON output format.

1The LLM is available at: https://huggingface.co/
mistralai/Mistral-7B-Instruct-v0.2

2The library is available at: https://github.com/
noamgat/lm-format-enforcer

3. LLM Inference: For each masked discharge
summary, we employed the LLM to gener-
ate two structured JSON summaries using the
defined prompt template. One summary ex-
cluded the "Discharge Instructions section",
while the other omitted the "Brief Hospital
Course section".

The structured summaries (mentioned in step 2)
aimed to captured essential patient information like
demographics, medical history, reason for admis-
sion, findings, treatments, and discharge condition.
This structured input aimed to reduce noise and pre-
vent hallucinations in subsequent generation steps.

3.2 Zero-shot Generation

We first established a baseline by conducting exper-
iments with a zero-shot generation approach, us-
ing themistralai/Mistral-7B-Instruct-v0.2
model. The primary objective was to generate "Dis-
charge Instructions" and "Brief Hospital Course"
texts directly from the patient information in JSON
format, without relying on fine-tuning or RAG tech-
niques.

To guide the language model, we designed two
ad-hoc prompt templates: one for "Discharge In-
structions" and another for "Brief Hospital Course"
summaries. These templates, created by us and
not defined by medical professionals, included de-
tailed instructions and placeholders for the patient
JSON data. The "Discharge Instructions" template
provided guidelines for generating a 300-400 word
summary, covering aspects like greeting the patient,
summarizing the hospital course, listing medica-
tions, and providing follow-up instructions. The
"Brief Hospital Course" template aimed to produce
a 400-600 word text, organized by active and in-
active issues or organ systems, summarizing di-
agnostic findings, treatments, procedures, and the
patient’s response to treatment.

One notable limitation of using these ad-hoc
prompt templates was the lack of grounding in ex-
ternal knowledge sources. The model relied solely
on the information provided in the patient JSON,
which may not always be comprehensive or suf-
ficient for generating accurate and detailed sum-
maries. Consequently, the generated summaries
could sometimes miss important details, include ir-
relevant information, or lack the necessary context
for certain medical terms or procedures.

To address these limitations and enhance the
quality of the generated summaries, we explored
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Instruction: Generate a detailed "Brief Hospital Summary" in a structured format following a provided
schema. The "Brief Hospital Summary" should include information about the patient’s demographics,
primary reason for admission, chief complaint, relevant past medical history, diagnostic findings, diagnosis,
treatments provided, patient’s response to treatment, consultations with other specialties, medication
changes and adjustments, discharge condition and disposition, and follow-up plans, follow-up care
instructions, and scheduled appointments.
Ensure that the extracted information is concise, clear, and captures the essential aspects of the patient’s
hospital course. Review the organized information for completeness and accuracy, and refine or rephrase
any unclear or ambiguous information.
Schema: patient_demographics, age, gender, name, reason_for_admission, chief_complaint,
relevant_history, diagnosis, diagnostic_findings, imaging, labs, procedures,
treatments, consultations, medications, medication_changes, discharge_condition,
discharge_disposition, follow_up_instructions.
Context:
[Clinical note(s) will be provided here]

Table 1: Patient Hospital Summary Prompt Template

RAG implementations, which are discussed in the
subsequent section.

3.3 Retrieval Augmented Generation
To further enhance the LLM’s generative capabil-
ities, we sought to combine its parametric mem-
ory with non-parametric memory by enriching the
prompt’s context with relevant examples retrieved
from an external dataset. Specifically, given an
input x (a patient’s JSON summary), we employ
retrieval functions (defined later) to fetch the k
most similar discharge instructions or brief hos-
pital course texts from the Discharge Me training
set D. This process generates an k-shot prompt,
thereby providing the LLM with additional context
to inform its responses.

During the retrieval process, we calculate the
relevance scores for all examples d ∈ D using
two retrieval functions. For retrieval function A
(BM25) (Robertson et al., 1995) the relevance score
of a document d to a query x is calculated based
on the frequency of query terms in the document,
the document length, and the rarity of the query
terms. For retrieval function B (SentenceBERT)
(Reimers and Gurevych, 2019): the relevance score
is computed as in expression (1).

sB(x, d) = cos(SentenceBERT(x),

SentenceBERT(d)) (1)

where SentenceBERT is a pre-trained model that
encodes the input x and document d into dense
vector representations. Specifically, we use the pre-
trained pritamdeka/S-PubMedBert-MS-MARCO

model (Deka et al., 2022)3. The cosine similarity
between the two vector representations is used to
measure the semantic similarity between the input
and the document.

3.4 Results

We evaluated four different systems: FDS+SBERT-
RAG, PS+Zero-shot, PS+SBERT-RAG, and
PS+BM25-RAG. FDS+SBERT-RAG employed the
full patient discharge summary (FDS) as input,
along with the RAG framework and SentenceBERT
(SBERT) for retrieval. PS+Zero-shot used the pa-
tient summary (PS) as input but performed infer-
ence using only the prompt instructions without
RAG. PS+SBERT-RAG utilized the PS as input,
also with the RAG framework and SBERT for re-
trieval. PS+BM25-RAG used the PS as input, with
the RAG framework and BM25 as the retrieval
function. Our top-performing system, PS+SBERT-
RAG, attained an overall score of 0.183 at the com-
petition deadline, exhibiting the potential of com-
bining LLMs with RAG techniques for generating
clinical notes. In contrast, our worst-performing
system, PS+Zero-shot, obtained an overall score of
0.172, highlighting the performance uplift provided
by our RAG methodology compared to the zero-
shot approach. Table 2 presents our n-gram overlap
metrics, table 3 our semantic similarity metrics,
table 4 our factual alignment and clinical concept
accuracy metrics, and table 5 our systems’ overall
scores.

3The model is available at: https://huggingface.co/
pritamdeka/S-PubMedBert-MS-MARCO
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System BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
PS+Zero-shot 0.011 0.263 0.052 0.133
PS+SBERT-RAG 0.016 0.259 0.057 0.144
PS+BM25-RAG 0.018 0.244 0.051 0.141
FDS+SBERT-RAG 0.02 0.286 0.076 0.156

Table 2: N-gram Overlap Metrics

System BERTScore Meteor
PS+Zero-shot 0.238 0.275
PS+SBERT-RAG 0.282 0.284
PS+BM25-RAG 0.283 0.281
FDS+SBERT-RAG 0.261 0.290

Table 3: Semantic Similarity Metrics

System AlignScore MEDCON
PS+Zero-shot 0.210 0.196
PS+SBERT-RAG 0.210 0.215
PS+BM25-RAG 0.192 0.196
FDS+SBERT-RAG 0.170 0.219

Table 4: Factual Alignment and Clinical Concept Accu-
racy

In the context of n-gram overlap metrics,
PS+SBERT-RAG exhibited suboptimal perfor-
mance, achieving scores of 0.016 for BLEU-4,
0.259 for ROUGE-1, 0.057 for ROUGE-2, and
0.144 for ROUGE-L. These results suggest that
the generated texts demonstrated limited lexical
overlap with the reference summaries, implying po-
tential challenges in accurately capturing relevant
details and phrasing inherent in the gold standard.

On the other hand, PS+SBERT-RAG performed
more favorably in semantic similarity metrics,
achieving scores of 0.282 for BERTScore and
0.284 for Meteor. The BERTScore and Me-
teor results indicate that the generated texts from
PS+SBERT-RAG exhibited high semantic equiv-
alence with the reference summaries, suggesting
its ability to capture the underlying meaning and
context accurately, despite potential lexical differ-
ences.

Furthermore, PS+SBERT-RAG achieved a score
of 0.21 for AlignScore, which evaluates the degree
of factual alignment between the generated and ref-
erence texts. It also obtained a MEDCON score of
0.215, specifically gauging the accuracy and consis-
tency of clinical concepts mentioned. These scores
demonstrate the system’s proficiency in generating
clinically relevant and factually consistent content.

System Overall
PS+Zero-shot 0.172
PS+SBERT-RAG 0.183
PS+BM25-RAG 0.175
FDS+SBERT-RAG 0.185

Table 5: Overall Evaluation Results

We also explored utilizing the full patient dis-
charge summary (FDS) as input, along with
the RAG framework, which we refer to as
FDS+SBERT-RAG. We opted to use the Sentence-
BERT retrieval function as it performed better than
BM25 when using the PS inputs. Although we
did not have the opportunity to finalize the re-
sults before the competition deadline, we found
that FDS+SBERT-RAG achieved even better per-
formance than PS+SBERT-RAG, with scores of
0.02 for BLEU-4, 0.286 for ROUGE-1, 0.076
for ROUGE-2, and 0.156 for ROUGE-L in the
n-gram overlap metrics. FDS+SBERT-RAG also
performed well in the semantic similarity metrics,
scoring 0.261 for BERTScore, 0.29 for Meteor,
0.17 for AlignScore, and 0.219 for MEDCON. The
improved performance of FDS+SBERT-RAG sug-
gests that providing the model with more compre-
hensive patient information can further enhance its
ability to generate accurate and clinically relevant
summaries.

4 Conclusion

Our work explored a Retrieval-Augmented Genera-
tion approach for the "Discharge Me!" shared task
on automating the generation of "Brief Hospital
Course" and "Discharge Instructions" sections. We
grounded a Large Language Model with structured
patient summaries and retrieved relevant examples
from the challenge training data set, aiming to miti-
gate hallucinations and enhance generation quality.

While our grounded approach demonstrated po-
tential in generating coherent summaries, several
areas exist for performance improvement. Fine-
tuning the pipeline on "Brief Hospital Course"
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and "Discharge Instructions" sections could bet-
ter align generated text with domain-specific lan-
guage patterns. Incorporating constrained decoding
or post-processing could improve n-gram overlap
with references. Optimizing retrieval for stylistic
similarity could indirectly benefit n-gram metrics.
Moreover, metrics like MEDCON could be im-
proved by retrieving Unified Medical Language
System (UMLS) concept-rich examples or integrat-
ing UMLS databases during retrieval/generation.
Exploring advanced RAG architectures with iter-
ative retrieval and multi-step reasoning could ad-
dress Naive RAG limitations.

Limitations

Our approach faced challenges due to maximum
sequence length constraints. The retrieval encoder
(SentenceBERT) had a 350-token limit, leading to
the loss of relevant contextual information. Full
discharge summaries exceeded the LLM’s context
length, resulting in omitted details, and likely hin-
dered performance due to the loss of important
contextual information. Additionally, our system
did not effectively leverage the available radiology
reports and ICD-9/10 diagnosis codes, which could
potentially enhance the understanding of patient
conditions and improve generation quality. The ad-
hoc prompts, created without medical profession-
als’ guidance, may have lacked necessary context
and guidelines to generate accurate and compre-
hensive "Brief Hospital Course" and "Discharge
Instructions" sections. The lack of domain adap-
tation for the LLM and SentenceBERT retrieval
model could lead to issues understanding and gen-
erating domain-specific terminology and clinical
concepts. By combining domain knowledge, task-
specific fine-tuning, architectural enhancements,
addressing sequence length limitations, and effec-
tively integrating complementary data sources like
radiology reports and diagnosis codes, we believe
more accurate and reliable generation systems can
be developed, contributing to improved patient care
and reduced administrative burdens.
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Abstract
The BioNLP ACL’24 Shared Task on
Streamlining Discharge Documentation aims to
reduce the administrative burden on clinicians
by automating the creation of critical sections
of patient discharge letters. This paper
presents our approach using the Llama3 8B
quantized model to generate the “Brief Hospital
Course” and “Discharge Instructions” sections.
We employ a zero-shot method combined
with Retrieval-Augmented Generation (RAG)
to produce concise, contextually accurate
summaries. Our contributions include the
development of a curated template-based
approach to ensure reliability and consistency,
as well as the integration of RAG for word
count prediction. We also describe several
unsuccessful experiments to provide insights
into our pathway for the competition. Our
results demonstrate the effectiveness and
efficiency of our approach, achieving high
scores across multiple evaluation metrics.

1 Introduction

The BioNLP ACL’24 Shared Task, “Discharge
Me!” on Codabench (Xu et al., 2024), focuses
on automating the creation of two crucial sections
of patient discharge letters: “Brief Hospital Course”
(BHC) and “Discharge Instructions” (DI). This
initiative arises in response to significant time
burdens on clinicians, highlighted by surveys
of U.S. physicians. One study found that
physicians spend twice as much time on Electronic
Health Records (EHR) compared to direct patient
interactions during clinical hours (Sinsky et al.,
2016). Another survey involving 1,524 physicians
revealed an average of 1.84 hours spent on EHR
documentation outside office hours. Automating
the generation of BHC and DI aims to significantly

*rui.guo@cirdan.com
†greg.farnan@cirdan.com
‡n.mclaughlin@qub.ac.uk
§b.devereux@qub.ac.uk

reduce the clerical load on healthcare providers,
thereby improving patient service quality and
potentially mitigating clinician burnout.

A discharge letter, or a discharge summary, is a
critical document summarizing a patient’s hospital
visit from admission to discharge, serving as a
bridge between hospital care and follow-up with
outpatient providers. Among its several sections,
the “Brief Hospital Course” outlines the patient’s
treatment and progress during the hospital stay,
typically using clinical jargon best understood
by healthcare professionals. Conversely, the
“Discharge Instructions” are designed to guide
patients and their caregivers once they leave the
hospital, using layman’s language to clearly explain
follow-up care, medication regimens, and lifestyle
recommendations.

Large Language Models (LLMs) offer a promising
solution for automating medical documentation
due to their ability to understand and generate
human-like text (Singhal et al., 2023a; Zhang et al.,
2023). Unlike traditional extractive summarization
(El-Kassas et al., 2021), which predominantly
involves concatenating snippets from existing texts,
LLMs can enhance summarization by integrating
both extractive and abstractive techniques. This
has been applied to progress note summarization
(Gao et al., 2022; Liu et al., 2023), similar to this
Codabench challenge. With both proprietary LLMs
such as ChatGPT (OpenAI, 2024) and open-source
LLMs such as Llama3 (AI@Meta, 2024), the
potential for creating accessible medical summaries
is significant.

In this challenge, we propose a zero-shot approach
utilizing the Llama3 8B quantized model, which
is optimized for low computing resource usage
without fine-tuning, and the result is in the top
10 in the final benchmark assessment. Our key
contributions are:
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• Crafting specialized templates for the “Brief
Hospital Course” and “Discharge Instructions”
sections, with carefully designed prompts to
ensure the generated text is medically reliable
and stylistically consistent with the training
dataset.

• Exploring various methods to estimate the
total word count for the target sections,
including:

– Fitting a statistical distribution

– Employing a random forest classifier

– Implementing a context-based retrieval
system

• Conducting all experiments using a T4
GPU, demonstrating that our approach is
computationally efficient.

2 Related Work

The application of foundation models, pre-trained
on billions of tokens from diverse data sources,
is increasingly prevalent in healthcare (He et al.,
2024). These models are pivotal in various
domains, such as diagnosis generation (Gao et al.,
2023b) and medical image analysis (Zhang et al.,
2024). Within clinical text processing, large
language models (LLMs) are employed for tasks
including summarization (Van Veen et al., 2023;
Gao et al., 2023a) and answering medical questions
(Singhal et al., 2023b). Specifically, the “Discharge
me!” challenge involves condensing extensive
medical records into succinct discharge letters
while retaining all critical information, making
LLMs suited for this task.

Participants in the BioNLP 2023 Workshop’s
Problem List Summarization task often utilized
T5 (Raffel et al., 2020) or BART (Lewis et al.,
2019) models, enhancing these backbones either
by further training on clinical texts or fine-tuning
for specific clinical tasks (Gao et al., 2023a). This
further pre-training introduces medical knowledge
not originally present in the LLM while fine-tuning
adapts the model to produce outputs in the correct
format for the target task.

Several studies such as BioMistral (Labrak
et al., 2024) and PMC-LLaMA (Wu et al.,
2024) have adapted open-source LLMs by
applying pre-training and fine-tuning sequentially.
Conversely, Med-PaLM (Singhal et al., 2023a)

bypasses additional pre-training, relying solely on
fine-tuning from a vast pre-trained dataset. On a
different note, BioMedLM (Bolton et al., 2024)
focuses exclusively on medical texts, resulting in
a smaller model but still competes effectively with
models trained on larger, more general datasets.

Pre-training and fine-tuning LLMs require
GPUs with significant memory capacities
(often exceeding 16GB). Fine-tuning can take
several days, even using Parameter-Efficient
Fine Tuning (PEFT) methods like LoRA (Hu
et al., 2021). However, modern LLMs can
exhibit strong performance without additional
fine-tuning if provided with the appropriate
context and instructions. For instance, Almanac
(Zakka et al., 2024) enhances its output by
retrieving clinical question-related knowledge
from curated sources, a technique known as
Retrieval-augmented Generation (RAG) (Gao
et al., 2023c). Additionally, Medagents (Tang
et al., 2023) demonstrates that a zero-shot method,
which deconstructs the question into distinct steps
and assigns specific prompts and roles to the LLM
for each stage, can achieve competitive results
compared to more traditional few-shot approaches.

3 Methods

In this section, we introduce our zero-shot
template-based approach, combined with RAG, to
determine the target word count, which is both
effective and resource-friendly. We adopted the
Llama3 8B model with 8-bit quantization as the
open-source model for this challenge. Figure 1
illustrates our approach:

1. Splitting the full discharge letter into different
segments, such as “Chief Complaint” and
“Brief Hospital Course”. This allows us to
selectively use relevant sections and discard
or truncate those too lengthy to process.

2. Employing Retrieval-Augmented Generation
(RAG) to find the most similar patient’s target
section, using that section’s word count as the
target for generation. Generating a similar
word count to the target can help maintain
the generated summaries’ completeness and
increase evaluation metrics such as BLEU,
ROUGE, and METEOR.

3. Providing the target section’s structure
template and prompt to Llama3 along with
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the patient’s context and target word count.

4. Generating the result by Llama3 8B quantized
model.

While GPT-4/3.5 models generally outperform
open-source models such as Llama2 in
understanding EHR data (Liu et al., 2024),
the rules of this challenge discourage the use of
proprietary model APIs (e.g., OpenAI’s GPT-4).
Consequently, we resorted to the state-of-the-art
(SOTA) open-source model, Llama3 (AI@Meta,
2024). Our approach leverages the full text from
the “text” field in the provided discharge.csv file,
alongside aggregated fields from other MIMIC-IV
tables, including patient information, diagnoses,
and transfer history. We meticulously curated
a template for each target section and designed
prompts to guide the LLM in generating the
required sections. In addition to our final approach,
we documented several other zero-shot methods for
target section generation and various approaches to
predict the target section’s word count. However,
these were not adopted in our final solution.

3.1 Dataset Exploration

The dataset for this challenge is derived
from MIMIC-IV’s submodules, MIMIC-IV-Note
(Johnson et al., 2023c) and MIMIC-IV-ED
(Johnson et al., 2023a). All patients have visited the
Emergency Department (ED), and the final target
sections, “Brief Hospital Course” and “Discharge
Instructions”, are extracted from their discharge
letters. Since patients can be admitted to the
hospital after their initial ED visit, we also explored
other tables from the MIMIC-IV hosp and ICU
modules (Johnson et al., 2023b) to provide a
comprehensive view of the patient’s hospital stay
beyond the ED information.

Due to limited context length, we could not
simply pass all available information into the LLM.
Therefore, we ranked all sections of the discharge
letter to select a subset of the information. We
segmented the discharge letter’s “text” column
from discharge.csv using regex and a template of
keywords for different sections, as shown in the
Section column of Table 1. Besides the information
from the “text” column, we aggregated “Patient
Admissions” information, including gender, race,
age (calculated), “Diagnoses” (throughout the
patient stay), and “Transfer Summary” from other
MIMIC-IV tables. Since we compiled the patient’s

diagnoses and transfer summary for the entire
hospital stay using other MIMIC-IV tables rather
than just the Emergency Department (ED) stay, we
did not use the tables in the ED module, such as
triage, edstays, and diagnosis, as they only cover
part of the patient’s stay. The content of “radiology”
will be set to the content of the section “Imaging”
if the “Imaging” section is empty in the discharge
letter. We then calculated the average ranking
of the metric score for each section relative to
the target sections, using the provided evaluation
metrics, including BLEU-4 (Papineni et al., 2002),
ROUGE-1/2/L (Lin, 2004), BERTScore (Zhang
et al., 2019), Meteor (Banerjee and Lavie, 2005),
AlignScore (Zha et al., 2023), and MEDCON (Yim
et al., 2023). Each section was compared to the
target sections, “Brief Hospital Course” (BHC) and
“Discharge Instructions” (DI), with higher-ranking
sections being more related to the target sections.
Table 1 shows that “History of Present Illness”
is most related to the BHC section, followed by
imaging results, physical exams, past medical
history, and diagnoses. BHC is most related to
DI, followed by sections related to BHC.

Based on the ranking in Table 1 and the length
of each section, we selected “History of Present
Illness”, “Imaging and Studies”, “Past Medical
History”, “Patient Admissions”, and “Chief
Complaint” as the context for the BHC section. We
used the generated BHC, “Discharge Medications”,
“Discharge Disposition”, “Discharge Diagnoses”,
“Discharge Condition”, and “Followup Instructions”
for DI section. Other sections related to DI were
excluded because they are also related to BHC.
We truncated each section to the 95th percentile
of its total length to remove outliers and potential
segmentation errors.

3.2 Retrieval for the Target Section Word
Count

Understanding the target section’s word count is
beneficial for generating the appropriate amount
of text, thereby improving the evaluation metrics
for this challenge. Figure 2 shows the word count
distribution for the target sections in the training
dataset. Both target sections have right-skewed
distributions, and BHC also has a peak for word
counts under 100. We hypothesize that patients
with similar backgrounds may have similar target
sections. These retrieved target sections from
patients with similar backgrounds can be used
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Figure 1: Overview of our solution. The figure illustrates our four-step approach: (1) Text Segmentation: splitting
the discharge letter into sections such as “Chief Complaint” and “Brief Hospital Course”; (2) Retrieval-Augmented
Generation (RAG): retrieving similar patient sections to determine word count; (3) Template and Prompt Design:
providing structured templates and prompts to Llama3 with patient context and target word count; (4) Text
Generation: generating the final output using Llama3.

as a starting point, providing a template or
word count for further refinement. We selected
“Chief Complaint”, “Diagnoses”, and “History
of Present Illness” as inputs for retrieving the
BHC section. We added “Admission medications”,
“Discharge Medications”, “Discharge Disposition”,
“Discharge Diagnoses”, and “Discharge Condition”
for retrieving the DI section. We used the
“sentence-transformers/all-MiniLM-L6-v2” model
to create embeddings of the context information for
each training dataset entry and FAISS for similarity
search. The word count from the first retrieved
document’s target section was used in the prompt
to LLM for the generation. We compared this word
count selection strategy to using a fixed word count,
and the results are presented in Section 4.

3.3 Target Section Structure Template and
Prompt Creation

The target word count distribution varies, and we
inspected several randomly chosen examples of
target sections with different word counts. We
selected examples with word counts over 180
to accommodate most cases for BHC template
construction. Examples with word counts
between 100-300 were chosen for the DI template

construction. The structure is in JSON format, with
names and descriptions for each section.

The BHC structure template is:

1. Introduction: Brief introduction
including patient demographics,
significant past medical history,
and reason for hospitalization.

2. Active Issues: Details of the primary
medical concerns addressed during the
stay, including initial assessments
and management actions.

3. Chronic Issues (Optional):
Management of known chronic
conditions during the hospital
stay.

4. Transitional Issues (Optional):
Specific follow-up actions
recommended for post-discharge
care.

5. Additional Notes (Optional):
Other pertinent information or
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Figure 2: The target section word count distribution. Both BHC and DI have right-skewed distributions. BHC has
two peaks, one below 100 words and one around 250 words.

Section BHC DI

Patient Admissions 13 21
Transfer Summary 15 23
Diagnoses 5 4
Service 11 12
Allergies 14 22
Attending 17 24
Chief Complaint 8 11
Major Surgical Procedure 9 17
History of Present Illness 1 2
Review of System 10 15
Past Medical History 4 9
Social History 16 25
Family History 12 16
Physical Exam 3 5
Pertinent Results 7 18
Imaging and Studies 2 3
Brief hospital course 1
Admission Medications 10
Discharge Medications 7
Discharge Disposition 14
Discharge Diagnoses 6
Discharge Condition 8
Followup Instructions 13
Provider 19
Code Status 20

Table 1: The ranking of different sections’ relation
to BHC/DI by averaging all the evaluation metrics
provided by this challenge. We aggregated the patient’s
admission info, including gender, race, age (calculated),
diagnosis, and transfer history from other MIMIC-IV
tables.

considerations affecting patient
care.

The template includes several optional sections not
included in all the examples. The template will be
fed to the prompt below as the “structure” variable.
The prompt for BHC is:

As a medical professional, you are
tasked with drafting a “Brief Hospital
Course” section for a discharge letter.
Utilize the structure from a brief
hospital course example to guide your
composition. The goal is to write a
new, coherent, brief hospital course for
another patient based on the provided
structured template. The total word
count for the brief hospital course
should be {words} words.

BHC Instructions:

1. Follow the JSON template provided
to structure the new brief hospital
course. Each section should be filled
according to the relevant patient
information.

2. Omit the optional sections if they are
irrelevant to the patient’s case.

3. Omit the optional sections if the
total word count is less than 100
words.

4. Do not add a new section after
Additional Notes.

5. Use placeholders “___” for any date,
patient name, and location.

6. Use appropriate medical terminology
and concise language to ensure
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clarity and professionalism.

7. Do not be wordy; be concise if
possible.

8. Do not include the word "optional"
in the result if they are included.
If they are not included, just omit
those sections.

9. Do not copy patient information
verbatim; paraphrase and use the
structure template to fit in the
details.

10. All the section headers must be from
the template, not from the patient
information.

11. Do not fabricate details not present
in the patient information.

12. Use section headers for each major
medical issue, starting with a
hashtag #, do not use * for section
header.

13. Use bullet points to highlight
key actions, medication changes,
or critical clinical decisions,
starting with a hyphen -. Do not use
* or +.

14. Ensure that each major issue or
condition has its own section header
if there is enough content related to
it, even if briefly mentioned.

15. Write in a narrative style for
each section, providing a detailed
account of the patient’s condition,
treatment, and outcomes.

16. Employ medical abbreviations and
terminology appropriately to convey
information efficiently.

17. Start the output with “Brief hospital
course:”

Example structure for the brief hospital
course: {structure}.
Patient information: {context}.

The template for DI is below. This is fed to the DI
prompt as the “structure” variable.

1. Greeting: “Dear [Title] ___,”,
“HospitalExperience”: “It was a
pleasure taking care of you at ___.”,

2. AdmissionReason: “Title”: “WHY
WAS I ADMITTED TO THE HOSPITAL?”,
“Details”: “[ReasonForAdmission]” ,

3. InHospitalActivities: “Title”:
“WHAT HAPPENED WHILE I WAS
IN THE HOSPITAL?”, “Details”:
“[ActivitiesDuringStay]” ,

4. DischargeAdvice: “Title”:
“WHAT SHOULD I DO WHEN I
GO HOME?”, “Instructions”:
“[PostDischargeInstructions]” ,

5. Closing: “We wish you the best!”,
“CareTeam”: “Your ___ Team”

The prompt for DI is:

You are tasked with drafting a
“Discharge Instructions” section for
a patient’s discharge letter as a medical
professional. The instructions should
succinctly summarize the key points
of the patient’s hospital stay and
post-discharge care clearly and easily
for the patient to follow.

DI Instructions:

1. Use the JSON template provided to
structure the discharge instructions.

2. Do not include explicit section
headers in the final text, such as
“Greeting” or “Hospital Experience”.

3. Do not include any placeholder such
as “[]” in the result.

4. Include the title in the template.

5. Integrate medication information
narratively, mentioning specific
medications only when discussing
their relevance to the patient’s
ongoing care and follow-up
instructions.

6. Do not list medications; describe
how they contribute to the patient’s
treatment plan.

669



7. The total word count should be
around {words} words, focusing on
essential instructions relevant to
the patient’s care.

8. Use “___” to anonymize any date,
patient name, and location.

9. Clearly specify any medication
changes, follow-up appointments, and
additional care instructions using
placeholders where specific details
are to be inserted.

10. Employ a professional yet empathetic
tone to ensure clarity and
approachability.

11. Integrate medical terminology
appropriately, ensuring it is
understandable to a layperson.

12. Start the output with a polite
greeting and conclude with
well-wishes or a thank you message.

Example structure for the discharge
instructions: {structure}.
Patient information: {context}.

4 Results

The Llama3 model was downloaded from the
Ollama model repository with the model ID
“llama3:8b-instruct-q8_0”. We utilized the
LangChain framework for retrieval, template
building, and model calling. All experiments were
conducted on a T4 GPU with 16GB memory, using
the Microsoft Azure platform’s “Standard NC4 as
T4 v3 (4 vCPUs, 28 GiB memory)” configuration.

We compared several approaches:

1. Baseline with Random Shuffling: We shuffled
the “hadm_id” column, a unique identifier
for each patient’s discharge letter, assigning
a random target section to each “hadm_id”.
This random selection comes from the same
distribution as the training data but without
the actual content of the input text.

2. Baseline with RAG Retrieval: We used the
retrieved target sections directly. This result
can be similar to the target, but the details can
differ from the real input.

3. Fixed Target Word Count: We set a fixed word

count of 420 for BHC and 100-200 for DI in
the prompt.

4. Proposed Method: Our method combines
retrieved target word counts with a structured
template.

Table 2 presents the evaluation metrics from the
Codabench platform (Xu et al., 2024), including
BLEU-4 (Papineni et al., 2002), ROUGE-1/2/L
(Lin, 2004), BERTScore (Zhang et al., 2019),
Meteor (Banerjee and Lavie, 2005), AlignScore
(Zha et al., 2023), and MEDCON (Yim et al., 2023).
The random shuffle yielded the lowest scores across
all metrics, indicating poor performance. Using
the retrieved target section directly resulted in
the highest BLEU score. The fixed word count
approach achieved higher Align and MEDCON
scores than the retrieved target section but had
lower scores for other metrics. Our proposed
method, which combines the retrieved word count
and structured template, achieved the highest
scores across all metrics except BLEU. The lower
BLEU score for the proposed method is due
to BLEU’s heavy penalty for deviations from
exact wording. In contrast, the higher ROUGE
scores indicate our method effectively captures the
essential content, even with varied wording. We
also measured the generation time for each section.
The average time to generate one BHC was 16.67
seconds, and one DI was 16 seconds.

5 Unsuccessful Attempts

We also explored several alternative approaches for
this task, but they yielded unsatisfactory results:

1. Style Transfer Using Retrieved Target Section:
We asked the LLM to use the style of the
retrieved target section to fit the patient
context. However, the Llama3 8B model often
used the target section directly, failing to infer
the style and remove the original content. This
could be due to the weaker reasoning ability
of the 8B model compared to the 70B model
with better reasoning ability.

2. Two-Step Style Transfer:

(a) Firstly, extract a template from the target
section.

(b) Secondly, fill in the patient content into
the template (this step can also be split
into several smaller steps).
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bleu rouge1 rouge2 rougel bertscore meteor align medcon overall

random shuffle 0.01 0.183 0.025 0.105 0.226 0.23 0.109 0.1 0.124
RAG retrieved target 0.041 0.286 0.061 0.172 0.293 0.297 0.167 0.203 0.19
fixed target word 0.017 0.296 0.055 0.159 0.256 0.285 0.187 0.221 0.185
retrieved word count 0.024 0.377 0.106 0.205 0.3 0.332 0.174 0.254 0.221

Table 2: The evaluation results from the Codabench platform. The random shuffle method yielded the lowest scores,
while our final retrieval approach to determine the target word count achieved the highest scores across most metrics.

However, the extracted templates were not
always reliable, and this method took twice
as long as the curated template approach.
Consequently, we opted to curate the
templates rather than relying on the LLM
manually.

3. Predicting Target Section Word Count:
We tested several methods to predict the
total word count of the target section,
including fitting a random forest classifier
by aggregating over 100 features from other
MIMIC-IV tables and fitting log-normal
distributions. These methods also proved
inadequate. Table 3 shows the random forest
classifier results for BHC with word count
classes greater than 450, with an F1 score
of 0.45. Figure 3 lists the top 10 features,
including the number of lab tests, diagnoses,
and total hospital duration. The classifier
achieved an F1 score of 0.49 for word counts
greater than 280 for the DI section, as shown
in Table 4, with different section word counts
being the top features in Figure 4.

precision recall f1-score support

<450 0.818 0.926 0.869 18965
>450 0.610 0.359 0.452 6087

Table 3: BHC random forest classifier results for BHC
word count above and below 450. The f1-score is 0.45
for the class with more than 450 words, which is not
accurate enough.

6 Conclusion

In this paper, we present a resource-friendly
approach to automating the generation of the “Brief
Hospital Course” and “Discharge Instructions”
sections in discharge letters using the Llama3 8B
quantized model. Our zero-shot template-based
method and Retrieval-Augmented Generation
produce high-quality, contextually appropriate

Figure 3: The top 10 features for the BHC classifier.
WC: word count. The total number of lab tests,
diagnosis, and total duration in the hospital are the top
3 features.

Figure 4: The top 10 features for the DI classifier. WC:
word count. The word count of different segments is
ranking high.
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precision recall f1-score support

<280 0.864 0.964 0.911 20143
>280 0.716 0.377 0.494 4909

Table 4: DI random forest classifier result for DI word
count above and below 280. The f1-score is 0.49 for the
class with more than 280 words, which is not accurate
enough.

summaries. However, we observe a lower BLEU
score due to the different wording between the
method’s result and the target sections. Ensuring
the reliability and accuracy of generated content
remains a significant challenge. Future work will
focus on enhancing model reasoning capabilities,
improving dynamic template extraction, and
integrating robust validation mechanisms to verify
medical accuracy. The code for this work
is shared on https://github.com/ruiguo-bio/
discharge_me, covering aggregating additional
tables, segmentation of the discharge letters, RAG
for the two target sections, and the random forest
classifier for the target section words prediction.

7 Limitations and Future Work

1. We would like to perform a more thorough
evaluation to ensure that the model’s
generated content is clinically relevant and
does not include false or harmful information.
This evaluation could be extended to
understanding the strengths and weaknesses
of language models for the challenge task.

2. We create a template by sampling target
sections with word counts close to the median.
However, the length and structure of real
target sections can vary significantly from our
template. Our approach could be improved
by predicting the target word count more
precisely or by sampling different templates
depending on the word count.

3. We would like to test a wider range of
language models and thoroughly compare
different methods of providing relevant
context to the language model, including
different methods of Retrieval-Augmented
Generation (RAG) and prompt engineering.

8 Ethical Statement

All the data used in the experiments are
downloaded from the PhysioNet after completing

the required CITI training and credentialing
process. Beyond the general potential ethical
considerations of using LLMs to automatically
process and generate clinical text (including bias,
fairness, transparency and accountability), there are
no specific ethical issues raised by the particular
methodologies or data presented in this research.
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Abstract

Clinical documentation is an important aspect
of clinicians’ daily work and often demands a
significant amount of time. The BioNLP 2024
Shared Task on Streamlining Discharge Doc-
umentation (Discharge Me!) aims to allevi-
ate this documentation burden by automatically
generating discharge summary sections, includ-
ing brief hospital course and discharge instruc-
tion, which are often time-consuming to syn-
thesize and write manually. We approach the
generation task by fine-tuning multiple open-
sourced language models (LMs), including
both decoder-only and encoder-decoder LMs,
with various configurations on input context.
We also examine different setups for decod-
ing algorithms, model ensembling or merging,
and model specialization. Our results show
that conditioning on the content of discharge
summary prior to the target sections is effec-
tive for the generation task. Furthermore, we
find that smaller encoder-decoder LMs can
work as well or even slightly better than larger
decoder-based LMs fine-tuned through LoRA.
The model checkpoints from our team (aehrc)
are openly available.1

1 Introduction

Clinical documentation in the age of Electronic
Health Records (EHRs) can be a significant burden
to clinicians in recording clinical information ef-
fectively (Colicchio et al., 2020; Rule et al., 2021).
This reduces the time clinicians spend interacting
with their patients and could lead to stress and
burnout (Colicchio et al., 2019), degrading both
the quality of patient care and the experience of
care providers (Shanafelt et al., 2016).

Language Models (LMs) have demonstrated im-
pressive NLP capabilities and are considered to
have the potential to reduce the clinical documen-
tation burden by automatically generating clinical

1https://github.com/JHLiu7/
bionlp24-shared-task-discharge-me

text (Patel and Lam, 2023; Roberts, 2024; Omiye
et al., 2024). For example, a recent study (Van Veen
et al., 2024) demonstrated that LMs can generate
succinct clinical summaries from text including
progress notes and patient-doctor dialogues, some-
times even preferred over those written by medical
experts. The BioNLP 2024 Shared Task “Discharge
Me!” (Xu et al., 2024) focuses on generating the
discharge summary (or discharge note) to assess
the potential of LMs for this specific type of clini-
cal note, which is often more time-consuming for
clinicians to document and also more challenging
to model given its length and complexity.

This paper presents the submissions from e-
Health CSIRO in the shared task. We approach
the task by fine-tuning multiple open-sourced LMs,
including both decoder-only and encoder-decoder
models. We fine-tune these models to generate two
specific sections from discharge notes: brief hospi-
tal course and discharge instruction, by condition-
ing on the prior content in the notes as context. We
explore various configurations with input context,
decoding, ensembling, and target specialization.
We find that much smaller encoder-decoder LMs
could have a slight edge over fine-tuning decoder-
only LMs (all with the size of 7/8B parameters)
with LoRA (Hu et al., 2022). Our best submis-
sion ranked 3rd on the final leaderboard under both
automatic and manual evaluation.

2 Methods

2.1 Task and Dataset

The Shared Task focuses on generating two im-
portant sections of discharge notes: brief hospital
course (BHC) and discharge instruction (DI). The
first section provides a snapshot of the important
information about the patient care during the hos-
pital, and the second a summary to communicate
that information and instructions after leaving the
hospital to patients. The audiences for the two
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sections are different as the former is read by clin-
icians while the latter by patients. The Shared
Task uses the MIMIC-IV database (Johnson et al.,
2023) to curate the dataset consisting of 109,168
patients, which are split into Train (68,785), Valida-
tion (14,719), Phase I testing (14,702), and Phase
II testing (10,962). Each patient has a discharge
summary that includes both sections, and partic-
ipants are allowed to utilize data elements in the
EHR database beyond the note alone as input.

Sections  
Part 1

Sections  
Part 2BHC DIDischarge 

Note:

Radiology 
Report 1

Radiology 
Report 2

Radiology 
Report 3

Radiology 
Reports: …

Figure 1: Illustration of the contents in clinical notes.

Our experiments focus only on the free-text clin-
ical notes as input and do not consider other data
modalities. We primarily use the content in the
discharge note prior to the corresponding target
section as input context. Radiology reports are con-
sidered optionally. We depict the note structures in
Figure 1. Specifically, we consider the base con-
text for BHC as Cbhc

base = “Sections Part 1”, and
for DI as Cdi

base = “BHC” + “Sections Part 2”.
We consider two types of prolonged contexts: 1)
Cbase+rad = Cbase + “Rad Reports”, where radiol-
ogy reports are concatenated with with the related
sections; and 2) Cdi

long = “Sections Part 1” + Cdi
base,

which extends the input context for DI. We then
train models to generate the target sections T bhc

and T di based on the corresponding contexts.

2.2 Language Models

We consider both decoder-only and encoder-
decoder LMs for our experiments. For decoder-
only LMs, we examine three popular open-sourced
models at 7/8 billion paramater levels, including
Llama3-8B 2, Mistral-7B (Jiang et al., 2023), and
Gemma-7B (Gemma Team, 2024), all based on the
instruction-tuned versions, denoted as Llama3-it,
Mistral-it, and Gemma-it. Additionally, we exam-
ine the base version of Llama3-8B, denoted simply
as Llama3. For encoder-decoder LMs, we focus on
PRIMERA (447M) (Xiao et al., 2022) and Long-
T5 (770M, global attention) (Guo et al., 2022), both
capable of handling long input and output lengths.

To determine the maximum lengths for model-

2https://ai.meta.com/blog/meta-llama-3/

# Max Tokens
(Llama3)

# Max Tokens
(PRIMERA)

Cbhc
base 2816 3328

Cdi
base 2048 2048

Cdi
long 4608 5120

Cbhc
base+rad 4608 5120

Cdi
base+rad 3840 4096

T bhc 1280 1280
T di 512 512

Table 1: Number of maximum tokens for modeling.

ing, we calculate the 85th percentile of the number
of tokens and round it up to a multiplier of 256
for each LM. We present the statistics for Llama-3
and PRIMERA in Table 1 as examples. With each
LM, we train two independent models for BHC
and DI. For decoder-only LMs, we construct the
prompt template similar to Alpaca (Taori et al.,
2023), shown in Appendix Figure 2.

We then fine-tune these LMs for the text gen-
eration task. The decoder-only LMs, on the other
hand, are loaded in half-precision (BF16) and fine-
tuned through LoRA. We follow the setup from
Dettmers et al. (2023) and use lr = 2e-4, r = 64,
alpha = 16, with LoRA attached to all linear lay-
ers. The encoder-decoder LMs are fully fine-tuned
with lr = 5e-5. All LMs are trained with batch size
of 16 for 5 epochs using Adam, with 3% ratio for
linear warmup. We use the default generation con-
figuration, including the decoding algorithms, for
the pretrained LMs. All experiments are performed
on NVIDIA H100 GPU.

2.3 Evaluation
The automatic evaluation is based on 8 popu-
lar pairwise metrics, including BLEU-4 (Pap-
ineni et al., 2002), ROUGE-1/2/L (Lin, 2004),
BERTScore (Zhang* et al., 2020), Meteor (Baner-
jee and Lavie, 2005), AlignScore (Zha et al., 2023),
and MEDCON (Yim et al., 2023). They present
a diverse set of measurements for string overlaps,
semantic similarity, and medical concept mapping.
The results for BHC and DI are averaged for each
metric. The final ranking of the Shared Task is
based on the average of the all scores on 250 hidden
cases from Phase II testing, although participants
are required to submit generation for all cases.

2.4 Experimental Setup
We investigate several factors that could impact the
generation performance and compare them with
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Model Overall BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
Fine-tuning baselines based on Cbase

Llama3 28.05 10.05 35.65 13.56 25.65 38.66 39.98 25.93 34.90
Llama3-it 23.53 7.88 25.56 9.66 15.70 35.13 38.90 22.73 32.69
Mistral-it 23.71 5.46 32.43 12.23 21.04 30.58 34.49 23.11 30.34
Gemma-it 25.14 6.31 35.04 11.18 24.53 32.91 36.07 23.46 31.60
PRIMERA 29.17 10.55 40.33 15.94 25.69 41.17 37.92 26.49 35.28
Long-T5 22.47 6.31 30.16 8.88 19.12 32.31 31.44 22.50 29.07

Extended Input Context
Llama3 w/ Cbase+rad 25.15 8.69 27.24 10.81 19.20 37.26 39.17 25.11 33.71
PRIMERA w/ Cbase+rad 29.10 10.64 39.76 15.75 27.10 40.31 37.55 27.10 34.61
Llama3 w/ Cdi

long 28.33 9.56 37.27 12.93 25.87 38.67 40.64 26.67 35.04
PRIMERA w/ Cdi

long 28.26 10.14 38.93 13.48 23.73 40.68 37.95 26.80 34.37
Unified LM for both Tbhc and Tdi

Llama3 (single) 25.38 7.89 31.79 11.34 21.89 35.38 38.91 23.39 32.42
Alternative Decoding for Llama3

Llama3 w/ beam 25.20 10.06 29.14 8.05 17.83 37.05 40.57 26.17 32.71
Llama3 w/ constrastive 24.09 8.36 27.81 10.13 18.24 36.10 35.52 26.37 30.21

Ensemble Decoding
Llama3 + Llama3 26.17 9.67 28.79 11.36 21.02 38.31 39.71 26.29 34.24
Llama3 + Llama3-it 27.04 9.66 32.68 12.99 22.30 37.96 39.79 26.10 34.84

Merging LoRA Adapters
Llama3 x2 LoRA 25.78 8.20 34.48 11.60 22.69 35.81 37.44 23.25 32.79
Llama3 x4 LoRA 21.80 4.50 33.05 11.97 20.45 30.79 28.31 17.35 28.00

Table 2: Results from automatic evaluation, based on 250 hidden samples from Phase II testing.

the base generation setup, in which two LMs of
the same architecture are trained on Cbase for BHC
and DI, respectively. We examine the impact of
extended input context by replacing Cbase with
Cbase+rad or Cdi

base with Cdi
long. Taking Llama3 as

the example, we explore a variety of modifications,
including training a unified LM that models the
two targets jointly to explore the benefit of target
specialization. We also apply various decoding al-
gorithms other than greedy search, including beam
search (n = 4), and contrastive search (α = 0.6,
k = 6) (Su et al., 2022). Furthermore, we explore
ensemble decoding (Manakul et al., 2023) and the
popular adapter merging with Llama3 as the ex-
ample. The former averages the logits from two
LMs for generating each token with greedy search,
and the latter applied TIES (Yadav et al., 2023)
to merge the paramters of several LoRA adapters
(equal weights, density of 0.5) before attaching it to
the main LM. Finally, we prompt instruction-tuned
LMs in the zero-shot manner, including the 70B
checkpoints, on a subset of validation to observe
the benefit of fine-tuning for this task.

3 Results & Analysis

3.1 Both Decoder and Encoder-encoder LMs
Work Well When Fine-tuned

We firstly find all LMs obtain decent results when
fine-tuned with Cbase. Meanwhile, the instruction-
tuned decoder-only LMs perform worse than the

base version of Llama3. This aligns with exist-
ing findings that instruction tuning could harm
performance on NLP benchmarks (Ouyang et al.,
2022; Ivison et al., 2023). PRIMERA performs
slightly better than Llama3, despite being the small-
est model we examined. On the other hand, Long-
T5 seems to struggle with the task.

3.2 Prior Context of Dicharge Note is
Sufficient as Input

We observe poorer results when including radiol-
ogy reports as supplementary input for both Llama3
and PRIMERA. Although the input context lengths
increase more than 50% with the radiology reports,
it appears that no new, valuable information is
added. Instead, it misleads the LMs to produce
worse outputs, especially for Llama3. This shows
the content in the discharge notes have well cap-
tured free-text information from the existing EHR
data. Using radiology reports alone offers an over-
all score from 19.1 to 20.3 (Appendix Table 4).

3.3 Prolonged Context in Discharge Note
Offers Little Value

In a similar fashion, we extend the input context
for DI by including contents prior to BHC, namely
Cdi
long. Again, more context does not necessarily

lead to better results. We consider this is likely due
to the fact that BHC and the content between BHC
and DI have provided sufficient information for
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generating DI. Future work may explore how to fur-
ther trim down the input to reduce the noise, such
as through de-duplication (Kandpal et al., 2022;
Liu et al., 2022), to enhance performance.

3.4 Two Specialized LMs are Better Than
One Unified LM

Instead of trainig two copies of LM for each section,
we combine samples for both targets together to
train a single model that is capable to produce either
of the sections. We explore this with Llama3, fine-
tuned with LoRA in the same setup as previous.
We see the unified Llama3 performs worse than the
two independant copies of Llama3, demonstrating
the importance of specialization in modeling BHC
and DI independently. Furthermore, as the two
copies share the same base model and differs only
in adapters, keeping them separately does not lead
to significantly more storage cost than the unified
model.

3.5 Better Decoding Methods Lead to Mixed
Results

The Phase II test results in Table 2 indicate that
better decoding algorithms, such as beam search
and contrastive search, could lead to worse results
than the baseline greedy search. Interestingly, our
initial experiments on the 1000 validation samples
in Appendix Table 5 show that they are at least on
par and sometimes better. The mixed results show
the diversity of the dataset and the need to further
investigate the distribution and biases of the data.

3.6 Ensemble Decoding is Not Helpful

An ensemble of two Llama3 models trained using
different data or with different base LMs at the to-
ken level is not helpful. With Llama3 + Llama3,
we ensemble Llama3 fine-tuned using Cbase and
Cbase+rad, and with Llama3 + Llama3-it, we en-
semble the base and instruction-tuned Llama3 fine-
tuned both using Cbase. Neither of these two pairs
produced improved results. Although ensembling
is found helpful previously for generation (Man-
akul et al., 2023), for our task naively averaging
the logits at token-level during decoding is both
inefficient and ineffective.

3.7 Merging Adapters is Not Helpful Either

Similarly, we perform another form of ensemble
by merging the LoRA adapter weights for the
same base LM. Merging with x2 LoRA is based on
adapters trained using Cbase and Cbase+rad, while

merging with x4 further merges the adapters for
BHC and DI. Both substantially decrease the perfor-
mance, and merging adapters trained for different
targets leads to the worst result in our fine-tuning
experiments. This again shows that model special-
ization is important for the current task. In addition,
it is possible that model merging tends to prevail in
generating creative contents instead of improving
the specific aspects of generation quality.

3.8 Fine-tuned LMs Substantially
Outperform Out-of-box LMs

Finally, we prompt the instruction-tuned LMs in the
zero-shot manner to compare with fine-tuned per-
formance. Besides Llama3-8B-it and Mistral-7B-it,
we additionally prompt the 70B scale Llama3-70B-
it and Mixtral-8x7b-it (Jiang et al., 2024). They
achieve an overall score ranging from 15.1 to 17.4
(details in Table 5), significantly fell short com-
pared to the fine-tuned results. Although more
advanced prompting strategies are expected to en-
hance performance, we suspect that fine-tuning
would still be the more effective solution given the
amount of training data.

4 Discussions

We demonstrate that fine-tuning LMs based solely
on the prior content from the discharge note is suf-
ficient to generate BHC and DI sections. Given
the heterogeneity of EHR data (Yadav et al., 2018)
and variations in clinical notes (Liu et al., 2024),
selecting the appropriate inputs would be crucial
for both the quality and applicability of the genera-
tion. In this work, we assume that the non-BHC/DI
contents of the discharge note have been populated
from other available sources or clinical notes, mak-
ing them readily available as model input.

The context for BHC (“Sections Part 1” in Fig-
ure 1) typically includes chief complaint, history
of present illness, past medical history, social his-
tory, physical exam, and various pertinent results.
The “Sections Part 2” of DI context may include
admission and discharge medications, discharge
disposition, dischage diagnoses.

Using these sections as input yields competitive
generation results, and including additional text
sources like radiology reports does not lead to im-
provement. One explanation is that the sections
within the discharge summary, such as “pertinent
results”, often already include imaging findings.
Future work may futher investigate how selecting
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Model Overall BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
WisPerMed 33.2 12.4 45.3 20.1 30.8 43.8 40.3 31.5 41.1
HarmonAI Lab at Yale 30.0 10.6 42.3 18.0 28.4 41.2 38.1 26.5 35.3
aehrc (ours) 29.7 9.7 41.4 19.2 28.4 38.3 39.8 27.4 33.2
EPFL-MAKE 28.9 9.8 44.4 15.5 26.2 39.9 33.6 25.5 36.0
UF-HOBI 28.6 10.2 40.1 17.4 27.5 39.5 28.9 29.6 35.5

(a) Automatic evaluation results on 250 cases from Phase II test set.

Team Average
BHC

Completeness
BHC

Correctness
BHC

Readability
BHC

Overall
DI

Completeness
DI

Correctness
DI

Overall

WisPerMed 3.4 3.7 3.7 3.4 2.4 3.9 4.0 2.5
HarmonAI Lab at Yale 2.9 3.5 2.6 2.1 1.5 4.3 3.9 2.4
aehrc (ours) 2.8 2.3 3.1 2.0 1.1 3.9 4.5 2.6
EPFL-MAKE 2.7 3.3 2.8 2.5 1.7 3.5 3.4 1.9
UF-HOBI 2.6 2.5 3.4 2.7 1.4 3.0 3.3 1.8

(b) Manual evaluation results by clinicians on 25 selected cases.

Table 3: Results from the top-5 teams on the final Phase II leaderboard.

relevant content (Zheng et al., 2023) or removing
redundant information (Liu et al., 2022) impacts
the performance. It is also unclear whether other
sources of EHR information should be considered,
especially those not captured by the discharge sum-
mary. These include structured EHR data and other
types of clinical text, such as nursing or physician
notes. Regarding structured data elements, this
study does not consider diagnosis codes like ICD
or DRG (Dong et al., 2022; Liu et al., 2021b), as
they are typically assigned after the patient dis-
charge. However, future work could model other
measurement data or codes from prior patient en-
counters. Examining the end-to-end generation of
discharge notes solely from structured EHR data
and other clinical notes is also important to ensure
that the generation model integrates into different
clincial documentation workflows.

From the modeling perspective, we find that fine-
tuning smaller LMs, such as PRIMERA, achieves
surprisingly good results. Examination of any po-
tential biases or overfitting is left for future work.
During development, we observed that the gen-
eration qualities of Llama3 and PRIMERA were
similar (examples shown in Appendix Table 6 & 7)
and had better quality compared to other LMs like
Mistral (see Appendix Table 7), consistent with
the quantitative analysis. We noticed that Llama3
tended to generate repetitive content more often
and tried to alleviate this with better decoding tech-
niques, but were unable to improve the overall per-
formance on quantitative metrics (see Table 2). It is
possible that more hyperparameter search on either
fine-tuning or decoding could lead to improvement,
which we leave to future work.

Given the slight edge over Llama3 and other
LMs, PRIMERA was our final submission. Table 3
shows the final leaderboard, in which we rank 3rd

overall and are close to 2nd under both automatic 3

and manual evaluation, with the latter conducted
by a team of clinicians on 25 selected samples.

Similar to previous findings (Van Veen et al.,
2024), we see that the manual evaluation aligns
with the automatic evaluation in ranking different
systems. The manual evaluation further reports
fine-grained scores on Completeness, Correctness,
and Readbility for BHC and DI separately. Inter-
estingly, we observe that PRIMERA obtains the
best overall score for DI but worst for BHC among
the top-5 teams. This may indicate the model ca-
pacity correlates with the length or complexity of
the target generation, with smaller LMs potentially
struggling with prolonged outputs. It is plausible
that Llama3 would offer improved results on BHC,
especially in terms of readability. Future work may
investigate this further through separate automatic
evaluations specifically for BHC and DI.

5 Conclusion

This paper describes our efforts in the “Discharge
Me!” BioNLP 2024 Shared Task (Xu et al., 2024),
with the final system ranked 3rd on both automatic
and manual evaluation. We show that fine-tuning
LMs with appropriate input context has the poten-
tial to automatically synthesize high-quality dis-
charge summary sections, which holds promise to
reduce the time clinicians spend on documentation.

3These finalized scores were re-run by the organizers and
slightly different from automated scoring by the submission
system (Codabench), which provides results in Table 2.
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Limitations

Although we consider model ensembling for the
generation, there are potentially more effective
ways to combine or control outputs from multiple
models (Liu et al., 2021a; Shen et al., 2024) that
we did not consider. In addition, we only averaged
the model logits for the ensemble and did not ex-
amine other interpolation setups, such as log-linear
interpolation. Given the variations in BHC and DI,
improved selection methods or heuristics would
likely further enhance the results. We also did not
explore the generalizability of our LMs in gener-
ating sections beyond BHC and DI, transferring
to other type of notes, and handling notes written
from different medical institutions. Finally, despite
achieving promising results under both automatic
and human evaluation, how the generation system
helps clinicians in practice remains to be studied.
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A Appendix

Model Llama3 PRIMERA

Overall 20.34 19.10
BLEU-4 5.27 3.52
ROUGE-1 27.11 30.56
ROUGE-2 7.30 8.39
ROUGE-L 17.16 18.82
BERTScore 30.03 30.42
Meteor 32.76 27.13
AlignScore 17.38 13.46
MEDCON 25.67 20.47

Table 4: Additional results using only radiology reports
as input; on Phase II test set (250 hidden samples).

Prompt template for BHC

Summarize the below clinical text into a
section of brief hospital course.

### Input:
{{input_text}}

### Summary:
{{target_text}}

Prompt template for DI

Summarize the below clinical text into a
section of discharge instruction.

### Input:
{{input_text}}

### Summary:
{{target_text}}

Figure 2: Template used for decoder-only LMs.
target_text is removed at inference time.

Model Overall BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
Baseline

Llama3 30.16 11.48 38.28 18.69 25.08 41.69 31.76 31.79 42.53
Alternative decoding

Llama3 w/ beam 28.82 11.34 33.40 16.06 22.46 40.37 33.43 31.66 41.86
Llama3 w/ nucleus 28.13 9.66 37.74 16.41 22.47 39.79 33.42 27.74 37.81
Llama3 w/ contrastive 30.98 11.98 42.28 21.49 27.33 41.38 33.34 31.35 38.70

Zero-shot prompting
Llama3-8B-it 15.05 0.97 19.92 3.88 10.65 18.47 19.35 25.47 21.70
Llama3-70B-it 15.62 0.95 21.73 4.59 11.31 19.16 20.03 23.84 23.33
Mistral-7B-it 17.31 1.61 30.32 6.97 15.83 23.56 20.33 16.22 23.62
Mixtral-8x7B-it 17.40 1.49 30.29 7.13 15.02 22.00 19.34 20.15 23.77

Table 5: Additional results on 1000 validation samples.
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BHC by
Llama3

Mr. ___ is a ___ year old M w/ PMH ___ syndrome (s/p L femoral stenting, left knee surgery
at ___), hx of recurrent DVTs in ___ and UEs s/p IVC filter c/b PEs on chronic warfarin,
chronic ___ on methadone who presents with LLE swelling and ___. # LLE swelling: Patient
presented with LLE swelling and erythema. He was found to have a chronic DVT on LLE
US. He was started on IV ceftriaxone for cellulitis. He was transitioned to PO cephalexin
on discharge to complete a 7 day course. # ___ syndrome: Patient has a history of ___
syndrome, which is a hypercoagulable state. He has had multiple DVTs and PEs in the
past. He was found to have a chronic DVT on LLE US. He was continued on his home
warfarin. His INR was therapeutic at 2.3 on discharge. # Chronic ___: Patient has a history
of chronic ___ on methadone. He was continued on his home methadone. # Gout: Patient
has a history of gout. He was continued on his home allopurinol. TRANSITIONAL ISSUES:
==================== - Patient was started on cephalexin 500 mg PO Q6H to complete
a 7 day course (last day ___. - Patient’s INR was 2.3 on discharge. Please check INR on ___
and adjust warfarin dose as needed. - Please follow up with patient’s ___ clinic. - Please
follow up with patient’s PCP. - Please follow up with patient’s vascular surgeon. - Please
follow up with patient’s pain clinic. - Please follow up with patient’s hematologist. - Please
follow up with patient’s PCP regarding his chronic ___. Code: Full (confirmed) Contact:
___ (mother) ___ Patient seen and examined on day of discharge. >30 minutes on discharge
activities. ___ ___ Attending ___ Date: ___ Time: ___ I have read and agree with the
discharge summary. ___, MD, PharmD Attending ___ Date: ___ Time: ___ I have read and
agree with the discharge summary. ___, MD Attending ___ Date: ___ Time: ___ I have read
and agree with the discharge summary. ___, MD Attending

BHC by
PRIMERA

Mr. ___ is a ___ year old M w/ PMH ___ syndrome (s/p L femoral stenting, left knee
surgery at ___), hx of recurrent DVTs in ___ and UEs s/p IVC filter c/b PEs on chronic
warfarin, chronic ___ on methadone who presents with LLE swelling and ___, found to have
non-occlusive LLE DVT.
#LLE DVTs: Patient has a history of ___ syndrome and has had multiple DVTs, most
recently 6 months ago. He has been on warfaradin for this, but has had a subtherapeutic
INR. He was admitted with a sub therapeutic INR of 4. He had a LLE US which showed
non-occlusion of his LLE veins. He received 1 dose of IV ceftriaxone in the ED, but was
not continued on antibiotics. He remained hemodynamically stable and was discharged on
his home warfarine regimen. He will follow up with his PCP and ___ clinic. #Chronic ___:
Patient was continued on his methadione. #Hx of PEs: Patient with history of PE on warfain,
on warafarin. INR 4 on admission. He is followed by Hematology at ___ and has been
subtheraputic on warferin. He reports compliance with warfarin. - Continue warfarain 5mg
daily - INR check on ___
TRANSITIONAL ISSUES: ==================== - Patient will need INR checked on
___ and results faxed to ___ clinic at Dr. ___ - Please continue to monitor INR and adjust
warfarins as needed - Consider outpatient hematology follow up for further management of
chronic ___ syndrome - Follow up with PCP - ___ with ___ clinic - CODE: Full - CONTACT:
___ (wife) ___

Table 6: Example generations of brief hospital course (hospital ID: 20020402). More examples can be obtained
using the released model checkpoints.
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DI by
Llama3

Dear Ms. ___, You were admitted to ___ for ongoing fevers. You were evaluated by the
Infectious Disease team. You had multiple tests performed to determine the cause of your
fevers. You had a CT scan of your sinuses which showed sinusitis. You were started on
antibiotics for this. You also had a CT scan of your chest which showed findings consistent
with a condition called lymphocytic interstitial pneumonia. You were monitored for 24 hours
and did not have any recurrent fevers. You will be discharged home with close follow-up
with the Infectious Disease team. They will help to arrange follow-up with Rheumatology
and Pulmonology. It was a pleasure taking care of you! Sincerely, Your ___ Team

DI by
PRIMERA

Dear Ms. ___,
It was a pleasure caring for you at ___. You were admitted for fevers. Your flu test
was negative. Your sinus CT showed inflammation, so you were treated empirically with
Augmentin. Additional CT scan showed findings in your lungs concerning for lymphocytic
interstitial pneumonia. Because you had no recurrent fevers and your blood cultures were
Please follow up with your PCP and infectious disease doctors.
___ wish you the best!
Sincerely, Your ___ Team

DI by
Mistral

Discharge Instructions: Dear Ms. ___, It was a pleasure caring for you at ___ ___. You
were admitted to the hospital for fevers. You had a CT scan of your sinuses which showed
inflammation of the sinuses. You were started on an antibiotic called Augmentin to treat a
possible sinus infection. You also had a CT scan of your chest which showed inflammation of
the lungs. You will need to follow up with a lung doctor (___) and Rheumatologist to further
evaluate this. The Infectious Disease doctors ___ help to arrange these appointments. Please
continue to take your medications as prescribed and keep your follow-up appointments as
scheduled. We wish you the best! Sincerely, Your ___ Care Team ## More Radiology
Reports ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. Mild mucosal
thickening and sinus opacification, most prominent in the maxillary sinuses, likely secondary
to inflammation. No focal fluid collection or osseous erosion identified. 2. Hypoattenuating
lesion in the upper pole the left kidney is unchanged and indeterminate in density, likely a
proteinaceous or hemorrhagic cyst. Recommend dedicated non urgent renal ultrasound for
further evaluation. ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. ## More
for ___ ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. Hypoattenu ##
More for ___ ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. Mild mucosal
thickening and sinus op ## More for ___

Table 7: Example generations of discharge instructions (hospital ID: 20094440). We present an additional generation
from fine-tuned Mistral-7B based on the same input context, which contains more redundant and irrelevant content
compared to the other two models.
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Abstract

Automatic generation of discharge summaries
presents significant challenges due to the length
of clinical documentation, the dispersed nature
of patient information, and the diverse termi-
nology used in healthcare. This paper presents
a hybrid solution for generating discharge sum-
mary sections as part of our participation in
the “Discharge Me!” Challenge at the BioNLP
2024 Shared Task. We developed a two-stage
generation method using both extractive and
abstractive techniques, in which we first apply
name entity recognition (NER) to extract key
clinical concepts, which are then used as in-
put for a prompt-tuning-based GatorTronGPT
model to generate coherent text for two impor-
tant sections including “Brief Hospital Course”
and “Discharge Instructions”. Our system was
ranked 5th in this challenge, achieving an over-
all score of 0.284. The results demonstrate the
effectiveness of our hybrid solution in improv-
ing the quality of automated discharge section
generation.

1 Introduction

The discharge summary is one of the most cru-
cial documents that capture patients’ present ill-
ness, diagnostic findings, therapeutic procedures,
and follow-up instructions (Lenert et al., 2014).
Timely, high-quality discharge records can remark-
ably reduce the risk of patient readmissions, ensur-
ing continuous and coordinated patient care, sup-
porting the decision-making process, and bridging
the information gap between healthcare providers
(Kripalani et al., 2007; Li et al., 2013; Van Wal-
raven et al., 2002). However, manually writing
discharge summaries is time-consuming and error-
prone, given the complexity of clinical informa-
tion, the dispersed nature of patient details, and the
increasing burden of clinical documentation (Lin
et al., 2010).

*Equal contribution.

Despite the recent success of large language
models (LLMs) in natural language process (NLP)
(Karabacak and Margetis, 2023), it’s still challeng-
ing for LLMs to summarize critical patient infor-
mation from a long clinical document, which often
exceeds the maximum input length of LLMs, mak-
ing it challenging for LLMs to process all relevant
information at once. This leads to truncated input
and potentially low-quality content. Additionally,
excessive tokens can overwhelm LLM’s capacity
to focus on important patient information, affecting
both the quality and coherence of the generated
summaries (Van Veen et al., 2023).

To counter these challenges, we propose a two-
step approach to generate the target sections. The
process begins with a rule-based segmentation of
original discharge summaries into individual sec-
tions. We manually reviewed a subset of notes
in the training set to identify the sections that
contain important information related to the two
target sections. Next, we apply the GatorTron
(Yang et al., 2022) model, fine-tuned on the 2010
i2b2 Challenge (Uzuner et al., 2011) dataset to
extract critical clinical concepts related to prob-
lems, treatments, and lab tests in selected sec-
tions. The extracted concepts are then concate-
nated with selected sections, serving as input for
GatorTronGPT to generate “Brief Hospital Course”
and “Discharge Instructions” sections using soft
prompt-tuned GatorTronGPT (Peng et al., 2023).
Compared with directly using the original long doc-
ument, our hybrid approach remarkably reduces
the number of input tokens and helps LLMs focus
on critical patient information to generate good-
quality summaries.

2 Related Work

Automatic Text Summarization (ATS) is a critical
Natural Language Processing (NLP) task that fo-
cuses on generating concise summaries from a long
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document. By extracting or abstracting essential
information, ATS provides comprehensive yet sig-
nificantly shorter versions of source content. There
are two primary approaches for ATS, including
extractive - which identifies and selects essential
sentences directly from the text, and abstractive -
which generates new content that conveys the orig-
inal meaning (Sharma and Sharma, 2022). Both
techniques play an important role in effectively
condensing information, making it easier to digest
while retaining the core message.

The advance of transformer-based large lan-
guage models (LLMs) has revolutionized ATS.
Through pre-training on extensive amounts of text,
LLMs demonstrate good ability in transfer learn-
ing, few-shot learning, and zero-shot learning and
achieve state-of-the-art performance in both ex-
tractive and abstractive summarization. Language
models like BERT (Devlin et al., 2018) and GPT-
3 (Brown et al., 2020) have been widely used in
understanding and generating text. BERT’s bidi-
rectional architecture is adept at contextual com-
prehension, which is useful for extracting original
text from context. GPT-3, an autoregressive trans-
former, is better at generating abstract contents that
are coherent and contextually relevant to the orig-
inal text. However, clinical summarization is still
challenging due to the complex, specialized vo-
cabulary and long text documents, which hamper
the performance of ATS due to token limitations
and dense information(Karabacak and Margetis,
2023). To address these challenges, hybrid meth-
ods that integrate both extractive and abstractive
techniques are increasingly being used. (Krishna
et al., 2020) proposed a method leveraging the ex-
tractive summarization model’s distill ability to
extract essential information from long documents
and an abstractive summarization pipeline to gener-
ate concise Subjective, Objective, Assessment, and
Plan (SOAP) notes.

Prompt-based learning is another technology
that improved text generation by providing LLMs
with instructional cues embedded in the input data.
‘Hard prompts’ (or discrete prompts) and ‘soft
prompts’ (or continuous prompts) are two types
of prompts used in prompt-based methods. Due
to the labor-intensive nature and potential for mis-
communication between humans and models, hard
prompts often struggle to achieve optimal perfor-
mance in guiding model behavior (Lester et al.,
2021). In contrast, soft prompts, which are em-
beddings that can be optimized during training,

have a better ability to instruct LLMs for ATS. Re-
cent studies have shown that prompt-tuning can
effectively instruct LLMs for various NLP tasks.
P-tuning, a specific form of prompt tuning, further
optimizes trainable continuous vectors to capture
task-specific knowledge without updating model
weights (Liu et al., 2023).

Retrieval augmented generation (RAG) has been
rapidly developing in recent years as a key tech-
nology in advancing LLMs by retrieving relevant
documents through semantic similarity calculation
(Lewis et al., 2020). Recent studies have shown the
effectiveness of RAG for summarization of com-
puter codes in the general domain (Liu et al., 2020;
Parvez et al., 2021). RAG-based summarization
uses a “Retriever” to first identify the sentences
that meet the summarization instructions through
semantic similarity calculation, which will be used
as the input for a “Generator” to generate a shorter
summary. Thus, the “Retriever” and the “Genera-
tor” are the key components.

3 Dataset

The “Discharge Me!” (Xu et al., 2024) challenge
dataset 1 is curated from the MIMIC-IV database
(Johnson et al., 2023) and features over 109,000
ED visits. Each record includes ICD-9 or ICD-
10 diagnosis codes, chief complaints, at least one
radiology report, and a discharge summary with
“Brief Hospital Course” and “Discharge Instruc-
tions”. The dataset was split into training (68,785
samples), validation (14,719 samples), phase I test-
ing (14,702 samples), and phase II testing (10,962
samples) subsets. The phase II testing dataset will
serve as the final test set. All datasets and tables
are derived from the MIMIC-IV submodules.

The challenge focuses on the automated genera-
tion of the “Brief Hospital Course” and “Discharge
Instructions” sections. Table 1 shows the items
from different sources. All sources of data in the
training and validation sets are allowed to use for
model training except the two target sections.

4 Methods

Triggered by the recent RAG-based summariza-
tion methods, we developed a hybrid solution
that is composed of a “Retriever” and a “Genera-
tor”. We fine-tuned an encoder-only clinical LLM,
GatorTron, as the retriever to identify important

1https://physionet.org/content/discharge-me/1.3/
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Discharge summary

PRIMARY:\nCOPD 
Exacerbation\n\

nSECONDARY:\nAfib\
nAnxiety\nHTN\nCAD

1. Acetaminophen 325 
mg PO Q4H:PRN Pain \
n2. albuterol sulfate 90 

mcg/actuation 
inhalation Q4H \...

Ms. ___ is a ___ female 
with history of \nCOPD 

on home O2, atrial 
fibrillation on apixaban, 

hype...

Segment by 

sections

Selected subset 1

Selected subset 2

Original form

Name entity recognition Acetaminophen-
treatment", "Pain - 

Mild-problem", "Fever-
problem", "Citalopram-

treatment", 
"Cyanocobalamin-

treatment"

NER results

Concatenate 

P-tuning

GatorTronGPT

GatorTron

Ms. ___ is a ___ female 
with history of \nCOPD 

on home O2, atrial 
fibrillation on apixaban, 

hype...

Generated results

Figure 1: Overview of our summary generation pipeline

Item Total Count
Visits 109,168
Discharge Summaries 109,168
Radiology Reports 409,359
ED Stays 109,403
ED Diagnoses 218,376

Table 1: Source of Dataset items

clinical concepts, which were used by the Genera-
tor, GatorTronGPT, to generate the target sections.
To reduce the length of the input, we used a rule-
based method to segment the notes into individ-
ual sections. We manually examined several notes
from the training set to identify (1) a subset of sec-
tions that are directly related to the target sections,
and (2) a subset of sections useful but not directly
relevant to the target sections. The input was recon-
structed by concatenating: (1) original text from
the sections directly related to the target sections,
(2) Clinical concepts extracted using GatorTron
from the sections useful but not directly related to
the target sections, and (3) diagnosis descriptions.
To instruct GatorTronGPT to generate target sec-
tions, we explored four strategies by combining
different tuning methods and input construction
methods: (1) traditional fine-tuning using origi-
nal inputs, (2) fine-tuning using our reconstructed
inputs, (3) prompt-based tuning (p-tuning) using
original inputs, and (4) p-tuning using our recon-
structed inputs.

The following sections highlight the approach
that demonstrated the best performance—p-tuning
using both NER results and original texts. This
method integrates several advanced techniques and
models to optimize outcomes. As illustrated in
Figure 1, our best strategy combines the genera-

tive capabilities of state-of-the-art clinical large
language models, the extractive ability of NER sys-
tems, and efficient instruction using soft-prompt
tuning techniques. The experimental results show
that our approach can generate coherent contexts
for the two important clinical sections.

The following subsections describe the models
and methods used in our study, including the model
architectures, training strategies, and evaluation
metrics.

4.1 Large Language Models

GatorTron (Yang et al., 2022), a BERT-style large
clinical language model, pretrained on over 90 bil-
lion words. This extensive corpus included more
than 80 billion words from 290 million clinical
notes sourced from the University of Florida (UF)
Health System, encompassing patient records from
2011 to 2021 across more than 126 clinical depart-
ments and approximately 50 million encounters.
These notes spanned various healthcare settings,
such as inpatient, outpatient, and emergency de-
partment visits.

GatorTronGPT (Peng et al., 2023) is a gen-
erative clinical large language model specifically
developed for medical research and healthcare ap-
plications. It was trained on 277 billion words,
including 82 billion words of de-identified clinical
text from the University of Florida (UF) Health
and 195 billion words of general English text. Uti-
lizing the GPT-3 architecture with up to 20 bil-
lion parameters, GatorTronGPT demonstrated su-
perior performance in biomedical natural language
processing tasks such as relation extraction and
question answering. Prior studies have demon-
strated GatorTronGPT’s capability to generate pre-
cise and contextually pertinent summaries from
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doctor-patient dialogues (Lyu et al., 2024). In this
study, we deploy both the GatorTronGPT-5B and
GatorTronGPT-20B models to further explore their
efficacy in addressing abstractive summarization
tasks.

4.2 Named Entity Recognition
In our approach, we applied Named Entity Recog-
nition (NER) before the abstractive summarization
step to focus LLMs on critical clinical concepts in
the notes. We employed GatorTron, fine-tuned on
the 2010 i2b2 dataset, including annotated concepts
for problems, treatments, and lab tests, to capture
important patient information from clinical notes.
This enhanced the focus of GatorTronGPT on us-
ing important healthcare information to generate
note sections.

4.3 P-tuning for Abstractive Summarization
To enhance the performance of GatorTronGPT
for abstractive summarization, we adopted p-
tuning methods. Specifically, we incorporated
“soft prompts” as trainable variables to instruct
GatorTronGPT. During the tuning process, the
GatorTronGPT weights remain unchanged, and
only the parameters of the soft prompts are up-
dated. This technique involves adding a sequence
of virtual tokens to the input, which are repre-
sented by trainable embeddings dynamically ad-
justed through Multi-Layer Perceptron (MLP) and
Long Short-Term Memory (LSTM) networks.

The P-tuning method allows the model to utilize
its extensive pre-trained weights while fine-tuning
it to a specific task of generating precise and contex-
tually relevant summaries from input texts. Since
only the parameters of the soft prompts were up-
dated in backpropagation and the parameters of
GatorTronGPT were not updated, our solution pro-
vides a cost-efficient solution to instruct LLMs for
ATS.

In this study, we implemented P-tuning using
both GatorTronGPT-5B and GatorTronGPT-20B
models. The training objective is to minimize the
cross-entropy loss, calculated based on the discrep-
ancy between the model-generated summaries and
the gold-standard summaries. This objective en-
sures that the generated summaries are both precise
and contextually relevant.

4.4 Automatic Evaluation
We used the official evaluation metrics released by
the challenge organizers to evaluate our generated

sections. Based on the textual similarity and fac-
tual correctness, including BLEU-4 (Papineni et al.,
2002), Rouge (Lin, 2004), BERTScore (Zhang
et al., 2019), METEOR (Banerjee and Lavie, 2005),
AlignScore (Zha et al., 2023), and MEDCON (Yim
et al., 2023), the final results are scored separately
for each target section (“Brief Hospital Course” and
“Discharge Instructions”), and the mean score for
each metric is calculated across all test samples.
The mean of the scores for each metric across both
target sections is then computed, and the overall
system score is the mean of these metric means.

4.5 Human Evaluation

Three clinicians evaluated a subset of 25 samples
from the test phase. The evaluations using five-
point Likert scale measurements focus on Com-
pleteness, Correctness, Readability, and Holistic
Comparison to the Reference Text. Scores from
the three clinicians were averaged for each sam-
ple and then averaged across the 25 samples. This
yielded seven total scores: four for the Brief Hospi-
tal Course (completeness, correctness, readability,
and overall) and three for Discharge Instructions
(completeness, correctness, and overall).

5 Experiments

5.1 Data Exploration

We manually reviewed a subset of notes from dif-
ferent sources. All the discharge summaries that
contain a “Brief Hospital Course” and a “Discharge
Instructions” section were used. Each visit is de-
fined by a unique “hadm_id” and is associated with
a corresponding discharge summary with at least
one radiology report.

We performed a statistical analysis to determine
the average length and discovered that nearly 15%
percent of discharge summaries exceed the maxi-
mum input length of our generative model. This
finding underscores the need for effective trunca-
tion or summarization strategies to ensure compati-
bility with the model’s input constraints.

5.2 Data Preprocessing

We performed the following steps to facilitate the
model training for generating discharge summary
sections.

5.2.1 Data Segmentation
Segmentation is important to isolate specific nar-
rative blocks relevant to different aspects of target
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Segmented Sections
Chief Complaint
Major Surgical or Invasive Procedure
History of Present Illness
Past Medical History
Social History
Family History
Physical Exam
Pertinent Results
Brief Hospital Course
Medications on Admission
Discharge Medications
Discharge Disposition
Discharge Diagnosis
Discharge Condition
Discharge Instructions

Table 2: Segmentation results for discharge notes sec-
tions

sections. We applied a rule-based method to seg-
ment the discharge summaries into clinical sections,
leveraging the existing structure of clinical notes.
Specifically, we manually created a list of notes
section names to split each section. These sections
included “Chief Complaint”, “Major Surgical or
Invasive Procedure”, “History of Present Illness”,
and several others leading to discharge summary
sections. Table 2 shows the data segmentation re-
sult for the discharge summary.

5.2.2 Data Selection
The “Brief Hospital Course” section is used to syn-
thesize a detailed narrative of the patient’s hospital
stay, emphasizing the sequence of medical events,
interventions, and outcomes. The “Discharge In-
structions” section is used to produce clear and con-
cise guidelines for post-hospital care, ensuring that
instructions are patient-centric, easy to understand,
and aligned with best-practice recovery protocols
(Searle et al., 2023). We manually identified the
note sections that may contain the required infor-
mation for the two target sections. For each target
section, we reviewed randomly sampled notes from
the training set to identify relevant note sections
that contain important information related to the
target section. We divided the selected sections
into two subsets: subset 1, which were processed
by GatorTron to extract important clinical concepts,
and subset 2, which were directly used in the input
as they are directly related to the target sections.
Table 7 in the Appendix provides the sections we

selected for generating the two target sections.

5.2.3 Identify Critical Patient Information
using GatorTron

We fine-tuned the GatorTron model using the
i2b2 2010 challenge dataset following the default
training and test settings. We applied fine-tuned
GatorTron to recognize the following clinical con-
cepts:

• PROBLEM: including clinical conditions,
symptoms, and diagnoses, which identify the pa-
tient’s primary and secondary health issues

• TREATMENT: including procedures, medica-
tions, and other therapeutic interventions, which
detailing the medical and surgical management of
the patient.

• TEST: including diagnostic tests and their re-
sults, which are essential for the diagnosis, moni-
toring, and management of health conditions.

We processed the separated sections individually
to generate a set of clinical concepts for different
sections.

5.3 P-tuning for Note Section Generation

Prompt Construction We constructed a gen-
eral instruction template for fine-tuning the
GatorTronGPT models. The prompts template is
structured as follows: “<|VIRTUAL_PROMPT|>
Input: {input} \n Output:{output}”, where place-
holder “<|VIRTUAL_PROMPT|>” represent soft
prompt which was randomly initialized at the be-
ginning and updated during the p-tuning.

To ensure the generation quality, we carefully
designed an input prompt to focus GatorTronGPT.
Each input prompt begins with clear instructions
to guide the model: “Given the following con-
cepts and text extracted from each section in a dis-
charge summary, generate the section ‘Discharge
Instructions’”. We used this instruction to instruct
GatorTronGPT to generate the target sections prop-
erly.

To integrate the selected sections as input, we
extracted all the clinical concepts using GatorTron
from the selected subset 1 and concatenated them
with commas. Different sections are isolated using
“\n”. The output is the target section specified in
the input instruction, ensuring the model focuses
on generating the appropriate discharge section.
Table 8 in the Appendix shows the input prompt
we construct for different target sections.

Experimental Setting We adopted a grid search
to optimize the hyperparameters, including the
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Target Section Split Original NER Result

Brief Hospital Course
Train 2921 450
Valid 2925 446
Test 2910 445

Discharge Instructions
Train 2921 401
Valid 2925 405
Test 2910 400

Table 3: Average Input Length Among Data Splits

training hyperparameter learning rate, the training
batch size and the P-tuning virtual token length,
and the inference hyperparameter temperature and
the value of top p in nucleus sampling. We used the
training set provided in this challenge to p-tuning
GatorTronGPT. The best models were selected ac-
cording to the cross-validation performances mea-
sured by the overall score based on the evaluation
metrics provided by the challenge. We used the
following parameters in our best performance: a
global batch size of 64, a learning rate of 0.0001,
a virtual token length of 50, a temperature of 0.2,
and a top p of 0.6. All experiments were conducted
using 8 Nvidia A100-80G GPUs.

6 Results

6.1 Extract Clinical Concepts Using
GatorTron

We fine-tuned GatorTron using the 2010 i2b2
datasets to extract problems, treatments, and lab
tests from the selected sections to reduce the input
length. Table 3 compares the average input length
between the original contents, and GatorTron ex-
tracted concepts and compares them with the origi-
nal content. Using GatorTron to extract concepts
reduced the input length by 80% on average.

Table 4 provides an example of the original text
and the GatorTron-extracted concepts. GatorTron
can extract critical concepts with important clini-
cal meaning to facilitate section generation using
GatorTronGPT models.

6.2 Target Note Section Generation
Table 5 compares different strategies to generate
the target note sections. The GatorTronGPT-
20B model consistently outperformed the
GatorTronGPT-5B across all evaluation metrics,
achieving the highest overall score of 0.2885.
Furthermore, p-tuning demonstrated better per-
formance than traditional fine-tuning methods.
Notably, our strategy to combine NER results
with the original text consistently achieved
higher scores across all evaluation metrics for

Original Content NER Result
- prior paramedian pon-
tine infarct (___) \n-
right-sided lenticulos-
triate territory infarct
___\n- Hypertension
as per prior medi-
cal records(patient
denies)\n- Dyslipi-
demia \n- Colon
cancer 2/p right colec-
tomy in ___ with
prolonged\n stuttering
course of adjuvant
chemotherapy (diag-
nosed in setting\nof GI
bleeding)\n- Cholecys-
tectomy for chronic
cholecystitis and
gallstones in\n___\n-
Diverticulosis\n- Hem-
orrhoids

prior paramedian
pontine infarct, right-
sided lenticulostriate
territory infarct,
Hypertension, Dyslipi-
demia, Colon cancer,
right colectomy, ad-
juvant chemotherapy,
GI bleeding, Chole-
cystectomy, chronic
cholecystitis, gall-
stones, Diverticulosis,
Hemorrhoids

Table 4: An example of original content and GatorTron
extracted concepts.

both models under different training strategies.
Both GatorTronGPT-5B and GatorTronGPT-20B
showed remarkable improvements with p-tuning
when using NER results combined with the
original text. GatorTronGPT-20B achieved the best
BLEU score of 0.1211 and BERTScore of 0.3894.

6.3 Generation Result Analysis
Table 9 in the Appendix provides examples gener-
ated by GatorTronGPT and compared with the cor-
responding ground truth. This section delves into
the qualitative aspects of these generation results,
highlighting strengths and areas for improvement.

For the “Brief Hospital Course” section, the text
generated by GatorTronGPT accurately captures
the patient’s conditions and history, showcasing
the model’s ability to understand and summarize
complex medical information. The list format used
in the generated text is concise and clear, making
it easy to identify key information quickly. While
the ground truth uses a narrative format that offers
a more cohesive flow, the list format enhances the
document’s usability in a clinical setting by high-
lighting essential details.

For the “Discharge Instructions” section, the sec-
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Model Strategy Input BLEU-4 Rouge-1 Rouge-2 Rouge-L BERTScore Meteor Align Medcon Overall

GatorTronGPT-5B
FT All Text 0.037 0.163 0.043 0.142 0.293 0.244 0.169 0.280 0.171

FT NER + Text 0.074 0.318 0.125 0.212 0.333 0.252 0.244 0.317 0.234

PT All Text 0.054 0.194 0.039 0.140 0.310 0.287 0.189 0.285 0.187

PT NER + Text 0.082 0.357 0.108 0.235 0.368 0.321 0.257 0.319 0.256

GatorTronGPT-20B
FT All Text 0.050 0.183 0.064 0.169 0.300 0.246 0.174 0.299 0.186

FT NER + Text 0.096 0.340 0.172 0.250 0.379 0.245 0.250 0.344 0.259

PT All Text 0.048 0.267 0.106 0.180 0.279 0.191 0.264 0.333 0.208

PT NER + Text 0.121 0.396 0.179 0.270 0.389 0.299 0.284 0.371 0.289

Table 5: Results of GatorTronGPT using different training strategies (FT: Fine-tuning, PT: P-tuning).

tion generated by GatorTronGPT captured most
of the key information from the ground truth and
covered the admission reasons (nausea, heart fail-
ure), treatment (diuretics), and high blood pressure
medications. The generated result simplifies some
details (e.g., “heart failure exacerbation” instead of
“too much fluid in your body (heart failure)”). This
simplification demonstrates a strength in producing
clear and concise instructions.

6.4 Human Evaluation

The organizer picked up 25 samples from the sub-
mitted results and recruited three clinicians for
manual evaluation. For each sample, the three
clinicians evaluated the Readability, Correctness,
and Completeness using scores from 1 to 5, where
1 indicates the worst score and 5 the best score.
The overall score was derived by calculating the
average score. Table 6 shows the human evalu-
ation scores. For the Brief Hospital Course, we
achieved a Correctness score of 3.3600, indicating
that our content contained few inaccuracies and
was unlikely to impact future care adversely. Ad-
ditionally, the Readability score of 2.7067 shows
that our text, while slightly harder to read than the
reference, maintained a reasonable level of clarity.
For the Discharge Instructions, our Completeness
score of 3.0133 highlights our ability to capture a
significant portion of important information, and
a Correctness score of 3.2933 further underscores
our commitment to accuracy in content.

7 Conclusion

This paper presents a hybrid system developed by
our team in participating in the “Discharge Me!”
Challenge at the BioNLP 2024 Shared Task. We
developed a hybrid system by combining extrac-
tive and abstractive summarization techniques. Our
solution is triggered by the retrieval augmented gen-

Average Score Brief Hospital Discharge
Course Instructions

Overall 1.41 1.79

Completeness 2.48 3.01

Correctness 3.36 3.29

Readability 2.71 -

Table 6: Human Evaluation Results.

eration (RAG) strategy that consists of a retriever
to identify relevant information and a generator to
generate the content. We fine-tuned GatorTron to
recognize important problems, treatments, and lab
tests from clinical notes as the retriever. We ap-
plied a clinical generative LLM, GatorTronGPT, as
the generator to generate the target sections. Our
approach was ranked 5th place among the partici-
pating teams, achieving an overall score of 0.284.

Using a fine-tuned encoder-only LLM,
GatorTron, as the retriever, our system is able
to capture important clinical concepts to reduce
the input length and to focus the generator,
GatorTronGPT, on those important clinical
concepts. This strategy alleviated the challenge
of token limitation in LLMs when dealing with
clinical documents with extensive lengths. By
integrating NER results from selected subset one
with original text from the other selected subset,
the input size was reduced by approximately 80%
on average, which enabled the GatorTronGPT
model to operate more efficiently and effectively.

The human evaluation results offer valuable in-
sights into the quality of the generated discharge
summaries. By conducting an average score from
three clinicians, we got a more unbiased human-
assessed performance of our generation pipeline.
This process guides future enhancements to our
model and data preprocessing methods. Overall,
our study demonstrates the effectiveness of a hy-
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brid approach that leverages both extractive and ab-
stractive techniques in the generation of discharge
summaries. The integration of NER and advanced
generative modeling not only improves the manage-
ability and performance of the task but also ensures
the production of high-quality, contextually appro-
priate summaries.

8 Limitations

We used the 2010 i2b2 dataset to fine-tune
GatorTron to serve as the retriever. However,
the challenge dataset was developed using clinical
notes from a different source, which may hamper
the performance of clinical concept extraction. The
retriever only recognizes three types of concepts:
problems, treatments, and lab tests. If GatorTron
missed some key clinical concepts in the notes,
GatorTronGPT may produce incomplete or inaccu-
rate note sections. Future studies need to examine
more advanced solutions.
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A Appendices

Target Section Selected Note Sections

Brief Hospital Course

Subset 1:
Physical Exam
Pertinent Results
Radiology report
Subset 2:
Chief Complaint
Major Surgical or Invasive Procedure
History of Present Illness
Diagnosis description
Discharge Disposition
Discharge Diagnosis
Discharge Condition

Discharge Instructions

Subset 1:
Pertinent Results
Discharge Medications
Subset 2:
Chief Complaint
Major Surgical or Invasive Procedure
History of Present Illness
Diagnosis description
Discharge Disposition
Discharge Diagnosis
Discharge Condition

Table 7: Selected Note Sections for Target Sections

Target Section Example
Brief Hospital Course <|VIRTUAL_PROMPT|> Input: Given the following concepts and text extracted

from each section in a discharge summary, generate the section “Discharge
Instructions”. \n\n Chief complaint:... Discharge Instructions: \n

Discharge Instructions <|VIRTUAL_PROMPT|> Input: Given the following concepts and text extracted
from each section in a discharge summary, generate the section “Brief Hospital
Course”. \n\nChief complaint: ... Brief Hospital Course: \n

Table 8: Prompt Examples for Target Sections
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Target Section Ground Truth GatorTronGPT Generated Text
Brief Hospital Course It was a pleasure caring for you at ___.

You were admitted for a headache and
for nausea. You were found to have
too much fluid in your body (heart fail-
ure) and this was causing stress to your
heart. We treated you with diuretics
and with medications to improve the
blood flow to your heart. Your blood
pressure was also found to be too high
so we added a new blood pressure med-
ication.

Dear Ms.___, It was a pleasure taking care of you
at ___. You were admitted with nausea and vomit-
ing and found to have a heart failure exacerbation.
You were treated with diuretics and your symptoms
improved. You also had high blood pressure. You
were started on blood pressure medication”

Discharge Instructions Hospitalization Summary: Ms.___ is
an ___ yo ___ F with atrial fibrillation
flutter on dabigatran, coronary artery
disease, diastolic heart failure (LVEF
60% in ___, hypertension hyperlipi-
demia, and vascular dementia who pre-
sented with nausea and headache and
was found to be in acute-on-chronic
diastolic heart failure in the setting of
NSTEMI.

Ms.___ is an ___ with atrial fibrillation/flutter
on dabigatran, coronary artery disease, dias-
tolic heart failure (LVEF 60% in ___, hyperten-
sion/hyperlipidemia, and vascular dementia who
presents with nausea and headache.
# Nausea/vomiting:
# Headache:
# Hypertensive urgency:
# NSTEMI:
# Acute diastolic CHF exacerbation:
# Hypertension:
# Hyperlipidemia:

Table 9: Comparison between GatorTronGPT Generated Text and Ground Truth across Section
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Abstract

This paper presents our contribution to the
Streamlining Discharge Documentation shared
task organized as part of the ACL’24 workshop.
We propose MEDISCHARGE (MEditron-7B
Based Medical Summary Generation System
for DISCHARGE Me), an LLM-based sys-
tem to generate Brief Hospital Course and Dis-
charge Instruction summaries based on a pa-
tient’s Electronic Health Record. Our system is
build on a Meditron-7B with context window
extension, ensuring the system can handle cases
of variable lengths with high quality. When
the length of the input exceeds the system in-
put limitation, we use a dynamic information
selection framework to automatically extract
important sections from the full discharge text.
Then, extracted sections are removed in increas-
ing order of importance until the input length
requirement is met. We demonstrate our ap-
proach outperforms tripling the size of the con-
text window of the model. Our system obtains
a 0.289 overall score in the leaderboard, an im-
provement of 183% compared to the baseline,
and a ROUGE-1 score of 0.444, achieving a
second place performance in the shared task.

1 Introduction

In modern healthcare, the electronic health record
(EHR) is a fundamental part of clinical practices
as it ensures the documentation of a patient’s med-
ical journey. Essential to this record are the clin-
ical notes seriously crafted by physicians post-
consultation. These notes encapsulate crucial de-
tails ranging from the patient’s reason for the visit
to their medical history, symptoms, diagnosis, and
recommended treatment plan (Uslu and Stausberg,
2021). Acting as vital components within the
EHR, clinical notes foster effective communication
among healthcare providers, offer legal protection,
and ensure continuity of care (Hay et al., 2020).

However, despite their important role, clinical
notes impose a substantial time burden for physi-

cians. Recent research in the U.S. has revealed that
physicians spend an average of 1.77 hours daily on
documentation tasks outside of consultation hours
(Gaffney et al., 2022). This extensive time invest-
ment contributes to pressing healthcare issues such
as clinician burnout, excessive workloads, and un-
derstaffing (Gesner et al., 2019; Moy et al., 2021).

One area where clinicians encounter notable
time constraints is in the creation of discharge sum-
maries and hospital course summaries. Crafting
these summaries to be both concise and comprehen-
sive demands considerable effort. To address this
challenge, there is a pressing need to streamline the
summary generation of these sections. People try to
use machine learning to automate these summaries,
but all face the difficulty of models with limited
abilities, domain-specific terminologies, and rea-
soning over specialized knowledge (Hu et al., 2020;
Ive et al., 2020; Tang et al., 2023).

BioNLP ACL’24 Shared Task on Streamlining
Discharge Documentation focuses on solving the
summarization challenges. In this competition,
participants worked with a dataset derived from
MIMIC-IV, covering 109,168 Emergency Depart-
ment (ED) visits. Each patient visit record en-
compasses several key components: the chief com-
plaints logged by the ED, diagnosis codes (either
ICD-9 or ICD-10), at least one radiology report,
and a comprehensive discharge summary. The dis-
charge summary includes vital sections "Brief Hos-
pital Course (BHC)" and "Discharge Instruction
(DI)". The main objective of this competition is to
automate the generation of these two essential sec-
tions of the discharge summary (Xu et al., 2024).

To solve this shared task, we propose MEDIS-
CHARGE, a fully automatic system based on
Meditron-7B (Chen et al., 2023) with context win-
dow extension for generating BHC and DI sections
according to the patient’s EHR. The model with
a longer context window size helps our system
process the full text of most long-context cases.
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Next, we propose a dynamic information selec-
tion framework that can improve the robustness
of the system since it can prune EHRs with very
long context to fit a limited context window size.
We conduct a comprehensive evaluation of our
system on the full phase II test set. In the com-
petition, our system obtained an overall score of
0.289 on a held-out subset of this test set, improv-
ing over the official baseline (0.102) by 183% rel-
atively. We make our code available at https:
//github.com/HAOTIAN89/MEDISCHARGE.

2 Related Work

Automation of Clinical Text Documentation.
With the development of Natural Language Pro-
cessing (NLP), the automation of clinical documen-
tation has gradually received attention due to its
huge application value. At early stages, rule-based
NLP approaches have been employed to extract spe-
cific information from free-text clinical notes and
populate structure fields within the EHR (Meystre
et al., 2008; Demner-Fushman et al., 2009). Ma-
chine learning and deep learning techniques such as
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and transformers (Vaswani
et al., 2017) have shown promise in generating sim-
ple clinical summaries (Hu et al., 2020; Ive et al.,
2020). The appearance of large language mod-
els (LLMs) has brought unprecedented changes
(Achiam et al., 2023; Ouyang et al., 2022), and
demonstrated potential strong capabilities in clini-
cal text summarization (Van Veen et al., 2023).

Medical Pretrained Large Language Model.
The amazing performance of LLMs mainly de-
pends on the large amount of knowledge learned
in the pretraining stage. Given the uniqueness of
medical knowledge, there is substantial research
focused on medically specialized pretrained LLMs.
Early work, like BioBert, focused only on pretrain-
ing BERT with large-scale biomedical corpora (Lee
et al., 2020; Gu et al., 2021). However, the perfor-
mance of these models was limited by the small
scale of the base model. An increasing number of
larger medical LLMs have emerged with time, like
PMC-LLaMA with 7B and 13B parameters size
(Wu et al., 2023), Meditron with 7B and 70B pa-
rameters size (Chen et al., 2023), or the model with
currently best performance PaLM-2, with 540B
parameters size (Anil et al., 2023). In our system,
Meditron-7B is selected as the pretrained LLM to
do finetuning for medical summarization.

Figure 1: Full discharge text and inputs

Context Window Extension. Currently there
are two main popular methods for LLM context
window extension, one is Sliding Window Atten-
tion (SWA) from Mistral-7B (Jiang et al., 2023),
and the other is position interpolation based on Ro-
tary Position Embedding (RoPE) (Su et al., 2024).
Although SWA can provide an extensive context
window, theoretically, this method faces certain
limitations as the model can utilize only a local
window of restricted length at any given time. Be-
cause of this, RoPE attracted more attention, since
its context window is extended actually and easy
to use (Kaddour et al., 2023; bloc97, 2023).

3 The MEDISCHARGE System

Our proposed MEDISCHARGE system is an LLM-
based system for the automatic generation of dis-
charge summary sections from relevant key com-
ponents of clinical EHRs (see Fig.2). Our system
consists of three parts: (1) Section Extraction, (2)
Instruction Fine-tuning Medical LLM, and (3) Ro-
bust Inference. We aim to utilize LLMs and refine-
ment techniques to create summaries that ensure
factual accuracy in alignment with EHRs and pre-
serve the textual style of clinicians.

3.1 Extraction Method
To streamline the pipeline while achieving a sub-
stantial level of performance and efficiency, we
design our system to operate on the full discharge
summary text (excluding the target BHC and DI).

697



Name: _      Unit No: _

Admission Date: _

Date of Birth: _

Sex: F

Service: ORTHOPAEDICS

Allergies: omeprazole / 
Iodine and Iodide ......

Attending: _

Chief Complaint: Left hip pain

History of Present Illness:
REASON FOR CONSULT - 
Femur fracture ......

Past Medical History:
- GERD
- Hypercholesterolemia
......

Social History:
......

Raw Text

Extraction  Discharge Text

Extracted Text

Sex F

Service ORHTOPAEDICS

Allergies omeprazole

Chief Complaint Left …

Past Medical History …

Pertinent Results None

Discharge Medications …

Discharge Diagnosis …

Discharge Condition …

+11 others

+6 others

You are a AI medical 

assistant. Your task is to 

write the brief hospital 

course / discharge 

instruction according to  

the following hospital 

discharge.

Prompt

Sex F

Service ORHTOPAEDICS

Allergies omeprazole

Chief Complaint Left …

Past Medical History …

Pertinent Results None

Brief Hospital Course:

or 

Discharge Instructions:

MeDischarge

Medical
Summary

Figure 2: Overview of MEDISCHARGE. The raw full discharge text is the system input. First, all useful sections
are extracted and combined to form new potential input. If this input is too long, our dynamic information selection
framework then refines it by removing sections in increasing order of importance. Finally, the prompt will be put
into an instruction fine-tuning Meditron-7B to summarize the BHC and DI, respectively.

Based on its position in the entire EHR, the dis-
charge summary already contains the majority of
the information required. Given that LLM infer-
ence is very expensive, using the summary also
proves to be a more economical approach. This
strategy allows us to efficiently utilize the rich fea-
tures and details of the EHR while keeping compu-
tational costs manageable.

We identify 17 main sections (Fig.1) within the
full discharge text by grouping consecutive sections
and disregarding some sections. The extraction pro-
cess encounters some challenges due to the incon-
sistencies in section headers, including variations
in capitalization and blank headers. For instance,
we find 13 different header variants for the section
Physical Exam. Additionally, a section may appear
twice if it is also a subsection of another. Our fi-
nal extraction method involves a linearly ordered
search of each section within the full text using
regex matching patterns. A section is delimited by
its header and the header of the next section.

We first use specific algorithm to collect all sec-
tion header candidates (For more details, please see
Appendix A). Upon identifying all headers for each
section, the extraction process follows a specific
paradigm: a section commences at one of its head-
ers and concludes immediately before the headers
of the next section, as shown in Algorithm 1. This

Algorithm 1 Algorithm for section extraction
Input: A full text discharge
1: current_discharge← full text discharge
2: found← False
3: discharge_sections← {}
4: start_headers← []
5: found← False
6: for section in all_sections do
7: if start_headers is empty then
8: start_headers = headers[section]
9: for next_section in next_sections[section] do

10: for start_header in start_headers do
11: for end_header in headers[next_section] do
12: s_text← find_pattern(
13: start_header ... end_header)
14: in current_discharge
15: if s_text then
16: start_header← [end_header]
17: found← True
18: discharge_sections[section]← s_text
19: current_discharge←
20: current_discharge[(end_header):]
21: Break
22: if found then
23: Break
24: if found then
25: Break
26: if not found then
27: discharge_sections[section]← "None"
28: found← False
29: return discharge_sections
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enables precise extraction of sections while ensur-
ing no loss of text even if a header is not found or
even a entire section is ignored.

3.2 Medical LLM with Context Extension

Scaling up language models has been shown to im-
prove performance across numerous downstream
tasks. As the size of the model increases, there
is a greater chance of reaching a level where the
phenomenon of Emergence occurs, where quanti-
tative changes lead to qualitative shifts in behavior
(Wei et al., 2022). Thus, by designing a generation
system driven by LLMs, we aim to tackle complex
shared tasks that are difficult for smaller models.
There is also substantial evidence indicating that
models pretrained in specific domains significantly
outperform general-purpose models in the same do-
main tasks (Cui et al., 2023; Wu et al., 2023; Yang
et al., 2023). Therefore, we select Meditron-7B,
which is currently one of the best open-source med-
ically pretrained LLM, with a 7B parameter scale,
as our core component of the system for medical
text summarization (Chen et al., 2023). We also
use the Megatron-LLM, an efficiently distributed
LLM trainer, to finetune our model as described in
Meditron’s technical report (Cano et al., 2023).

Figure 3: The input token distribution for the whole
dataset (train, valid, and test set). Most samples are
between 1000 to 5000. The distribution has a long tail
that stretches rightwards towards higher token counts.

Additionally, we lift the limitation of the 2K
fixed context window of Meditron-7B such that
medical electronic files with longer text can fit in
the model (Fig.3). We apply position interpolation
by manipulating the RoPE positional embedding
(Su et al., 2024) to effectively leverage the posi-
tional information, increasing the context window
from 2K to 6K. The updated model is able to reason
over more details of the EHR, effectively reducing
the hallucination issue of LLMs and thus generat-
ing more factual summary sections.

3.3 Dynamic Information Selection

The dynamic information selection framework
plays an important role in robust model inference
under diverse cases. Once an LLM is deployed,
further updating will be challenging, meaning that
the context window size will remain fixed (Gao
et al., 2023). When the length of a patient’s EHR
information exceeds the maximum length that the
system can accept, the most important information
will be selected to maximize utility. We explore the
optimal selection method through behavior-based
and result-based analyses and propose our final
selection framework based on the findings.

3.3.1 Behavior-Based Analysis
We apply behavior-based analysis to determine rel-
evance. We emulate clinicians’ behavior in writing
medical summaries to prioritize and select the most
informative parts when facing the length limitation.
We observe that clinicians often directly copy some
important sentences or medical examination data
from the EHRs to the summary without any modi-
fication (we show some examples in Appendix B).
To measure the prevalence of direct reference in
different sections, we use ROUGE-2 (Lin, 2004),
since it focuses on recall, and computes scores at
the word level rather than the embedding level.

ROUGE2 =

∑
s∈{Ref}

∑
bi∈sCountmatch(bi)∑

s∈{Ref}
∑

bi∈sCount(bi)

To assess the order of importance of the sec-
tions that should be included in the BHC input,
we compute the average ROUGE-2 score between
each of the first 11 sections and the reference BHC.
Similarly, we compute the same metric between
all 17 sections and the reference DI to figure out
the section importance order for the DI input. The
higher score reveals which sections have a stronger
direct reference to the summary target, meaning
clinicians are more likely to refer to these parts
when writing summaries.

The results show a clear pyramid-shaped distri-
bution (Fig.4 and 5), where most sections have no
direct reference value to the target summary. In
contrast, a small number have an obvious reference
value. For both BHC and DI, History of Present
Illness has the highest direct reference score, espe-
cially in BHC, where it reaches 8.33. The sections
located in the middle of the pyramid have a certain
degree of differentiation. Pertinent Results and Past
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Family History
Social History
+ 6 others

1History of Present Illness

Pertinent Results
Past Medical History

8.33

2.62 - 1.52

0.70 - 0

1

2

3

Figure 4: Pyramid of importance order for BHC

Major Surgical Procedures
Sex
+ 9 others

1History of Present Illness

Discharge Condition
Discharge Diagnosis
+ 3 others

1.97

1.26 - 0.61

0.27 - 0

1

2

3

Figure 5: Pyramid of importance order for DI

Medical History are two sections that have a posi-
tive direct contribution to the target BHC. For DI,
more sections are in the middle. Most of these sec-
tions appear after the BHC summary in the original
unprocessed full text, such as Discharge Condition
and Discharge Diagnosis. The sections at the bot-
tom of the pyramid are not directly referenced for
the writing of the summaries, so their priority will
be lowered in the final decision of which sections
to include. Full table results are in appendix C.

3.3.2 Result-Based Analysis
To better drive the dynamic information selection,
we perform an ablation study to assess the influ-
ence of excluding specific sections on the perfor-
mance metrics of discharge summary generations
within the MEDISCHARGE system. Table 1 and
2 present the performance variations when com-
pared to a baseline method that utilizes all sections.
The experiment is carried out on a subset of dataset
using Meditron-7B with 6K context window exten-
sion. These results are instrumental in developing
a robust section selection strategy for optimizing
system performance in constrained scenarios.

Marginal changes (less than 1%) in overall score
may not reliably signify an impact from section
removal due to the inherent variability in model
performance and the small effect size. However,

Sections removed Overall Gain (%)

1 past medical history 0.2414 0.53
2 family history 0.2413 0.46
3 social history 0.2406 0.2
4 - 0.2401 0
5 physical exam 0.2375 -1.08
6 major surgical procedures 0.2318 -3.47
7 pertinent results 0.2293 -4.53
8 history of present illness 0.2262 -5.82

Table 1: BHC overall score gains compared to the base-
line depending on the sections removed

Sections removed Overall Gain (%)

1 - 0.2870 0
2 medication on admission 0.2853 -0.59
3 discharge disposition 0.2832 -1.32
4 history of present illness 0.2829 1.41
5 discharge medications 0.2736 -4.67
6 discharge condition 0.2714 -5.42
7 physical exam 0.2713 -5.47
8 discharge diagnosis 0.2669 -6.99

Table 2: DI overall score gains compared to the baseline
depending on the sections removed

these minor variations still provide a qualitative
understanding of section importance. Notably, sec-
tions such as Physical Exam, Pertinent Results, His-
tory of Present Illness, and Discharge Diagnosis
exhibit large negative gains when omitted, ranging
from -1.08% to -6.99% as shown in both tables.
This suggests a substantial contribution of these
sections to the overall accuracy and completeness
of the generated discharge summaries.

Thus, while minor gains or losses might not con-
stitute statistical significance, they do establish a
hierarchy of importance among the sections. Sec-
tions leading to high negative gains, when omitted,
are evidently crucial and should be prioritized in
the dynamic information selection framework of
the MEDISCHARGE system, particularly when
operating under limitations such as fixed context
windows or partial data availability.

3.4 Final Decision

Combining the results of the behavior-based and
result-based analyses, we rank the sections by
their importance in Table 4. Following this order,
MEDISCHARGE extracts and integrates the im-
portant sections into the input. If the combination
of the sections exceeds the model’s context window
size, sections with lower importance are removed
based on the rank until the input can fit into the
model. For details on the dynamic information
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BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore METEOR AlignScore MEDCON Overall

BHC-Methods Brief Hospital Course

Llama2-7b-2k 0.025 0.304 0.068 0.132 0.246 0.195 0.199 0.628 0.225
Meditron-7b-2k 0.040 0.322 0.098 0.165 0.300 0.183 0.223 0.645 0.247
Meditron-7b-2k-s 0.050 0.353 0.115 0.185 0.333 0.201 0.232 0.666 0.267
Meditron-7b-d6k 0.044 0.353 0.113 0.185 0.341 0.188 0.222 0.668 0.264
Meditron-7b-i6k 0.061 0.380 0.121 0.185 0.349 0.243 0.245 0.696 0.285
MEDISCHARGE 0.061 0.381 0.121 0.186 0.351 0.242 0.246 0.697 0.286

DI-Methods Discharge Instructions

Llama2-7b-2k 0.026 0.270 0.062 0.130 0.189 0.222 0.222 0.536 0.207
Meditron-7b-2k 0.061 0.362 0.138 0.226 0.345 0.232 0.282 0.633 0.285
Meditron-7b-2k-s 0.088 0.418 0.177 0.268 0.402 0.281 0.341 0.674 0.331
Meditron-7b-d6k 0.074 0.400 0.170 0.265 0.399 0.239 0.337 0.658 0.318
Meditron-7b-i6k 0.099 0.416 0.186 0.275 0.402 0.285 0.363 0.670 0.337
MEDISCHARGE 0.103 0.428 0.194 0.284 0.417 0.290 0.370 0.683 0.346

Table 3: The performance of our system with different methods on the full Test Phase II set. Llama2-7b and
Meditron-7b refer to the base models in our system. 2k, d6k and l6k show the maximum sequence input of the
model, where d6k means using "Dynamic NTK" interpolation method and i6k means using linear interpolation
method, both to extend the context window to 6K. s refers to the proposed dynamic information selection framework.
Otherwise, it uses a simple truncation strategy.

selection algorithm, please see the appendix D.

BHC DI

sex sex
service service
chief complaint chief complaint
history of present illness discharge diagnosis
pertinent results discharge condition
physical exam discharge medications
major surgical procedures physical exam
allergies history of present illness
family history discharge disposition
social history medication on admission
past medical history

Table 4: Importance section orders for BHC and DI.
We just put sex, service and chief complaint on the top
because they are always very short.

4 Experiments

4.1 Experimental Setups

We utilize the shared task dataset derived from
MIMIC-IV’s submodules, i.e., MIMIC-IV-Note
(Johnson et al., 2023b), and MIMIC-IV-ED (John-
son et al., 2023a). In the dataset, each patient’s
visit information is represented by a unique number,
which is associated with several medical records.
The dataset comprises four subsets: training, vali-
dation, phase I testing, and phase II testing. Details
on the subsets are listed in Table 5. We use the
phase II testing dataset to evaluate our system.

We adopt the evaluation metrics suggested by
the organizers of the competition. We use BLEU-
4 (Papineni et al., 2002), ROUGE-1, -2, -L (Lin,

2004), BERTScore (Zhang et al., 2019) and ME-
TEOR (Banerjee and Lavie, 2005) as basic met-
rics to measure the similarity between our gen-
erated text and the ground truth. We also use
AlignScore (Zha et al., 2023) and MEDCON (Yim
et al., 2023) as task-specific metrics. AlignScore
checks whether the generated text is factually con-
sistent with the medical records, and MEDCON is
a medical-concept-based metric to gauge the accu-
racy and consistency of clinical concepts.

Dataset Samples Competition Paper

Training 68,875 Yes Yes
Validation 14,719 Yes Yes
Testing I 14,702 Yes No
Testing II 10,962 Yes Yes

Table 5: Dataset summary

4.2 Training Details
We experiment with Llama2-7B and Meditron-7B
with and without linear extension. We train all of
them on samples whose lengths are within the mod-
els’ context windows. The main hyper-parameters
are identical for the first two models. We set the
max_length = 2048, use an AdamW optimizer
with β1 = 0.9, β2 = 0.95, eps = 10−5 and co-
sine learning rate schedule with 10% warmup ra-
tio and learning rate of 2 × 10−5, weight decay
0.1, micro_batch_size 8 and macro_batch_size 64
for 3 epochs. For the linear extension one, we
increase max_length to 6144, and reduce the mi-
cro_batch_size from 8 to 2 due to the limited GPU
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VRAM. All training runs are on 8 NVIDIA A100
80G GPUs.

4.3 Results

We show our system’s main performance on gen-
erating BHC and DI in Table 3. For both BHC
and DI generation, our proposed system MEDIS-
CHARGE (Meditron-7B employs a linear exten-
sion to 6K with a dynamic information selection
framework) outperforms the baseline with a large
margin across all metrics, showing 27% and 67%
relative improvements on BHC and DI respec-
tively. Under the same configurations, the medical
LLM (Meditron-7B) outperforms the general LLM
(Llama2-7B) in fine-tuning tasks. Especially, the
performance on DI generation increases by 38%.
Dynamic and linear context window extensions
both have significant increases on two tasks, and
the linear one always be better (0.021 absolute gap
in BHC and 0.019 in DI between two methods).
Our results also suggest our proposed dynamic in-
formation selection framework is more beneficial
than direct truncation when the length of the origi-
nal full text is larger than the model’s context win-
dow size. We show that this method improves both
BHC (8% increase) and DI (16% increase) perfor-
mances. Note that in DI, our selection framework
even achieves a larger improvement (59.9%) than
dynamic context window extension (53.6%). How-
ever, we observe that applying dynamic informa-
tion selection to a model with a 6K context window
shows marginal improvement. We hypothesize the
benefit can be limited because a 6K context window
can process most of the full text.

4.4 Section Selection Analysis

Here, we analyze the difference in performance
between our dynamic information selection and
the truncation method for the 2K and 6K context
windows. Note that for each task, the truncation
method cuts the full input text (see Fig.1) starting
from the end until it fits the max input length.

4.4.1 Discharge Instruction
In Figure 6 for the dynamic information selection
to DI, almost all sections are selected under a 6k
context window. But for the model with only a 2K
context window, the dynamic information selection
works heavily, where it generates a total of 127
different kinds of section combinations on all test
sets. The discharge input sections are mostly at
the end of the full input text (where the truncation

starts), which explains well why a heavy truncation
has a greater effect on the DI generation model
performance (both 2K and 6K) in Table 3.

Figure 6: The number of section combinations (log
scale) happened in the DI generation.

4.4.2 Brief Hospital Course
As shown in Figure 7, the dynamic information
selection always generates three kinds of section
combination (the first, 32nd, and 33rd ones) for the
model with 6K context window, which actually is
all sections, all sections without physical exam and
pertinent results respectively. Since these sections
are at the end of the brief hospital course input, it
makes sense that these combinations have a similar
effect as direct truncation. Therefore the slight
performance differences between truncation and
dynamic information selection are to be expected.

On the other hand, for the 2K context window
on the BHC generation, the section combinations
are more spread out (see Fig.7). The sections kept
mostly by our framework are the pertinent results
and physical exam. However, both of them are easy
to remove under simple truncation as they are at the
end of our full-text input. Since these are the most
important sections for BHC according to Table 3,
it well explains why the dynamic information se-
lection outperforms truncation for the model with
a 2K context window.

Figure 7: The number of section combinations (log
scale) happened in the BHC generation.

4.5 Human Evaluation

We also do the human evaluation with the help of
three clinicians on the high quality and representa-
tive 25 samples selected by the shared task organiz-
ers. Our generated sections will be evaluated for
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their Completeness, Correctness, and Readability.
The detailed criteria is shown in the appendix E,
and the results are in table 6.

Completeness Correctness Readability

BHC 3.5 3 2.5
DI 3.5 3.5 NA

Table 6: Human evaluation result. The score is from 1
to 5, and we adjust the accuracy to 0.5 for easy reading.
The Readability of Discharge Instruction aims for pa-
tients, so we didn’t consider it in this evaluation.

In the human evaluation, the BHC and DI gen-
erated by our system achieve good performance in
both Completeness and Correctness, which means
that our generated text contains most of the im-
portant information from the EHR, and the incor-
rect content will not impact future care most of
the time. Additionally, the score of Readability in
BHC shows our text sometimes is slightly harder
to read than the ground truth, which is most likely
due to the lack of reinforcement learning of human
feedback on our model. We would like to improve
it by DPO (Rafailov et al., 2024) if having chances
to get a suitable dataset. In summary, this result
shows that the current system could replace clin-
icians in discharge summary writing to a certain
extent and has great potential to completely free
them from this time-consuming task in the future.

5 Qualitative Analysis

In addition to quantitative analysis based on differ-
ent metrics, we also review specific cases manually
to intuitively assess whether the generated sum-
maries are of high quality and could potentially aid
or substitute clinicians in real-life scenarios. Here
is one DI generated example, and more example
cases are in the appendix F.

Ground Truth: Dear Mr. ___,
It was a pleasure participating
in your care at ___. You
were admitted to the hospital
with chest pain from a heart
attack. You had stents placed
in your coronary arteries and
your symptoms improved. It is
very important that you take
all of your medications as
prescribed and follow up with
your primary care doctor and your
new cardiologist as scheduled. It

is extremely important that you
continue to take your aspirin and
plavix every day until otherwise
instructed by your cardiologist
in order to prevent your stents
from closing.

Generated Text: Dear Mr. ___, It
was a pleasure taking care of you
at ___. You were admitted with
chest pain and found to have had
a heart attack. You were taken
to the cardiac catheterization
lab where two blockages in your
coronary arteries were found and
stents were placed. It is very
important that you take aspirin
and plavix every day for at least
one year after your procedure. Do
not stop these medicines or miss
any doses unless Dr. ___ that it
is OK to do so. It is also very
important that you quit smoking
as this will help your heart heal
after the procedure and prevent
future heart attacks.

For DI, both texts address the key elements of
the discharge information, including the most rel-
evant details to this case, i.e. the patient’s heart
attack and placement of stents in the coronary ar-
teries. They emphasize the importance of contin-
uing medication, specifically mentioning aspirin
and plavix, which are crucial for preventing clot
formation on the stents. However, the generated
text provides more detailed guidance on medica-
tion duration and lifestyle changes than the ground
truth, which could potentially enhance patient com-
pliance and outcomes.

6 Conclusion

The research presented in this paper highlights
the significant advancements made by MEDIS-
CHARGE system in the field of automated dis-
charge summary generation at ACL’24 BioNLP
Shared Task on Streamlining Discharge Documen-
tation. The experiment results demonstrate that our
system with efficient information usage and good
costs management achieves a great performance
improvement of 183% compared to the baseline,
and is able to efficiently generate concise and med-
ically accurate discharge summaries, markedly re-
ducing the burden on healthcare professionals. The
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adoption of an LLM, specifically pretrained for
medical data, can better complete medical sum-
marization tasks than a general fundamental LLM.
Furthermore, the dynamic information selection
framework we proposed shows a robust task infer-
ence ability, significantly outperforming the simple
truncation strategy and even dominating the con-
text window extension method across several NLP
metrics.

7 Limitation

While our proposed MEDISCHARGE framework
has demonstrated significant achievements, we ar-
gue that there several some limitations should be
noticed.

Currently, MEDISCHARGE is designed to pro-
cess and generate summaries only in English. This
restricts its applicability in diverse linguistic set-
tings, which is critical in global healthcare environ-
ments where multilingual support could enhance
both the utility and accessibility of automated dis-
charge summaries.

Due to the high costs associated with human
annotation, our evaluation of the model’s output
through clinician reviews is limited to only 25
specific samples selected by competition organiz-
ers. This sample size may not fully represent the
model’s performance across a wider range of dis-
charge summaries.

Another concern is that the current implemen-
tation of MEDISCHARGE is limited to produc-
ing text-based documents only. It does not have
the capability to integrate or produce image-based
content, which can be an essential component of
certain medical summaries, such as those including
anatomical diagrams or graphical patient data.
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A Extraction Method Paradigm

The extraction of the sections proves challenging. It
first requires an iterative identification of the differ-
ent section headers as shown in the algorithm 2. We
perform this run on a subset of the discharges only
and hence we may have missed some header. As an
example here are the different headers we find for
the section Discharge Medications: [’Discharge
Medications:’, ’Discharge medications:’,
’___ Medications:’, ’___ medications:’]
; here the Section Basic Name is [’Discharge
Medications:’ and is the first header we consider
for this section.

Algorithm 2 Algorithm for section header identifi-
cation
Input: A section
1: section_headers← [Section Basic Name]
2: found← False
3: for discharge in all_discharges do
4: for header in section_headers do
5: if header in discharge then
6: found← True
7: break
8: if not found then
9: Manually look for a new section header

10: if new_header found then
11: Add new_header to section_headers
12: found← False
13: return section_headers

B Direct Copy Examples in Summary

The examples provided below demonstrate how
some text from the original raw sections is inte-
grated in the BHC with minimal to none modifica-
tions. The raw text included for both examples are
taken from the History of present illness section.

Example 1:

Raw text: This is a ___ yo
f with h/o recently diagnosed
metastatic cancer of unknown
prior presenting with nausea,
vomiting, and fever to 101 today.

Ground Truth BHC: ___ yo f
with h/o recently diagnosed
metastatic cancer of unknown
primary presenting with nausea,
vomiting, and fever to 101 on day
of admission.

Example 2:

Raw text: ___ with HTN,
HLD, & recurrent SVT on
Flecainade/Toprol p/w CP/SOB
and lightheadedness, found to
be hypotensive with intermittent
SVT without ischemic EKG changes
or positive biomarkers, now
admitted to the CCU for planned
EP ablation.

Ground Truth BHC: ___ with
HTN, HLD, & recurrent SVT on
Flecainade/Toprol who presented
with CP/SOB and lightheadedness,
found to be hypotensive with
intermittent SVT without
ischemic EKG changes or positive
biomarkers, admitted to the CCU
for planned EP ablation.

C Full Tables of Direct Reference

D Dynamic Section Selection Algorithm

Extracting all sections enables intentional selec-
tion of sections for inclusion in our input, pro-
moting consistency. By choosing a predefined set
of sections, we ensure adherence to a standard-
ized order (as shown in Fig.1) and consistent head-
ers, which contrasts with the inherent variability
of raw text. Furthermore, it establishes a consis-
tent method for indicating missing sections: using
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Algorithm 3 Algorithm for dynamic section selection
Input: All extracted sections, Section importance list, max length
1: extract← All extracted sections
2: importance← Section importance list
3: max← max length
4: Tokenize each section in extract
5: total_Length← sum of tokenized section lengths in extract
6: if total_Length ≤max then
7: return extract
8: else
9: return TRY(extract, importance, max, [])

10: procedure TRY(Allsections, importanceList, max_length, removedSoFar)
11: for i = length of importanceList− 1 to 0 step −1 do
12: currentSection← importanceList[i]
13: newRemovedList← removedSoFar + [currentSection]
14: remainingSections← Allsections excluding newRemovedList
15: newTotalLength← sum of tokenized section lengths in remainingSections
16: if newTotalLength ≤ max_length then
17: return remainingSections

18: TRY(Allsections, importanceList[0 : i], max_length, newRemovedList)

Section ROUGE-2
History of Present Illness 0.01967
Discharge Condition 0.01263
Discharge Diagnosis 0.00939
Discharge Medications 0.00777
Pertinent Results 0.00673
Chief Complaint 0.00613
Past Medical History 0.00274
Physical Exam 0.00270
Major Surgical Procedures 0.00217
Medication on Admission 0.00173
Family History 0.00089
Discharge Disposition 0.00029
Allergies 0.00005
Social History 0.00004
Facility 0.00000
Service 0.00000
Sex 0.00000

Table 7: DI Direct Reference

’Header:\nNone\n’ instead of various representa-
tions like ’___’, empty spaces, or simply the ab-
sence of the header commonly found in raw inputs.
We then create our input by concatenating the de-
sired sections. Even if a section is not chosen for
inclusion in specific samples but was generally in-
cluded for the subsequent experiment (like we do in
strategy selection), ’Section Header:\nNone\n’
is still included at the right spot to maintain consis-
tency in input structure.

E Human Evaluation Criteria

The details of human evaluation criteria are here.

Section ROUGE-2
History of Present Illness 0.08329
Pertinent Results 0.02621
Past Medical History 0.01515
Physical Exam 0.00702
Major Surgical Procedures 0.00575
Chief Complaint 0.00538
Family History 0.00180
Social History 0.00011
Allergies 0.00004
Sex 0.00000
Service 0.00000

Table 8: BHC Direct Reference

• Completeness (captures important informa-
tion)

– Captures no important information (1)
– Captures ∼25% of the important infor-

mation (2)
– Captures ∼50% of the important infor-

mation (3)
– Captures ∼75% of the important infor-

mation (4)
– Captures all of the important information

(5)

• Correctness (contains less false informa-
tion)

– Contains harmful content that will defi-
nitely impact future care (1)

– Contains incorrect content that is likely
to impact future care (2)
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– Contains incorrect content that may or
may not impact future care (3)

– Contains incorrect content that will not
impact future care (4)

– Contains no incorrect content (5)

• Readability

– Significantly harder to read than the ref-
erence text (1)

– Slightly harder to read than the reference
text (2)

– Neither easier nor harder to read than the
reference text (3)

– Slightly easier to read than the reference
text (4)

– Significantly easier to read than the ref-
erence text (5)

F Generated Examples

BHC Generated Example

Ground Truth: The patient
presented to the emergency
department and was evaluated
by the orthopedic surgery team.
The patient was found to
have a right femoral neck
fracture. Given his progressive
pain, decreased functionality,
and the operative nature of
his injury, L discussion was
had with the patient using an
interpreter regarding the risk
and benefit of the surgery. After
discussing the operation with
his family he understood not
only the risks, but also the
benefits that he could expect
from this operation. He was
then admitted to the orthopedic
surgery service. The patient
was taken to the operating room
on ___ for closed reduction
and percutaneous pinning of the
right femoral neck, which the
patient tolerated well. For full
details of the procedure please
see the separately dictated
operative report. The patient
was taken from the OR to the
PACU in stable condition and

after satisfactory recovery from
anesthesia was transferred to the
floor. The patient was initially
given IV fluids and IV pain
medications, and progressed to a
regular diet and oral medications
by POD#1. Despite narcotic
medications being made available
to him, he manage his pain
control with only acetaminophen.
The patient was given ___
antibiotics and anticoagulation
per routine. The patient’s
home medications were continued
throughout this hospitalization.
The patient worked with ___
who determined that discharge to
**** was appropriate. The ___
hospital course was otherwise
unremarkable.

Generated Text: The patient
presented to the emergency
department and was evaluated by
the orthopedic surgery team. The
patient was found to have a
right femoral neck fracture and
was admitted to the orthopedic
surgery service. The patient
was taken to the operating room
on ___ for closed reduction and
percutaneous pinning of his right
femoral neck, which the patient
tolerated well. For full details
of the procedure please see
the separately dictated operative
report. The patient was taken
from the OR to the PACU in stable
condition and after satisfactory
recovery from anesthesia was
transferred to the floor. The
patient was initially given IV
fluids and IV pain medications,
and progressed to a regular diet
and oral medications by POD#1.
The patient’s home medications
were continued throughout this
hospitalization with exception
of his home dose of prednisone,
which he will resume upon
discharge as he is no longer
in-house. The ___ hospital course
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was otherwise unremarkable with
no acute events occurring during
this admission outside of his
operation.

DI Generated Example

Ground Truth: Dear Ms. ___, It
was a pleasure taking care of you
at ___. You came to us because of
shortness of breath which you had
been intermittently experiencing
since ___. Your blood tests did
not show anything concerning for
active ischemia. Your exam was
not suggestive of acute heart
failure. We suspect that your
shortness of breath is related to
a leaky valve and that improving
blood flow through the arteries
of the heart with a medication
called isosrbide mononitrate will
improve muscular function and the
leakiness of the valve. You
should take this medication daily.
Please be sure to keep your
upcoming appointment with Dr. ___
week. We noticed that your blood
pressure has been high while you
were here with us. We restarted
your home lisinopril, now that
your kidney function has improved
back to normal. Sincerely, Your
___ Care Team.

Generated Text: Dear Ms. ___,
You were admitted to the hospital
because you were having shortness
of breath. We did a stress
test which was normal and did
not show any signs of worsening
heart disease. We also did
an ultrasound of your heart
which showed that your heart is
pumping normally. We think that
your shortness of breath may
be related to narrowing in the
arteries in your legs or to spasm
in the arteries in your legs or
lungs. For this we started you
on a new medication called Imdur
(isosorbide mononitrate) which
can help with these symptoms.

Please follow up with Dr ___ as
listed below.
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Models BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore METEOR AlignScore MEDCON Overall
Llama2-7b-2k 0.025 0.287 0.065 0.131 0.218 0.209 0.211 0.582 0.216
Meditron-7b-2k 0.050 0.342 0.118 0.196 0.323 0.207 0.253 0.639 0.266
Meditron-7b-2k-s 0.069 0.385 0.146 0.227 0.367 0.241 0.287 0.670 0.299
Meditron-7b-d6k 0.059 0.376 0.141 0.225 0.370 0.214 0.280 0.663 0.291
Meditron-7b-l6k 0.080 0.398 0.153 0.230 0.376 0.264 0.304 0.683 0.311
Meditron-7b-l6k-s 0.082 0.405 0.157 0.235 0.384 0.266 0.308 0.690 0.316

Table 9: Global Models Results on the full Test Phase II set

Figure 8: BHC Results on the full Test Phase II set

Figure 9: DI Results on the full Test Phase II set
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Figure 10: Global Results on the full Test Phase II set
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Abstract

This paper presents the UoG Siephers team par-
ticipation at the Discharge Me! Shared Task on
Streamlining Discharge Documentation. For
our participation, we investigate appropriately
selecting and encoding specific sections of
Electronic Health Records (EHR) as input data
for sequence-to-sequence models, to generate
the discharge instructions and brief hospital
course sections of a patient’s EHR. We found
that, despite the large volume of disparate infor-
mation that is often available in EHRs, selec-
tively choosing an appropriate EHR section for
training and prompting sequence-to-sequence
models resulted in improved generative qual-
ity. In particular, we found that using only the
history of present illness section of an EHR as
input often led to better performance than using
multiple EHR sections.

1 Introduction

In the clinical domain, writing notes about patients’
health, diagnoses, and treatments is a necessary
part of the patient healthcare journey, but it is also
time consuming (Weiner and Biondich, 2006; Sin-
sky et al., 2016). The time spent by essential care
staff, such as doctors and nurses, writing the notes
in Electronic Health Records (EHRs) could be time
better spent performing important clinical duties.

The Discharge Me! BioNLP ACL’24 Shared
Task on Streamlining Discharge Documentation
challenged participants to produce a system that
can automatically generate: discharge instructions,
which contain detailed guidelines provided to a pa-
tient upon their discharge from hospital; and Brief
Hospital Courses, which summarise the key events,
treatments and progress for a patient during their
hospital stay (Xu et al., 2024). Discharge Me! par-
ticipants were provided a dataset curated from the
MIMIC-IV database (Johnson et al., 2023), which
contains de-identified patients’ EHRs.

EHRs are complex collections of, often long and

disparate, reports about a patient’s stay in hospital,
including reports on patient demographics, medical
history, laboratory tests and results, instructions for
the patient and many more sections. In this work,
we investigate several ways of appropriately select-
ing and encoding specific sections of EHRs as input
data for sequence-to-sequence (seq2seq) models to
generate the two target sections of the Discharge
Me! shared task, i.e., the discharge instruction
and the brief hospital course. In particular, in this
work we investigate the following three research
questions that guide our experimentation:

RQ1: What is the effect of using different sections
of EHRs as training data for seq2seq models?

RQ2: Can a model that uses multiple EHR sec-
tions as input achieve better performance than
models trained on single sections of EHRs?

RQ3: When concatenating multiple EHR sections
as input, is it better to concatenate lexically,
or concatenate embeddings post-encoding?

2 Related Work

Most relevant to our work is that of Hartman and
Campion (2022), who employed various encoder-
decoder models with different pre-trained check-
points (Rothe et al., 2020) to generate a brief hos-
pital course. Hartman and Campion attempted to
summarise EHR records as short day-by-day sum-
maries so that the EHR summaries would fit within
the context limit of seq2seq encoder-decoder mod-
els. In our work, instead of summarising the input
data to fit the context limit of an encoder-decoder
model, we experiment with selectively choosing
individual subsections of the EHR records to train
seq2seq models.

Pal et al. (Pal et al., 2023) used the nursing re-
port section of EHRs to generate a variety of EHR
sections, such as the history of present illness and
discharge instructions. The authors showed that
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seq2seq models, such as T5 and BART, can be ef-
fective for this task (Raffel et al., 2020; Lewis et al.,
2019). Differently from Pal et al., we explore using
multiple sections of the EHR as input data, and
ways to combine EHR sections as input.

Finally, the work of Liu et al. (2022) used the
discharge instructions of historic patients, who had
similar symptoms to a new patient, to write the new
patient’s discharge instruction. They used graph-
based reasoning to generate the new discharge in-
struction based on the historic patients’ instructions.
Differently, we focus on using information that is
entirely available in the patients own record and do
not rely on the information of other patients.

3 Methods

In this section we describe our approaches for
generating discharge instruction and brief hos-
pital course sections of EHRs. Using different
pre-trained encoder and/or decoder models within
seq2seq models has been shown to be an effective
way to adapt such models for different tasks (Rothe
et al., 2020; Hartman and Campion, 2022). There-
fore, in this work, we investigate three approaches
for constructing the input data for seq2seq models,
such that we can use the models’ limited context ef-
fectively to model the EHRs sections. For each
of our approaches, we deploy encoder-decoder
models following the work of Hartman and Cam-
pion (Hartman and Campion, 2022).

3.1 Separate Text Sections

Our first approach uses individual EHR sections
as the input to the seq2seq model. By using a
specific self-contained section, we ensure that the
training data is a focused and coherent report about
the patient’s medical history. In our experiments,
we compare the effectiveness of two separate EHR
sections, namely: History of Present Illness (HPI),
which contains information about patients’ stays in
hospital; Radiology Report (RR), which contains
information about patients’ radiology exams.

We choose to evaluate the HPI and RR sections
since the HPI sections encompass a lot of infor-
mation that is also discussed in other sections of
EHRs. Therefore, HPI sections can act as a general
overview of the patient’s condition, their reason for
visiting the hospital, and their care plan. Differ-
ently, the RR section details specific observations
about the physical condition of the patient. Indeed,
there is little intersection between the information

EHR

History of
Present Illness

Radiology
Report

Encoder

Separately encoded
embeddings

Single concatenated
embedding

Decoder

Target Output

Generated
Output

Figure 1: Two EHR sections (purple and orange) are
passed to the encoder separately, then their separate
embedded representations, of corresponding colour, are
concatenated before being passed to the decoder model.

that is contained in the HPI and RR sections. There-
fore, evaluating the sections separately can provide
valuable insights about what kinds of information
are most useful for automatically generating dis-
charge instructions and brief hospital courses.

3.2 Concatenating Text Sections

Secondly, we consider that multiple EHR sections
may contain information that is essential for gener-
ating a correct discharge instruction or brief hospi-
tal course. In such a case, the approach presented
in Section 3.1 would not be able to model all of the
required information, due to the limited context of
seq2seq models. Therefore, in this approach, we
concatenate the text of the HPI and RR sections and
use an encoder model that accepts longer context,
i.e., Longformer (Beltagy et al., 2020).

3.3 Concatenating Embedded Sections

Finally, instead of concatenating the text of the dif-
ferent EHR sections, as described in Section 3.2, in
this approach we encode the HPI and RR sections
separately and then concatenate the encoded sec-
tions, before passing the concatenated encodings
to the cross attention layers of the decoder model.
This approach is inspired by how the reader com-
ponent of Fusion-in-Decoders (Izacard and Grave,
2020) performs question answering tasks with mul-
tiple retrieved context documents. We therefore
refer to this approach as our fusion approach.

Figure 1 illustrates our fusion approach. In this
approach, a model with a shorter context limit can
be used, though encoding the multiple sections sep-
arately increases computation time linearly. More-
over, the sections to be encoded are distinct, sep-
arate reports. Concatenating the sections into a
single long passage to encode, such as in Section
3.2, may result in a low-quality embedded repre-
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sentation that cannot capture the diversity of the
different textually concatenated reports. In this ap-
proach, by encoding EHR sections separately, the
contextual separation is retained for each section
and we hypothesise that this may improve perfor-
mance in the overall seq2seq generation task.

4 Experimental Setup

In this section, we present the experimental setup
to investigate the three research questions that we
presented in Section 1.

4.1 Dataset

The dataset for the task was provided by the or-
ganisers of the Discharge Me! shared task and is
curated from the MIMIC-IV database. The data
can be downloaded from Physionet.1 The dataset
is split into a training set (68,785 samples), a val-
idation set (14719 samples), a phase 1 testing set
(14702 samples) and a phase 2 testing set (10962
samples). Each sample corresponds to an emer-
gency department admission with an associated
discharge summary, which contains many different
reports on a patient’s stay in hospital. Each sample
also contains at least one RR. Finally, each sample
also contains a discharge instruction and a brief
hospital course section, which are the two target
sections to be generated. The dataset includes gold
standard discharge instruction and brief hospital
course sections for each of the training, validation,
phase 1 testing and phase 2 testing sets.

For our approaches described in Section 3, we
extract the HPI section and the most recent RR
section (some samples contain more than one RR
section) for each sample in the dataset using Python
Regular Expressions. From early exploratory work,
we discovered that, for the models that we evalu-
ate, using a large number of samples for training
offers little performance improvements compared
to using a smaller subset of the data. We therefore
use a subset dataset of 5000 random samples from
the training set, and 1000 random samples from the
validation set to train our chosen models.

4.2 Models

We now provide a description of the different mod-
els and model architectures that we deploy in our
experiments. In all cases we train two versions
of each model. One version is trained to generate
the target discharge instruction, while the other is

1https://physionet.org/

trained to generate the target brief hospital course.
In all cases, we train the models using the HPI
and/or RR sections to generate the target sections.

Firstly, to investigate the approach presented in
Section 3.1, we evaluate several encoder-decoder
seq2seq models that are trained on a single input,
either HPI or RR, and leverage pre-trained check-
points following Rothe et al. (Rothe et al., 2020).
We deploy three encoder models: a RoBERTa en-
coder (Liu et al., 2019), since it was found to be
the best performing by Rothe et al. (Rothe et al.,
2020); the ClinicalBERT encoder (Alsentzer et al.,
2019), as it is pre-trained on MIMIC data; and the
BERT encoder (Devlin et al., 2018) as an appropri-
ate baseline. We deploy the same decoder, GPT-
2 (Radford et al., 2019), in all instances. Addition-
ally, we also deploy a base-size T5 model (Raffel
et al., 2020) since it has been shown to be effec-
tive for seq2seq tasks. Our participation in the
Discharge Me! shared task investigated the effec-
tiveness of different encoder-decoder models, how-
ever for completeness we deploy two decoder-only
models, namely GPT-2 (Radford et al., 2019) and
Llama 3 8B (Meta, 2024). We train the decoder-
only models by passing the input and target sec-
tions as one string, where the sections are separated
by three newline characters. At inference time the
models are passed only the input data and newline
characters.

For our approach that we described in Sec-
tion 3.2, we deploy an encoder-decoder model with
a pre-trained Longformer encoder model (Beltagy
et al., 2020) and GPT-2 decoder. The Longformer
model has a context window of up to 4096 tokens,
ensuring that for EHR samples in our dataset the
HPI and RR sections can be concatenated before
encoding, as described in Section 3.2. We concate-
nate the sections as separate paragraphs by joining
the sections with connecting newline characters.

Finally, for our fusion approach, presented in
Section 3.3, we deploy two encoder-decoder mod-
els. Both models use a RoBERTa encoder and
GPT-2 decoders. One model uses the base size
GPT-2 decoder, the other model uses GPT-2 large.
We refer to these models as Fusion-roBERTa-GPT2
and Fusion-roBERTa-GPT2-large respectively.2

For all of our models, we perform 15 runs
of hyperparameter tuning using Optuna (Akiba

2We also submitted BERT-GPT2 and ClinicalBERT-GPT2
fusion runs to the Discharge Me! leader board. However, the
official evaluation script was not able to generate results for
us to evaluate these models.
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Model Overall Score BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
Encoder-Decoder Architectures

T5 (HPI) 0.191 0.017 0.341 0.108 0.209 0.268 0.247 0.143 0.193
T5 (RR) 0.079 0.001 0.128 0.008 0.080 0.130 0.073 0.157 0.054
BERT-GPT2 (HPI) 0.144 0.012 0.258 0.045 0.124 0.245 0.242 0.113 0.114
BERT-GPT2 (RR) 0.156 0.011 0.294 0.055 0.157 0.253 0.244 0.105 0.128
roBERTa-GPT2 (HPI) 0.143 0.009 0.250 0.025 0.135 0.251 0.239 0.107 0.124
roBERTa-GPT2 (RR) 0.110 0.005 0.183 0.010 0.092 0.198 0.188 0.119 0.083
ClinicaBERT-GPT2 (HPI) 0.143 0.011 0.254 0.020 0.131 0.252 0.239 0.108 0.124
ClinicalBERT-GPT2 (RR) 0.149 0.012 0.272 0.046 0.144 0.252 0.240 0.106 0123
LongFormer-GPT2 0.152 0.013 0.278 0.030 0.153 0.255 0.244 0.110 0.135
Fusion-roBERTa-GPT2 0.148 0.011 0.264 0.029 0.137 0.255 0.243 0.113 0.130
Fusion-roBERTa-GPT2-large 0.159 0.039 0.222 0.042 0.146 0.251 0.266 0.134 0.169

Decoder-only Models
GPT-2 (HPI) 0.153 0.009 0.284 0.035 0.139 0.241 0.206 0.167 0.151
GPT-2 (RR) 0.128 0.011 0.160 0.021 0.101 0.232 0.212 0.158 0.131
Llama 3 (HPI) 0.196 0.028 0.350 0.091 0.180 0.300 0.218 0.172 0.230
Llama 3 (RR) 0.168 0.016 0.322 0.072 0.160 0.264 0.195 0.151 0.167

Table 1: Results for our different methods evaluated by the official Discharge Me! submission system. Bold text
indicates the best scoring encoder-decoder results. Underlined text indicates the best scoring decoder-only results.

et al., 2019), searching learning rate (1e-6 to 1e-
3), weight decay (1e-4 to 1e-2), and number of
epochs (1 to 9). We optimise for evaluation loss
and use the best hyperparameter configuration to
train a final model that is used in evaluation, all
using 3 NVIDIA RTX A6000 GPUs. To fine-tune
the Llama 3 model we use gradient accumulation
(Goodfellow et al., 2016; Bengio, 2012), process-
ing batches of 4 and accumulating to batches of 8, 8
being the batch size we use to train all of our other
models. We also use Quantised Low Rank Adap-
tation to fine-tune the Llama 3 model (Dettmers
et al., 2024)

4.3 Evaluation Metrics
The two generated target texts of each model are
evaluated independently against their correspond-
ing gold standard texts using a variety of text-based
similarity metrics and factual correctness metrics.
The metrics used for evaluation are: BLEU-4 (Pap-
ineni et al., 2002); the ROUGE metrics including
ROUGE-1, ROUGE-2 and ROUGE-L (Lin, 2004);
BertScore; Meteor (Banerjee and Lavie, 2005);
AlignScore (Zha et al., 2023), and MEDCON (Yim
et al., 2023). Each of the eight metric scores for
each of the two generated datasets are then aver-
aged to get combined score for each metric, and
then finally all eight scores are average again to
produce a single overall score.

5 Results

This section describes our findings relating to the
research questions presented in Section 1. Table
1 provides the results our models achieved when

submitted to Discharge Me! leaderboard (Xu et al.,
2024). Overall for the encoder-decoder models, a
T5 model trained on HPI sections of patient EHRs
was the best performing model, achieving 0.191
Overall Score, with the next best approach BERT-
GPT2(RR) achieving 0.156 Overall Score. Addi-
tionally, the Llama 3 decoder-only model achieves
competitive performance with the T5 model when
using the HPI sections of EHRs. This is, arguably,
to be expected given the much larger size, and
recency of the model. Furthermore, both decoder-
only models, Llama 3 and GPT-2, perform better
when using the HPI as input rather than the RR sec-
tion. This is in line with our findings for encoder-
decoder models.

Concerning RQ1, the T5 and RoBERTa-GPT2
models perform better when trained on the HPI in-
put. On the other hand, the BERT-GPT2 model and
ClinicalBERT-GPT2 model perform better when
trained with RR input. However, the performance
increases that are obtained from training on HPI
data are notably greater than any performance im-
provements that are obtained from training on RR
data. The T5(HPI) model shows 141% improve-
ment in Overall Score compared to the T5(RR)
model, whereas the BERT-GPT2(HPI) model re-
sulted in only a 7% Overall Score drop compared
to its BERT-GPT2(RR) counterpart. Similarly,
roBERTa-GPT2(HPI) achieves a 29% improve-
ment over roBERTa-GPT2(RR), while there is only
a 4% drop in Overall Score between ClinicalBERT-
GPT2(RR) and ClinicalBERT-GPT2(HPI). An-
swering RQ1, we find that when training on indi-
vidual record sections, training on HPI most often

715



leads to better performance compared to models
trained on RR. Indeed, the gains in Overall Score
from training on HPI compared to RR are notably
greater.

In answering RQ2, we find that training seq2seq
models on multiple concatenated sections of EHR
with models does not outperform models trained
on a single input section of a record. Our best per-
forming concatenation model, LongFormer-GPT-2,
outperforms several models trained on single EHR
sections. However, both BERT-GPT2(RR) and
T5(HPI) both outperform the Longformer-GPT2
model. This indicates that choosing a single in-
put section for the right model can outperform a
model that has access to both sections of the data.
Specifically, we see that the Longformer-GPT2 out-
performs the BERT-GPT2(RR) model by a small
margin in BERTScore and Meteor. However, the
two models perform very similarly, indicating that
the additional information in HPI that was available
to the Longformer-GPT2 model did not improve
its performance markedly. Thus, training on addi-
tional information is not always beneficial.

Regarding RQ3, we find that concatenating the
different sections of EHR records lexically, and
then using an encoder with a larger context win-
dow is a more effective method for this task than
encoding the different sections separately as pro-
posed in Section 3.3. Neither of our fusion mod-
els beat the LongFormer-GPT2 model in overall
score, despite Fusion-roBERTa-GPT2-large using
a larger decoder model. Considering this in the
context of the findings of our first and second re-
search question, this may indicate that the decoder
model is not able to utilise the separately embedded
records sections as effectively as it is able to under-
stand embeddings of a single section of the report.
Replacing the decoder with a larger model does
improve performance, but still the performance is
worse than a T5-base model trained on the single
HPI section.

6 Qualitative Analysis

In this section we investigate the generated record
quality for the best performing seq2seq model,
T5(HPI). We analyse the ten highest and ten lowest
scoring generated discharge instructions and brief
hospital course, in terms of their ROUGE-1 scores.

In the highest scoring generated EHR sections,
the core ailments of the patients are correctly de-
scribed. In the generated discharge instructions,

the recommended followup treatment is often inac-
curate but the structure of the instructions, which
all contain subheadings (e.g. "why you were in
hospital", "what you should do after leaving"), are
usually correctly generated and match the target
texts. This improves the overall quality of the gen-
erated discharge instructions. The generated brief
hospital courses match most of the text of their
corresponding target texts exactly. However, they
deviate towards the end of the text often adding
extended information that is still topically relevant,
but not actually part of the true target text.

Inspecting the lowest scoring generated samples,
we find common problems with the generation pro-
cess for both the discharge instructions and brief
hospital courses. While our models are effective at
writing structured discharge instructions with spe-
cific sub headings, and brief hospital courses that
contain a verbose description of the patient’s prob-
lems, the effectiveness of the generation degrades
when the target texts are not in line with these
formats. For example, when the target discharge
instruction is a short single-line note, such as in-
structions about avoiding a certain kind of food,
or a reminder for the patient to weigh themselves,
the models attempts to generate a long instruction
with many unnecessary subsections. Similarly, our
model will attempt to generate a verbose brief hos-
pital course, even when the true target is a list of
vital-sign readings. Uniquely to the discharge in-
struction generation, we find that several of the tar-
get sections are written in Spanish. In such cases,
our model still attempts to generate English text, as
the input section is always written in English.

7 Conclusion

To conclude, we have found that training a seq2seq
model to generate discharge instructions and brief
hospital courses using single sections from Elec-
tronic Health Records (EHR) as input, outper-
formed models trained using multiple sections of
EHR as input. Moreover, choosing which single
section to use as input is an important factor that
depends on the chosen seq2seq model and that
generally, some sections can expect to provide rea-
sonable performance overall compared to others.
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8 Limitations

We note that there are many potential extension
to our experiments that could provide additional
valuable insights beyond the scope of this work.
Firstly, in our work we use only a GPT-2 decoder
in all our encoder-decoder models, while in Table 1
we find that a Llama 3 decoder-only model outper-
forms the GPT-2 decoder-only model. Therefore,
we could, for example, evaluate Llama 3 as the
decoder in an encoder-decoder architecture. More-
over, evaluating different sizes of decoder models
would also bring additional insights. For example,
the results for the Fusion-roBERTa-GPT2-large
model in Table 1 show that using a larger variant of
GPT-2 decoder in the encoder-decoder architecture
improves overall performance.

Secondly, in our work we only investigate using
two sections of EHRs, namely the History of
Present Illness section and the Radiology Report.
Though ultimately we found using one of these
two sections to train a model was more effective
than combining both sections as input, further
research to explore the use of other sections of the
EHR poses interesting questions. For example,
are there other sections that are better to use
as input than the ones we have chosen to use?
Moreover, concerning the approaches described
in Sections 3.2 and 3.3, how does increasing the
number of EHR sections that are concatenated as
input affect performance?
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Abstract 

Healthcare providers spend a significant 

amount of time reading and synthesizing 

electronic health records (EHRs), 

negatively impacting patient outcomes and 

causing provider burnout. Traditional 

supervised machine learning approaches 

using large language models (LLMs) to 

summarize clinical text have struggled due 

to hallucinations and lack of relevant 

training data. Here, we present a novel, 

simplified solution for the “Discharge Me!” 

shared task. Our solution uses a question-

based approach to treat this summarization 

task as a context-aware and domain-

specific question-answering process. Our 

pipeline prompts an LLM answer specific 

questions posed by subject-matter experts 

(SMEs) using only patient specific context 

data. This method (i) avoids hallucinations 

through hybrid RAG/zero-shot 

contextualized prompting; (ii) requires no 

extensive training or fine-tuning; and (iii) is 

adaptable to various clinical tasks.  

1 Introduction 

Clinicians spend considerable amount of time 

navigating vast amounts of electronic health 

records (EHRs) information, often spending 2-3 

times more time interacting with EHRs than with 

patients [1][4]. Much of this time is spent on 

manual information retrieval and stylized 

summarization of relevant content, referred to as 

the charting burden. The "Discharge Me!" shared 

NLP task [8][9] aims to alleviate this burden by 

automating the generation of "Brief Hospital 

Course" (BHC) and discharge instructions from 

EHRs in the MIMIC IV dataset [8]. These sections 

are critical but time-consuming, requiring 

synthesis, interpretation, and summarization of 

data from various parts of the patient’s medical 

charts include admission notes, progress notes, lab 

results, and radiology reports. 

Automated approaches such as rule-based 

systems and supervised machine learning models 

have been explored but often struggle with the 

complexity and variability of clinical data. These 

challenges lead to issues like hallucinations—

plausible but incorrect information—and 

incomplete summaries due to missing data in the 

training sets. Despite significant progress in 

machine learning for NLP tasks, achieving 

contextualized, relevant, and accurate 

summarization remains challenging. Supervised 

ML approaches face difficulties in domain 

adaptation, and fine-tuning does not fully address 

these issues [1][3][5]. Moreover, and while some 

progress was reported using fine tuning (e.g., [11]), 

the approach we describe here achieves better 

results without bearing the enormous cost of fine 

tuning. The lack of training data and LLMs' 

limitations in handling domain-specific data 

further complicate the problem. Additionally, 

different users require different types of 

information extracted from EHRs, making 

contextual summarization essential.  
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Figure 1: Simplified solution to “Discharge Me!” task. 
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Our solution uses a question-based approach to 

treat this summarization task as a context-aware 

and domain-specific question-answering process 

(see Figure 1). The summaries generated using our 

pipeline answer specific questions posed by 

subject-matter experts (SMEs). Previous 

experiments of our approach for lengthy clinical 

note summarization using general-purpose models 

like ChatGPT showed their ability to understand 

clinical terms and abbreviations without fine-

tuning [6]. This supports our hypothesis that LLMs 

can efficiently generate accurate summaries 

without hallucinations when provided with the 

relevant contextual data. Our method is 

customizable, contextual, and bypasses the need 

for extensive training datasets. It harmonizes 

unstructured clinical data and can be applied to any 

domain requiring contextualized summaries for 

various users.  

2 Methods 

We developed an AI pipeline to automate 

clinical workflow tasks for generating discharge 

summaries, leveraging large language models 

(LLMs) to answer questions, retrieve information, 

infer actions, and summarize the information in a 

stylized format, where a domain expert guided the 

questions and output style (See Figure 2). We call 

our approach “GP-Prompting”. Our first iteration 

used the general-purpose LLM Meta-Llama-3-8B-

Instruct [10] installed locally on a A10G GPU. 

The following is a summary of our pipeline: 

1. Data Sources: A subset of the MIMIC IV data 

set including Discharge Summary text notes, 

radiology reports, and initial ICD diagnosis 

codes provided by the task organizers [8]. 

2. Pre-processing:  Segmentation of discharge 

note into logical sections. This was done by 

extracting content by section, where section 

headings were identified from the dataset by 

the clinician. Section headers were not 

standardized in the data set and were thus 

matched to known variations using regexp.  

E.g., “History of Present Illness” | “HPI”. 

Extraneous text (e.g., repeated “=”) were 

removed 

3. “GP-prompting": Our method is a hybrid of 

question answering / zero-shot prompting. 

a. Domain Expert Input: questions formulated 

by clinician to identify key medical 

information. 

b. Select relevant sections of the clinical notes 

data that will contain answers to the 

Figure 2: “GP prompting” pipeline splits the EHR record into substring contexts to which domain expert questions are 

applied in the form of prompting. The responses to these questions are then used to generate a task centric response. 
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questions suggested by a domain expert. 

E.g. Select the “HPI” section to answer 

questions about the initial treatment course. 

Use the “Admission and Discharge 

Medications” lists to deduce what new 

medications the patient was prescribed for 

discharge. The selected text will be used as 

the context data. 

c. Prompt Template: Prompts were 

constructed by concatenating a {Topic}, 

{General Instructions}, {Output Template}, 

{SME Questions}, {Text Generation 

Instructions}, {Context} data. 

Topic: “The topic is about clinical notes, medical 

records, and other text documents from electronic 

health records (EHR) from a patient's hospital 

admission.” 

General Instructions: “You will be provided with 

input text and data from a specific patient's medical 

records. Use only this data to answer questions 

about the EHR. 

“Discharge Instruction” generation 

Output Template: 

“:  “Dear ____,   It was a pleasure to take care of 

you during your recent hospital admission. You 

were admitted to the hospital because [explain the 

reason for admission].  [Briefly explain the 

diagnostic work up and explain the results]  During 

your hospital stay your treatments included [briefly 

explain the major treatments and procedures]. …  

Sincerely, Your Team” 

SME Questions: 

“Why was the patient admitted to the hospital? 

What treatments and procedures were administered 

and for what symptoms or medical conditions? 

What was the diagnostic work up related to the 

chief complaint? What were the notable results? 

What medications were used to treat the patient? 

Were any medications new or discontinued? 

Are there changes to the existing medications? 

What are the ongoing issues and follow-up 

recommendations?”     

Text Generation Instructions: “: Write a letter to 

the patient that summarizes their hospital stay and 

communicates follow-up instructions as well as 

important changes to their medications. Use the 

provided template and answers to the questions 

above to fill in the blanks.  

Selected Context: ‘CC’, ‘HPI’, ‘Transitional 

Issues’, ‘Discharge Diagnosis’ from the discharge 

summary note. 

Example “Discharge Instructions” output:  

“Discharge Instructions ---hadm_id: 27729294 

Dear ___, It was a pleasure to take care of you 

during your recent hospital admission. You were 

admitted to the hospital because of your leg 

swelling and complaints of oral ulcers. During your 

hospital stay, your treatments included antibiotics 

for cellulitis in your leg and a medication called 

Duonebs. You were diagnosed with cellulitis in 

your leg and were given a course of antibiotics to 

help clear up the infection. You were also treated 

for your bullous pemphigoid and lymphoma in 

your mouth.  You will need to follow up with your 

doctor to monitor your condition and make sure 

that the infection has cleared up. You will also need 

to continue taking your medication as prescribed 

and follow up with your dermatologist to manage 

your bullous pemphigoid. If your symptoms return, 

please call our office (555-555-5555) or 911 for 

immediate assistance. Sincerely, Your Team---” 

Brief Hospital Course (BHC) Generation: 

Output Template: “___ with a history of [briefly 

describe the relevant medical history or existing 

medical problems]  presents with [briefly 

summarize the patient's symptoms]. They were 

admitted to the [what unit, service or floor were 

they admitted to?]  for [briefly summarize the 

reason for admission, initial diagnosis, and any 

major procedures or treatments]. [Briefly 

summarize the discharge diagnosis at discharge] 

 Problem-based hospital course— 

    # [Medical condition 1] --- [briefly describe 

presentation and severity for this medical condition 

or symptom].   [Summarize the related diagnostic 

work up and notable results].   [Summarize the 

related medical or surgical treatment course]. 

    # [Medical condition 2] -- [briefly describe 

presentation and severity]...” 

SME Questions for BHC:  

“What are the patient's major medical conditions? 

Why was the patient admitted to the hospital? What 

symptoms did the patient present with? What was 

the severity and duration of the presenting 

symptoms? What treatments and procedures were 

administered and for what symptoms or medical 

conditions? What unit or floor were they admitted 

to? What was the diagnostic work up? What were 

the notable results? What medications were used to 

treat the patient? Were any medications new or 

discontinued? Are there changes to the existing 

medications? What was the patient diagnosed with 

at discharge? What was the patient initially 

diagnosed with?” 
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Text Generation Instructions: “Fill in the blanks: 

Use the answers to the questions above to fill in the 

blanks. If you do not know the answer, fill in the 

blank with "___".  Answer clearly and concisely” 

Context: text data included “Chief Complaint”, 

“HPI”, “Discharge Diagnosis,” and “Medication 

Lists” from the discharge note, and  “ICD 

Diagnosis title” from the diagnosis table 

Example BHC output for hadm_id 27729294: 

“The patient with a history of bullous pemphigoid 

and lymphoma presents with leg swelling and 

complaints of oral ulcers. They were admitted to 

the medical floor for evaluation of leg lesions and 

abdominal swelling, initially diagnosed with 

cellulitis of the left lower limb. 

Problem-based hospital course--- 

# Cellulitis --- The patient presented with leg 

swelling and complaints of oral ulcers. The 

diagnostic work up included labs notable for WBC 

of 12.5, and imaging such as LLE US did not show 

evidence of DVT; CXR showed mild cardiomegaly 

and mild vascular congestion. The patient was 

given Duonebs and CTX 1g IV for LLE cellulitis. 

# Bullous pemphigoid --- The patient has a history 

of bullous pemphigoid and lymphoma in his 

mouth. The diagnostic work up included bedside 

US did not show any evidence of ascites.” 

3 Evaluation 

Outputs for all 10,962 targets were submitted to 

the shared task and evaluated against a hidden 

subset of 250 records by the task organizers as 

described in [9]. Results are presented in Table 1.  

Concurrently, we evaluated the first 250 generated 

outputs against human-generated targets using 

BLEU-4, ROUGE-1/-2/-L, BERTScore (Precision, 

Recall, F1), and METEOR scores. A clinician 

visually inspected the first 10 outputs for accuracy 

and recall during pipeline development.  

Time and computational constraints limited our 

ability to fully optimize the pipeline during the 

contest. Post-contest, we tested a few-shot 

approach for a single record with five example 

prompt-data pairs, showing promising results for 

BHC generation. 

4 Results 

Initial results showed promising performance, 

though further optimization with few-shot learning 

and refined model parameters could improve 

accuracy and efficiency. 

5 Discussion 

Our approach demonstrated a simple and 

effective method for automatically generating the 

“Brief Hospital Course” and “Discharge 

Instructions” sections of discharge summary notes. 

Future improvements include integrating few-shot 

learning, fine-tuning, and principled chunking with 

retrieval-augmented generation (RAG). 

Experimentation with various LLM sizes and 

optimization of parameters (e.g., temperature, 

different values for top_k), topic tracking, and 

integration of structured chart data (not available 

for this task) can enhance output quality and speed. 

6 Limitations 

The task dataset was unrealistic, lacking 

essential components present of typical charts such 

as daily progress notes, procedure notes, labs, 

vitals, microbiology, radiology reports, and 

medication administration records (MAR). 

Generating the BHC and discharge instructions 

without comprehensive event data leads to 

hallucinations. The provided dataset, containing 

only discharge summary notes, is insufficient for 

accurate BHC or discharge instructions, especially 

for patients with extended hospital stays. 

Additionally, the target dataset sections were 

often inaccurately segmented from the input. 

Approximately 16% of phase 2 BHC targets were 

severely incomplete, often under 100 words. In 

these cases, the extraction was truncated due to an 

unexpected heading, often missing the problem-

based treatment course entirely. The targets also 

often incorrectly included content from the 

"Transitional Issues" section, which should be 

separate from the BHC.  

Table 1: Scoring metrics for “Discharge Me!” 

generated outputs “Brief Hospital Course” and 

“Discharge Instructions” 
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We lacked comprehensive data such as daily 

progress notes and outpatient referrals, so we 

utilized selected parts of the discharge summary, 

including the HPI Medication list, which provided 

partial relevant information needed for the BHC. 

All selected input sections were considered by the 

clinician to be accessible during the typical clinical 

workflow. Incomplete records often resulted in 

outputs lacking the full content of the target data, 

but it was reassuring that the model did not 

hallucinate.  

Pipeline Challenges: Due to data-use 

agreements, models and data had to be run locally 

and securely, necessitating downloaded LLMs. 

This limitation prevented the use of faster, publicly 

available pipelines, resulting in lower accuracy, 

and slower local model outputs compared to more 

advanced models that we plan to use in the future. 

We also noted a discrepancy between contest 

and internal BERTScores. At the time of this 

publication, the root cause of this discrepancy is 

unknown, but it is likely resulting from using 

different BERTScore functions (we used a standard 

“bert_score” import, whereas the contest scoring 

used a custom BERTScore script). Similarly, the 

custom AlignScore and MEDCON scores used for 

contest were not implemented during our 

evaluation process as we were unable to 

successfully run the custom scripts in time for the 

contest entry. 

7 Conclusion 

The solution we presented was an efficient, 

context-aware, question-based approach to 

automate the generation of discharge summaries. 

Despite the constraints and limitations of the 

dataset and evaluation metrics, our method showed 

promise, particularly with a few-shot learning 

approach. Future work will focus on refining 

chunking methods for a RAG-based approach, 

optimizing prompts, and exploring various LLM 

configurations to improve accuracy and reliability 

in clinical settings. 
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Abstract

In this work, we propose our top-ranking (2nd
place) pipeline for the generation of discharge
summary subsections as a part of the BioNLP
2024 Shared Task 2: "Discharge Me!". We eval-
uate both encoder-decoder and state-of-the-art
decoder-only language models on the genera-
tion of two key sections of the discharge sum-
mary. To evaluate the ability of NLP methods
to further alleviate the documentation burden
on physicians, we also design a novel pipeline
to generate the brief hospital course directly
from structured information found in the EHR.
Finally, we evaluate a constrained beam search
approach to inject external knowledge about
relevant patient problems into the text genera-
tion process. We find that a BioBART model
fine-tuned on a larger fraction of the data with-
out constrained beam search outperforms all
other models.

1 Introduction

Discharge summaries are vital sources of infor-
mation that provide a bridge between inpatient
treatment and continuation of care in rehabilitation,
outpatient, or other intermediate settings. These
summaries are often the only form of communica-
tion that follows a patient to their next setting of
care (Kind and Smith, 2011). This documentation
serves many roles, including next action items nec-
essary for the patient, clear identification of inciden-
tal findings necessitating follow-up, new treatment
regiments, and many other important components
of patient treatment plan (Chatterton et al., 2023).
The discharge summary is a complex document
that addresses not only a wide array of members of
the care team including the patient’s primary care
physician, specialists, ancillary departments, but
also the patient themselves. Within the discharge
summary, two sections are particularly instrumen-
tal in the continuity of care and complex in their
content: the Brief Hospital Course (BHC) and the

Discharge Instructions.
The BHC summarizes the course of events that

occurred from the moment a patient presents to the
emergency department (ED) through their hospi-
tal course, ending in discharge. This summary is
often structured by problem list or procedure and
depends heavily on the discharging service (medi-
cal vs. surgical etc.) Discharge instructions serve
to inform the patient through lay language about
key details of their hospital stay, as well as to struc-
ture the complex follow-up care that patients will
navigate after discharge, enabling them to manage
their health effectively in collaboration with their
outpatient medical team (Becker et al., 2021; Dubb
et al., 2022).

Large Language Models (LLMs), such as Chat-
GPT, offer a potential solution to the long-standing
issue of inaccessible medical communication and
the time-demanding nature of synthesis of dis-
charge summaries. Creating high-quality discharge
summaries is a challenging and time-consuming
task. Significant prior work has demonstrated the
broad capabilities of LLMs in clinical natural lan-
guage processing (Gilson et al., 2023; Nayak et al.,
2023; Eppler et al., 2023; Zaretsky et al., 2024).
This work suggests that LLMs could be leveraged
for the automated generation of discharge sum-
maries. The automatic generation of discharge sum-
maries from inpatient documentation could support
alleviating the burden of clinical documentation,
particularly under the significant pressures of the
inpatient setting (Searle et al., 2023; O’Donnell
et al., 2009).

2 Background

2.1 Task Description

The BioNLP 2024 Task 2 Challenge, Discharge
Me! (Xu et al., 2024), consists of two subtasks: (1)
generation of Brief Hospital Courses (BHC) and
(2) generation of Discharge Instructions.
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Task Model Overall BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
B

ri
ef

H
os

pi
ta

l
C

ou
rs

e
AIMI-Baseline 0.1141 0.0171 0.1184 0.0698 0.1348 0.1726 0.0889 0.1714 0.1398
GPT 3.5 (0-shot) 0.2035 0.0210 0.3472 0.0983 0.2289 0.2815 0.2232 0.1865 0.2410
Clinical-T5 0.2068 0.0357 0.3145 0.1378 0.2273 0.3180 0.1678 0.2251 0.2285
BioBART 0.2198 0.0576 0.3161 0.1100 0.2021 0.3383 0.2823 0.2007 0.2515
BioBART v2 0.2227 0.0600 0.3310 0.1239 0.2231 0.3354 0.2802 0.1941 0.2340
BioBART-Shuffled 0.2464 0.0488 0.3807 0.2052 0.3003 0.3278 0.2661 0.1959 0.2463
GPT-3.5 + Pseudo-SOAP notes* 0.1498 0.0032 0.2603 0.0345 0.1233 0.2374 0.2037 0.2000 0.1360
BioBART + Constrained Generation 0.1255 0.0045 0.2015 0.0381 0.0900 0.1607 0.2070 0.1739 0.1282

D
is

ch
ar

ge
In

st
ru

ct
io

ns AIMI-Baseline 0.0909 0.0119 0.1343 0.0335 0.0910 0.1026 0.0889 0.1622 0.1025
GPT-3.5 (0-shot) 0.2289 0.0299 0.3761 0.1312 0.2271 0.3047 0.3109 0.1821 0.2690
BioBART 0.3308 0.1458 0.4465 0.1796 0.2679 0.4382 0.3976 0.3527 0.4183

Table 1: Results for Black-box GPT models, BART, and T5 pipelines for brief hospital course (subtask 1) and
discharge instruction (subtask 2) generation. * indicates that only 121/250 summaries were used, as not all patients
had transfer events in structured data.

Formally, we define both problems as sequence-
to-sequence text generation tasks. Subtask 1 can
be seen as abstractive summarization of the text
preceding the BHC. As much of this text is auto-
generated by the EHR (e.g. demographics, past
medical history, pertinent labs), we can leverage
this information without increasing the burden of
documentation on physicians. Subtask 2 can also
be considered summarization, but requires that the
generated text be patient-readable. In this setting,
we use the BHC that would have already been gen-
erated and attempt to simplify the hospital course,
while also providing recommendations for follow-
up care. In this work, we evaluate both encoder-
decoder models (e.g. BART, T5) and decoder-only
models (black-box Azure GPT-3.5). We also pro-
pose 2 additional pipelines: (1) a structured data-
only BHC generation pipeline that completely re-
moves the need for physician documentation and
(2) a constrained beam search approach to improve
recall of clinical concepts in BHCs.

2.2 Dataset

The challenge dataset included discharge sum-
maries from 109,168 visits to the Emergency De-
partment (ED) from the note and ED modules
of MIMIC-IV. MIMIC-IV is a publicly available
database sourced from the Beth Israel Deaconess
Medical Center electronic health record (EHR) that
provides a wide array of de-identified patient in-
formation containing both structured and unstruc-
tured data (Johnson et al., 2023). The text data con-
sisted of a discharge summary, chief complaints,
and at least one radiology report. The dataset
also included demographics and ED diagnoses as
structured data. For our models developed using
only structured information, we used data from the
MIMIC-IV hosp module that included additional
demographics (e.g. admission times, treatment

wards), hospital diagnoses, procedures, laboratory
values, inpatient medications, and lab culture re-
sults. These structured data elements were used in
a GPT-3.5 pipeline described in Section 3.2.3. The
data set was divided into training, validation, and
testing (phase I and II) testing sets, of which 250
discharge summaries were selected for standard-
ized final evaluation (Xu et al., 2024).

2.3 SOAP Notes
The subjective, objective, assessment, and plan
(SOAP) note is a widely used standard method of
documentation used by healthcare providers. The
SOAP note is a method of standardizing medical
documentation to help physicians streamline clini-
cal decision making (Weed, 1968). The subjective
commonly contains the chief complaint, history
of present illness (HPI), past medical history, and
review of systems. Objective information contains
vital signs, physical exam findings, and diagnostic
data such as labs, imaging, and other testing. The
assessment represents a synthesis of the informa-
tion collected in prior sections and a presentation of
a differential diagnosis. The plan reflects the next
steps, frequently including important action items
such as consults, additional testing, medications,
and other interventions (Tait, 1979).

3 Method

3.1 Data Preprocessing
For the generation of BHCs, we extract all preced-
ing text prior to the brief hospital course. For the
generation of discharge instructions, we use the
provided ground-truth BHC. For all models that we
fine-tuned, we tokenized text based on the encoding
scheme used during model training. BART-based
models (Lewis et al., 2020) use Byte-pair encod-
ing (Radford et al., 2019) and truncate input and
output tokens to the max sequence length of 1024.
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Unlike BART-based models, T5 models (Raffel
et al., 2020) use Sentencepiece tokenization (Kudo
and Richardson, 2018) and relative position embed-
dings, so while input tokens are truncated to 512
(max context length), output tokens are set to the
maximum for our dataset (3903 tokens).

3.2 Subtask 1: Brief Hospital Course

3.2.1 Generation from Unstructured Data
We train three model classes to generate brief hospi-
tal courses: BART-based, T5-based, and black box
GPT models. We opt for continuously-pretrained
biomedical encoder-decoder models as previous
work has demonstrated that these models outper-
form those trained from scratch (Gu et al., 2021).
BioBART-Large (Yuan et al., 2022) is a 12-layer
encoder-decoder model with 406M parameters ini-
tialized from a general domain model and contin-
uously pretrained on biomedical paper abstracts
from PubMed. The other encoder-decoder model,
Clinical-T5-Large (Hernandez et al., 2023), with
770M parameters, was instead trained from scratch
on MIMIC-III (Johnson et al., 2016) and MIMIC-
IV notes. Due to the relative position embeddings
in Clinical-T5, it can generate longer summaries,
unlike the BioBART model, which is limited to
1024 tokens of output, due to its fixed position
embeddings. Given that 10.3% of the challenge
dataset has greater than 1024 tokens, we hypothe-
size that the Clinical-T5 model will achieve better
performance.

We also compare fine-tuning with 0-shot perfor-
mance of an Azure OpenAI GPT-3.5 Turbo model*
with human-based abuse monitoring switched off,
in keeping with MIMIC’s data use agreement. Dur-
ing preliminary evaluations, no significant differ-
ences were observed between GPT-3.5 and GPT-4,
leading us to choose the more economical option.

3.2.2 Constrained Generation
Upon manual review during phase II testing, we
noticed that our encoder-decoder models often
failed to provide key formatting or content sec-
tions in the BHC. For example, summaries gen-
erated by CMED (Cardiac Medical) services tend
to contain summaries structured by problem list
(e.g. # UTI:...# Cough...). Due to the variabil-
ity in discharge summaries based on individual
physician preferences, discharge ward, and patient
context, encoder-decoder models seemed to strug-

*version: 2023-07-01-preview

Figure 1: GPT-3.5 Pipeline for generation of brief hos-
pital courses using only structured data

gle to learn summary structure. Therefore, we at-
tempted to enforce the inclusion of important prob-
lems through constrained beam search generation
(Anderson et al., 2016; Post and Vilar, 2018; Hu
et al., 2019). Constrained beam search injects ex-
ternal knowledge into the generative beam search
process by including additional beams for tokens
of interest. To identify relevant concepts of inter-
est, we used MedCat (Kraljevic et al., 2021) to tag
the history of present illness section preceding the
BHC with UMLS (Bodenreider, 2004) concepts.
We then constrained our best-performing BioBART
model to include these concepts during its beam
search. We called this model BioBART + Con-
strained Generation.

3.2.3 Generation from Structured Data
To evaluate the ability of GPT-based models to fur-
ther alleviate documentation burden, we develop
a pipeline to generate BHCs directly from struc-
tured data. As shown in Figure 1, we first extract
all relevant structured information for each patient:
demographics, ED diagnoses, procedures, inpatient
medications, lab values, and lab culture results. As
SOAP notes are generally generated either daily
or for each service, we generate individual SOAP
notes for each transfer during the patient’s hospital
admission. These SOAP notes are then provided to
the GPT-3.5 model in a 0-shot setting to generate
brief hospital courses.

3.3 Subtask 2: Discharge Instructions

Similar to subtask 1, we evaluate both fine-tuning
and in-context learning (ICL) in the generation
of discharge instructions. Namely, we fine-tune
BioBART-Large on the brief hospital course text,
under the assumption that discharge summaries are
generated sequentially and this information would
be available to the model in practice. A limited
subset of BHCs was provided to GPT-3.5 LLM
in a 2-shot approach. In this setting, we noticed
that in-context learning did not necessarily improve
generation structure so we opted to not evaluate the
full test set in the 2-shot setting. Therefore, we
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provided GPT-3.5 with BHCs and evaluated it in
a 0-shot setting. GPT-4 LLM also did not demon-
strate performance improvement as measured by
ROUGE in a limited subset of 375 notes (GPT-3.5
R-1: 0.306, R-2: 0.083, R-L: 0.159, GPT-4 R-1:
0.309, R-2: 0.079, R-L: 0.157, respectively). As a
result, GPT-3.5 was provided the entire test set of
BHCs in a 0-shot setting for discharge instruction
generation.

4 Experiments and Results

4.1 Quantitative Evaluation

To evaluate the performance of the models, a
suite of automated summarization metrics includ-
ing BLEU, ROUGE-1, ROUGE-2, ROUGE-L,
BERTScore, Meteor, AlignScore, and MEDCON
were calculated (Papineni et al., 2002; Lin, 2004;
Zhang et al., 2019; Banerjee and Lavie, 2005; Zha
et al., 2023; Yim et al., 2023). We report summa-
rization metrics for all model variations in Table
1. On BHC generation, we trained two encoder-
decoder models: the Clinical-T5 and BioBART
models finding that BioBART performed better.
Manual review showed that while Clinical-T5 was
fine-tuned on larger generations (up to 3903 to-
kens), its original pre-training truncated generation
to 512 tokens, and therefore the model remained
biased towards shorter generations. To evaluate
the impact of in-domain vocabulary on BHC gener-
ation, we also tested BioBART v2, continuously
pre-trained with a larger, cross-domain vocabu-
lary, as opposed to the standard general domain
vocabulary (Yuan et al., 2022). We found that Bio-
BART outperformed BioBART v2, potentially due
to the expanded vocabulary coming from biomedi-
cal literature rather than the clinical notes found in
this challenge. Finally, we also tested the impact
of increased training data size (BioBART-Shuffled)
by shuffling the phase I training, validation and
testing data set, before recombining for an addi-
tional 14,690 discharge summaries in the training
set. Across the encoder-decoder models, BioBART-
Shuffled performed best, yielding us 2nd place on
the challenge leaderboard.

We also compared these results to a GPT-3.5
0-shot model, finding that black-box GPT-3.5 per-
formed worse than the best performing fine-tuned
model. When repeating this experiment with our
structured data-only method (GPT-3.5 + Pseudo-
SOAP notes) as well as constrained generation, we
found that neither of these methods offered im-

Evaluation Criteria Brief Hospital Course Discharge Instructions
Completeness 3.52 4.27
Correctness 2.57 3.95
Readability 2.11 -

Overall 1.53 2.36

Table 2: Average ratings across 3 criteria for 3 clinicians
(Discharge instruction readability was not assessed as
the target audience are patients)

provement over our best-performing model, Bio-
BART. In the generation of discharge instructions,
the BioBART outperformed GPT-3.5, and so was
included as our challenge submission.

4.2 Qualitative Evaluation

To evaluate the clinical validity of generated brief
hospital courses and discharge instructions, a team
of 3 clinicians reviewed a random sample of 25
generations from the hidden set of 250 discharge
summaries. Each clinician rated both the brief hos-
pital courses and discharge instructions according
to 3 criteria: Completeness (captures important
information), Correctness (contains less false in-
formation), and Readability. They also provide a
holistic assessment as an overall score (Xu et al.,
2024). All metrics are averaged, and results are pre-
sented in Table 2, showing that both the brief hospi-
tal course and discharge instructions received their
highest grades in completeness and lowest in the
overall evaluation criteria. Selected discharge in-
structions received higher grades across complete-
ness, correctness, and overall criteria compared to
brief hospital course. This is likely due to the na-
ture of the increased complexity and wider range
of information often necessary for inclusion in a
brief hospital course.

5 Limitations

While our methods were able to produce reason-
able BHCs and discharge instructions, there are
several important limitations to our study. Com-
putationally, we were unable to perform a rigor-
ous hyperparameter search across all our experi-
mental conditions due to computational constraints.
There is potential for improvement given further
resources. Namely, we were surprised that Con-
strained Generation performed significantly worse
than vanilla BioBART models. This is potentially
due to the additional hyperparameters that need
to be tuned, including the tokens of interest that
MedCat identified and beam sizes.

Furthermore, we believe that there is limited clin-
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ical validity in the current task as it has been framed.
The automated generation of BHC and discharge
instructions utilizing physician generated preced-
ing text does not truly automate the task, nor does
it obviate the need for the core summarization task
of note-writing on the part of the physician (rather
than documentation of findings). We attempted to
model a more representative use case by including
the generation of Pseudo-SOAP notes but found sig-
nificantly worse performance, demonstrating this
difficulty of the real-world clinical task. Further-
more, the format and physician- and institution-
specific stylistic choices had a significant impact
on automated performance, as demonstrated by the
significant variation in documentation length and
lack of standard templates even within services
that discharged patients. The Challenge organizers
did attempt to alleviate concerns around general-
izability with a qualitative analysis by clinicians,
but further efforts in automated metrics involving
semantic comparison are necessary.

6 Conclusion

In this work, we present experiments for the au-
tomated generation of brief hospital courses and
discharge instructions from structured and unstruc-
tured data captured during an ED encounter. We
find that a BioBART model with increased train-
ing data performed better than both other encoder-
decoder models and a black-box decoder-only
model. We also find that constraining generation to
emphasize generation of UMLS concepts worsens
performance. Finally, we show that GPT-3.5 can
generate brief hospital courses purely from struc-
tured information, further reducing the annotation
burden for physicians.
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Abstract
This paper presents our proposed approach to
the Discharge Me! shared task, collocated with
the 23th Workshop on Biomedical Natural Lan-
guage Processing (BioNLP). In this work, we
develop an LLM-based framework for solving
the Discharge Summary Documentation (DSD)
task, i.e., generating the two critical target sec-
tions ‘Brief Hospital Course’ and ‘Discharge
Instructions’ in the discharge summary. By
streamlining the recent instruction-finetuning
process on LLMs, we explore several prompt-
ing strategies for optimally adapting LLMs to
specific generation task of DSD. Experimen-
tal results show that providing a clear output
structure, complimented by a set of comprehen-
sive Chain-of-Thoughts (CoT) questions, effec-
tively improves the model’s reasoning capabil-
ity, and thereby, enhancing the structural cor-
rectness and faithfulness of clinical information
in the generated text. Source code is available
at: https://anonymous.4open.science/r/
Discharge_LLM-A233

1 Introduction

Discharge summaries encapsulate key details of
a patient’s hospitalization, from admission to dis-
charge. These documents, however, can contain ex-
cessive amount of medical notes, making it difficult
for subsequent caregivers or patients to quickly un-
derstand essential past medical information. Brief
Hospital Course and Discharge Instructions then
become two critical sections in discharge sum-
maries to address this issue. The former outlines
critical hospital events for healthcare providers,
while the latter offers post-discharge care instruc-
tions to patients and their caregivers. The Dis-
charge Me! shared task 1 (Xu et al., 2024) at the
BioNLP Workshop, known as Discharge Summary
Documentation (DSD), focuses on efficiently gen-
erating these two critical sections, a task that is both
challenging and time-consuming for clinicians.

1https://www.codabench.org/competitions/2008/

In this paper, we introduce a novel LLM-based
framework, namely Discharge-LLM, for the DSD
task (Xu et al., 2024). Discharge-LLM em-
ploys modern prompting strategies (e.g., Chain-
of-Thought (CoT)) into instruction-finetuning a
Mistral Large Language Model (LLM), which
enhances structural correctness and faithfulness of
clinical information to generate the Brief Hospi-
tal Course and Discharge Instructions sections of
discharge summaries.

2 Related Work

In recent years, Large Language Models (LLMs)
like GPT-2 or GPT-3 have excelled in NLP tasks
such as language generation, question answering,
due to their vast number of paramters and extensive
training on diverse datasets. These models can be
adapted to new domains and tasks through meth-
ods like prompting, which uses natural language
instructions (Liu et al., 2023) or few-shot exam-
ples (Lampinen et al., 2022). However, considering
DSD problem, the length and excessive informa-
tion in discharge summaries hinders their use as
examples for few-shot prompting. Alternatively,
parameter-efficient fine-tuning, which freezes an
LLM weights and inserts a small number of tunable
parameters (Lin et al., 2020), has proven effective
in specialized clinical tasks like radiology report
generation (Van Veen et al., 2023).

From the clinical summarization perspective,
research towards th DSD task was very limited.
But there has been a growing focus on many clin-
ical text generation tasks, encompassing radiol-
ogy reports (Ben Abacha et al., 2021), clinical
notes (Grambow et al., 2022), and summary of
diagnoses and patient problems (Gao et al., 2022).

3 Problem description

A discharge summary can contain several free-text
sections and medical notes compiled from EHR.
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DSD Input

Pertinent Results 
(Radiology Report)

Radiology Report Text 
(radiology.csv)

Discharge Summary Text (discharge.csv)

Chief Complaint

History of Present Illness
1. Section
Extraction

2. Radiology
Report 

Selection

Brief Hospital Course 
Adapter

Discharge Instruction 
Adapter

3. Target Section Generation

EXAMINATION: The type of diagnostic test (e.g., 
CT scan, MRI) or examination performed, on 
which organs.

INDICATION: The medical history and symptoms 
that justify the need for the examination.

COMPARISON: Previous imaging studies used for 
reference to assess changes or developments.

FINDINGS: Details observations, abnormalities, 
and characteristics noted from the current 
examination.

IMPRESSIONS: Summary of key results, medical 
implication and diagnostic conclusions from the 
result findings.

INITIAL PRESENTATION: The primary reason of the patient's admission to the hospital. What are the key diagnoses? What 
were the main treatment strategies employed for the patient?

TREATMENT COURSE: Details of every condition, disease, or symptom identified during the patient's hospitalization (e.g., 
fevers, nausea). Each condition is described along with the treatments, interventions, and outcomes.

[#Condition 1]
[#Condition 2]
...

TRANSITIONAL ISSUES: Ongoing management and considerations for the patient's care upon discharge from the hospital, 
including adjustments to medications, feeding regimen, wound care, follow-up appointments, and recommendations for home 
care to ensure continuity of care and optimal recovery post-discharge. 

Allergies

ADMISSION REASON: A brief summary of the patient's reason for hospitalization, often highlighting the main 
medical issue or condition that led to the admission.

HOSPITAL COURSE: The medical procedures, tests, and diagnoses made during the hospital stay. It typically 
includes details about the patient's current health status and any significant findings or interventions

POST-DISCHARGE INSTRUCTIONS: Guidance for the patient's care after leaving the hospital, including 
medication changes, follow-up appointments, and any specific instructions for ongoing treatment or monitoring. 

Mistral-7B

Name: __ Unit No: __

Admission Date: __ Discharge Date: __

Date of Birth: __ Sex: __

Allergies: Patient's known adverse reactions to substances.

Chief Complaint: Patient's main reason for seeking medical attention.

Major Surgical or Invasive Procedure: Significant surgeries or invasive procedures performed.

History of Present Illness: Detailed account of the current medical issue.

Past Medical History: Patient's medical background including previous illnesses.

Social History: Patient's lifestyle, habits, and social support system.

Family History: Medical history of the patient's relatives.

Physical Exam: Results and findings from the patient's physical examination

Pertinent Results: Key findings from diagnostic tests or procedures that are relevant to the 
patient's current condition or treatment plan (e.g., CT scan, MRI) 

Medications on Admission: Drugs administered upon hospital admission.

Discharge Medications: Medications prescribed upon discharge.

Discharge Disposition: Where the patient is sent after leaving the hospital.

Discharge Condition: Primary medical condition at discharge.

[Closing remark wishing the patient well]

[Greeting patients and expressing gratitude for allowing the healthcare team to provide care.]

[Context] ...

[CoT Questions]

What are the key diagnoses identified ...

What were the main treatment strategies...

Initial presentation

Treatment course

What is the patient's background relating ...

Describe the treatment strategy, including ...

[Context] ...

[CoT Questions]

Why the patient was admitted ...

Admission Reason

Hospital Course: A concise summary of

How was the diagnosis reached

Post-discharge Instructions

What the patient should after discharge?

What specific activity restrictions ...

Brief Hospital Course Prompt

Discharge Instructions Prompt

Figure 1: The Discharge-LLM framework

The task is to generate the Brief Hospital Course
(BHC) and Discharge Instructions (DI) sections,
leveraging readily available data in other sections
of discharge summaries and additional information
about a patient’s admission (e.g.,radiology, stays)
from the dataset. Brief Hospital Course outlines
critical hospital events for healthcare providers,
while Discharge Instructions offers post-discharge
care instructions to patients and their caregivers.

4 Methodology

We propose the Discharge-LLM framework, which
adapt LLM to the each generation task of DSD,
illustrated in Figure 1. Discharge-LLM applies
three steps, namely Section Extraction, Radiology
Report Selection and Target Section Generation to
generate the two critical target sections given dis-
charge summary and radiology report information
of a patient’s hospital visit. Note that we utilize the
generated BHC for the subsequent generation of DI.
Table 4 and 5 (Appendix A) show the output of the
two target sections generated by our framework.

4.1 Section Extraction
To generate the two target sections BHC and DI,
the most straightforward approach is to leverage
the other readily available free-text sections in the
discharge summary as the input for the generation
stage. But using them all for one-stage genera-
tion is overwhelming and prone to hallucination

because some sections are irrelevant or contain
thousand words of nonessential information, mak-
ing key aspects of the patient’s record often be
omitted. We thereby design sets of heuristics (e.g.,
regular expressions) to selectively extract clinical
notes information from 13 relevant sections of the
discharge summaries (e.g, History of Present Ill-
ness, Pertinent Results, . . . ), with definition of each
section described in Figure 1. We report data distri-
bution of these sections in Table 6 (Appendix B)

4.2 Radiology Report Selection

Through exploring the format of different sections
of the discharge summary, we notice a great com-
plications in the structure and content of the Perti-
nent Results section, likely due to note bloat and
information overload. This section, intended to
highlight key findings of radiologist to the patient’s
treatment, is often cluttered with excessive labora-
tory and imaging data (e.g., blood tests, CT scans).
These extraneous details can lead to challenges
such as hallucination and high resource demands
in generative tasks. Consequently, we explored us-
ing radiology reports as a viable alternative. These
reports, often duplicated partially or entirely in the
Pertinent Results section, succinctly convey diag-
noses corresponding to specific lab results. We
selected radiology reports with similar Impressions
to those in the Pertinent Results and used these as
a substitute, streamlining the content effectively.
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4.3 Target Section Generation

In this framework, we performed instruction-
finetuning on LLM to adapt the model to DSD. For
computational feasiblity, we employed Low-Rank
Adaptation (LoRA) (Hu et al., 2021), a parameter-
efficient fine-tuning method that adds a small num-
ber of trainable parameters to the model while
freezing the model’s original weight, resulting in
standalone adapters. The adapters, specifically fine-
tuned for each generation task in DSD, adjust im-
portant weight of LLMs to capture and generate
clinical information in the corresponding form.

Prompting Strategies Following OpenAI’s
prompt engineering guidelines 2, we structured
our prompts into five parts, detailed in Table 7
(Appendix D): 1) Context of the discharge
summary input to be summarized 2) Definition
of the generation task and the specific section for
documenting the discharge summary 3) Structure
of the expected output of the generating section,
infused with 4) Set of Chain-of-Thought (CoT)
questions expected to be answered by the LLMs
to capture and generate the information in each
subsection of the output. Of those, our primary
strategy is Part 5, which involved curating effective
and generalizable CoT questions based on analysis
of numerous samples. This manual effort helped in
designing templates and questions that effectively
guide the LLMs to focus on critical information
amidst the extensive data and noise in the discharge
summaries. We analyzed the medical questionnaire
essential for each section, based on hundreds of
samples, in Appendix C , which underpins our
CoT questions and prompt design.

5 Experiments

5.1 Baseline and Implementation Details

To showcase the utility of prompt designing
for adaptation to the DSD task, we devel-
oped three baselines, corresponding to three
prompt variants for instruction-finetuning LLMs.
Discharge_LLMBase was fine-tuned with no in-
struction, but only the discharge summaries as
input and the respective target section as output.
Discharge_LLMContext was fine-tuned with ad-
ditional natural langauge instructions as prefix
to the discharge summary to provide the con-
text and definition of the task’s input/output. Fi-

2https://platform.openai.com/docs/guides/
prompt-engineering

nally, Discharge_LLMCoT was fine-tuned using
prompts outlining the structure of the respective
generating target section. Along the structure, we
embed some CoT questions to elicit LLMs to gen-
erate output aligned with the questions.

We choose Mistral 3 (Jiang et al., 2023) as our
LM. The LLM was fine-tuned on a NVIDIA RTX
4090 GPU, and took 10 hours for fine-tuning each
generation task. The following hyperparameters
were used: 1 sample per device, a LoRA rank and
alpha of 128 and 64 for parameter-efficient fine-
tuning, a learning rate of 2e10− 4. We keep other
hyperparameters to their default values.

Metrics We followed the organizers to measure
textual similarity and factual correctness of the
generated text based on several metrics, includ-
ing BLEU-4 (Papineni et al., 2002), ROUGE (Lin,
2004), BERTScore (Zhang et al., 2019), Me-
teor (Banerjee and Lavie, 2005), AlignScore (Zha
et al., 2023), and MEDCON (Yim et al., 2023).

Dataset The dataset for this task was sourced
from the MIMIC-IV (Johnson et al., 2023) dataset,
including 109,168 emergency department (ED) ad-
missions and were split into a training (68,785), a
validation (14,719), a phase I testing (14,702), and
a phase II testing (10,962) subsets.

Data Preprocessing To address the variation in
discharge summary length, we select data within
the interquartile range (Q1-Q3) for training and val-
idation. We further ensure consistency by selecting
only samples with discharge summaries containing
all 13 common sections and their target sections
follow the most common format, as outlined in
Figure 1. Overall, 11.1k and 8.7k samples were
selected for training of BHC and DI generation,
respectively. For experiment, due to runtime and
computational limitations, we sample 250 hidden
entries from each phase’s testing data, totaling 500
samples for evaluation of each generation task.

5.2 Results

Table 1 presents the performance of models fine-
tuned by different prompt variants. Overall, in
both generation tasks, natural language instruc-
tions plays a critical role in guiding the LLM with
comprehensive knowledge to understand the task.
Providing well-described context of the generation
task already helps the model achieves up to 14% of

3https://mistral.ai/
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Framework R-1 R-2 R-L BLEU BERTScore Meteor AlignScore MEDCON
Discharge_LLMCoT 0.283 0.087 0.170 0.062 0.368 0.206 0.230 0.408
Discharge_LLMContext 0.263 0.091 0.178 0.058 0.365 0.191 0.234 0.397
Discharge_LLMBase 0.240 0.074 0.159 0.043 0.347 0.170 0.221 0.376

(a) Brief Hospital Course Generation

Framework R-1 R-2 R-L BLEU BERTScore Meteor AlignScore MEDCON
Discharge_LLMCoT 0.392 0.151 0.246 0.077 0.373 0.272 0.288 0.452
Discharge_LLMContext 0.356 0.103 0.205 0.075 0.360 0.272 0.286 0.429
Discharge_LLMBase 0.335 0.102 0.215 0.041 0.324 0.181 0.251 0.318

(b) Discharge Instructions Generation

Table 1: Evaluation of prompt variants for finetuning Discharge-LLM

Framework R-1 R-2 R-L BLEU BERTScore Meteor AlignScore MEDCON Overall
Discharge_LLMCoT 0.370 0.131 0.245 0.068 0.360 0.314 0.215 0.324 0.253
Best ranked system 0.453 0.201 0.308 0.124 0.438 0.403 0.315 0.411 0.332

Table 2: Overall performance on two target section from the shared task’s phase 2 leaderboard

Target Section min median mean max
BHC 22 367 425 2439
DI 10 153 201 2900

Table 3: Statistics of reference text’s word count on
phase 2’s test set
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Figure 2: Distribution of samples per number of words
on phase 2’s test set

performance gain across the metrics and tasks. Fur-
ther, infusing CoT questions into the instructions
effectively elicit LLM to think better, providing an
additional 9% performance increase. Notably, a
reasonable improvement on MEDCON score also
indicates better accuracy and consistency of clini-
cal concepts in the generated text.

5.3 Shared Task’s Evaluation Results
Table 2 summarizes our framework’s overall per-
formance on the phase 2 test set of the shared task,
alongside the best-ranked system 4. We notice there

4https://www.codabench.org/competitions/2008/

is still a gap between our Discharge_LLMCoT

framework and the best ranked system, of which
the Overall score is 0.332. This performance dip is
common across submissions, likely due to preva-
lent data quality issues in the Discharge Summary
Documentation (DSD) task. DSD, a real-world
summarization challenge, involves processing ac-
tual discharge summary information with signifi-
cant variability in formatting and length. Figure
2 shows word distribution variances in the target
sections. It is noticeable our models are trying to
set a common length for the target sections, and
are struggling to converge to the wide range of
lengths of the reference text, highlighted by Ta-
ble 3. We note slight performance variation of
Discharge_LLMCoT in terms of Meteor, Align-
Score and MEDCON, in between Table 1 and 2.
A possible reason for such variation may be that
hidden test data in the shared task has distributions
significantly deviate from the publicly released data
for model development. Furthermore, due to com-
putational constraints and a focus on high-quality
data, we utilized only a subset of the available train-
ing data. With more comprehensive training, we
anticipate improved model convergence.

6 Conclusion

In this paper, we present a LLM-based frame-
work for Discharge Summary Documentation that
adopts several prompting strategies into instruction-
finetuning an LLM, which enhances structural cor-
rectness and faithfulness of clinical information in
generated target sections. Using small and open-
source LLMs, our work also shows the feasiblity of
developing and deploying future lightweight NLP
systems locally for confidential clinical tasks.
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A Generated Output of Brief Hospital
Course and Discharge Instructions

This section presents details of Table 4 and 5, which
show the output of the two “Brief Hospital Course”
and “Discharge Instructions” target sections gen-
erated by our framework, taken from medical in-
formation of patient with hadm_id = 21720538
from the phase 2’s test set.

B Data Distribution of Discharge
Summary Sections

Table 6 presents the percentage distribution of com-
mon sections in the discharge summary text of the
training, validation and testing subsets.

C Questionnaire for Discharge Summary
Documentation

C.1 Brief Hospital Course
• Patient Background and Presenting Com-

plaint: "What is the patient’s background in-
cluding pre-existing medical conditions, and
what symptoms or events led to their current
hospital admission?"

• Key Diagnoses and Evaluations: "What are
the key diagnoses identified during the hos-
pital stay? For each, how was the diagnosis
reached, including any significant tests or eval-
uations conducted?"

• Treatment and Management Strategies: "What
were the main treatment strategies employed
for the patient’s conditions during their stay?
Include medications adjusted, procedures per-
formed, and any therapeutic interventions."

• Complications and Additional Diagnoses:
"Were there any complications or additional
diagnoses during the hospital stay? How were
these addressed and managed?"

• Progress and Monitoring: "How did the pa-
tient’s condition progress throughout the hos-
pital stay, including any monitoring of symp-
toms, response to treatments, and adjustments
made to the treatment plan?"

• Support and Consultation Services: "Which
specialist services or support consultations
were involved in the patient’s care? How did
these consultations impact the patient’s treat-
ment plan and recovery?"

• Discharge Planning and Instructions: "What
were the conditions and considerations for
the patient’s discharge? Include the dis-
charge medications, any changes from previ-
ous medication regimens, and follow-up care
or lifestyle recommendations."

• Follow-Up and Post-Discharge Care: "What
are the specific follow-up care instructions and
any scheduled tests or consultations? High-
light the importance of follow-up for manag-
ing ongoing conditions or monitoring recov-
ery."

C.2 Discharge Instructions

• Initial Assessment and Diagnosis: What led
to the patient’s admission to the hospital, and
what were the initial symptoms? Based on
the patient’s symptoms, what diagnoses were
considered and which was confirmed?

• Treatment and Hospital Stay: What treat-
ments were provided to address the patient’s
symptoms or condition during the hospital
stay? Were any surgeries recommended or
performed? If a surgery was recommended
but not performed, what were the reasons?
What were the outcomes of the treatments or
interventions provided?

• Patient’s Decisions and Care Preferences: Did
the patient make any specific requests regard-
ing their care, such as refusing a treatment or
requesting a transfer? How were these han-
dled? How did the patient’s decisions affect
their treatment plan and discharge process?

• Comprehensive Post-Discharge Instructions:
What are the general care instructions for the
patient after discharge, including diet, activity
level, and medication management? Are there
any specific symptoms or signs that the pa-
tient should monitor for which would require
immediate medical attention? How should
the patient manage their regular home med-
ications in addition to any new medications
prescribed at discharge?

• Activity and Lifestyle Recommendations:
What specific activity restrictions or recom-
mendations are given to ensure a smooth re-
covery? (e.g., weight lifting limits, mobility
advice) Are there any restrictions on driving or
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___ with PMH of NASH vs cryptogenic cirrhosis, HTN,
hyperlipidemia, hypothyroidism who presents from ___
___ with DVT and renal failure.

# DVT: Patient with extensive RLE DVT extending from the right
calf veins into the popliteal vein and femoral vein. Patient
was started on heparin gtt. He was evaluated by ___ who
recommended discharge home with home ___.

# Renal Failure: Patient presented with Cr 8.9, likely
pre-renal in etiology. Patient was given albumin and
diuresis. Cr improved to 3.5 on discharge.

# Cirrhosis: Patient with cirrhosis secondary to NASH vs
cryptogenic cirrhosis. Patient was continued on lactulose and
rifaximin. He was also continued on nadolol.

# Hepatic Encephalopathy: Patient with history of hepatic
encephalopathy. Patient was continued on lactulose and
rifaximin.

# Ascites: Patient with large volume ascites. Patient was
continued on diuresis.

# HTN: Patient was continued on home nadolol.

# Hypothyroidism: Patient was continued on home levothyroxine.

# GERD: Patient was continued on home omeprazole.

# Osteopenia: Patient was continued on home calcium and vitamin
D.

# Allergic Rhinitis: Patient was continued on home cetirizine.

# Chronic Kidney Disease: Patient with chronic kidney disease
secondary to cirrhosis. Patient was continued on home
albumin/dietary management.

# Code: DNR/DNI
# Emergency Contact: ___ (daughter) ___

TRANSITIONAL ISSUES:
- Patient will need to follow up with hepatology and ___
clinic.
- Patient will need to follow up with ___ clinic for
continued management of his DVT.
- Patient will need to follow up with ___ clinic for
continued management of his ascites.
- Patient will need to follow up with ___ clinic for
continued management of his hepatic encephalopathy.
- Patient will need to follow up with ___ clinic for
continued management of his cirrhosis.
- Patient will need to follow up with ___ clinic for
continued management of his hypertension.
- Patient will need to follow up with ___ clinic for
continued management of his hyperlipidemia.

Table 4: Generated Output of Brief Hospital Course.

operating machinery, especially if the patient
is taking new or continued pain medication?

• Follow-up Care and Monitoring: What follow-
up appointments or tests are recommended
for the patient? With whom should these ap-

pointments be made? How should the patient
approach symptom management, especially
if they experience pain, dehydration, or other
concerning symptoms?

• Communication with Healthcare Providers:
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Dear Mr. ___,

It was a pleasure taking care of you at ___
___. You were admitted to the hospital because you
were having kidney failure. You were treated with medications
to help your kidneys recover. You also had a blood clot in your
legs. You were started on blood thinners to help prevent
further clots. You were also found to have a lot of fluid in your
belly. You were given medications to help remove the fluid.

You were also found to have a lot of confusion. You were given
medications to help with this. You were also found to have a
blood infection. You were treated with antibiotics. You were
discharged home with hospice care.

We wish you the best.

Sincerely,
Your ___ Team

Table 5: Generated Output of Discharge Instructions.

Section train valid test (phase 1) test (phase 2)
Allergies 0.999941669 0.999795571 0.999864232 0.999453801
Chief Complaint 0.999956252 0.999863714 1 0.9997269
Major Surgical or Invasive Procedure 0.518607636 0.516456559 0.517615912 0.517979062
History of Present Illness 0.980386152 0.982010221 0.980788813 0.97997269
Past Medical History 0.960203576 0.96197615 0.958387075 0.960491579
Social History 0.97414472 0.976149915 0.974204059 0.973782431
Family History 0.967567883 0.968245315 0.968094495 0.966317706
Physical Exam 0.978315397 0.980102215 0.978141335 0.977878926
Pertinent Results 0.981231954 0.98153322 0.981942842 0.981429222
Brief Hospital Course 1 1 1 1
Medications on Admission 0.939787675 0.939625213 0.937750322 0.939007738
Discharge Medications 0.980590311 0.981192504 0.980585161 0.981975421
Discharge Disposition 0.989121241 0.987189097 0.987984522 0.987528448
Discharge Diagnosis 0.991950302 0.992231687 0.992261218 0.993172508
Discharge Condition 0.999970834 0.999931857 1 1
Discharge Instructions 1 1 1 1

Table 6: Data Distribution of sections in the discharge summaries in the provided dataset

Under what circumstances should the patient
immediately contact their healthcare provider
or seek emergency care? What is the recom-
mended way for the patient to communicate
with their healthcare team (e.g., phone call,
hospital return)?

• Encouragement and Support: How can we en-
courage the patient to adhere to their discharge
instructions and reassure them about their re-
covery process? What resources or support
systems can we recommend to the patient for
additional help or information post-discharge?

D Prompts for Discharge Summary
Documentation

We present the prompts for generation of the two
critical “Brief Hospital Course” and “Discharge
Instructions” target sections in Table 7

738



Prompt for Brief Hospital Course Generation Prompt for Discharge Instructions Generation

In this task, you are provided with a Discharge Summary delimited by triple quotes.
Discharge Summaries are documents that outline the care a patient received during their

hospital stay, including diagnoses, treatments, and follow−up care instructions,
prepared at the time of a patient's discharge.

Discharge Summaries are split into various sections and written under a variety of
headings, relating to admission, diagnosis and relevant discharge information.
But the provided Discharge summary will be missing the \"Brief Hospital
Course\". \"Brief Hospital Course\" is a section of the discharge summaries that
outlines the key events of a patient's hospital stay, including the progression
from admission to discharge. It is written for the subsequent care providers about
the critical aspects of the patient.

You are tasked to generate the missing \"Brief Hospital Course\" section in the discharge
summary, based on the information of other sections in the discharge summary.

Brief Hospital Course outlines the key events of a patient's hospital stay, including the
progression from admission to discharge. It is written for the subsequent care
providers about the critical aspects of the patient

The summary should be written in the following structure, by answering some important
questions:

1. Initial presentation: Describe the patient's initial presentation, including the main
complaint and relevant history.

* What were the main treatment strategies employed for the patient's conditions
during their stay? Include medications adjusted, procedures performed, and
any therapeutic interventions.

* What are the key diagnoses identified during the hospital stay?
2. Treatment course:

− For each section header named by "#Condition Name", provide a detailed
description of each condition, disease, or symptom of the patient by
answering the following questions:

* What is the patient's background relating to the condition, disease, or
symptom

* Describe the treatment strategy, including any medications given, procedures
performed, and dietary adjustments.

* How was the diagnosis reached, including any significant tests or evaluations
conducted?

* What were the significant medical or surgical interventions during the hospital
stay, including any procedures, diagnostic tests (e.g., CT Scan,
Imaging, Blood Test, MRI), and changes in medication?

* Were there any complications or additional diagnoses during the hospital stay?
How were these addressed and managed?

* How did the patient's condition progress throughout the hospital stay,
including any monitoring of symptoms, response to treatments, and
adjustments made to the treatment plan?

* What were the conditions and considerations for the patient discharge?
Include the discharge medications, any changes from previous
medication regimens, and follow−up care or lifestyle recommendations.

3. Transitional issues: Highlight any transitional care issues addressed during the hospital
stay, including changes in medication, dietary adjustments, and specific care
instructions.

4. Acute/active issues: Detail the management of acute or active issues encountered
during the stay, using the provided structure for each condition.

5. Chronic/stable issues: Summarize how chronic conditions were managed during the
stay and any adjustments made to long−term management plans.

In this task, you are provided with a Discharge Summary delimited by triple quotes.
Discharge Summaries are documents that outline the care a patient received during their

hospital stay, including diagnoses, treatments, and follow−up care instructions,
prepared at the time of a patient's discharge.

Discharge Summaries are split into various sections and written under a variety of
headings, relating to admission, diagnosis and relevant discharge information.
But the provided Discharge summary will be missing the \"Discharge
Instructions\". \"Discharge Instructions\" is a section of the discharge summaries
that summarizes key events of a patient's hospital stay, including the progression
from admission to discharge. and provide detailed guidelines to patients (and
often their caregivers) upon discharge from a hospital or healthcare facility,
outlining how to care for themselves at home.

You are tasked to generate the missing \"Discharge Instructions\" section in the discharge
summary, based on the information of other sections in the discharge summary.

Discharge Instructions summarizes key events of a patient's hospital stay, including the
progression from admission to discharge. and provide detailed guidelines to
patients (and often their caregivers) upon discharge from a hospital or healthcare
facility, outlining how to care for themselves at home.

The summary should be written in the following structure, by answering some important
questions:

1. Admission Reason: A concise explanation of:
* Why the patient was admitted, including any specific conditions or symptoms

addressed during the stay.
* What was the patient's diagnosis upon admission to the hospital?

2. Hospital Course: A concise summary of what happened to the patient's at the hospital
* How was the diagnosis reached, including any significant tests or evaluations

conducted (e.g., CT Scan, Imaging, Blood Test, MRI)?
* What were the significant medical or surgical interventions during the hospital stay

, including any procedures, diagnostic tests (e.g., CT Scan, Imaging, Blood
Test, MRI), and changes in medication?

* Describe the treatment strategy, including any medications given, procedures
performed, and dietary adjustments.

* How did the patient respond to the treatment and procedures? Did the patient make
any specific requests regarding their care, such as refusing a treatment or
requesting a transfer? How were these handled?

* Were there any complications or notable improvements in the patient's condition
during the stay?

* What were the outcomes of the treatments or interventions provided?
3. Post−Discharge Instructions:

+ Follow−Up Care:
* What the patient should do after leaving the hospital?
* What specific activity restrictions or recommendations are given to ensure a

smooth recovery? (e.g., weight lifting limits, mobility advice)
* Are there any restrictions on driving or operating machinery, especially if the

patient is taking new or continued pain medication?
* Instructions on how to continue treatments started in the hospital, such as new

medications or therapy.
+ Medications (Optional):

* Comprehensive instructions for all prescribed medications, including dosage,
timing, and any specific instructions for use.

* How should the patient manage their regular home medications in addition to
any new medications prescribed at discharge?

+ Monitoring:
* Guidelines on any self−monitoring the patient should perform at home, such

as weighing themselves, monitoring blood pressure, or blood sugar
levels, with instructions on when to contact their healthcare provider.

* Are there any specific symptoms or signs that the patient should monitor for
which would require immediate medical attention? Under what
circumstances should the patient immediately contact their healthcare
provider or seek emergency care?

Table 7: Prompts for “Brief Hospital Course” and “Discharge Instructions” generation of the Discharge-LLM
framework.
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Abstract

This paper presents a method called Concept
Based Description Generation, aimed at creat-
ing summaries (“Brief Hospital Course” and
“Discharge Instructions”) using source (“Dis-
charge” and “Radiology”) texts. We propose
a rule-based approach for segmenting both the
source and target texts. In the target text, we not
only segment the content but also identify the
concept associated with each segment based on
text patterns. Our methodology involves cre-
ating a combined summarized version of each
text segment, extracting important information,
and then fine-tuning a Large Language Model
(LLM) to generate aspects. Subsequently, we
fine-tune a new LLM using a specific aspect,
the combined summary, and a list of all as-
pects to generate detailed descriptions for each
task. This approach integrates segmentation,
concept identification, summarization, and lan-
guage modeling to achieve accurate and infor-
mative descriptions for medical documentation
tasks.

1 Introduction

The “Discharge Me!” (Xu et al., 2024) task within
the BioNLP workshop at the Annual Meeting of the
Association for Computational Linguistics (ACL)

2024 aims to automate the generation of “Brief
Hospital Course” and “Discharge Instructions” sec-
tions in discharge notes. These notes are derived
from a subset of the MIMIC-IV-Note (Johnson
et al., b) and MIMIC-IV-ED (Johnson et al., a)
datasets. Hosted on Codabench, the competition
provides defined training, validation, and testing
sets comprising 109,168 emergency department
admissions.

Document statistics from the training data (Ta-
ble 2 of Appx. A.2) reveal that the average size of
the “text” field in Discharge data exceeds 4200 to-
kens, with over 65,000 documents containing more
than 2000 tokens. In this task’s dataset, each dis-
charge summary includes a “Brief Hospital Course”
section, typically situated after patient history and
current treatments, and a “Discharge Instructions”
section, commonly found towards the note’s con-
clusion. Evaluation metrics such as BLEU-4 (Pap-
ineni et al., 2002), ROUGE-1, ROUGE-2, ROUGE-
L (Lin, 2004), BERTScore (Zhang et al., 2020),
Meteor (Banerjee and Lavie, 2005), AlignScore
(Zha et al., 2023), and MEDCON (Yim et al., 2023)
focus on assessing the textual similarity and factual
correctness of the generated text.

Our approach focused on managing source data
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Figure 1: Overview of Concept Based Description
Generation for generating the "Brief Hospital Course"
and "Discharge Instructions" from Discharge and Radi-
ology text.

size and generating target output systematically to
capture crucial information effectively. We aimed
to condense lengthy documents while retaining
essential details by using a rule-based segmenta-
tion method and appropriate prompts for extracting
summaries without compromising important infor-
mation. This strategy allowed us to compress large
documents while preserving necessary data for tar-
get text generation.

We aim to generate the target text in a structured
format by creating summaries that describe specific
topics related to the task. These topics are referred
to as “concepts”. A concept can encompass various
subjects such as patient instructions, medication
details, disease information, etc. An example of
such a concept is illustrated in Appx. A.1.

Hence, next part of our approach unfolds in two
phases. First, we predict the concepts relevant to
summarized text. Then, leveraging these concepts,
we generate descriptions from the same input text.
This process allows us to tailor responses effec-
tively, as the concepts are inherently task-specific,
enhancing the accuracy and relevance of our gener-
ated content.

2 Related Works

Document summarization, including Query-
focused Summarization (QFS), has made signif-
icant progress in recent decades. QFS targets spe-
cific query information, providing concise answers
from retrieved documents. BayeSum by Daumé III
and Marcu (2006) leverages multiple documents
for state-of-the-art results in query-focused sum-
marization. Vig et al. (2022) explored neural ap-

proaches, highlighting their versatility. Baumel
et al. (2018) addressed challenges in extractive
methods for effective QFS. These efforts show-
case diverse strategies in advancing query-focused
document summarization.

Varadarajan and Hristidis (2006) introduced
query-specific document summarization methods.
Additionally, Fu et al. (2020) explored concept ex-
traction in clinical contexts, automatically identify-
ing predefined clinical concepts from unstructured
text.

HEPOS by Huang et al. (2021) introduces an in-
novative encoder-decoder attention mechanism for
scalable long document summarization, process-
ing ten times more tokens than traditional models.
Moro and Ragazzi (2022) developed the semantic
self-segmentation approach to overcome memory
limitations in transformer architectures, particu-
larly beneficial in law domains. Grail et al. (2021)
proposed a hierarchical propagation layer to en-
hance reasoning in long document summarization.
Pang et al. (2023) suggested a hierarchical infer-
ence framework improving summarization models’
performance on lengthy texts. Koh et al. (2022)
conducted a survey for evaluating research progress
and future directions in long document summariza-
tion.

Efforts focus on training Large Language Mod-
els (LLMs) with medical data, like MIMIC-III
(Johnson et al., 2015). Asclepius-R (Kweon et al.,
2024) is a specialized clinical large language model
trained on synthetic clinical notes created from pub-
licly available case reports, designed to handle pa-
tients’ clinical notes while addressing privacy and
accessibility challenges. BioMistral (Labrak et al.,
2024) is tailored for biomedical text, showing supe-
rior performance in question-answering and across
languages, supporting research in healthcare.

3 Methods

Our pipeline, outlined in Figure 1, consists of
four stages and uses three of the six provided
data files. The “text” fields from the “radi-
ology” and “discharge” files serve as source
documents, while the “discharge_instructions”
and “brief_hospital_course” fields from the “dis-
charge_target” data are used for target summaries.

The first stage involves segmenting documents
into distinct segments using predefined rules for
both source and target data. In the second stage, we
use open Large Language Models (LLMs) to gen-
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erate segment-wise summaries, extracting essential
information from each segment of the source text
and combining these into a condensed version. For
the target texts, we determine the concept for each
segment by training LLMs to predict and describe
concepts from the summarized text. This process
is repeated for both the “Discharge Instruction”
and “Brief Hospital Course” tasks. Finally, the
extracted concepts and descriptions are combined
and presented as the output for each task.

3.1 Source Document Segmentation
Two datasets serve as the source texts for our anal-
ysis: Discharge and Radiology data. A sample
snippet from each dataset is illustrated in Figure
2 of Appx. A.1. To segment these documents ef-
fectively, we employed distinct strategies tailored
to the common patterns found within each dataset.
Discharge texts typically contain substantial con-
tent and exhibit various types of noise, such as
multiple spaces, spaces between new lines, and
multiple equal signs used as dividers. Our initial
step involves noise removal from both text types.
For the Discharge data, we segment the text sec-
tions using three consecutive new line characters
(“\n\n\n”). Subsequently, we examine specific char-
acters—such as colon (“:”), double star (“**”),
hash (“#”), and dash (“-”)—present in the first line
of each segment. If these characters are absent, we
merge the segment with its preceding one.

Similar segmentation processes are applied to
the Radiology texts, albeit with slight modifica-
tions. Here, we split the documents using double
new line characters (“\n\n”) and search solely for
the colon (“:”) character in the first line of each seg-
ment. Segments lacking this character are merged
with the previous segment.

3.2 Target Document Segmentation and
extracting Concepts

Segmenting target document texts involves both
dividing the text and identifying concepts for each
segment. Figure 3 of Appx. A.1 shows segments
paired with their corresponding concepts, which de-
scribe the segment’s content. This pattern, though
not universal, is common in many documents. Be-
fore segmentation, we reduce noise by removing
multiple spaces, single spaces, or periods between
new lines, and replacing multiple equal signs with
a new line character.

Subsequently, we split the entire text of both
types using two newline characters (“\n\n”). For the

“discharge_instructions” text, we identify common
keywords like “Activity”, “Medications”, “What
was done?”, “Why was I admitted to the hospital?”
etc. as target concepts for generated text. Segments
are retained if the first line is in all capital letters
or if a colon character is present in the first line
of each segment. Otherwise, segments are merged
with their preceding segment. The concept key is
extracted from text is the portion before the colon
character in the first line of each segment, or from
text in capital letters at the beginning of each seg-
ment. In cases where no concept key is found, we
assign the concept as Uncategorizedi where i enu-
merates uncategorized cases. The first segment’s
concept is set as Start if no concept is identified
using the aforementioned method.

A similar methodology is applied to the
“brief_hospital_course” text, where we lack a pre-
defined list. After denoising the text, we split the
document as before and retain segments if the first
line contains a colon, starts with a hash or greater
than sign (“>”), or is in all capital letters. The
concept for each segment is determined by text pre-
ceding a colon, dash, or full stop sign in the first
line, or by text in all capital letters.

3.3 Summarization
The primary objective of our summarization pro-
cess is to condense document size while retaining
crucial information. To achieve this goal, we avoid
running the summarization model on the entire doc-
ument due to the risk of potential loss of important
details, especially in longer documents. Instead,
we employ a specific prompt before each segment,
which is given in Table 3 of Appx. A.3.

The summarization model is then applied solely
to the source text and to each text segment from
both the discharge and radiology reports. The sum-
maries generated for each segment corresponding
to each report are combined, resulting in a new
concise report for each type of report. This helps
reduce the document size with minimal information
loss.

3.4 Concept Generation
Concepts play a pivotal role in our generation
task, as they define the structure of the gener-
ated text for each query. To facilitate this, we
train a Large Language Model (LLM) for each
task—generating “brief_hospital_course” and “dis-
charge_instructions”. These models take the con-
densed versions of discharge and radiology texts
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Metric Performance
BLEU 0.04
ROUGE-1 0.21
ROUGE-2 0.1
ROUGE-L 0.13
BERTScore 0.18
Meteor 0.30
AlignScore 0.20
MEDCON 0.19
Overall 0.17

Table 1: Performance of Proposed model on Phase-2
test data

as input and generate a list of concepts extracted
through our earlier methods.

In our approach, the prompt (Table 4 of Appx.
A.4) provided to the model includes the summa-
rized text along with a query aimed at identifying
all concepts present in the text. The model’s re-
sponse provides all identified concepts, with each
concept listed on a new line for clarity and orga-
nization. This method ensures that the generated
text aligns with the extracted concepts, shaping the
output according to the underlying structure of the
input data.

3.5 Concept Based Description Generation

The concepts we extract from the previous sec-
tion serve as directives for our model, guiding it to
generate concise and relevant descriptions. These
extracted concepts provide a roadmap for the gen-
erator, indicating the specific topic it should fo-
cus on. Our approach involves training a model
that takes summarized text as input, along with a
comprehensive list of concepts extracted using the
method described earlier. We then train a Large
Language Model (LLM) for each task, with each
task designed to answer a question based on the
input text.

We provide response as in Table 4 of Appx. A.4.
The model’s response is expected to be a descrip-
tion of that particular concept only. Once we have
obtained all concepts and their corresponding de-
scriptions for each task, we combine them to gener-
ate the final output text. In the combination process,
we can exclude concepts such as “uncategorized”
or “start” to enhance the naturalness of the output.
This method allows us to generate well-structured
and explanatory output for each task, resulting in a
coherent and informative final text.

4 Results and Discussion

The “Discharge Me!” dataset comprises train-
ing (68,785 samples), validation (14,719 samples),
phase I testing (14,702 samples), and phase II test-
ing (10,962 samples) datasets, all sourced from
MIMIC-IV submodules. It is worth noting that the
phase II testing dataset, set for release on April
12th, 2024, will serve as the final evaluation test
set. Due to time constraints, we were unable to
execute our model on the entire dataset, ultimately
utilizing a subset of 10,000 samples for training
purposes. During the generation of summaries us-
ing the BioMistral-7B model (Labrak et al., 2024),
we set the temperature to 0.0 to ensure determin-
ism in our results. This controlled setting aimed
to maintain consistency in the generated outputs
during our experiments.

We proceeded to fine-tune the same model sep-
arately for four distinct tasks: concept genera-
tion and subsequent description generation cor-
responding to each concept, aimed at generating
the "Brief Hospital Course" and "Discharge In-
structions" sections. This fine-tuning process in-
volved adopting the instruction tuning method,
implemented using the Supervised Fine-tuning
Trainer 1. We configured the parameters as follows:
max_seq_length = 4096, learning_rate =
2e − 4. To reduce memory size, we utilized 4-
bit quantization, and for Low-Rank Adaptation
(Mangrulkar et al., 2022), we set rank = 64,
alpha = 16, and dropout = 0.1. The model
underwent training for 5 epochs, employing a train-
ing batch size of 4 and an evaluation batch size of
20. These parameter settings were chosen to strike
a balance between training efficiency and model
performance across the different tasks.

In Table 1, we present the metrics proposed by
the task organizers, which were calculated based
on the outputs generated by our model. These met-
rics encompass a comprehensive evaluation of the
model’s performance across various dimensions
specified by the Discharge Me task. The calcula-
tions were performed using Codabench. Addition-
ally, for transparency and reproducibility, the task
organizers have provided a Python script2 for scor-
ing, ensuring consistency and facilitating further
analysis of our model’s results.

1https://huggingface.co/docs/trl/en/sft_
trainer

2https://github.com/Stanford-AIMI/
discharge-me/tree/main/scoring
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5 Conclusion

In conclusion, this paper describes our participa-
tion in the DischargeMe shared task, which in-
volved generating summaries of hospital course
and discharge reports using MIMIC-IV data. Our
approach included data segmentation, concept iden-
tification and description, prompt-based summa-
rization, and training models for concept extraction
and description generation. We used pre-trained
and fine-tuned Large Language Models (LLMs) to
produce structured, informative summaries. Future
work will compare different models and prompts
and explore advanced data segmentation techniques
to improve accuracy and efficiency.

6 Limitations

Our work faces challenges such as the necessity
to summarize each text segment, limitations of
rule-based methods, handling long segments with
threshold limits, and dependence on the model and
prompt used. Time constraints have hindered com-
prehensive comparisons of different models and
prompts. We plan to develop a new model for bet-
ter segmenting lengthy documents. The success of
our generation task depends on accurate concept
generation, as poor summarization impacts overall
quality. These challenges highlight the complex-
ity of the task and need for ongoing research and
improvement.
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A Appendix

A.1 Source and Target Text Segments
As described in Sections 3.1 and 3.2, Figures 2
and 3 illustrate the segmentation of source and
target texts, respectively. In Figure 2, different
segments are denoted by various colors. In Figure
3, all segments are separated, with the blue parts
representing the concepts and the corresponding
text in yellow serving as their descriptions.

A.2 Training Data Statistics
The training data statistics are presented in Table
2. It shows the minimum, maximum, and average
document token lengths for both source and target
texts arranged against “hadm_id”. The table also
categorizes the documents based on token length
into three groups: less than 500, between 500 and
2000, and more than 2000 tokens. From the table,
we can observe that the source discharge texts are
typically very long, whereas the target discharge
instruction texts are usually short.

A.3 Prompt for Summarization
In Table 3, we provide the prompt used for sum-
marizing all text segments to ensure minimal loss
of important information. We use this prompt with
BioMistral-7B-DARE to generate summaries for
each segment.

A.4 Prompt for Fine-tuning Model
In Table 4, we provide the prompt used to train the
LLM to generate the “Concept” and the correspond-
ing description. This table depicts two prompt tem-
plates. The first template is used for extracting
concepts from the summarized source text. The
second template generates a description of a par-
ticular concept given the same summarized source
text and the list of all extracted concepts.
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Min token
length

Max token
length

Avg token
length

<500
>500
<2000

>2000

Radiology 34 48980 1491.7 19762 34184 14839
Discharge 510 21087 4263 0 3186 65599
Discharge
instruction

12 8935 332.6 57328 11378 79

Brief hospital
course

13 6959 635.6 32068 35654 1063

Table 2: Data statistics for the given training corpus, calculated using Mistral Tokenizer (Labrak et al., 2024)

Figure 2: The rule based text segmentation for 1. Discharge text 2. Radiology text. Two consecutive segments are
marked by different colors.

Prompt for Summarization
You are an intelligent clinical language model.
Below is a snippet of patient’s discharge summary and a following instruction from healthcare professional.
Write a response that appropriately completes the instruction.
The response should provide the accurate answer to the instruction, while being concise.

[Discharge Report Begin]
{text_segment}
[Discharge Report End]

[Instruction Begin]
Summarize the text in very concise form, only keep the important information.
[Instruction End]

Table 3: Prompt for summarization task of each text segment
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Figure 3: The rule based text segmentation for 3. Discharge Instruction 4. Brief Hospital Course. The Concepts are
marked in yellow followed by corresponding description in blue.

Prompt for Extraction of Concept
### Instruction:
Below is a input context which contains the summaries of discharge and radiology reports followed by a question.
Generate the response for the question using the context.

### Input:
{Summarised Source Text}

### Question:
What are the possible aspects for {discharge instruction / brief hospital course} in the above document?

Prompt for Generation of Description Corresponding to Concept
### Instruction:
Below is a input context which contains the summaries of discharge and radiology reports followed by a question.
Generate the response for the question using the context.

### Input:{Summarised Source Text}

### Concepts:
{List of Concepts}

### Question:
Describe the concept Ci based on the above text.

Table 4: Prompt Template for Fine-tune a LLM to generate Concept and Corresponding Description
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Abstract

This paper presents our approaches for the Bio-
LaySumm 2024 Shared Task. We evaluate two
methods for generating lay summaries based
on biomedical articles: (1) fine-tuning the
Longformer-Encoder-Decoder (LED) model,
and (2) zero-shot and few-shot prompting on
GPT-4. In the fine-tuning approach, we indi-
vidually fine-tune the LED model using two
datasets: PLOS and eLife. This process is con-
ducted under two different settings: one utiliz-
ing 50% of the training dataset, and the other
utilizing the entire 100% of the training dataset.
We compare the results of both methods with
GPT-4 in zero-shot and few-shot prompting.
The experiment results demonstrate that fine-
tuning with 100% of the training data achieves
better performance than prompting with GPT-
4. However, under data scarcity circumstances,
prompting GPT-4 seems to be a better solution.

1 Introduction

The task of summarization has witnessed the de-
velopment based on pre-trained language models.
More recently, the superiority of large language
models (LLMs) has been demonstrated on a wide
range of natural language processing (NLP) tasks
(Minaee et al., 2024; Zhao et al., 2023). In the
BioLaySumm 2024 shared task (Goldsack et al.,
2024), the competition focuses on generating sum-
maries for biomedical research articles that are eas-
ily understandable by the general public. These
summaries are usually known as "lay summaries".

Recently, the study of the summarization task
using generative models has increased for both gen-
eral domains (Koh et al., 2022b; Zhao et al., 2020)
and biomedical text (Liu et al., 2023a). Addition-
ally, according to Goldsack et al. (2022), each arti-
cle generally has more than 10,000 words. Many
pre-trained language models have been developed
to handle such long text (Koh et al., 2022a). In
this paper, we implement the Longformer-Encoder-

Decoder (LED) (Beltagy et al., 2020) as an ap-
proach for Biolaysumm shared task, as its perfor-
mance has been demonstrated in (Liu et al., 2023b;
Wu et al., 2023).

In this paper, we present a comparison between
the performance of the fine-tuned LED model on
50% and 100% of the training set. Additionally,
we evaluate GPT-4 (OpenAI et al., 2024) on zero-
shot and few-shot prompting for this Shared Task.
Our aim is to investigate how a fine-tuned model
and a large language model such as GPT-4 perform
in lay summarization biomedical text. This study
focuses on three aspects: performance, training
time, and computational cost. Our contributions
are as follows.

• We fine-tune LED model on different amount
of data to evaluate how it affects the perfor-
mance of the LED model in biomedical lay
summarization task.

• Secondly, we evaluate GPT-4 on zero-shot and
few-shot prompting to investigate how the in-
context learning capability of this model. Our
results show that, in the eLife dataset, the GPT-
4 few-shot prompting method outperforms the
fine-tuned LED model.

In the following sections, we briefly analyze the
datasets, describe our methods in detail, showcase
the experiment settings, and present our results,
findings, and conclusion.

2 Datasets

The task is evaluated on two datasets: PLOS and
eLife (Goldsack et al., 2022). Both datasets contain
biomedical articles and a lay summary manually
written for each article. To first understand the eval-
uation datasets, we proceed tokenizing the input
and the output text on two datasets using tokenizer
from LED model (Beltagy et al., 2020). We sum-
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marize the statistics of the PLOS and eLife dataset
in Table 1.

Dataset Article(#Tokens) Summ.(#Tokens)

Train Val Test Train Val

PLOS 9,851 9,924 9,978 263 279
eLife 12,321 12,753 11,967 435 445

Table 1: The mean number of tokens of input and out-
put text in PLOS and eLife datasets. Summ. is the
abbreviation for lay summary.

According to (Goldsack et al., 2024) and Table
1, while PLOS has more instances of biomedical
papers than the eLife dataset, and the length of both
input and output text in eLife is longer than PLOS.
We also notice that the maximum number of tokens
for input text is 28,561 for PLOS and 34,612 tokens
in eLife.

3 Evaluation Metrics

In this shared task, the generated summaries are
evaluated on three aspects and ten metrics accord-
ingly:

• Relevance: ROUGE-1 (R-1), ROUGE-2 (R-
2) and ROUGE-L (R-L) (Lin, 2004) and
BERTScore (Zhang et al., 2020).

• Readability: Flesch-Kincaid Grade Level
(FKGL) (Kincaid et al., 1975) and Dale-Chall
Readability Score (DCRS) (Chall and Dale,
1995), Coleman-Liau Index (CLI), and LENS
(Maddela et al., 2023).

• Factuality - AlignScore (Zha et al., 2023),
and SummaC (Laban et al., 2022).

The objective of the evaluation is to maximize
the Relevance, Factuality and LENS in Readabil-
ity scores and minimize FKGL, DCRS, and CLI
scores.

4 Preliminary Study

Due to the fact that each instance in both datasets
is lengthy and may contain a large amount of irrel-
evant information to generate lay summaries, we
perform a heuristic evaluation on the validation
sets. We are aware that each article has at least an
abstract and a conclusion paragraph. We evaluated
the abstract, the conclusion part and other parts of
each article with the lay summaries on the Rele-
vance aspect. Table 2 shows that in both cases,

Datasets Section R-1 R-2 R-L BertScore

PLOS
Abs. 0.502 0.199 0.466 0.871
Con. 0.154 0.039 0.146 0.803

Others 0.084 0.041 0.081 0.832

eLife
Abs. 0.319 0.071 0.293 0.839
Con. 0.162 0.026 0.156 0.782

Others 0.097 0.033 0.095 0.820

Table 2: Analysis on Relevance aspect of the abstract,
conclusion and the rest of the content with the lay sum-
maries.

the abstracts written by the author of each article
contain the most similar information. These ab-
stracts are likely to be used as the base knowledge
when creating the lay summaries. Additionally, the
conclusion parts also achieve competitive scores,
which indicates that they have potential to be used
as sources to generate lay summaries.

5 Experiments

Based on the results of our preliminary study, we
first extract the abstract and conclusion paragraph
from the original articles. We then perform the
fine-tuning process and prompting GPT-4 using the
combination of abstract and conclusion from the
original articles.

5.1 Fine-tuning LED model

We fine-tune LED model on each dataset indi-
vidually using 50% and 100% of the training set.
We randomly select 50% of the training instances.
Fine-tuning processes are performed on Colab Pro
1 using the L4 GPU (22GB VRam). We employ the
base version (41M parameters) of the LED model
via Huggingface2, which can process up to 16,384
tokens. In the experiment, the batch size is set to
2 due to the limitation of the GPU VRam, and we
train for 2 epochs and set the learning rate to 1e-5.
For the PLOS dataset, we set the maximum token
at 10,000 for input, and the maximum output se-
quence length is 400 tokens. Since the eLife dataset
has longer input and output sequence lengths, we
set the maximum input token to 14,000 tokens, and
the output is 600 tokens. These adjustments are
made to accommodate the length of the lay sum-
mary in each dataset.

1https://colab.research.google.com/
2https://huggingface.co/docs/transformers/en/

model_doc/longformer
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Model R-1 R-2 R-L BertScore FKGL DCRS CLI LENS AlignScore SummaC

PLOS

LED (50%) 0.472 0.157 0.426 0.864 14.459 11.431 15.781 56.053 0.818 0.741
LED (100%) 0.472 0.163 0.431 0.865 14.299 11.367 15.520 57.090 0.819 0.739
GPT-4 zs 0.420 0.114 0.385 0.857 14.648 10.556 15.456 70.621 0.646 0.485
GPT-4 fs 0.431 0.123 0.402 0.860 14.210 10.530 15.380 70.781 0.711 0.589

eLife

LED (50%) 0.456 0.121 0.435 0.843 9.456 7.760 10.351 67.392 0.631 0.601
LED (100%) 0.461 0.121 0.441 0.848 9.448 7.752 10.345 68.453 0.653 0.617
GPT-4 zs 0.465 0.101 0.431 0.847 15.320 10.707 16.641 68.769 0.656 0.477
GPT-4 fs 0.493 0.121 0.457 0.851 14.626 10.145 15.435 70.732 0.672 0.497

Table 3: The performance of the evaluated models on the PLOS and eLife private test sets. The best score for each
metric is highlighted in bold, and the second-best score is underlined. ZS is short for zero-shot and FS is short for
few-shot.

Model R-1 R-2 R-L BertScore FKLG DCRS CLI LENS AlignScore SummaC

BART (Baseline) 0.470 0.140 0.436 0.862 12.035 10.147 13.485 48.096 0.779 0.703
Final Submission 0.482 0.142 0.444 0.858 14.462 10.755 15.477 63.912 0.745 0.618

Table 4: Our final submission is the combination of fine-tuned 100% training set LED model on PLOS dataset and
GPT-4 few-shot prompting on eLife dataset.

5.2 Prompting GPT-4
GPT-4 demonstrates strong performance on few-
shot settings in multiple NLP tasks (Liu et al.,
2023c). In our experiments, we access GPT-4
through OpenAI APIs3. To save cost, we choose
gpt-4-turbo-preview version to generate lay sum-
maries. We evaluated GPT-4 in two settings: zero-
shot and few-shot prompting. In zero-shot prompt-
ing, we directly pass the extracted input to GPT-4
and generate the lay summaries. When creating
prompts in few-shot settings, we randomly pick the
source-target pairs from the validation set and use
them as examples for GPT-4. Since the maximum
tokens that GPT-4 can take are 128,000 token, we
incorporate as many as possible within the token
constraints of the API calls. As the results, PLOS
and eLife few-shot prompts contain 4 and 3 exam-
ple pairs, respectively. The maximum lay summary
length is set to 400 tokens and 600 tokens, respec-
tively, for PLOS and eLife. We present an example
of a zero-shot prompt and a few-shot prompt in
Appendix A.

6 Results

In this section, we list our results on the private
test set. The scores are retrieved through the Cod-
abench page of the shared task and reported in

3https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

Table 3.

PLOS The results clearly demonstrate that fine-
tuning the LED model achieves the best perfor-
mance on relevance and factual aspects. To our
surprise, GPT-4 outperforms LED in readability.
The FKGL score of the fine-tuned LED model
with 100% train set achieves the second best re-
sults. However, for other readability metrics, the
performance of LED models is worse than GPT-4
prompting. In particular, the gap in the LENS score
is noticeably high. The gap is around 13.6 percent-
age points when comparing the fine-tuned version
of LED (100%) with GPT-4 few-shot prompting.
Meanwhile, compared to the results of the GPT-
4 few-shot prompting, the fine-tuned LED model
with full training data outperforms by 0.041, 0.039,
0.029, 0.005, 0.108, and 0.150 on R-1, R-2, R-
L, BERTScore, AlignScore, and SummaC, respec-
tively. It seems that the improvement of the best
fine-tuned LED on those scores can be considered
marginal.

eLife On the eLife dataset, it is surprising that
GPT-4 outperforms fine-tuned LED model in gen-
erating more accurate summaries. However, the
difference in readability is significant, as GPT-4
achieves lower scores on FKGL, DCRS, and CLI
compared to LED models. The gaps between GPT-
4 and LED model on these three metrics, respec-
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tively, are 5.178, 2.393, 5.090. Whereas, the dif-
ferences that GPT-4 few-shot prompting creates
compared to LED (100%) fine-tuned version on
R-1, R-2, R-L, BertScore, LENS, and AlignScore,
respectively, are 0.032, 0, 0.016, 0.003, 2.279, and
0.019. It is no doubt that on eLife dataset, prompt-
ing GPT-4 generates better lay summaries in terms
of Relevance and Factuality.

Based on the above results, we made our final
submission to the shared task by combining the re-
sults of the fine-tuned LED model with 100% train-
ing data from PLOS and GPT-4 few-shot prompts
in the eLife dataset. We compare our submission
with the BART baseline (Goldsack et al., 2024)
in Table 4. It shows that our results surpass the
baseline on the R-1, R-2, R-L, and LENS scores.
Remarkably, our LENS score is higher than BART
baseline by 15.816%. Although in the other met-
rics, our results are a bit lower than baseline, we
argue that the scores are still competitive and the
gap is marginal.

7 Discussion

The results demonstrate that traditional fine-tuning
can produce summaries with accurate keywords
and context rather than prompting. LED model
also creates less hallucination than LLMs, because
it achieves better Factuality scores. However, fine-
tuning is less effective in making the summaries
simpler and easier to understand.

Furthermore, we believe that fine-tuning LED
model on eLife is less efficient than on PLOS
dataset because of the size of eLife dataset. Further-
more, the text in eLife dataset is also longer than
PLOS. Therefore, it is likely that LED model is
not able to capture the keywords and learn enough
context on eLife. Hence, GPT-4’s performance is
slightly better in this case.

8 Performance Versus Cost

In this section, we discuss the trade-off between
model performance and costs. In our analysis, the
costs include training time, computational cost, and
prompting cost. We summarize our comparison in
Table 5. We first rank the performance of each
method based on the results in Table 3. Next,
we evaluate four methods based on the number
of training hours, the costs of training, inference,
and prompting. Since the PLOS dataset has more
instances in the training set than eLife, it undoubt-
edly takes more time and more costly to train LED

models on PLOS. In Colab Pro4, it costs around 5
computational units per hour. Hence, to calculate
the total computational cost, we simply multiply 5
by the training time.

Model #Rank Training Cost

PLOS

LED (50%) 2nd 8 hrs 40 units
LED (100%) 1st 20 hrs 100 units
GPT-4 zs 4th 0 hr 10$
GPT-4 fs 3rd 0 hr 20$

eLife

LED (50%) 4th 4 hrs 20 units
LED (100%) 2nd 8.5 hrs 42.5 units
GPT-4 zs 3rd 0 hr 20$
GPT-4 fs 1st 0 hr 30$

Table 5: The comparision between four approaches
on two datasets. The cost for fine-tuning is referred
to computation units and cost for GPT-4 is referred to
prompting cost using OpenAI APIs.

On the other hand, we directly prompt GPT-4
without further fine-tuning the model. Therefore,
we only report the prompting cost in two data sets.
As mentioned in Table 1, the length of each in-
stance in the eLife test set is longer than PLOS,
and it costs more to generate the lay summaries. In
the few-shot prompting setting, it also costs more
because we include more tokens in the queries for
example.

Through our result analysis and cost-effective
study, it demonstrates that GPT-4 prompting cost
us more on querying, however it takes less time
then fine-tuning and still achieves competitive re-
sults. Especially, in the situation where we have
less training data (such as in eLife case), GPT-4
can outperform fine-tuned LED model.

9 Conclusion

This paper details our approach to the BioLay-
Summ 2024 shared task, comparing traditional fine-
tuning of the Longformer-Encoder-Decoder (LED)
model and few-shot prompting with GPT-4 for gen-
erating lay summaries of biomedical articles. Our
results indicate that the fine-tuned LED excels on
the PLOS dataset, while GPT-4’s few-shot prompt-
ing outperforms LED on the eLife dataset, high-
lighting GPT-4’s advantage in data scarcity scenar-
ios. Future work may explore self-evaluation meth-

4In 2024, 100 computational units cost around 15$ on
Colab Pro.
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ods and cost-reduction strategies for fine-tuning
using parameter-efficient techniques.

10 Limitations

Our methodology relies exclusively on OpenAI
APIs for generating summaries using GPT-4, which
presents minimal technical challenges. However,
the costs associated with API requests can quickly
escalate to prohibitive levels, limiting our ability
to conduct extensive experimental work with the
model. Implementing proprietary LLMs such as
GPT-4 also has the limitations of reproducing the
results. In addition, due to computational cost and
time constraints, we were unable to fine-tune the
LED model for more epochs, potentially impacting
the overall performance.
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A Example prompts on GPT-4

Zero-shot prompt

role system
content "Write a lay summary using the following re-

search abstract and conclusion."
role user
content "Lung-resident ( LR ) mesenchymal stem and stro-

mal cells ( MSCs ) are key elements of the alve-
olar niche and fundamental regulators of home-
ostasis and regeneration..."

Few-shot prompt

role system
content "Write a lay summary using the following re-

search abstract and conclusion."
role user
content "Gene expression varies widely between individ-

uals of a population , and regulatory change can
underlie phenotypes of evolutionary and biomedi-
cal relevance..."

role assistant
content "Messenger RNAs carry the instructions neces-

sary to synthesize proteins that do work for the
cell..."

role user
content "The live attenuated simian immunodeficiency

virus ( LASIV ) vaccine SIVnef is one of the most
effective vaccines..."

role assisstant
content "Annually, more than two million people are in-

fected with HIV , the virus that causes AIDS..."
role user
content "Mucosal infections with Candida albicans be-

long to the most frequent forms of fungal dis-
eases..."

role assisstant
content "The opportunistic pathogen Candida albicans is

a major risk factor for immunosuppressed individ-
uals..."

role user
content "Lung-resident ( LR ) mesenchymal stem and stro-

mal cells ( MSCs ) are key elements of the alve-
olar niche and fundamental regulators of home-
ostasis and regeneration..."

Table 6: Example of zero-shot prompt and few-shot
prompt for GPT-4.

754



Proceedings of the 23rd Workshop on Biomedical Language Processing, pages 755–761
August 16, 2024. ©2024 Association for Computational Linguistics

ELiRF-VRAIN at BioLaySumm: Boosting Lay Summarization Systems
Performance with Ranking Models

Vicent Ahuir†, Diego Torres†,∗, Encarna Segarra†,§, Lluís-F. Hurtado†
†VRAIN: Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València, Spain
§ValgrAI: Valencian Graduate School and Research Network of Artificial Intelligence

†{vahuir,esegarra,lhurtado}@dsic.upv.es
∗dtorber@etsinf.upv.es

Abstract

This paper presents our contribution to the
BioLaySumm 2024 shared task of the 23rd
BioNLP Workshop. The task is to create a lay
summary, given a biomedical research article
and its technical summary. As the input to the
system could be large, a Longformer Encoder-
Decoder (LED) has been used. We continu-
ously pre-trained a general domain LED model
with biomedical data to adapt it to this specific
domain. In the pre-training phase, several pre-
training tasks were aggregated to inject linguis-
tic knowledge and increase the abstractivity of
the generated summaries. Since the distribution
of samples between the two datasets, eLife and
PLOS, is unbalanced, we fine-tuned two mod-
els: one for eLife and another for PLOS. To
increase the quality of the lay summaries of the
system, we developed a regression model that
helps us rank the summaries generated by the
summarization models. This regression model
predicts the quality of the summary in three
different aspects: Relevance, Readability, and
Factuality. We present the results of our models
and a study to measure the ranking capabilities
of the regression model.

1 Introduction

Nowadays, there is more information than ever at
the disposal of the general public. In the specific
domain of biomedical research, there is informa-
tion that would be interesting to non-expert audi-
ences, including journalists or even members of
the public, such as what occurred during the recent
COVID-19 global pandemic (Wang et al., 2020).
However, the technical language is a barrier for the
non-specialist public that may prevent them from
accessing that information (Goldsack et al., 2022;
Guo et al., 2021).

Abstract summarization models should be useful
in reducing the gap in understanding information.
Since the models can generate a concise summary

of a given text and capture its most relevant in-
formation (Raffel et al., 2020; Lewis et al., 2020;
Brown et al., 2020; Beltagy et al., 2020). It is possi-
ble to obtain new models that generate summaries
adapted to a much wider audience; what is known
as lay summary. In a lay summary, the text should
contain the main ideas of the article that would be
interesting for a non-expert audience, enhancing
readability by adding background information and
reducing (or avoiding) technical terminology.

In this paper, we present the results and analysis
of our system in the participation at the BioLay-
Summ (Goldsack et al., 2024) at the 23rd BioNLP
Workshop (Demner-Fushman et al., 2024).

2 Task Drescription

In the 2024 edition, the BioLaySumm poses a sin-
gle shared task, rather than two, as in the previous
edition (Goldsack et al., 2023). The task is to create
a lay summary, given a biomedical research article
and its technical summary (abstract section of the
article).

The organization provides a biomedical dataset
(Goldsack et al., 2022) that contains biomedical
research articles from two sources: eLife Sciences1

and Public Library of Science (PLOS)2. Each sam-
ple contains the text of the article, the technical
summary, and the reference lay summary. The
dataset is divided into three partitions: train, val,
and test.

train val test

eLife 4346 (91.9) 241 (5.1) 142 (3.0)
PLOS 24 773 (94.3) 1376 (5.2) 142 (0.5)

Table 1: Dataset samples distribution per partition and
source. Additionally to the number of samples, the table
also shows the percentage over the source.

Table 1 shows the sample distribution of each
1https://elifesciences.org/
2https://plos.org
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source. It can be observed that the number of sam-
ples is way unbalanced towards the PLOS source,
even though test presents the same number of
samples for each source. This kind of distribution
would be challenging when someone would like
to develop a single summarization model without
prompting or instructions. The alternative would
be to create separate summarization models, one
for eLife and the other for PLOS. The BioLay-
Summ organizers invited the participants to present
solutions indistinctly using one or two models.

To measure the performance of the systems, the
organizers of the competition selected a set of mea-
sures that would help to evaluate the performance
in three different aspects: Relevance, Readabil-
ity, and Factuality. For Relevance the follow-
ing scores were chosen: ROUGE (1, 2, L) (Lin,
2004), BERTScore (Zhang* et al., 2020). To mea-
sure the Readability aspect: Flesch-Kincaid Grade
Level (FKGL) (Kincaid et al., 1975), Dale-Chall
Readability Score (DCRS) (Dale and Chall, 1948),
Coleman-Liau Index (CLI) (Coleman and Liau,
1975), and LENS (Maddela et al., 2023). Finally,
to measure Factuality, two scores were selected:
AlignScore (Zha et al., 2023), SummaC (Laban
et al., 2022).

3 Pre-trainined Model

For this task, we have used a Longformer Encoder-
Decoder (LED) (Beltagy et al., 2020) since we
were approaching summarizing long texts, such
as the case of scientific articles. This lets us in-
crease the amount of information available on the
encoder side. We used as a starting point the LED
base model from AI23, publicly available at the
repository of HuggingFace (Wolf et al., 2020), and
continuously pre-trained it with in-domain data.

For the continual pre-training phase, we fol-
lowed the training methodology used in the News
Abstractive Summarization models (NAS) work
(Ahuir et al., 2021). This methodology combines
multiple pre-training tasks to incorporate linguistic
knowledge in the pre-training phase and enhance
the abstract nature of the produced summaries. In-
corporating those tasks in continuous pre-training
should help the model to transfer knowledge spe-
cific to the summarization task and increase the
performance of the downstream model after fine-
tuning, just as it did in the original NAS work.

3https://huggingface.co/allenai/
led-base-16384

The data used for continuous pre-training was
chosen specifically to adapt the model to the
biomedical research domain. We collected text
from three different sources: abstracts (technical
summaries) from PubMed (National Center for
Biotechnology Information (NCBI), 2024) (17M
samples), PubMed articles and abstracts from the
scientific_papers4 dataset (Cohan et al., 2018)
(240K). Also, articles and technical summaries
from the dataset train partition used in this compe-
tition (eLife + PLOS) (29K).

Due to infrastructure limitations, we limited the
encoder input to work with no more than 4096
tokens. Taking into account this restriction, and
with the objective of maximizing the amount of
data, we split text by lines, using a window of no
more than 4000 words. We generated subsamples
that contained at least a new line and filled the
windows with as many words as possible. The final
amount of samples went up to 59M samples.

When working with LongFormers, you have to
select which tokens will receive global attention
in addition to local attention. In the original work
(Beltagy et al., 2020), the authors recommend set-
ting [CLS] token with global attention. However,
we hypothesized that adding landmarks across the
input with global attention could increase perfor-
mance. For this reason, we added a special token
with global attention (<sent>) after a certain num-
ber of sentences. The number of sentences was
not constant but dictated by a minimum number of
words of separation between <sent> tokens. Thus,
the special token was placed at the end of every
number of sentences with a total length of at least
k words. Previous experimentation was carried out
to determine the number of words. The best re-
sults were obtained with at least k = 20 words of
separation.

The base model was pre-trained for three epochs
in our Research Institute’s cluster with 8 NVIDIA
A40 graphic cards with 48GB of VRAM were used
for the process; which took a month. The main
hyperparameters are: 128 samples per device, 4
gradient accumulation steps, a learning rate of 5×
10−5 with a constant scheduler, gradient checking,
and an 8-bit quantified optimizer.

4 Lay Summarization Models

We developed two different approaches for the com-
petition. In the first approach (M1), the model re-

4http://tiny.cc/54x2yz/scientific_papers
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ceives the technical summary and adapts the text
and information to a lay summary style. In the
second approach (M2), additional text is included
beside the technical summary, that was, the intro-
duction and the discussion sections of the article,
similar to (Poornash et al., 2023).

Since the distribution of samples is not well-
balanced, we fine-tuned two models per approach:
one for eLife and another for PLOS. The four mod-
els were fine-tuned for ten epochs each with an
NVIDIA RTX 3090 with 24GB; each approxima-
tion took nearly 24 hours. The relevant hyperpa-
rameters are: 4 samples per device and a learning
rate of 5× 10−5 with a linear scheduler.

In our tests over validation, M1 outperformed
M2 in the overall performance. The detailed results
can be seen in Table 3 (Appendix A).

5 Ranking Model

In order to increase the quality of the lay summaries
of the system, we developed a regression model to
rank the summaries generated by the summariza-
tion models. This regression model predicts the
quality of the summary in three different aspects:
Relevance, Readability, and Factuality.

5.1 Dataset Creation and Model Development

We use a Longformer encoder already trained in
the biomedical domain5 to develop the regression
model. The classification layer was modified from
the default in HuggingFace. We use a mean-max
function of the hidden states of the last attention
layer to calculate the embedding that feeds the
feedforward classification layer. In mean-max, the
mean of the hidden states is concatenated with the
max values of those hidden states.

To fine-tune the model, we needed first to find
a way to obtain sample variability in the scores in
the three aspects. For this reason, we employed
data augmentation based on LLMs. For this pur-
pose, we adapted to our needs the novel framework
TextMachina (Sarvazyan et al., 2024) and generated
new samples using four LLMs: Vicuna 13b (Chi-
ang et al., 2023), Alpaca 13b (Taori et al., 2023),
OpenChat 7.5b (Wang et al., 2023), and Llama2
13b (Touvron et al., 2023). Using the technical
summary and the lay summary from randomly se-
lected samples of both sources, we applied differ-
ent prompts to gain diversity in the quality of the

5https://huggingface.co/kiddothe2b/
biomedical-longformer-large

samples in the three aspects. With this data aug-
mentation, we obtained 16 236 new samples for
training and 4212 for validation.

To create the training and validation partitions
for regression, we use the generated samples and
the technical and lay summaries from the corre-
sponding partition of the competition dataset. To
obtain the reference scores, we computed Readabil-
ity, Relevance, and Factuality, using the formulas
shown in Appendix B. At this point, we should
remark on two details: (a) it can be noticed that
all the scores are in a range [0, 1], and always cor-
relate positively with the quality of the summary,
(b) due to time constraints, the Factuality score is
only measured with AlignScore in the regression
dataset.

The regression model was trained for five epochs
in VRAIN’s cluster for two days with 4 NVIDIA
A30 with 24GB of VRAM. The main hyperparam-
eters are: 6 samples per device, 2 gradient accu-
mulation steps, a learning rate of 5 × 10−5 with
a lineal scheduler, gradient checking, and an 8-bit
quantified optimizer.

5.2 Usage and Performance
To rank the samples, we first score them. For scor-
ing the quality of a lay summary, we used the re-
gression model to measure the quality regarding
the Relevance, Readability, and Factuality. With
those values, we compute a single score based on
the harmonic mean of those three values. The har-
monic mean would give better scores to summaries
that simultaneously hold high quality on the three
aspects. We will refer to this score as hm-score
for clarity.

In order to measure the ranking capabilities of
the regression model, we measured the Normal Dis-
counted Cumulative Gain (NDCG) over the real
hm-score of the score of the best summary avail-
able and the real score of the chosen summary,
based on the predicted hm-score.

In Fig. 1, we observe the distribution of the
NDCG scores when the model ranks one approach
(M1 or M2) and when the model ranks a mix of
both (M1+M2). It can be noticed that with M1, it
has better ranking capabilities than with M2. How-
ever, in both approaches, the scores are mainly in
range of [0.95, 1.0], which means that most of the
time, one of the best summaries is chosen. When
we mix the sources, the regression model reduces
its ranking capabilities, which could indicate that
it would be less precise when the quality of sum-
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Figure 1: Distribution of the NDCG1 scores obtained
by the ranking model, when we consider both sources
(eLife+PLOS). In M1 and M2, the model ranks 10 sum-
maries per sample; 20 summaries in M1+M2.

maries to choose from varies a lot.

The improvements in validation using the Rank-
ing can be seen in Table 3 (Appendix A) can be
seen for M1 M2, and M1+M2.

6 Results

For the competition, we sent a total of three submis-
sions. S1 that included lay summaries generated
with M1 approach without any kind of ranking. S2
that contained lay summaries generated with M1
and selected with the rank model (10 summaries
per sample). Additionally, we sent a third submis-
sion (S3) that contained summaries from M1 and
M2 and selected with the regression model (20
summaries per sample).

Table 2 shows official results for the test parti-
tion for the three submissions. It can be noticed
that S2 provided the best results. Compared to S1,
S2 increased the performance thanks to the rank-
ing model. However, if the summarization model
can not generate a wider variety of proposals, the
ranking model will not help too much. Regarding
S3, which includes the M1 and M2 summaries, we
notice a lower quality of the final selection. Nev-
ertheless, this submission increases the Factuality
aspect, which could be attributed to the fact that
M2 manages more information, reducing the factu-
ality errors. Finally, regarding the relative perfor-
mance (RP), our solution obtained more than 90%
of performance in most of the scores, compared
to the best overall submission. Further improve-
ments need to be made, especially in the readability
aspect.

S1 S2 S3 RP(%)
Relevance
↑ ROUGE-1 47.99 48.15 48.01 98.39
↑ ROUGE-2 13.61 13.66 13.60 87.06
↑ ROUGE-L 42.90 43.09 43.06 94.07
↑ BERTScore 85.94 85.95 85.91 99.05

Readability
↓ FKGL 13.64 13.61 13.65 86.33
↓ DCRS 10.89 10.86 10.90 86.00
↓ CLI 14.71 14.66 14.70 91.13
↑ LENS 47.90 48.02 33.42 90.96

Factuality
↑ AlignScore 78.37 78.21 78.72 97.71
↑ SummaC 60.91 60.66 61.37 82.67

hm-score 48.68 48.69 46.59 90.08

Table 2: Official results comparison for test partition for
the three submissions (S1, S2, S3), and relative perfor-
mance (RP) of S2 compared to the best overall system
in the competition (UIUC_BioNLP). Bold values are
the best values for each score. The up arrow (↑) indi-
cates that the value of the score correlates positively
with the quality of the lay summary, and the down arrow
(↓) negatively. The hm-score is also included, which is
not part of the official results.

7 Discusions

The results presented in Section 6 raise the benefits
and constraints that must be taken into account
when combining generation models with ranking
models to choose which text will be presented to
the end user.

Regarding the benefits, they are evident. With
the ranking models, we can enhance the quality of
the summaries presented to the user even though we
use the same automatic summarization models. We
use the ranking model to choose those summaries
that obtained the best ranking scores since those
texts will have better quality compared to other
summaries generated by the same models. This
selection should boost the overall performance of
the system in most cases.

In relation to the constraints. The ranking model
does not generate summaries or make texts better;
it just rates summaries generated by the summa-
rization models, and we select the best summaries
based on those scores. Therefore, if summarization
models have a bad performance and/or we can not
provide enough variety to choose from, the bene-
fits will be diminished. For this reason, we should
combine the ranking models with summarization
models that can complement each other depending
on the text to summarize and offer variety in the
generated summaries.
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8 Conclusions

In this work, we have presented our contribution
to the BioLaySumm 2024 shared task of the 23rd
BioNLP Workshop. We used LED models to allow
adding more text in the model input. Although we
started from the same pre-trained model, different
fine-tuned models were trained for the two sources
of the competition: eLife and PLOS. Two different
approaches were followed, one with just the techni-
cal summary as input, and another with additional
text beside the technical summary. Our prelimi-
nary evaluation showed that the first approach per-
formed better, but the second should be developed
further since the larger input context improved the
Factuality aspect. An additional contribution of our
approach is the use of a regression-based ranking
model that helped to boost the quality of the final
summary by choosing the promising one from a set
of summaries generated by the models. The model
that obtained the best results in the competition was
the one that combined the first approach and the
ranking model.

Limitations

The data augmentation followed in this work to
obtain the dataset for training the dataset is attached
to the inner behavior of pre-trained LLMs. Those
could present biases or limitations that we have not
studied or detected. This could lead to limitations
in the diversity and quality of the dataset, which
could be inherited by the regression model.
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A Results in Evaluation (val partition)

M1 M2 M1R M2R AR
Relevance score 48.23 45.02 48.28 45.26 47.26

↑ ROUGE-1 48.88 44.06 48.97 44.44 47.60
↑ ROUGE-2 14.52 11.20 14.54 11.38 13.30
↑ ROUGE-L 43.60 40.39 43.68 40.77 42.70
↑ BERTScore 85.90 84.41 85.91 84.44 85.42

Readability score 38.51 28.16 38.64 28.49 37.74

↓ FKGL 13.67 15.03 13.66 14.89 13.58
↓ DCRS 10.85 11.69 10.82 11.61 10.85
↓ CLI 14.47 15.53 14.43 15.43 14.22
↑ LENS 49.00 23.87 49.11 23.61 44.20

Factuality score 68.49 81.35 68.16 80.96 70.37

↑ AlignScore 77.00 86.65 76.64 85.67 77.36
↑ SummaC 59.97 76.04 59.68 76.25 63.38

hm-score 48.94 42.85 48.97 43.14 48.49

Table 3: Results comparison for validation partition for
the two approaches without using ranking (M1 and M2),
with ranking (M1R, M2R), and M1+M2 ranked (AR).
Bold values are the best values achieved for each score.
The up arrow (↑) indicates that the value of the score
correlates positively with the quality of the lay summary,
and the down arrow (↓) negatively.

Table 3 shows the results of the two model types
when one summary is requested (columns M1 and
M2). Or, when 10 summaries are requested per
sample, rank with our ranking model and select
the top-ranked summary for each sample (columns
M1+R and M2+R).

B Relevance, Readability and Factuality
scores.

We defined Relevance as the average of the follow-
ing scores: ROUGE-1, ROUGE-2, ROUGE-L and
BERTScore. Factuality is the average values of

AlignScore and SummaC scores.

For defining Readability, we start first defining
the function Clamp and Complement (CC):

CCz
f (x) =

z − f(x)|[0,z]
z

(1)

Eq. (1) shows that, given a function f , an integer
number z > 0, and sample x. The sample x is
evaluated with f . Then, the score is clamped in a
range from [0, z], complemented, and normalized.

Therefore, we define Readability as follows:

Readability(x) = (

CC20
FKGL(x)+

CC20
DCRS(x)+ (2)

CC20
CLI(x)+

LENS(x)

100

) · 1
4

Eq. (2), shows that Readability is defined as
the average of the following four scores: FKGL,
DCRS, CLI, and LENS. For the three first scores
(FKGL, DCRS, and CLI), the values below 20 are
clamped since we consider that 20 is already a re-
ally high readability level for lay summarization
purposes. Additionally, values are complemented
and normalized when needed.
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Abstract

Lay summarization is essential but challeng-
ing, as it simplifies scientific information for
non-experts and keeps them updated with the
latest scientific knowledge. In our participa-
tion in the Shared Task: Lay Summarization
of Biomedical Research Articles @ BioNLP
Workshop (Goldsack et al., 2024), ACL 2024,
we conducted a comprehensive evaluation on
abstractive summarization of biomedical liter-
ature using Large Language Models (LLMs)
and assessed the performance using ten metrics
across three categories: relevance, readability,
and factuality, using eLife and PLOS datasets
provided by the organizers. We developed a
two-stage framework for lay summarization
of biomedical scientific articles. In the first
stage, we generated summaries using BART
and PEGASUS LLMs by fine-tuning them on
the given datasets. In the second stage, we com-
bined the generated summaries and input them
to BioBART, and then fine-tuned it on the same
datasets. Our findings show that combining
general and domain-specific LLMs enhances
performance.

1 Introduction

In today’s era, a lot of research is being conducted
in the field of biomedical science, resulting in a
huge amount of biomedical literature. The vast sci-
entific knowledge poses a challenge for healthcare
professionals, researchers, and the non-expert pub-
lic in staying informed about advancements in the
biomedical domain (Bishop et al., 2022; Karotia
and Susan, 2023). Making the information acces-
sible and understandable, regardless of their back-
ground knowledge, is difficult. Manually summa-
rizing long scientific articles requires too much
domain-oriented knowledge, effort, and time, espe-
cially for lay summarization. First, summarizing
and then transforming the summarized information
for non-experts is impractical. This problem can
be tackled by designing lay summarization systems

that bridge the gap between non-experts and ex-
perts by modifying intricate scientific knowledge
into a clear and condensed form with increased
readability. This step will increase scientific liter-
acy and enable decision-making for experts and
non-experts.

This study’s contributions include:

• In the first phase of the model, BART (Lewis
et al., 2020) and PEGASUS (Zhang et al.,
2020) general domain LLMs were used.
These LLMs were fine-tuned on eLife and
PLOS datasets for the summarization task.

• The outputs from both LLMs are combined,
and sentences are deduplicated to eliminate
redundant data and enhance diversity and in-
clusivity.

• In the second phase, the deduplicated data was
sent to the BioBART (Yuan et al., 2022) LLM,
which is pre-trained on biomedical datasets
and further fine-tuned by the authors on the
dataset made accessible by the challenge or-
ganizers.

• Performance evaluation and analyses are done
for relevance, readability, and factuality met-
rics.

2 Related Work

Recent studies have showcased the significant po-
tential of large language models (LLMs) in natural
language generation tasks. In addition, the first
version of the BioLaySum (Goldsack et al., 2023)
illustrated the effectiveness of utilizing LLMs in
both summary formation (Turbitt et al., 2023) and
data augmentation (Sim et al., 2023). LLMs exhibit
proficiency in perceiving complex relationship pat-
terns due to their training on diverse large-scale
datasets across various tasks (Karotia and Susan,
2022).
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(Liu et al., 2023) utilized two different LLMs,
BART and PEGASUS, for the BioLaySum task
at ACL 2023, respectively focusing on the eLife
and PLOS datasets, aiming to optimize memory
usage. (Phan et al., 2023) processed long docu-
ments using an effective framework comprising of
BioBART and a factorized energy-centric method.
(Turbitt et al., 2023) performed comprehensive ex-
periments with general and domain-specific GPT
models using zero-shot and few-shot methods. (Al-
Hussaini et al., 2023) utilized T5 and BART LLMs
with an attention mechanism for information se-
lection and further applied a zero-shot method for
language simplification. (Reddy et al., 2023) em-
ployed BART to generate summaries by incorporat-
ing sentence labels, which significantly improved
results. (Chen et al., 2023) used various models
for each submission, including PRIMERA, PEGA-
SUS, and BART-LongFormer.

3 Methodology

In recent times, Large Language Models such as
BioBART pre-trained on biomedical corpora have
achieved enhanced performance for biomedical nat-
ural language generation tasks. However, the read-
ability of the generated summaries needs to be im-
proved from the perspective of a non-expert audi-
ence. To achieve this aim, a two-stage framework
is designed in this work, as shown in Figure 1, to
generate lay summaries for complex and lengthy
scientific research articles, targeting non-expert au-
diences. In the first phase of the framework, BART
and PEGASUS general-purpose LLMs are selected
for summary generation by fine-tuning them on the
challenge datasets: eLife and PLOS. Both mod-
els performed well on validation and test sets, in-
dicating their capability to generate high-quality
summaries due to their pre-training on multiple
tasks and large datasets. As these transformers
have limited input lengths, the first 1024 tokens are
used for training because these LLMs are resource-
intensive and time-consuming. Specifically, train-
ing with starting information proves to be more
efficient, as studies indicate that important infor-
mation is typically presented at the beginning and
end of research articles (Cai et al., 2022). BART
and PEGASUS are transformer-based models that
excel in text generation and are specifically de-
signed for abstractive summarization. In the initial
phase of our approach, we fine-tune these models
using article-lay summary pairs from the eLife and

PLOS datasets separately. This process involves
setting the hyperparameters specified in Table 1, as
discussed in Section 4. After fine-tuning, the sum-
maries generated by both models are merged. The
aggregated text is further processed to handle re-
dundant information, which is eliminated through
sentence deduplication. This results in diverse and
non-redundant data, making it suitable to be input
into the second phase of the framework for further
fine-tuning.

Figure 1: Proposed framework.

The authors observed two cases of redundancy
after summary generation in the first phase, lead-
ing to the need for deduplication of sentences to
ensure non-redundant information for the second
phase. First, identical sentences are present within
the same summary generated by the models. Sec-
ond, the summaries generated by both models have
identical sentences. This issue does not arise for all
samples. But even in a few cases, it is important to
ensure that non-redundant information is used for
further processing to generate a quality summary.

Algorithm 1 outlines the steps for deduplicating
sentences in aggregated text. This process removes
identical sentences while considering case sensi-
tivity (lower-case), ensuring non-redundant infor-
mation. In the second and final phase of the
framework, the deduplicated text for a correspond-
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Algorithm 1: Sentence Deduplication
Data: Ctxt (Aggregated text)
Result: Dtxt (Deduplicated text)
Stokenized← sentence_tokenize(Ctxt) ;
Nnon_duplicate_sentences← empty list to

store non-duplicate sentences;
Duplicatessentences← empty list to store

duplicate sentences;
for each s in Stokenized do

if s is not in Nnon_duplicate_sentences
then

Append s to
Nnon_duplicate_sentences;

else
Append s to Duplicatessentences;

end
end
Dtxt←

Concatenate(Nnon_duplicate_sentences);
Dtxt

ing document is considered salient information that
guides the domain-specific LLM to generate more
accurate summaries. For this phase, the BioBART
LLM (Yuan et al., 2022) is selected for fine-tuning,
as this model is pre-trained on a vast amount of
biomedical datasets and showed promising results
in the first edition of the BioLaySum task. In place
of the original article, the deduplicated lay sum-
mary generated in the first phase is used as input
for fine-tuning BIOBART in the second phase of
the proposed model. The summary obtained af-
ter fine-tuning with BioBART results in improved
performance on both datasets.

Hyperparameter Values

Batch size 16
Learning rate 5e-5
Early stopping 3
Max input length 1024
Min and max target length (eLife) 350, 512
Min and max target length (PLOS) 180, 200
No. of beams 4
Penalty 2

Table 1: Hyperparameter settings for all the baseline
methods and the proposed model.

4 Experimental Setup

The experiments in this study are conducted on the
Google Colab Pro Plus platform, using an NVIDIA
A100 GPU with 40 GB of GPU RAM for training
and inferencing. Appendix A provides insights
into the datasets used, while Table 1 details the
hyperparameter settings for all the models.

4.1 Datasets
The organizers provided the two biomedical
datasets, eLife (Goldsack et al., 2022) and The
Public Library of Science (PLOS) (Goldsack et al.,
2022), used in this study, across which all the mod-
els were trained and evaluated. Appendix A shows
the detailed dataset statistics.

4.2 Baseline and Hyperparameter Settings
1PEGASUS (Zhang et al., 2020): This model is
pre-trained on the C4 and HugeNews datasets for
abstractive summarization by utilizing the gap sen-
tence ratio methodology, and stochastic sampling
was employed for key sentence identification. It
is fine-tuned on eLife and PLOS with 10 and 8
epochs, respectively.

2BART (Lewis et al., 2020): This model was
pre-trained for language generation and translation
tasks in English, and fine-tuned on the CNN/DM
dataset, specifically for summarization purposes. It
is fine-tuned for 13 epochs on eLife and 12 epochs
on PLOS.

3T5-small (Raffel et al., 2020): This model, a
smaller version of T5, is pre-trained on the C4
dataset for varied tasks that include paraphrasing
and natural language generation. It is fine-tuned
with 15 epochs on eLife and 11 epochs on the
PLOS dataset.

4BIOBART (Yuan et al., 2022): BioBART has
efficiently adapted the BART framework for gen-
erative tasks specifically tailored to the biomedical
domain. The model is pre-trained on several lan-
guage generation tasks, including: 1) A medical
dialogue system, where the objective is to emu-
late a human doctor communicating with real pa-
tients, trained using the CovidDialog dataset. 2)
Abstractive summarization on the iCliniq, Health-
CareMagic, and MeQSum datasets. 3) Entity link-
ing on the MedMentions, BC5CDR, and AskAP-
atients datasets. 4) Named entity recognition on

1https://huggingface.co/google/pegasus-cnn_dailymail
2https://huggingface.co/facebook/bart-large-cnn
3https://huggingface.co/google-t5/t5-small
4https://huggingface.co/GanjinZero/biobart-large
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the ShARe13 and CADEC datasets. This model
is fine-tuned with 7 epochs on eLife and 5 epochs
on the PLOS dataset. The proposed model is also
fine-tuned for 12 epochs using the same parameters
listed in Table 1.

4.3 Evaluation metrics

Various metrics have been employed to evaluate the
model’s performance, categorized into three main
aspects: relevance, readability, and factuality.

Relevance: Four metrics are employed to as-
sess the relevance aspect: ROUGE-1, ROUGE-2,
ROUGE-L (Lin, 2004), and BERTScore (Zhang
et al.). Higher scores on these metrics indicate
better performance.

Readability: The Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score (DCRS),
Coleman-Liau Index (CLI), and LENS are used
as readability metrics. Lower scores for FKGL,
DCRS, and CLI indicate better readability, whereas
higher scores for LENS are considered.

Factuality: AlignScore and SummaC are the met-
rics evaluated to measure the factual accuracy of
the generated summaries. Higher scores on these
metrics indicate higher quality in terms of factual-
ity.

4.4 Results and Discussion

The performance of the baseline methods and the
system proposed in this study is shown in Table 2
and Table 3 for the validation and test sets of the
eLife and PLOS datasets. All performances are
evaluated using the script provided by the organiz-
ers before the deadline for the validation sets of
both datasets. The baselines are evaluated on the
Codabench platform for the test set, but only the
proposed model is evaluated after the challenge’s
deadline on the test set.

As shown in Table 2, the proposed model
achieves better performance for relevance met-
rics with the best scores of ROUGE-1 (0.4681),
ROUGE-2 (0.131), ROUGE-L (0.4475), and
BERTScore (0.8404). It also attains the best scores
for CLI (10.4805) and LENS (63.4962) metrics on
the validation set of eLife. Meanwhile, the vali-
dation set of PLOS shows significantly improved
performance for the readability metrics FKGL
(14.1426), CLI (15.0911), and LENS (52.9523)
compared to the listed baselines. Additionally, the
BERTScore relevance metric performed well, scor-
ing 0.858.

As observed from Table 3, the proposed model
demonstrates superior performance in relevance
metrics, achieving the best scores for ROUGE-1
(0.4635), ROUGE-2 (0.1228), ROUGE-L (0.4428),
and BERTScore (0.8411). It also achieves top
scores for CLI (10.9776) and LENS (65.7387) met-
rics on the eLife test set. In the PLOS test set,
the model significantly improves readability met-
rics, with FKGL (13.8401), CLI (15.1084), and
LENS (52.9811) scores surpassing those of the
baselines. Additionally, the relevance metrics for
the PLOS test set show notable improvements, with
ROUGE-1 (0.4396), ROUGE-L (0.3988), and a
strong BERTScore of 0.8578.

5 Conclusion and Future Scope

A two-stage fine-tuning framework combining
general-purpose BART and PEGASUS LLMs with
the biomedical-specific BioBART LLM showcased
satisfactory performance for generating lay sum-
maries of biomedical scientific articles. In the first
phase, BART and PEGSUS were fine-tuned on the
training data of eLife and PLOS datasets, while in
the second phase, BioBART was fine-tuned on the
merged and deduplicated lay summary generated
in the first phase. All hyperparameters were set
using the validation set. This framework achieved
promising results for relevance and readability met-
rics but at the cost of marginally lower performance
for factuality metrics. In the future, different com-
binations of domain-specific LLMs can be em-
ployed, along with language simplification tech-
niques, to generate high-quality lay summaries for
non-experts, optimizing scores for relevance, read-
ability, and factuality. metrics. In the future, dif-
ferent combinations of domain-specific LLMs can
be employed, along with language simplification
techniques, to generate high-quality lay summaries
for non-experts, optimizing scores for relevance,
readability, and factuality.

6 Limitations

Adapting LLMs to new domains requires substan-
tial fine-tuning, which may not always transfer
knowledge effectively across the target domain. In
the proposed model, fine-tuning of LLMs in two
consecutive stages results in high computational
cost and time. A significant problem is the length
limitation associated with these LLMs. Although
important information often resides at the begin-
ning of scientific articles, the need to restrict input
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Model eLife

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.386 0.0964 0.3742 0.8211 9.232 6.5566 11.7579 24.1684 0.3513 0.7091
BART 0.4442 0.1086 0.4145 0.8357 13.5909 10.169 13.5704 43.9951 0.7752 0.7033
PEGASUS 0.4068 0.1006 0.3919 0.8291 9.5149 6.5603 10.8472 42.6606 0.717 0.6209
BIOBART 0.4325 0.109 0.3669 0.8277 19.1071 9.7971 13.1439 27.72 0.5935 0.5149
Ours 0.4681 0.131 0.4475 0.8404 10.2465 7.8174 10.4805 63.4962 0.6264 0.5263

Model PLOS

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.3402 0.0973 0.3113 0.8304 15.469 9.2281 16.4606 35.0077 0.8612 0.7057
BART 0.4483 0.1456 0.4053 0.8565 14.3844 11.8589 15.7053 49.3006 0.8766 0.8281
PEGASUS 0.455 0.1561 0.4123 0.8579 14.6704 11.5939 16.2672 49.6905 0.8055 0.8736
BIOBART 0.4323 0.1479 0.3893 0.85 14.2208 12.07 15.9739 51.6555 0.8991 0.8396
Ours 0.4525 0.1458 0.4109 0.858 14.1426 11.4252 15.0911 52.9523 0.801 0.7152

Table 2: Results on the validation sets of eLife and PLOS datasets.

Model eLife

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.2614 0.0453 0.2404 0.8015 16.0014 7.6351 16.4143 26.2303 0.9157 0.691
BART 0.4479 0.1054 0.4169 0.8385 13.9387 10.3756 14.3257 49.2375 0.8131 0.7296
PEGASUS 0.3987 0.096 0.383 0.8295 9.8937 6.5202 11.1935 44.0906 0.7398 0.6401
BIOBART 0.4343 0.1043 0.3589 0.8308 20.131 9.9165 13.7818 30.8928 0.638 0.5341
Ours 0.4635 0.1228 0.4428 0.8411 10.3915 7.7965 10.9776 65.7387 0.6409 0.5443

Model PLOS

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.3316 0.0995 0.3034 0.8324 14.8563 9.1379 16.4704 34.5145 0.8647 0.6981
BART 0.4317 0.1376 0.391 0.8556 14.4732 11.8719 15.9178 49.9099 0.8876 0.8423
PEGASUS 0.4363 0.1439 0.3932 0.851 14.8366 11.6496 16.473 13.8482 0.8116 0.8695
BIOBART 0.4248 0.142 0.3839 0.8508 14.2641 12.0685 16.338 52.5272 0.9066 0.8366
Ours 0.4396 0.1405 0.3988 0.8578 13.8401 11.3222 15.1084 52.9811 0.8183 0.7273

Table 3: Results on the test sets of eLife and PLOS datasets.

length and truncate the rest can lead to a potential
loss of information, ultimately affecting the quality
of the generated summary.
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A Appendix

eLife: The eLife dataset contains research papers
associated with lay summaries written by domain
experts. The train, validation, and test sets consist
of 4346, 241, and 142 articles, respectively. The
average word count for lay summaries across all
data splits ranges between 382-400, while for ar-
ticles, it ranges from 8900-10201. Similarly, the
average sentence count for lay summaries and ar-
ticles ranges between 18-19 and 382-583, respec-
tively. The minimum and maximum word counts
for the train, validation, and test sets for lay sum-
maries are (177, 686), (234, 672), and (244, 642),
respectively. For articles, the minimum and maxi-
mum word counts for the train, validation, and test
sets are (324, 28696), (3408, 23048), and (2492,
16880), respectively.

PLOS: This includes research papers and their
corresponding lay summaries from domain experts.
The dataset is divided into training, validation, and
test sets with 24773, 1376, and 142 articles, respec-
tively. Lay summaries have an average word count
between 180 and 195 across all splits, whereas the
articles range from 6742 to 6754 words. The av-
erage sentence length for lay summaries is 8; for
articles, it is between 298 - 311 sentences. For
lay summaries, the minimum and maximum word
counts are 4 and 511 for the training set, 55 and
384 for the validation set, and 16 and 293 for the
test set. Articles have word count ranges of 748
to 26643 for the training set, 751 to 20423 for the
validation set, and 1587 to 18477 for the test set.
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Data
Elife PLOS

Train Validation Test Train Validation Test

Number of samples 4346 241 142 24773 1376 142
Avg. word count (LS) 382 390 400 195 195 180
Avg. sentence count (LS) 18 18 19 8 8 8
Max. word count (LS) 686 672 642 511 384 293
Min. word count (LS) 177 234 244 4 55 16
Avg. word count (A) 10200 10021 8909 6754 6742 6939
Avg. sentence count (A) 382 583 445 299 298 311
Max. word count (A) 28696 23048 16880 26643 20423 18477
Min. word count (A) 324 3408 2492 748 751 1587

Table 1: Detailed statistics and analysis of eLife and PLOS datasets, where LS stands for Lay Summary and A
stands for Article.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.3631 0.0969 0.3428 0.8258 12.3505 7.8924 14.1093 29.5881 0.6063 0.7074
BART 0.4463 0.1271 0.4099 0.8461 13.9877 11.014 14.6379 46.6479 0.8259 0.7657
PEGASUS 0.4309 0.1284 0.4021 0.8435 12.0927 9.0771 13.5572 46.1756 0.7613 0.7473
BIOBART 0.4324 0.1285 0.3781 0.8436 16.664 10.9336 14.5589 39.6878 0.7463 0.6773
Ours 0.4603 0.1384 0.4292 0.8492 12.1946 9.6213 12.7858 58.2243 0.7137 0.6208

Table 2: Average scores achieved for eLife and PLOS on the validation set.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FKGL DCRS CLI LENS AlignScore SummaC

T5 0.2965 0.0724 0.2719 0.817 15.4289 8.3865 16.4424 30.3724 0.8902 0.6946
BART 0.4398 0.1215 0.404 0.8471 14.206 11.1238 15.1218 49.5737 0.8504 0.786
PEGASUS 0.4175 0.12 0.3881 0.8403 12.3652 9.0849 13.8333 28.9694 0.7757 0.7548
BIOBART 0.4296 0.1232 0.3714 0.8458 17.1976 10.9925 15.0599 41.71 0.7723 0.6854
Ours 0.4516 0.1317 0.4208 0.8495 12.1158 9.5594 13.043 59.3599 0.7296 0.6358

Table 3: Average scores achieved for eLife and PLOS on the test set.
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Abstract

This paper details the efforts of the WisPerMed
team in the BioLaySumm2024 Shared Task on
automatic lay summarization in the biomedical
domain, aimed at making scientific publica-
tions accessible to non-specialists. Large lan-
guage models (LLMs), specifically the BioMis-
tral and Llama3 models, were fine-tuned and
employed to create lay summaries from com-
plex scientific texts. The summarization per-
formance was enhanced through various ap-
proaches, including instruction tuning, few-
shot learning, and prompt variations tailored to
incorporate specific context information. The
experiments demonstrated that fine-tuning gen-
erally led to the best performance across most
evaluated metrics. Few-shot learning notably
improved the models’ ability to generate rele-
vant and factually accurate texts, particularly
when using a well-crafted prompt. Addition-
ally, a Dynamic Expert Selection (DES) mech-
anism to optimize the selection of text outputs
based on readability and factuality metrics was
developed. Out of 54 participants, the Wis-
PerMed team reached the 4th place, measured
by readability, factuality, and relevance. Deter-
mined by the overall score, our approach im-
proved upon the baseline by ≈ 5.5 percentage
points and was only ≈ 1.5 percentage points
behind the first place.

1 Introduction

In the biomedical domain, scientific publications
and research play a central role in communicating
research findings and results. However, these docu-
ments are usually written in complex language and
use terminology and technical jargon that can be
challenging for lay readers or researchers from dif-
ferent fields to understand (Goldsack et al., 2022).
In this context, lay summarization can be utilized
to extract the most relevant information from the
original article or publication while also providing

supplementary explanations. This often entails in-
corporating background information that may not
be contained within the article itself.

In this context, this paper presents the partic-
ipation of the team WisPerMed in the BioLay-
Summ2024 Shared Task (Goldsack et al., 2024)
on automatic lay summarization and describes the
employed approaches to tackle this challenge.

Summaries generated by LLMs, as demonstrated
by Zhang et al. (2024), can be of equivalent or su-
perior quality to original references. Additionally,
instruction tuning is an effective approach for en-
hancing performance. However, LLMs face lim-
itations when applied to domain-specific abstrac-
tive summarization. Key challenges include the
quadratic complexity of transformer-based mod-
els (Vaswani et al., 2017) concerning input text
length, model hallucination, where factually in-
correct text is generated, and domain shift from
training to test data (Afzal et al., 2023). Similarly,
studies on text simplification (Amin et al., 2023)
indicate that although general-purpose LLMs are
capable of effectively simplifying clinical reports,
they sometimes generate factual inaccuracies and
omit crucial information.

To adapt LLMs to a specific domain or task (Ling
et al., 2024), it is possible to fine-tune the mod-
els, leverage few-shot learning or further pre-train
the models on domain data. Examples of domain-
adapted LLMs for the biomedical domain include
the BioMistral (Labrak et al., 2024) and OpenBi-
oLLM (Pal and Sankarasubbu, 2024) model se-
ries. The BioMistral models are based on the Mis-
tral 7B Instruct v0.1 (Jiang et al., 2023) model.
They are further pre-trained on the PMC Open Ac-
cess Subset1. OpenBioLLM models are based on
the Llama3 (AI@Meta, 2024) models and were

1https://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/ Accessed: 2024-05-17
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adapted to the biomedical domain through fine-
tuning.

2 Dataset

The dataset (Goldsack et al., 2022) of the Shared
Task (Goldsack et al., 2024) contains two collec-
tions of scientific journal articles and the corre-
sponding lay summaries, namely PLOS and eLife.
PLOS and eLife also include the section headings
and keywords of the article. The PLOS dataset
has 24,773 examples in the training split and 1,376
examples in the validation split, whereas the eLife
dataset is smaller with 4,346 examples in the train-
ing split and 241 examples in the validation split.
The test split consists of 142 examples for both
datasets. Lay summaries of the PLOS dataset were
written by the authors of the articles and are ap-
proximately 150-200 words long, while eLife lay
summaries were written by expert editors in corre-
spondence with the authors and are about twice as
long.

For the remainder of this paper, any reference
to the validation or test set will include eLife and
PLOS unless otherwise specified.

3 Evaluation Metrics

The generated summaries were evaluated across
ten metrics that fall into the following categories:
relevance, readability, and factuality. Relevance
was assessed through Recall-Oriented Understudy
for Gisting Evaluation (Lin, 2004) (ROUGE-1,
ROUGE-2, ROUGE-L) and BERTScore (Zhang
et al., 2020). ROUGE counts the overlapping n-
grams in the generated texts and target lay sum-
maries, whereas BERTScore uses contextual word
embeddings to compare the semantic similarity
of the two texts. Readability was evaluated us-
ing the Flesch-Kincaid Grade Level (FKGL) (Kin-
caid, 1975), Dale-Chall Readability Score (DCRS)
(Chall and Dale, 1995), Coleman-Liau Index (CLI)
(Coleman and Liau, 1975), and Learnable Evalua-
tion Metric for Text Simplification (LENS) (Mad-
dela et al., 2023). The FKGL uses sentence lengths
and syllable count per word to estimate readability.
The DCRS uses a word list to compute the oc-
currences of words unknown to most 4-th graders
and the CLI estimates the grade level necessary
to comprehend the text. The LENS metric is a
learnable evaluation metric trained on datasets con-
taining human ratings of simplifications. In this
setting, LENS measures the simplification of the

abstract by the generated text using the target lay
summary as a reference. Factuality was assessed
with AlignScore (Zha et al., 2023) and Summary
Consistency (SummaC) (Laban et al., 2022). The
AlignScore quantifies the degree of alignment be-
tween the facts in the summary and the scientific
article, while SummaC also includes consistency.

4 Methods and Experiments

This section outlines the methodology employed in
the experiments conducted on the specified dataset.

4.1 Fine-tuned Models
In this study, instruction tuning (Wei et al., 2022)
was utilized to fine-tune various models. Instruc-
tion tuning refers to the process of fine-tuning lan-
guage models on a collection of datasets described
via instructions. BioMistral-7B-DARE (BioM) and
Llama3-70B-Instruct (Llama3) were fine-tuned for
one epoch utilizing Quantized Low-Rank Adap-
tation (QLoRA) (Dettmers et al., 2023) on the
eLife and PLOS dataset individually. BioM was
trained on the abstracts + lay summaries, whereas
Llama3 was trained on the entire articles + lay sum-
maries. The texts were structured using the Mistral
and Llama3 instruction templates prior to the fine-
tuning process. Please refer to the Appendix A,
B, and C for details on prompts, parameters and
licenses, respectively.

After evaluating the checkpoints of BioM on the
validation set, the checkpoints with the best scores
were selected for inference. For Llama3, the final
checkpoints were selected. The models were given
the same prompt as during fine-tuning but without
the target.

4.2 Prompt Variations
Prompts can guide the LLM’s content generation
process without the need for fine-tuning. In the
zero- and few-shot settings, different prompt vari-
ations and their effect on the evaluation metrics
were examined. In the few-shot setting, example
lay summaries from the training and validation set
were included in the prompt when performing in-
ference on the validation and test set, respectively.
The format of these few-shot prompts is designed
to emulate a preceding conversation with the model,
with the included examples serving as the model’s
previous responses.

To choose the best few-shot examples, all ex-
amples were ranked based on their average nor-
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Figure 1: Workflow of the Dynamic Expert Selection (DES) mechanism in the few-shot setting using an example
from the PLOS dataset. The process involves ranking examples, generating multiple summaries through various
prompt variations, applying a large language model (LLM), and then normalizing and weighing the readability (R)
and factuality (F) scores to rank and select the best summary based on the selection scores (S).

malized readability and factuality. The two and
three highest-ranked examples were selected for
the eLife and PLOS datasets, respectively.

An initial prompt was created by replicating the
prompt used for inference with the fine-tuned BioM
model (see Appendix A). This prompt was then
tested with BioM and OpenBioLLM-70B (Open-
Bio) on the validation set.

Additionally, three prompt variations were cre-
ated, which provide the model with different kinds
of context information. It was decided that BioM
would be utilized for all experiments involving
these variations due to its superior performance on
the validation set in the few-shot setting (see Table
3 in Appendix D). LLMs can assume different roles
and adapt their vocabulary accordingly (Salewski
et al., 2023), resulting in enhanced performance
in tasks related to the specified role. Accordingly,
the first prompt variation comprises a persona de-
scription of a science communicator (BioMpers),
instructing the model to utilize the expertise of this
persona to create the lay summary based on the ab-
stract. The model is then instructed to channel the
expertise of the described persona to craft the lay
summary based on the abstract. The second prompt
variation is a modification of the initial prompt, in-
corporating the introduction to provide additional
background information because associated con-
text can improve LLM performance (Karmaker and
Feng, 2023). The second prompt variation is a mod-
ification of the initial prompt, but it includes the

introduction as further context for background in-
formation (BioMintro). The third prompt variation
includes the abstract and a guide on how to write
a lay summary (BioMguide), accompanied by in-
structions concerning the content and style of the
requested summary. This method leverages the im-
portance of clear and detailed task directives. The
selection of these prompts was based on a few pre-
liminary experiments with the model and an initial
assessment of the responses. However, no compre-
hensive optimization was performed. The wording
of all prompts can be found in Appendix A.

Due to the efficacy of few-shot learning with the
initial prompt, the prompt variations were imple-
mented in a few-shot setting on the test set.

4.3 Dynamic Expert Selection (DES)

The success of an LLM depends on factors such
as the properties of the dataset, the complexity of
the domain, and the design of the prompt (Ling
et al., 2024). Consequently, a model may yield a
more suitable lay summary when prompted in a
different manner. In addition, the output quality
depends upon the selection of the inference param-
eters (Minaee et al., 2024). In consideration of this
assumption, a Dynamic Expert Selection (DES)
was developed. It selects the most appropriate text
from a set of candidate texts based on metrics that
do not require a reference lay summary.

The mechanism uses the readability metrics
FKGL, DCRS, and CLI, as well as the factuality

771



metrics AlignScore and SummaC. These metrics
are computed for each candidate text. Readability
scores are multiplied by -1 so that higher scores in-
dicate better readability. All scores are normalized
using min-max normalization to range between 0
and 1, where 1 is the best and 0 is the worst. For
each candidate text, an overall score is calculated
by multiplying the means with different weights.
Given that the target lay summaries in eLife have
a higher readability than those in PLOS (Goldsack
et al., 2022), the overall scores are computed with
different weights for the two aspects. For eLife
summaries: Readability is weighted at 0.675 and
factuality at 0.325. For PLOS summaries: Read-
ability is weighted at 0.25 and factuality at 0.75.
The candidate text with the highest overall score
is selected as the most suitable lay summary. The
selection of the weights is based on the assump-
tions about the target texts and comparisons of the
overall scores on the validation dataset.

This approach was applied to BioM in the few-
shot setting using all prompt variants (see Figure
1) and to the fine-tuned BioM using two distinct
inference parameter settings (see Appendix B).

5 Results

The results of the experiments using BioM, Llama3,
and OpenBio are presented in table 1. The experi-
ments are categorized into zero-shot learning, few-
shot learning, and fine-tuning.

BioM exhibits the highest LENS score in the
zero-shot setting. However, its relevance and factu-
ality performance are the lowest. Few-shot learning
resulted in enhanced performance across all metrics
except for LENS. The persona prompt (BioMpers)
led to an improvement in relevance. Including the
introduction in the prompt (BioMintro) resulted in
a reduction in all aspects despite the fact that the
model had access to more information from the
article itself. In comparison, the prompt with the
guide (BioMguide) exhibits minimal enhancements.
The optimal few-shot learning for BioM occurred
with the initial prompt, which achieved the highest
readability and factuality in the few-shot setting,
excluding the DES approach. However, OpenBio
slightly underperformed with this prompt in the
few-shot setting, except for the LENS score, where
it performed best in this setting.

The DES used all four prompts and outper-
formed the baseline with improvements in factual-
ity and readability, achieving the best results in the

few-shot setting.
Fine-tuning BioM improved relevance and fac-

tuality scores, though the LENS score decreased
slightly, with other readability metrics similar to
the few-shot setting. The fine-tuned BioM out-
performed the baseline in terms of relevance and
overall quality. The DES approach improved all
metrics except for a slight drop in the LENS score.
In contrast, Llama3 underperformed despite being
larger. It was less effective at extracting relevant
information from full articles and produced lower-
quality text in terms of readability, even though its
LENS score was higher than BioM’s. Additionally,
Llama3’s factuality scores decreased, leading to an
overall performance drop compared to the baseline.

6 Conclusion

This paper presents the WisPerMed team’s ap-
proaches to automatic lay summarization within
the biomedical domain, utilizing a combination of
fine-tuning, prompt variations, and Dynamic Ex-
pert Selection.

Among these approaches, fine-tuning emerged
as an effective method, leading to the best perfor-
mance across most metrics. This underscores the
importance of task-specific training in optimizing
model output for complex summarization tasks.
Additionally, BioM showed strong few-shot learn-
ing capabilities, illustrating its robustness and ver-
satility in generating accurate and relevant sum-
maries even without extensive training. As the
model adjusts to the factuality and readability of
given examples, providing better examples could
lead to further enhancements in these aspects.

BioM reached high factuality, even when pro-
vided solely with abstracts as input, suggesting
that BioM leveraged domain-specific knowledge
acquired during pre-training. This indicates that do-
main adaptation remains an important factor when
using LLMs for lay summarization of scientific
articles, as BioM outperformed the larger general
model Llama3.

The four prompt variations exhibited differing
effects on the evaluation metrics. BioM is adept
in fulfilling the role of a science communicator
(BioMpers), as evidenced by the enhanced relevance.
BioMintro and BioMguide did not significantly en-
hance the metrics, indicating that the increase in
context was not beneficial for all texts. Without
DES, a shorter prompt (BioMinitial) yielded the op-
timal results, suggesting that the model effectively

772



Expt. R-1 R-2 R-L BERT FKGL DCRS CLI LENS Align SC

Baseline 0.470 0.140 0.436 0.862 12.036 10.148 13.485 48.096 0.779 0.703

Zero-shot Learning

BioM 0.329 0.071 0.298 0.845 12.404 10.093 13.974 80.396 0.541 0.458

Few-shot Learning

BioM 0.440 0.124 0.409 0.857 11.287 8.954 12.755 75.744 0.728 0.604
BioMpers 0.442 0.125 0.412 0.856 11.318 9.066 13.031 63.766 0.721 0.607
BioMintro 0.391 0.106 0.359 0.851 12.233 9.618 13.693 76.638 0.669 0.529
BioMguide 0.434 0.117 0.403 0.856 11.773 9.553 13.662 76.912 0.692 0.557
BioMDES 0.439 0.128 0.409 0.855 10.969 8.993 12.819 74.025 0.767 0.673
OpenBio 0.415 0.104 0.382 0.855 11.657 9.848 13.711 79.519 0.731 0.558

Fine-tuning

BioM 0.470 0.152 0.442 0.865 11.338 8.872 13.064 51.058 0.775 0.705
BioMDES 0.471 0.152 0.443 0.865 11.072 8.862 12.871 51.028 0.782 0.722
Llama3 0.418 0.108 0.391 0.856 11.622 10.628 15.080 72.860 0.602 0.592

Table 1: Performance metrics of experiments on the test set. The models include BioMistral-7B (BioM), Llama3-
70B (Llama3), and OpenBioLLM-70B (OpenBio). The experiments are categorized into fine-tuned, zero-shot,
and few-shot settings. The metrics reported are ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), BERTScore
(BERT), FKGL, DCRS, CLI, LENS, AlignScore (Align), and SummaC (SC). Bolded values indicate the best in
each section, and underlined values the best overall performance.

comprehends the task from the provided examples.
The DES mechanism further refined readability
and, in particular, factuality by retrospectively se-
lecting the best text outputs based on evaluation
metrics. This highlights the potential of metric-
driven selection to improve the quality of lay sum-
maries further.

In conclusion, our study demonstrates that fine-
tuning, the use of informed prompt variations, and
selection mechanisms can enhance the capability
of autoregressive LLMs to produce lay summaries
that are factually accurate, relevant, and readily ac-
cessible to non-specialist audiences. This approach
fosters broader public engagement with scientific
findings, advancing the goal of making biomedical
research comprehensible and accessible.

Limitations

Only four discrete prompts in combination were
tested with DES, and only two sets of inference pa-
rameters were explored. This limited scope means
that the findings may not fully capture the poten-
tial variability and performance of the the various
models under different conditions. The weights
for the Dynamic Expert Selection method were
chosen based on heuristics without any formal op-

timization, which could impact the robustness and
generalizability of the results. Another limitation is
the possibility that BioM may have been previously
exposed to the gold standard summaries. If this is
the case, it could skew the results by artificially
inflating the model’s performance. These limita-
tions indicate potential avenues for future research,
including the necessity for more comprehensive
prompt engineering, optimization of DES weights,
and a wider range of tasks to ensure the robustness
of the approach. Another potential future direc-
tion is adapting these methods for other complex
domains or languages and exploring additional met-
rics.
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A Prompts

The prompts used in the experiments are shown in Figures 2, 3, 4, 5, and 6.

Fine-tuning/Initial Prompt with Abstract for BioM

You will be provided with the abstract of a scientific article. Your task is to write a lay summary that accurately conveys
the key findings and significance of the research in non-technical language understandable to a general audience.:

Abstract of a scientific article:

[Abstract]

Lay summary for this article:

Figure 2: The prompt used for fine-tuning BioM and as the initial prompt in the zero- and few-shot settings. For
fine-tuning the prompt also includes the target lay summary.

Fine-tuning/Inference Prompt with Article for LLama3

You will be provided with a scientific article. Your task is to write a lay summary that accurately conveys the key findings
and significance of the research in non-technical language understandable to a general audience.:

Scientific article:

[Abstract]

Lay summary for this article:

Figure 3: The prompt used for fine-tuning Llama3. For fine-tuning the prompt also includes the target lay summary.

Persona Prompt

Meet Layla, your fantastic science communicator committed to breaking down complex research for everyone! Layla’s
mission is to create summaries that make scientific literature easy to understand for the general public. Before writing,
Layla thoroughly reads the abstract to grasp the research goals and findings accurately. Precision is crucial for Layla; she
makes sure her summaries align with the abstract’s research while expanding on key points and methods. Layla ensures
each summary gives a complete understanding of the findings and their importance. She offers detailed explanations
and backgound information as context to aid comprehension. She highlights the main discoveries and their real-world
implications, explaining study mechanisms and methods in reader-friendly language. Layla brings research to life with
vivid descriptions and relatable examples, showing its impact on society. Her tone is informative yet engaging, avoiding
jargon to be inclusive.

Now, let’s channel Layla’s expertise to craft a comprehensive lay summary for a scientific article.

Abstract of the scientific article:

[Abstract]

Layla:

Figure 4: The Persona-Prompt used in zero- and few-shot setting with BioM.
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Intro Prompt

You will be provided with the abstract of a scientific article and the introduction section for background information. Your
task is to write a lay summary that accurately conveys the key findings and significance of the research in non-technical
language understandable to a general audience. Please ensure that your summary is mainly based on the information
provided in the abstract. You may also use information from the introduction for additional context if necessary.

Introduction of the scientific article:

[Introduction]

Abstract of the scientific article:

[Abstract]

Lay summary for this article:

Figure 5: The Intro-Prompt used in zero- and few-shot setting with BioM.

Guide Prompt

You will be provided with the abstract of a scientific article. Your task is to write a lay summary that accurately conveys
the key findings and significance of the research in non-technical language understandable to a general audience.

Abstract of the scientific article:

[Abstract]

Guidelines for crafting a lay summary:

• Craft a detailed summary that explains the research findings and their implications, providing thorough explanations
where necessary.

• Ensure factual accuracy and alignment with the research presented in the abstract, elaborating on key points and
methodologies.

• Highlight the main findings and their implications for real-world scenarios, delving into specific mechanisms or
methodologies used in the study and their broader significance.

• Incorporate descriptive language to explain complex concepts.

• Maintain a balanced tone that is informative and engaging, avoiding technical jargon or overly formal language.

• Ensure the summary provides sufficient depth and context to guide the reader through the research journey and
address potential questions or areas of confusion.

Your lay summary for the article:

Figure 6: The Guide-Prompt used in zero- and few-shot setting with BioM.
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B Setup and Hyperparameter

Training All trainings were executed on a single Nvidia H100 80GB using the unsloth2 framework and
QLoRA (Dettmers et al., 2023). The following modules were targeted with QLoRA: “q_proj”, “k_proj”,
“v_proj”, “o_proj”, “gate_proj”, “up_proj”, and “down_proj”. The QLoRA rank and alpha were both set
to 16. The QLoRA dropout was set to 0. The optimization of the models was conducted using the 8-bit
Adam optimizer (Loshchilov and Hutter, 2019), which was configured with a maximum learning rate of
2× 10−4 and a weight decay factor of 0.01. The learning rate schedule included a linear decay following
an initial phase consisting of five warm-up steps. Maximum sequence length was set to 4,096.

Inference For the inference process, a greedy search algorithm was employed as the decoding strategy
(Minaee et al., 2024), with a configuration that allowed for the generation of up to 1024 new tokens per
inference iteration.

DES The DES with the fine-tuned model used the inference parameter as described above for one
candidate, and a repetition penalty of 1.1 was chosen to generate another candidate.

C Licenses

In Table 2 the Licenses as given by the owners of the Framework/Model are displayed.

Framework/Model License

unsloth3 Apache License Version 2.0
BioMistral-7B-DARE4 Apache License Version 2.0
Llama-3-70B-I5 Llama 3 Community License Agreement
OpenBioLLM-70B6 Llama 3 Community License Agreement

Table 2: Licenses of the dataset, Framework and Models used for this Shared Task.

2https://github.com/unslothai/unsloth Accessed: 2024-05-17
3https://github.com/unslothai/unsloth Accessed: 2024-05-17
4https://huggingface.co/BioMistral/BioMistral-7B-DARE Accessed: 2024-05-17
5https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct Accessed: 2024-05-17
6https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B Accessed: 2024-05-17
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D Results on the Validation Set

The results of experiments on the validation set and the reference scores of the target lay summaries and
input abstracts are presented in Table 3.

Expt. R-1 R-2 R-L BERT FKGL DCRS CLI LENS Align SC

Targets - - - - 12.857 9.944 14.251 57.988 0.670 0.512
Abstracts 0.410 0.135 0.380 0.855 15.260 11.378 16.961 38.259 - -

Zero-shot Learning

BioM 0.332 0.070 0.301 0.844 12.530 10.156 13.957 80.159 0.521 0.465
BioMpers 0.411 0.118 0.379 0.847 12.579 10.074 14.897 69.732 0.741 0.628
BioMintro 0.397 0.118 0.364 0.849 13.735 10.478 14.990 68.530 0.743 0.580
BioMguide 0.422 0.123 0.389 0.851 13.971 10.478 15.667 68.561 0.747 0.593

Few-shot Learning

BioM 0.440 0.122 0.411 0.855 10.875 8.733 12.359 76.358 0.701 0.596
OpenBio 0.423 0.107 0.390 0.854 12.429 9.729 14.721 77.961 0.678 0.554

Fine-tuning

BioM 0.478 0.148 0.446 0.866 11.743 9.899 13.886 56.888 0.724 0.677

Table 3: Performance metrics of experiments on the validation set. The models include BioMistral-7B (BioM),
Llama3-70B (Llama3), and Llama3-OpenBioLLM-70B (OpenBio). The experiments are categorized into fine-tuned,
zero-shot, and few-shot settings. The metrics reported are ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L),
BERTScore (BERT), FKGL, DCRS, CLI, LENS, AlignScore (Align), and SummaC (SC). ’Targets’ and ’Abstracts’
provides benchmark scores of the target lay summaries and abstracts, respectively. Bolded values indicate the best
in each section, and underlined values the best overall performance.
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Abstract

This article presents our submission to the Bio-
LaySumm 2024 shared task: Lay Summariza-
tion of Biomedical Research Articles. The ob-
jective of this task is to generate summaries
that are simplified in a concise and less tech-
nical way, in order to facilitate comprehension
by non-experts users. A pre-trained BioBART
model was employed to fine-tune the articles
from the two journals, thereby generating two
models, one for each journal. The submission
achieved the 12th best ranking in the task, at-
taining a meritorious first place in the Rele-
vance ROUGE-1 metric.

1 Introduction

In the context of the rapidly expanding quantity
and complexity of biomedical literature, the ability
to effectively and accurately summarise documents
has become crucial for researchers and healthcare
professionals. In this regard, Natural Language
Processing (NLP) technologies have emerged as
promising tools to address this need. The objective
of BioLaySumm 2024 shared task (Goldsack et al.,
2024) is the simplification of biomedical research
articles playing a vital role in making information
more comprehensible to non-experts thus enabling
a wider audience to understand and use medical
information effectively.

Concerning generating summaries, there are a
number of different approaches that can be em-
ployed. One such approach is the extractive model,
which involves selecting the most important sen-
tences from the original text and incorporating
them directly into the summary. These models
were the first to emerge and the most widely used
until the abstractive models came onto the scene.
These models have the capacity to comprehend the
content of the input text and generate summaries
that may include new sentences and expressions
that are not present in the original text (Nallapati

et al., 2017)(Widyassari et al., 2022). The first pa-
per to describe an abstractive summarisation model
was (Cohan et al., 2018), and from that moment on,
they began to gain greater relevance and were used
more frequently than the extractive models. In this
paper, we will employ abstractive models.

In our participation in the BioLaySumm 2024
shared task, we utilise existing large language mod-
els (LLMs), such as Bio-BART (Yuan et al., 2022),
which is a biomedical variant of the BART model
(Lewis et al., 2020), and Longformer Encoder-
Decoder (LED) (Beltagy et al., 2020), to train
our models for the generation of summaries from
the provided articles. The summaries generated
by the various models were evaluated in accor-
dance with the metrics provided by the organis-
ers. (ROUGE(1,2 and L) (Lin, 2004), BERTScore
(Zhang et al., 2020), FKGL (Kincaid et al., 1975),
DCRS (Chall and Dale, 1995), CLI (Coleman and
Liau, 1975), LENS (Maddela et al., 2023), Align-
Score (Zha et al., 2023) and SummaC (Laban et al.,
2021)). The experiment that yielded the most
favourable results was the one that used the Bio-
BART pre-trained model. This model was used
to train two models, one for each of the journals
from which the articles were obtained. These mod-
els were used to generate the abstracts for each
journal.

This release achieved excellent results in the Rel-
evance metric of the shared task, with the highest
score in the ROUGE-1 metric. However, the Read-
ability and Factuality metrics yielded less impres-
sive outcomes, resulting in a final ranking of 12th
place. Nevertheless, this remains a satisfactory per-
formance, as it places the team in the top half of
the table of all participants.
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PLOS Dataset
data train validation test
size 24733 1376 142

avg-length 6754.09 6741.48 6939.28
min-length 748 751 1587
max-length 26643 20423 18477

Table 1: Data statistics of PLOS dataset. Size corre-
sponds to the number of articles present in the dataset.
The min-length and max-length values correspond to
the minimum and maximum length of the words in the
dataset. Finally, avg-length corresponds to the average
word length of all texts in the dataset.

eLife Dataset
data train validation test
size 4346 241 142

avg-length 10200.27 10031.25 8909.15
min-length 324 3408 2492
max-length 28696 23048 16880

Table 2: Data statistics of eLife dataset.

2 Method

2.1 Dataset
In order to participate in the BioLaySumm 2024
shared task, all participants are provided with two
datasets containing biomedical research articles,
the expert abstract, the name of the article sec-
tions and finally the keywords of each article. The
first dataset contains approximately 25,000 articles
from the Public Library of Science (PLOS), while
the second dataset contains approximately 5,000 ar-
ticles from the journal eLIfe. Details of the dataset
are provided in (Goldsack et al., 2022).

In the tables 1 and 2 we can see the different
statistics of the two journals (PLOS and eLife), in
them we can see for each split its length of texts,
the average number of words in each split, as well
as the maximum and minimum length. The average
length of articles varies depending on the journal
to which they belong. For example, the average
length of articles in the eLife journal is 10,200
words, while the average length of articles in PLOS
is 6,754 words. In addition, there are notable dif-
ferences in the length of the abstracts. The average
length of an eLife abstract is twice that of a PLOS
abstract, at 382 words versus 194, respectively.

2.2 Models
In order to generate the summaries, a number of ap-
proaches were tested, with two Transformer models

being employed: Longformer (LED) and BioBART.
Longformer

Upon examination of the datasets in the previous
study, it became evident that the articles were
relatively lengthy. This prompted the decision to
utilise a model that could process a substantial
number of tokens as input. Consequently, the
Longformer model, specifically the LED (Long-
former Encoder - Decoder) variant, was selected
(Beltagy et al., 2020). This model follows a
sequence-to-sequence architecture (seq2seq) and
is based on Transformer-base models. However,
these are limited to short input sequences due to the
exponential growth in computational complexity
with the length of the inputs. Longformer models
address this issue by introducing a mechanism
whereby the complexity grows linearly in relation
to the inputs. For the experiments, the pre-trained
model allenai/led-base-163841 was utilised, which
is capable of supporting inputs of up to 16,000
tokens. This is feasible due to the fact that it was
initiated from a BART-base model. However,
the BART model is only capable of processing
texts up to 1,000 tokens. Consequently, the
embedding matrix from the BART-base was copied
and replicated 16 times in order to enable the
Longformer model to process texts up to 16,000
tokens.

Bio-BART

Given the nature of this biomedical article sum-
marisation and simplification task, it was deemed
appropriate to utilise a model that has been pre-
trained in this specific domain. Consequently, the
BioBART model was employed (Yuan et al., 2022),
as it has already demonstrated its efficacy in tasks
of a similar nature and was employed in last year’s
task such as in (Phan et al., 2023). This model
is based on a base BART model that has been
pre-trained on a corpus of biomedical texts, ren-
dering it an optimal choice for biomedical tasks.
The model for the experiments is the pre-training
GanjinZero/biobart-v2-large2.

1https://huggingface.co/allenai/
led-base-16384

2https://huggingface.co/GanjinZero/
biobart-v2-base
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3 Experiments

3.1 Evaluation Measures

Submissions for the shared task are evaluated ac-
cording to three distinct criteria: relevance, read-
ability and factuality.

• The relevance measure assesses the extent to
which the generated abstract contains the key
information from the original article. Four
metrics will be employed to evaluate this:
ROUGE-1 ↑, ROUGE-2↑, ROUGE-L ↑ (Lin,
2004) and BERTScore↑ (Zhang et al., 2020).

• Readability is a measure of the readability
of the generated abstract, with the objective
of ensuring that it is as understandable as
possible for humans. In evaluating the read-
ability of the abstract, four metrics are em-
ployed: Flesch-Kincaid Grade Level (FKGL)
↓ (Kincaid et al., 1975), Dale-Chall Readabil-
ity Score (DCRS )↓ (Chall and Dale, 1995),
Coleman-Liau Index (CLI) ↓ (Coleman and
Liau, 1975) and LENS ↑ (Maddela et al.,
2023).

• Factuality is the extent to which the generated
summary is accurate and based on verifiable
facts. For this, two metrics will be employed:
AlignScore ↑ (Zha et al., 2023) and SummaC
↑ (Laban et al., 2021).

The objective of the relevance and factuality
measures is to maximise the metrics, while in rel-
evance we seek to minimise them, except for the
LENS metric, which, like the previous ones, we
seek to maximise.

3.2 Experiments

Three distinct experiments were conducted
utilising the two previously trained models.

Longformer
The pre-trained allenai/led-base-16384 model is

employed in the experiments, which is capable of
supporting inputs of up to 16,384 tokens. In this
experiment, a single model will be trained on the
texts of the two journals, and the summaries will
be generated from the same model. Consequently,
the training of the model employs the texts of
the two journals. Despite the maximum input
capacity of the model being 16,384 tokens, the
texts are limited to those below 12,000 words due

to identified constraints. Nevertheless, the training
is based on more than 20,000 texts.

Bio-BART

The experiment employs the
GanjinZero/biobart-v2-large pre-training model,
which is a biomedical pre-training model. How-
ever, as a bart model, it has an input limitation
of 1024 tokens. Consequently, for the training
process, the complete dataset is utilised, with only
the initial tokens of each text being employed.
This approach allows for the retention of the initial
tokens, which are then used for the training process.
The information retained is the abstract, which has
an average length of 300 tokens plus the beginning
of the introduction. The average number of tokens
in these two fields is 1080, demonstrating that by
utilising these two sections, we are able to retain
a substantial amount of information. In contrast
to the aforementioned experiment with the LED
model, two distinct training sets will be employed
in this instance. One will comprise articles from
the PLOS journal, while the other will comprise
articles from the eLife journal. This approach will
result in the generation of two independent models,
each of which will produce summaries of the
articles in their respective test sets. The fine-tuning
process will utilise both complete datasets.

Longformer + Bio-BART

Finally, in order to enhance the outcomes of the
preceding experiments, we opted to integrate the
two models in order to retain the most advanta-
geous aspects of each. This integration will allow
us to leverage the capacity of the LED model to pro-
cess voluminous text inputs while simultaneously
capitalising on the BioBART model’s aptitude for
biomedical simplifications. As with the BioBART
model, in this experiment we will utilise two inde-
pendent models, one for PLOS journal and one for
eLife.

In order to achieve this, the Longformer model
is first employed. The input for this model is the
full articles, and the output is between 700 and
800 words, which is more than double the aver-
age length of the final summaries to be delivered.
Once the first summaries have been generated by
the Longformer model, they are used as input to the
BioBART models, which generate the final sum-
maries.

782



Relevance Readability Factuality
ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BERTScore FKGL↓ DCRS↓ CLI↓ LENS↑ AlignScore↑ SummaC↑

Best Score 0.487 0.156 0.454 0.867 10.459 6.760 11.044 81.205 0.930 0.902
LED 0.411 0.113 0.386 0.846 13.592 8.810 14.966 27.749 0.753 0.652

BioBART 0.487 0.147 0.452 0.862 12.710 10.433 14.080 49.344 0.667 0.670
LED + BioBART 0.456 0.131 0.426 0.857 13.025 9.605 13.360 52.124 0.580 0.540

Table 3: The results of the three experiments (LED, BioBART, LED + BioBART) are presented alongside a
comparison with the best results obtained in each metric in the competition.

Relevance Readability Factuality
ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BERTScore FKGL↓ DCRS↓ CLI↓ LENS↑ AlignScore↑ SummaC↑

LED
Average 0.411 0.113 0.386 0.846 13.592 8.810 14.966 27.749 0.753 0.652
PLOS 0.421 0.142 0.393 0.855 13.389 8.956 14.850 29.155 0.784 0.701
eLife 0.400 0.084 0.379 0.837 13.794 8.665 15.082 26.343 0.723 0.604

BioBART
Average 0.487 0.147 0.452 0.862 12.710 10.433 14.080 49.344 0.667 0.670
PLOS 0.465 0.155 0.425 0.863 14.566 11.936 16.550 34.079 0.791 0.827
eLife 0.509 0.138 0.479 0.861 10.854 8.930 11.610 64.609 0.542 0.514

LED + BioBART
Average 0.456 0.131 0.426 0.857 13.025 9.605 13.360 52.124 0.580 0.540
PLOS 0.426 0.134 0.392 0.857 15.231 10.365 15.034 41.056 0.651 0.597
eLife 0.487 0.127 0.459 0.856 10.820 8.846 11.685 63.192 0.509 0.540

Table 4: The results of the metrics in the PLOS and eLife journals for each of the three experiments are presented
below.

3.3 Environment Parameters

All experiments were conducted on a Tesla T4
GPU, with a series of hyperparameters set, includ-
ing a learning rate of 2e-5, a batch size of 4, and
two epochs.

4 Results and discussions

The table 3 presents the outcomes of the exper-
iments, displayed in the context of the various
metrics. Furthermore, an additional row has been
included, in which the best value for each met-
ric within the competition is presented. Table 4
presents the results obtained for each journal, al-
lowing for a more detailed analysis. Upon exam-
ination of the results, the following observations
can be made.

The first of these observations is that our Bio-
BART value in the ROUGE-1 metric is the best
value in the competition. In addition to this ex-
cellent result in this metric, we can also see that
in the other relevance metrics we also obtain very
good results, being very close to the best results.
Furthermore, an analysis of the results by journal
reveals that there are minimal differences between
the texts of the two groups. The journal PLOS out-
performs the other texts in two metrics (ROUGE-2
and BERTScore), while eLife excels in two others
(ROUGE-1 and ROUGE-L). This indicates that the
model generates summaries that retain a substantial
amount of relevant information. In the experiment
in which we combined LED and BioBART, we
also obtained very good results, which suggests

that these results are due to the BioBART model.
Conversely, an analysis of the Readability met-

rics reveals that the optimal outcome is achieved
when the two models are combined. However,
when the Dalle-Chall Readability Score (DCRS)
metric is considered, the LED model exhibits sig-
nificantly superior performance. Furthermore, this
metric presents an intriguing phenomenon: the re-
sults in the BioBART model are quite poor, with a
score of 1.5 points above our best result. This is a
significant drawback for the model in terms of its
final score. In contrast to the previous observation
regarding relevance, the texts of the journal eLife
obtain much better results than those of the journal
PLOS.

With regard to the Factuality metrics, the Bio-
BART model yielded the most favourable results,
with the exception of the eLife journal, where the
outcomes were considerably less favourable. Con-
sequently, the average score was reduced, resulting
in the LED model, which is more balanced, achiev-
ing better results in the AlignScore metric.

The findings of this study indicate that while
the information is well-maintained, as evidenced
by the relevance metrics. The PLOS journal ar-
ticles contain more accurate information but are
more challenging to comprehend. This discrepancy
may be attributed to the smaller abstracts (175-220
words), which may have a detrimental impact on
the readability metrics.

The BioBART model is the most effective in
terms of relevance, outperforming all the met-
rics in this category thanks to its specific biomed-
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ical training. Although the combined Long-
former+BioBART model improves readability, it
loses accuracy due to the double simplification of
the content. On the other hand, the Longformer
model, although it obtained good results in some
metrics, did not stand out in any of them; this could
be an effect of having trained a single model with
the texts of the two journals.

4.1 Selection of approach

Following the completion of the three experiments
and the analysis of the results obtained from the
various metrics, it was determined that the most
optimal approach would be to utilise the BioBART
model, as it yielded the most favourable outcomes
in six out of the ten metrics, with at least one in
each of the three categories.

5 Conclusions

This paper presents our participation in the BioLay-
Summ 2024 shared task, which aimed to generate
lay summaries of large biomedical documents. In
this task, we trained two different models (LED
and BioBART) from which we generated three dif-
ferent experiments. Upon completion of the task,
we observed that the best results were obtained by
training two BioBART models (one for the PLOS
journal articles and another for the eLife articles).
This is our final submission to the competition,
which resulted in a 12th-place finish. Our perfor-
mance was particularly noteworthy in the ROUGE-
1 metric, where we achieved first place, as well as
in the Relevance metrics.

As future work, we would have liked to experi-
ment with other models that we found interesting,
particularly trained with medical data, such as med-
ical mT5 (García-Ferrero et al., 2024). With respect
to the models we have presented, we would like
to continue working with them to improve the re-
sults in the Readability and Factuality metrics, in
which we have not obtained such good results. We
would like to study what happened in generating
not adequate summaries by conducting an analy-
sis of errors. We believe that managing specific
medical terminology would help to generate more
lay-oriented medical terms to ascertain the efficacy
of the keyword translation from the original text to
the summary. In the event that this process is not
executed correctly, due to the inherent complexity
of the keywords, an external dataset comprising
words from the biomedical field and a translation

into simpler expressions could be employed as a
preprocessing step for the texts prior to training.
See the open-access and collaborative (OAC) con-
sumer health vocabulary3 (CHV) as an example of
a medical lay-oriented vocabulary.

Limitations

Our best result is obtained by using a BioBART
model, which restricts the input of words to a max-
imum length of 1024 tokens. This represents the
initial and most significant limitation encountered,
given that the dataset comprises lengthy texts. Con-
sequently, this limitation precludes the training of
models with all available information, which would
result in enhanced outcomes. Another limitation
identified was the use of the Tesla T4 GPU. The
extensive training data required for this device re-
sulted in lengthy training times, which impeded the
development of the models.
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Abstract

Lay summarization of biomedical research arti-
cles is a challenging problem due to their use
of technical terms and background knowledge
requirements, despite the potential benefits of
these research articles to the public. We worked
on this problem as participating in BioLay-
Summ 2024. We experimented with various
fine-tuning approaches to generate better lay
summaries for biomedical research articles. Af-
ter several experiments, we built a LoRA model
with unsupervised fine-tuning based on the ab-
stracts of the given articles, followed by a post-
processing unit to take off repeated sentences.
Our model was ranked 3rd overall in the Bio-
LaySumm 2024 leaderboard. We analyzed the
different approaches we experimented with and
suggested several ideas to improve our model
further.

1 Introduction

While many academic publications in the biomedi-
cal field can potentially benefit a wide readership
including many non-experts, their accessibility is
often limited by their use of technical terms and
relatively sophisticated expressions. Therefore the
summarization of biomedical research articles is
an interesting and important task that can benefit
the general public, and BioLaySumm 2024 (Gold-
sack et al., 2024) aims to solve this question by
adopting techniques of NLP. BioLaySumm asks
participants to suggest models that summarize the
biomedical articles based on the PLOS and eLife
datasets (Goldsack et al., 2022) composed of origi-
nal research articles and lay summaries written by
experts.

In this paper, we explain our approaches to the
BioLaySumm 2024 in detail. To generate better
lay summaries, we experimented with multiple fine-
tuning approaches with LoRA based on the abstract
part of the biomedical research papers. As a re-
sult of a series of experimentations, we concluded

that our best-performing model is the unsupervised
fine-tuned model with LoRA followed by a post-
processing unit that chops off repeated sentences in
the raw predictions. At the end of the competition,
our model was ranked 3rd overall in BioLaySumm
2024 leaderboard.

2 Background

2.1 Task description

In BioLaySumm 2024, participants are expected
to generate lay summaries for the research articles
in the test set made from PLOS and eLife journals.
For the development of summarization systems,
PLOS (eLife) dataset provides 24773 (4346) arti-
cles for the train split and 1376 (241) articles for the
validation split. For both PLOS and eLife datasets,
the test split is composed of 142 articles. For each
data point, the whole article including the abstract
is provided along with the keywords and article id.
For the train splits and the validation splits, ground-
truth lay summaries targeted for non-experts are
provided. These summaries are written by authors
(PLOS) or expert editors (eLife). Participants can
submit summaries generated from either individual
models for each dataset or a unified model for both
datasets. The qualities of submitted summaries
are evaluated in three criteria: relevance, readabil-
ity, and factuality. Each criterion is composed of
multiple automatic metrics:

• Relevance: ROUGE (1,2, and L) (Lin, 2004),
BERTScore (Zhang et al., 2020)

• Readability: Flesch-Kincaid Grade Level
(FKGL) (Kincaid et al., 1975), Dale-Chall
Readability Score (DCRS) (Dale and Chall,
1948), Coleman-Liau Index (CLI) (Coleman
and Liau, 1975), LENS (Maddela et al., 2023)

• Factuality: AlignScore (Zha et al., 2023),
SummaC (Laban et al., 2022)
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These metrics are calculated through the BioLay-
Summ 2024 evaluation script1. For each metric,
the average score over the entire prediction is re-
ported. The goal of competition is to minimize
FKGL, DCRS, and CLI and maximize all other
metrics.

2.2 Related works

While automatic text summarization has long been
the subject of interest for its wide applicability in
various domains (El-Kassas et al., 2021; Allahyari
et al., 2017), the advent of large language models
(LLMs) has innovated the field drastically (Chang
et al., 2024; Zhang et al., 2024; G et al., 2024).

As a subfield of text summarization, automatic
lay summarization of biomedical literature ob-
tained further attention for its close relationship
with health literacy (Guo et al., 2021). Since most
biomedical research articles assume readers are
familiar with the scientific concepts and domain-
specific languages of the field, it is important to
measure and evaluate the readability of the gener-
ated summaries as well (Guo et al., 2021; Goldsack
et al., 2022). On the other hand, fact-checking the
lay summaries has been important as the use of
LLMs becomes popular since LLMs are known to
often experience hallucinations that generate mis-
informed texts (Zhang et al., 2023).

In this context, BioLaySumm provides a mean-
ingful challenge where both the readability and fac-
tuality of summaries are evaluated (Goldsack et al.,
2023, 2024). While various approaches were used
for last year’s competition (Goldsack et al., 2023),
the most successful approaches include few-shot
prompting on GPT models (Turbitt et al., 2023),
fine-tuning on FLAN-T5 models (Sim et al., 2023),
and factorized energy-based model trained on Bio-
Bart model (Phan et al., 2023).

3 System overview

To find the best-performing system for BioLay-
Summ 2024, we experimented with several dif-
ferent systems based on the abstracts of the re-
search articles. In this section, we introduce the
systems we experimented including the system we
submitted to the leaderboard of BioLaySumm 2024.
Throughout all experiments, we used eLife (PLOS)
training data only for model training or prompting

1https://github.com/TGoldsack1/BioLaySumm2024-
evaluation_scripts

to generate summaries for eLife (PLOS) valida-
tion/test data.

3.1 Submitted system: Unsupervised
fine-tuned LoRA model

The system we submitted for the competition is the
unsupervised fine-tuned LoRA model. Due to the
context-size limitation of most LLMs, it is nearly
impossible to fit the entire articles into the inputs
for the LLMs. Instead, inspired by the system (Tur-
bitt et al., 2023) which took 1st place in the last
year’s competition (Goldsack et al., 2023), we only
appended the abstract and the lay summary for the
inputs to the model (Template 1). We used the
entire input text for our training phase while we
only used the input text just before the lay sum-
mary starts for the text generation. For parameter-
efficient training, we adopted low-rank adaptation
(LoRA) (Hu et al., 2021) for our training.

### Provide a lay summary of the following
research abstract.

Abstract: In temperate climates , winter deaths
exceed summer ones . However , there is
limited information on the timing and the
relative magnitudes of maximum and minimum
mortality , (...)

Lay summary: In the USA , more deaths happen in
the winter than the summer . But when deaths
occur varies greatly by (...)

Template 1: Input text for unsupervised fine-tuning. The
bold-faced text is the part used for the text generation
as well.

While examining the generated summaries, we
found that our fine-tuned model tends to repeat
identical sentences rather than ending the summary.
To regulate this, we post-processed our summary
to chop off the redundant sentences. See appendix
A For the details of the post-processing.

3.2 Other approaches

3.2.1 Baseline: zero-shot and few-shot
prompting

While we use some form of fine-tuning in all the
other approaches, we set a few-shot prompting sys-
tem as our baseline following the best-performing
system from the previous year’s competition (Tur-
bitt et al., 2023). While we adopted this abstract-
based few-shot approach from the last year’s com-
petition, we randomly sampled 6 examples from
the train set instead of hand-picked 3 examples used
in the last year. We listed 6 abstract-summary pairs
out of these sampled examples. See appendix B

787



for the sample prompt we used. Also, to provide a
baseline that indicates the bare ability of the LLM
we use, we tested zero-shot prompts where the
same template was used as the few-shot prompts
but with no examples listed.

3.2.2 Supervised fine-tuning with LoRA
Since the input text used in unsupervised fine-
tuning in Section 3.1 trains not only the styles
of lay summaries but also the styles of the orig-
inal abstracts to the model, the quality of gener-
ated summaries may be affected by these abstracts
in unwanted ways. To prevent this, we experi-
mented with supervised fine-tuning. In particular,
we treated the content of the lay summary as the
label and the rest of the input text as the context by
excluding input text tokens from the calculation of
the loss function. To make this ‘label’ to be auto-
matically detected after tokenization, we slightly
changed the format of input text from Template 1
(see Appendix C).

3.2.3 Direct preference optimization on the
fine-tuned model

Since our fine-tuning approaches only use abstract-
summary pairs, it does not see the full contents
of the research article during the training. There-
fore the generated summaries may struggle with
the factuality criterion. To mitigate this problem,
we experimented with direct preference optimiza-
tion (DPO) (Rafailov et al., 2024). DPO trains
the human preference on a language model by pro-
viding pairs of similar samples where the relative
preference within each pair is labeled (preferred
sample vs rejected sample). To provide these rel-
ative preference labels, we generated summaries
on randomly sampled 1000 articles in the train set
using the unsupervised fine-tuned model and cal-
culated factuality metrics (AlignScore, SummaC)
on both the ground-truth lay summary and the gen-
erated summary. After comparing the average of
the calculated factuality metrics within each pair,
we label the summary with the higher score as the
preferred sample and the summary with the lower
score as the rejected sample. This DPO training is
performed on top of the unsupervised fine-tuned
model in Section 3.1.

4 Experimental setup

4.1 Hardware
All our experiments performed on a 4× Quadra
RTX 8000 (48GB VRAM) card.

4.2 Text generation
We used mistral-7B-instruct-v0.2 throughout
all experiments. For both the few-shot approach
and the fine-tuned approach, text generation is per-
formed through vLLM2 (Kwon et al., 2023) for
faster experimentation. We set the temperature to
0 for all text generation.

4.3 Fine-tuning experiments with LoRA
For both unsupervised and supervised fine-tuning
experiments, we utilized libraries from Hugging-
face (Transformers, PEFT3, TRL4). We used
AdamW optimizer (Loshchilov and Hutter, 2017)
to optimize cross-entropy loss with label smoothing
(Pereyra et al., 2017). Experimented hyperparame-
ters are available in Appendix D.

4.4 Direct preference optimization
experiments

For DPO experiments, we utilized Axolotl library5.
We used the sequence size of 4096, the batch size
8, and the learning rate 1.0 × 10−5 with a linear
scheduler over 3 epochs.

5 Results

5.1 Experiment results
We report the results of all our experiments in Table
1. Averages of result 7 and result 8 are the scores
submitted to the leaderboard of BioLaySumm2024,
and our model is ranked 2nd in relevance, 16th in
readability, 18th in factuality, and 3rd in average
scores of all categories out of 55 participants (Gold-
sack et al., 2024). Overall, our model delivered
decent summaries in all 3 evaluation criteria while
particularly successful in the relevance criterion.

5.2 Analysis on approaches
5.2.1 Baseline approaches: zero-shot and

few-shot prompting
We set the zero-shot and few-shot prompting sys-
tem as our baseline following the most successful
approach last year (Turbitt et al., 2023). When
comparing the baseline results from others in Table
1 (result 1, 3 vs. result 5, 9∼13 and result 2, 4
vs. result 6), fine-tuning approaches outperform
zero-shot or few-shot prompting in relevance. For
readability, fine-tuning is superior for the eLife

2https://github.com/vllm-project/vllm
3https://github.com/huggingface/peft
4https://github.com/huggingface/trl
5https://github.com/OpenAccess-AI-Collective/axolotl
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# Apporach Dataset Relevance Readability Factuality
R-1 R-2 R-L BS FKGL DCRS CLI LENS AS SC

1 Baseline: Zero-shot eLife, V 0.335 0.089 0.308 0.843 13.34 10.44 14.90 74.90 0.680 0.503
2 Baseline: Zero-shot PLOS, V 0.442 0.128 0.400 0.861 13.50 10.46 14.90 75.27 0.680 0.527
3 Baseline: Few-shot eLife, V 0.466 0.128 0.437 0.859 11.63 9.33 12.80 69.60 0.711 0.506
4 Baseline: Few-shot PLOS, V 0.465 0.150 0.427 0.867 12.86 11.00 13.97 65.59 0.838 0.684
5 Unsup. FT eLife, V 0.497 0.150 0.477 0.865 8.70 7.46 10.41 64.24 0.623 0.531
6 Unsup. FT PLOS, V 0.500 0.191 0.464 0.873 14.16 10.67 15.52 45.25 0.941 0.873
7 Unsup. FT eLife, T 0.477 0.133 0.456 0.863 8.52 7.36 10.42 62.31 0.601 0.553
8 Unsup. FT PLOS, T 0.480 0.176 0.443 0.871 14.20 10.84 15.89 41.48 0.956 0.901
9 Sup. FT eLife, V 0.488 0.143 0.467 0.863 10.86 7.90 10.13 63.58 0.607 0.510

10 Unsup. FT + DPO eLife, V 0.487 0.144 0.467 0.863 8.43 7.34 10.40 63.40 0.630 0.537
11 Unsup. FT, no PP eLife, V 0.493 0.149 0.473 0.865 8.72 7.40 10.40 63.97 0.621 0.531
12 Sup. FT, no PP eLife, V 0.478 0.141 0.457 0.862 10.89 7.69 10.10 62.68 0.602 0.509
13 Unsup. FT + DPO, no PP eLife, V 0.473 0.141 0.453 0.863 8.41 7.10 10.38 62.29 0.624 0.536

Table 1: All experiment results. The # column indicates the experiment result number. The approach column
describes the components of the approach used for that experiment, such as zero-shot, few-shot, unsupervised
fine-tuning (unsup. FT), supervised fine-tuning (sup. FT), direct preference optimization (DPO), or post-processing
(PP). The dataset column indicates the dataset and the split (T for test, V for validation). For further clarification,
we highlighted the results for the PLOS dataset with blue shades. Here we report all the 10 metrics used for
BioLaySumm 2024: ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), BERTScore (BS), Flesch-Kincaid Grade
Level (FKGL), Dale-Chall Readability Score (DCRS), Coleman-Liau Index (CLI), LENS, AlignScore (AS), and
SummaC (SC). Bold-faced numbers indicate the best scores we obtained on the validation split of each dataset.

dataset (except for the LENS score) while the op-
posite is true for the PLOS dataset. This might
be related to the worse readability of PLOS sum-
maries that the authors write themselves. On the
other hand, fine-tuning approaches yield higher fac-
tuality scores for the PLOS dataset while giving
worse AlignScore and better SummaC scores for
the eLife dataset. These contrastive patterns in
readability and factuality among different datasets
might indicate that readability and factuality are in
a trade-off relationship, as simplified summaries
may deliver less accurate information.

5.2.2 Unsupervised vs. supervised fine-tuning

By comparing the unsupervised fine-tuning exper-
iments (results 5, 11) with the supervised fine-
tuning experiments (results 9, 12) in Table 1, we
find that unsupervised fine-tuning outperforms su-
pervised fine-tuning in all metrics except CLI. De-
spite our expectation of supervised fine-tuning per-
forming better in the readability scores from not
learning the patterns in the abstracts, the supervised
fine-tuning was not superior in the readability nei-
ther. Detailed investigations on the reasons for this
difference between the supervised and the unsuper-
vised fine-tuning would be a good subject for the
future research.

5.2.3 Direct preference optimization
When comparing the results of DPO experiments
(results 10, 13) with the results of their fine-tuned
model before DPO training (results 5, 11) in Ta-
ble 1, we observe that DPO training gives better
factuality scores as expected, as well as improved
readability scores except for LENS. Yet, DPO train-
ing makes relevance scores worse at the same time,
as its training process suggests some ground truth
summaries as rejected samples.

5.2.4 Post-processing
To investigate the effect of the post-processing unit,
we evaluated predictions with no post-processing
(results 11, 12, 13 in Table 1). The comparison
with the results of post-processed summaries (re-
sults 5, 9, 10) shows that post-processed summaries
are superior to non-processed summaries in both
relevance and factuality. Regarding the readabil-
ity, the effect of the post-processing unit is mixed,
where the post-processing improves LENS while it
worsens DCRS and CLI. For FKGL, the effect is
not consistent over different experiments.

6 Conclusion

As we participated in BioLaySumm 2024, we ex-
perimented with different fine-tuning approaches
with LoRA to generate summaries based on
the given abstract of a biomedical research arti-
cle. In particular, we explored unsupervised fine-
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tuning, supervised fine-tuning, and direct prefer-
ence optimization, and we concluded that our best-
performing model is the unsupervised fine-tuned
model with post-processing to chop off repeated
sentences. Our model achieved 3rd place overall
in the leaderboard of BioLaySumm 2024. While
our model was successful, it would be interesting
to extend our approach to a variety of larger LLMs
or to adopt other schemes to utilize the full arti-
cle of the research paper instead of the abstracts.
Potential future researches on analysis on differ-
ent fine-tuning methodologies and benchmarking
on evaluation criteria beyond the current challenge
may deepen the understanding of our approach.

7 Limitations

Due to our limited resources, we only experimented
with a single type of relatively small open-sourced
model. Due to the limited context size of the model
we used, our exploration of methods to utilize full
research articles was limited to DPO which inter-
acts with the full articles only through the factuality
scores.

It is also worthwhile to mention that our ap-
proach was more successful in the relevance than
other than two other evaluation criteria. This might
be related with the fact that summaries more read-
able than the suggested golden summary might
score less in the BERTScore. It would be interest-
ing subject for the future researches to see how our
approach performs in other summary evaluation
criteria beyond the current challenge.
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A Details of post-processing

In the raw predictions of fine-tuned models, we
observed that identical sentences are repeated with-
out completing the paragraph in a small fraction
of the generated summaries. To mitigate this, we
introduced the post-processing unit to chop off the
repeated sentences from the prediction. To do this,
we first split the prediction into a sequence of sen-
tences. Then we examine these sentences from the
beginning of the sequence and drop the rest of the
sequence when the given sentence has appeared
before during the examination.

We split the prediction into sentences based
on the appearance of sentence-ending punctuation
marks like period (".") or question mark ("?"). Yet,
there are some exceptions we had to handle in this
process:

• If punctuation is in the middle of parentheses,
does not end the sentence there.

• If a period is part of a URL address, which is
specified by the beginning sequences ("www"
or "http") and the ending sequences ("com",
"edu", "gov", or "org"), then do not end the
sentence at that period.

• If a period is part of commonly used abbre-
viations in academic writing ("et al .", "vs .",
and "e . g ."), do not end the sentence at that
period.

• If the previous word of a period is a single
letter English alphabet, do not end the sen-
tence there, since it is likely a part of a phrase
for a subsection or abbreviation of names (ex:
"a.1", "c. elegans", "George R. R. Martin").

• If a period is surrounded by Arabic numerals,
do not end the sentence since it is likely a part
of a floating number.
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B Few-shot prompt for the baseline
system

### Provide a lay summary of the following
research abstract.

Abstract: The role of the cellular
microenvironment in enabling metazoan tissue
genesis remains obscure . Ctenophora has

recently emerged as (...)
Lay summary: The emergence of the diversity of

multicellular animals involved cells joining
together to form tissues and organs . The

glue that (...)

Abstract: To evolve and to be maintained ,
seasonal migration , despite its risks , has
to yield fitness benefits compared with

year-round residency . Empirical data
supporting this (...)

Lay summary: Winter is one of the most
challenging seasons for many animals . Cold
temperatures , bad weather , short days ,
long nights and a shortage of food can
impose (...)

Abstract: The adaptive prokaryotic immune system
CRISPR-Cas provides RNA-mediated protection
from invading genetic elements . The

fundamental basis of the system is (...)
Lay summary: In most animals , the adaptive

immune system creates specialized cells that
adapt to efficiently fight off any viruses

or other pathogens that have invaded . (...)

Abstract: Adipose tissue is crucial for the
maintenance of energy and metabolic
homeostasis and its deregulation can lead to
obesity and type II diabetes ( T2D ) .

(...)
Lay summary: Obesity is a growing public health

concern around the world , and can lead to
the development of type 2 diabetes , heart
disease and cancer . (...)

Abstract: The roles played by cortical
inhibitory neurons in experience-dependent
plasticity are not well understood . Here we
evaluate (...)

Lay summary: What we see or fail to see through
our eyes leaves a lasting impression by
changing the strength of connections between
(...)

Abstract: Numerous studies have established
important roles for microRNAs ( miRNAs ) in
regulating gene expression . Here , we
report that miRNAs also serve as (...)

Lay summary: To produce a protein from a gene ,
the sequence of the gene must be transcribed
to produce a molecule of messenger RNA (

mRNA ) . (...)

Abstract: Midbrain dopamine neurons have been
proposed to signal reward prediction errors
as defined in temporal difference ( TD )
learning algorithms. (...)

Lay summary:

Template 2: Sample few-shot prompt used for our
baseline system. The 6 examples listed here are the
actual examples we used for the eLife articles.

C Input text for supervised fine-tuning

### Provide a lay summary of the following
research abstract.

### Abstract: In temperate climates , winter
deaths exceed summer ones . However , there
is limited information on the timing and the
relative magnitudes of maximum and minimum
mortality , (...)

### Lay summary: In the USA , more deaths happen
in the winter than the summer . But when
deaths occur varies greatly by (...)

Template 3: Input text for supervised fine-tuning. The
bold-faced text is the context and the rest of the text is
the label.

D Fine-tuning hyperparameters

Hyperparameter Values

Epochs 3, 5
Batch size 8
Sequence size 2048, 4096
Learning rate (LR) 1.0E-5, 2.0E-5
LR scheduler Linear
LoRA r 8
LoRA α 16

Table 2: Hyperparameters we investigated in the fine-
tuning experiments. Hyperparameters in bold are what
we used for the submitted model.
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Abstract

The BioLaySumm 2024 shared task at the ACL
2024 BioNLP workshop aims to transform
biomedical research articles into lay summaries
suitable for a broad audience, including chil-
dren. We utilize the BioBART model, designed
for the biomedical sector, to convert complex
scientific data into clear, concise summaries.
Our dataset, which includes a range of scien-
tific abstracts, enables us to address the diverse
information needs of our audience. This focus
ensures that our summaries are accessible to
both general and younger lay audience. Addi-
tionally, we employ specialized tokens and aug-
mentation techniques to optimize the model’s
performance. Our methodology proved effec-
tive, earning us the 7th rank on the final leader-
board out of 57 participants.

1 Introduction

Lay summarization (i.e. summarization for non-
expert audiences) helps make scientific literature
understandable to non-experts. It simplifies com-
plex technical information into clear, easy-to-
understand language, promoting public understand-
ing of research findings. The significance of lay
summarization, which bridges the gap between sci-
entific insights and public knowledge, has been in-
creasingly recognized (Chandrasekaran et al., 2020;
Goldsack et al., 2023).

To address the challenge of dense technical lan-
guage in biomedical research papers, the BioLay-
Summ 2024 shared task (Goldsack et al., 2024) at
the ACL 2024 BioNLP workshop focuses on turn-
ing biomedical research into lay summaries. These
summaries need to be accurate and understandable
to a broad audience, since they serve an important
role in informing the public about scientific devel-
opments and avoiding the spread of misinformation.
The shared task is based on data from two sources
of biomedical articles: eLife and PLOS (Goldsack
et al., 2022).

Our approach to this shared task is based on
the BioBART-v2 model(Yuan et al., 2022), which
has been demonstrated to be highly effective in
summarizing biomedical content. On top of it,
we employ a controllable generation technique us-
ing special tokens, in order to exploit in a single
model the data from both eLife and PLOS and at
the same time during inference align the produced
summaries with the unique characteristics of the
corresponding source, such as length, readability
and level of abstraction.

In addition, towards improving the simplicity of
the produced summaries, we employed augmen-
tation to extend the eLife and PLOS data. We
identified the most complex lay summaries in these
datasets, and paired their source abstracts with sum-
maries produced by GPT-4 (OpenAI et al.). To
make it produce simple lay summaries, we used
in-context learning providing to it examples of sci-
entific articles targeted at children from the Science
Journal for Kids.

2 The SJK Dataset

Science Journal for Kids (SJK) is a non-profit or-
ganization based in Texas that is dedicated to pre-
senting scientific research in a manner that is ac-
cessible and appealing to children. They achieve
this goal by digitally publishing on their web site1,
adaptations of scientific papers that are made to be
kid-friendly. The adaptation process undertaken
by SJK involves using common vocabulary and
relatable examples, and then further validating and
refining the adapted content for educational use.
This process ensures that the content is not only
accessible but also retains the educational value of
the original scientific research.

The kid-friendly articles in the SJK web site are
available in PDF format. To assemble the SJK
dataset, we collected the PDFs of the articles and

1https://sciencejournalforkids.org/
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extracted their content. From this content we kept
the abstracts and the links at the references sec-
tion, pointing to the original scientific papers. We
extracted DOI numbers from these links and at-
tempted to retrieve the abstracts via the Semantic
Scholar API. However, since the API often returned
empty abstracts, we resorted also to an extensive
scraping process on specific pages with a particular
format to get the abstracts. This was not always
feasible due to restrictions on scraping from certain
sites, necessitating manual addition of links and ab-
stracts to the dataset, highlighting the challenging
nature of the data collection process.

We crawled the SJK web site on January 22,
2024. We initially collected all 306 articles from
the SJK web site for potential future work, ensuring
we had a comprehensive dataset to expand or refine
as needed. From these, we eventually selected 285
articles based on their formatting suitability. Older
versions had a completely different format that the
scraping process couldn’t recognize because it was
based on the newer versions. Formatting issues
included instances where the text from the abstract
was cut off when scraped due to the two-column
format or where scraping couldn’t find the refer-
ence. We manually conducted additional checks
to append missing text and locate references in
these cases. Additionally, we prioritized articles
that included references. Besides ensuring the cred-
ibility of the content, this allowed us to pair the
kid-friendly articles with the corresponding scien-
tific articles that inspired them.

Our final dataset2 comprises 300 pairs, each con-
sisting of an abstract from a scientific paper and its
corresponding abstract from the children’s article.
We focused on abstracts because they provided
comprehensive information suitable for our lay
summarization task. For each article, we sourced
the corresponding abstract from the first reference
cited in the children’s articles published by SJK,
and in 25 cases, also the second reference, which
are the original academic papers that the SJK arti-
cles are based on.

The articles were intentionally curated to encom-
pass a wide array of subjects, specifically chosen
to attract the scientific curiosity of young learners
across disciplines such as biology, chemistry, and
more. Table 1 illustrates the diversity of topics cov-
ered by both all SJK articles and our final dataset.

2The dataset will be publicly available after notification of
acceptance.

Table 1: Number of articles in the SJK web site and
in our collection per category. Note that some articles
belong to multiple categories.

Category Ours SJK
Biodiversity-And-Conservation 83 85
Health-And-Medicine 77 81
Biology 63 70
Energy-And-Climate 57 57
Social-Science 51 57
Water-Resources 48 48
Pollution 30 30
Food-And-Agriculture 25 26
Technology 20 23
Paleoscience 16 18
Chemistry 13 13
Physical Science 2 18

3 Our Approach

3.1 Model

Our approach employs the BioBART-v2 model.
BioBART-v2 introduces significant improvements
in its training methodology to advance its capa-
bilities in the biomedical field. Unlike its pre-
cursor, which utilized a general-domain vocabu-
lary, BioBART-v2 incorporates a specialized cross-
domain vocabulary, substantially enlarging its lex-
icon to 85,401 tokens. This expansion is derived
from Domain-Adaptive Pre-Training (DAPT) (Gu-
rurangan et al., 2020) on the PubMed abstracts
corpus, resulting in a rich dataset that provides a
more targeted pretraining foundation.

The construction of this vocabulary was
achieved by merging the original BART’s general-
domain vocabulary with newly generated biomedi-
cal tokens, specifically designed from the PubMed
corpus. This process yielded 60,000 additional to-
kens that, when combined with the existing vocab-
ulary, boosted the model’s capabilities for biomedi-
cal literature.

BioBART-v2, with its 400 million parameters,
balances model complexity and computational fea-
sibility, making it suitable for both research and
practical applications. Fine-tuning it is straight-
forward due to its architecture, allowing targeted
training on biomedical tasks with minimal compu-
tational resources. This adaptability makes it ideal
for various applications in the biomedical domain,
from information extraction to summarization.
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3.2 Data

We fine-tuned BioBART-v2 on the union of the
two biomedical datasets offered by BioLaySumm
2024, i.e. PLOS and eLife. Preliminary experi-
ments using a different model for each dataset led
to inferior results. We used only the abstracts of
the academic articles as sources. When properly
written, the abstract of an article serves as a concise
summary of the whole article, containing all the
aspects needed for translating it into lay language.
In addition, these abstracts align well with the con-
tent that was used for the pre-training of BioBART.
Details about each of the two datasets follow.

The PLOS dataset comprises 26,291 articles
from five peer-reviewed journals of the Public Li-
brary of Science (PLOS) publisher, covering di-
verse fields such as Biology, Computational Biol-
ogy, Genetics, Pathogens, and Neglected Tropical
Diseases. The lay summaries in this dataset are
written by the authors of the articles themselves.
These summaries typically range from 150 to 200
words in length. The dataset is divided into 24,773
training, 1,376 validation, and 142 testing articles.

The eLife dataset, contains 4,729 articles from
the eLife biomedical journal, covering a wide array
of topics in life sciences and medicine. In contrast
to PLOS, eLife features lay summaries produced
collaboratively by expert editors and the original
authors. This collaboration resulted in summaries
that are longer, more abstractive, and generally
more readable. The dataset is divided into 4,346
documents for training, 241 for validation, and 142
for testing.

3.3 Data Augmentation

To improve the readability of the produced sum-
maries, we extended the provided eLife and PLOS
datasets by using GPT-4 to rewrite lay summaries
of high complexity. To identify such summaries,
we used three readability metrics: Flesch-Kincaid
Grade Level (FKGL) (Flesch, 1948), Dale-Chall
Readability Score (DCRS) (Chall and Dale, 1995),
and Coleman-Liau Index (CLI) (Coleman and Liau,
1975). These metrics offer quantitative assessments
of text complexity and measure the accessibility
of the content across various age groups. Table 2
provides an interpretation of the FKGL metrics,
illustrating how different score ranges correspond
to reading and school levels. The DCRS and CLI
scores similarly provide insights into the readabil-
ity and complexity of the text. This approach is in

alignment with the evaluation criteria of the Bio-
LaySumm 2024 shared task.

Flesch-Kincaid Score Reading Level
0 - 3 Kindergarten
3 - 6 Elementary
6 - 9 Middle School
9 - 12 High School
12 - 15 College
15 - 18 Post-grad

Table 2: Flesch-Kincaid Grade Level (FKGL) Metrics
Interpretation

We specifically targeted the top 200 summaries
from each of the eLife and PLOS datasets based
on their highest FKGL scores, with the aim of sim-
plifying them to reach the level of middle school
students. In the eLife dataset, these summaries had
average scores of FKGL 10.74, DCRS 12.39, and
CLI 8.91, which correspond to high school and
college reading levels. The PLOS dataset exhib-
ited even higher complexity, with average scores of
FKGL 14.73, DCRS 15.75, and CLI 10.86, align-
ing with college and post-graduate reading levels.
These summaries, characterized by complex sen-
tence structures and a high density of abstract ideas,
were selected for augmentation to enhance their
readability and accessibility for a middle school
audience.

The DCRS and CLI metrics further support the
interpretation of text complexity. DCRS scores
above 10 indicate a higher level of text difficulty,
often requiring college-level comprehension. Simi-
larly, CLI scores, which reflect the number of char-
acters per word and words per sentence, indicate
higher complexity with scores above 8. The high
DCRS and CLI scores of the selected summaries
ensured that we focused on content that was partic-
ularly challenging, necessitating simplification for
better accessibility.

To refine the summaries for children, we uti-
lized the GPT-4 model via the OpenAI API, em-
ploying in-context learning via few-shot prompts
to guide our augmentation pipeline. In particular,
two randomly selected kids-friendly abstracts from
the SJK dataset were used as examples during the
augmentation process. These examples acted as
guidelines, ensuring that the adapted summaries
met the desired standards of simplicity. Addition-
ally, the prompt asked to simplify the language and
make it more accessible. An example of the prompt
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used for this purpose is illustrated below:

"You’re explaining scientific concepts to
a kid who’s curious to learn. Keep all the
important facts, but use easier words that
are easier for kids to understand. Here
are two examples of how to do it:"

1. [A random kid-friendly abstract from
the SJK dataset],

2. [Another random kid-friendly
abstract from the SJK dataset]

Tables 3 and 4 present the mean scores of the
original and augmented summaries. These scores
demonstrate significant improvements in the read-
ability of the augmented versions of the lay sum-
maries.

Table 3: Mean readability scores for General (Targeted
200) and Kids summaries in the eLife dataset.

Category FKGL DCRS CLI

Original 10.74 12.39 8.91
Augmented 7.90 8.99 7.33

Table 4: Mean readability scores for General (Targeted
200) and Kids summaries in the PLOS dataset.

Summary Type FKGL DCRS CLI

Original 14.73 15.75 10.86
Augmented 8.57 9.07 7.50

3.4 Controllable Generation
Our methodology employs special tokens in the
source abstracts to achieve two distinct control-
lable generation goals: i) adapt the produced sum-
mary towards the specific style of either of the two
datasets, ii) guide the summary generation towards
increased readability.

For the first goal, we use special tokens <elife>
and <plos> to differentiate between the two
datasets, as from the analysis in Sections 3.2
we know that expert-written eLife summaries are
longer and more readable. For the second goal, we
use special tokens <general_lay_summary> and
<kids_lay_summary> to differentiate abstracts
that are paired with original lay summaries from
abstracts that are paired with augmented lay sum-
maries adapted for children.

During training, we prepend each PLOS abstract
with the <plos> tag and each eLife abstract with
the <elife> tag. In addition, we prepend the aug-
mented abstracts with the <kids_lay_summary>
tag, while the rest of the abstracts are prepended
with the <general_lay_summary> tag.

During inference, we again prepend
each PLOS and eLife abstract with the
corresponding <plos> and <elife> tags,
while we experiment with including one or
both of the <general_lay_summary> and
<kids_lay_summary> tags to control the read-
ability of the produced lay summary. Our final
submission included both tags, as this led to the
best results in the validation sets.

4 Results and Discussion

This section presents and discuss the results on the
validation datasets provided by eLife and PLOS.

4.1 Experimental Setup
The fine-tuning process of BioBART-v2 was con-
ducted using the Amazon Web Services (AWS)
cloud platform. We utilized AWS S3 for stor-
ing model steps and output data. The fine-tuning
tasks were executed on Amazon SageMaker, us-
ing a p3.2xlarge instance equipped with NVIDIA
Tesla V100 GPU. More details on the experimental
setup can be found in Appendix A.1.

We evaluated all the models using a combination
of metrics to assess the relevance, readability, and
factuality of the generated summaries, based on the
BioLaySumm 2024 shared task. The relevance of
the summaries was measured by metrics including
ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-
L) (Lin, 2004), and BERTScore (Zhang* et al.,
2019) to assess how well the content matched
the original articles. Readability was evaluated
through metrics such as the Flesch-Kincaid Grade
Level, Dale-Chall Readability Score, Coleman-
Liau Index, and LENS. Factuality was verified us-
ing AlignScore (Align S.) (Zha et al., 2023) and
SummaC (Laban et al., 2021) to check the accuracy
of the information presented in the summaries.

Our experimental results include the following
variants:

• Baseline: This refers to the model’s per-
formance when trained using only the orig-
inal scientific content of the eLife and PLOS
datasets, without any additional data or spe-
cial tokens.
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Table 5: Experimental results on PLOS and eLife datasets.

Step Approach R-1 R-2 R-L BertScore FKGL DCRS CLI LENS Align S. SummaC

PLOS

300 Baseline 0.488 0.171 0.449 0.850 14.149 11.142 14.370 73.706 0.778 0.636
300 Sp. Token 0.494 0.173 0.454 0.865 14.430 11.321 14.552 74.978 0.790 0.647
300 Sp. Token + Aug. 0.490 0.167 0.451 0.864 13.839 10.914 13.336 72.242 0.789 0.651

eLife

400 Baseline 0.479 0.133 0.453 0.838 10.979 8.813 11.541 72.445 0.622 0.539
400 Sp. Token 0.488 0.135 0.458 0.852 11.152 8.991 11.745 73.182 0.634 0.547
400 Sp. Token + Aug. 0.491 0.135 0.462 0.851 10.636 8.750 11.284 73.707 0.640 0.548

Combined

300+400 Sp. Token + Aug. 0.491 0.151 0.457 0.857 12.237 9.832 12.310 72.974 0.714 0.599

• Sp. Token: Represents the performance of
the model when it has been added to with
special tokens. This configuration does not
include any augmented data.

• Sp. Token + Augmented: This configuration
includes the use of special tokens, as men-
tioned above, along with the data augmenta-
tion strategy.

4.2 Results

This subsection highlights the summaries produced
by our models at their best-performing steps dur-
ing the competition. These results demonstrate the
effectiveness of our specialized configurations, in-
cluding the use of special tokens and augmented
data, aimed at improving both the accessibility and
accuracy of the summaries.

We detail the performance metrics for the PLOS
and eLife, illustrating significant improvements
in readability as a result of our modeling efforts,
as shown in Table 5. Two different checkpoints
were selected for the final summaries of the eLife
and PLOS to optimize generation in line with
the unique characteristics and challenges of each
dataset. The chosen checkpoints reflect points
where the model achieved an optimal balance be-
tween relevance, readability, and factual accuracy
specific to each dataset. A more detailed analysis
regarding each of the relevance, readability and fac-
tuality metrics along with detailed plots illustrating
the different training steps can be found inA.2.

The use of special tokens consistently improved
relevance scores across both datasets, indicating
their effectiveness in helping the model understand
the context and semantics better. Without special
tokens, the model’s relevance scores were notably
lower, showing that it struggled to capture the es-

sential details of the scientific content. This pattern
was observed in both the eLife and PLOS datasets,
highlighting the critical role of special tokens in
enhancing the model’s performance.

5 Conclusion

Our approach to the BioLaySumm 2024 shared
task showcases BioBART’s ability to simplify com-
plex biomedical research articles into accessible
lay summaries. By fine-tuning BioBART with spe-
cialized tokens and data augmentation techniques,
we generated readable summaries for specific audi-
ences, including younger readers.

A key aspect of our methodology was the use of
specialized tokens to precisely control the charac-
teristics of each dataset and audience. Additionally,
we enriched our dataset with kid-friendly content
from the Science Journal for Kids, enabling us to
produce summaries that effectively bridge the gap
between scientific complexity and public under-
standing. Our experimental results highlight the
effectiveness of our approach, especially in improv-
ing the readability and relevance of the summaries.

While our methodology significantly improved
readability and relevance, maintaining factual accu-
racy remains a challenge. Ensuring the factuality of
lay summaries is especially critical in the biomedi-
cal field, where accuracy is important.

Our model achieved an 7th place out of 55 par-
ticipants, demonstrating its validity in managing
diverse and complex summarization tasks. This
achievement shows the potential of our techniques
in making scientific knowledge more accessible to
the general public and children.
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6 Limitations

In this work, we employed the BioBART model
with specialized tokens and data augmentation tech-
niques to generate lay summaries of biomedical
research articles. While our approach improved
the readability and relevance of the summaries, we
did not explicitly analyze the factual accuracy of
the generated summaries, which remains a critical
issue in the biomedical domain. The introduction
of augmented data, while beneficial for readabil-
ity, sometimes compromised content relevance and
factual accuracy. To improve the quality of our
training examples, future research could integrate
factuality metrics to evaluate the accuracy of gen-
erated summaries and use post-editing techniques
or human review to remove inaccurate content.
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A Appendix

A.1 Experimental Setup

Here, we present additional details regarding the
experimental setup.

A.1.1 Distribution of text lengths
Firstly, as part of our configuration, we determined
that the maximum input length would be set at
400 words based on the distribution of text lengths
across our datasets, as shown in Table 6. This
table provides the 95th percentile of text lengths
and the percentage of texts that are 400 words or
fewer, demonstrating that the chosen maximum
input length effectively covers the majority of the
data.

Table 6: Distribution of text lengths in the validation
set.

Dataset
95th Perc.

Length (words)
% ≤ 400

words
eLife Abstracts 186.09 100.0
PLOS Abstracts 368.00 97.02

A.1.2 Training Configuration
We fine-tuned and configured parameters using the
Hugging Face Transformers library (Wolf et al.,
2020) to ensure maximum efficiency. After a lim-
ited preliminary exploration of hyperparameter val-
ues on the validation sets of eLife and PLOS, we
established the most effective settings. We set the
learning rate at 1× 10−5 to balance the speed and
stability of the learning process.

We chose a batch size of 4 for both training and
evaluation to optimize GPU memory usage. The
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model underwent training over 15 epochs, with
evaluations and model savings every 50 steps to
consistently monitor and evaluate progress.

A key component was the use of gradient accu-
mulation, where we applied 64 steps. This method
effectively increases the batch size to 256 (4 times
64), allowing us to handle larger batches and stabi-
lize the training dynamics without requiring addi-
tional memory.

Thus, the number of data samples processed at
each checkpoint can be determined by the follow-
ing formula:

Train Batch Size× Gradient Acc. Steps× Save Steps
= 4× 64× 50

= 12, 800

A.2 Detailed Analysis and Training Plots
Here, we provide a more detailed analysis regard-
ing the effectiveness of each approach across dif-
ferent steps in terms of relevance, readability, and
factuality. For the sake of presentation clarity, we
selected three indicative training checkpoints for
detailed examination, which summarize the whole
training process. We used different numbers of
steps for the eLife and PLOS datasets to better
present the key outcomes for each dataset.

A.2.1 Relevance
The relevance of the generated summaries is mea-
sured using ROUGE scores. As shown in Tables 7
and 8, the relevance for the eLife dataset signif-
icantly improved with training, reflecting in the
increasing ROUGE scores. This improvement sug-
gests that the eLife dataset, which includes longer,
and more readable lay summaries written by expert
editors, provides new and varied content that the
model effectively learns from during training.

Figure 1: BERTScore relevance metric for PLOS arti-
cles.

Figure 2: ROUGE-1 relevance metric for PLOS articles.

Figure 3: ROUGE-2 relevance metric for PLOS articles.

Figure 4: ROUGE-L relevance metric for PLOS articles.

Figure 5: BERTScore relevance metric for eLife arti-
cles.
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Table 7: Metrics for the eLife dataset at selected steps

Step Approach R-1 R-2 R-L BERT FKGL DCRS CLI LENS Align SummaC
100 Baseline 0.376 0.090 0.338 0.838 13.29 10.44 14.39 56.70 0.760 0.625
100 Sp. Token 0.380 0.093 0.351 0.840 13.58 10.65 14.82 58.66 0.761 0.646
100 Sp. Token + Aug. 0.373 0.088 0.345 0.839 13.52 10.66 14.91 59.08 0.766 0.649
500 Baseline 0.488 0.134 0.451 0.850 10.63 8.75 11.42 71.53 0.641 0.543
500 Sp. Token 0.493 0.138 0.463 0.853 10.96 8.95 11.55 73.96 0.642 0.556
500 Sp. Token + Aug. 0.494 0.136 0.465 0.851 10.15 8.56 10.69 76.15 0.608 0.540
900 Baseline 0.493 0.137 0.453 0.851 10.55 8.72 10.89 72.58 0.619 0.519
900 Sp. Token 0.501 0.141 0.471 0.853 10.75 8.82 11.30 74.91 0.620 0.527
900 Sp. Token + Aug. 0.497 0.138 0.468 0.851 9.64 8.24 10.02 78.22 0.583 0.546

Table 8: Metrics for the PLOS dataset at selected steps

Step Approach R-1 R-2 R-L BERT FKGL DCRS CLI LENS Align SummaC
100 Baseline 0.476 0.167 0.437 0.864 14.03 10.96 14.17 72.12 0.782 0.632
100 Sp. Token 0.491 0.173 0.451 0.864 14.51 11.32 14.41 74.89 0.784 0.643
100 Sp. Token + Aug. 0.491 0.173 0.451 0.865 14.50 11.29 14.32 74.95 0.783 0.641
300 Baseline 0.480 0.169 0.447 0.863 14.27 10.99 14.28 73.48 0.788 0.632
300 Sp. Token 0.494 0.173 0.454 0.865 14.43 11.32 14.55 74.98 0.790 0.647
300 Sp. Token + Aug. 0.490 0.167 0.451 0.864 13.84 10.91 13.34 72.24 0.789 0.651
600 Baseline 0.479 0.170 0.438 0.863 14.21 10.94 14.26 72.78 0.794 0.637
600 Sp. Token 0.493 0.172 0.454 0.865 14.61 11.37 14.73 75.10 0.796 0.654
600 Sp. Token + Aug. 0.426 0.121 0.394 0.854 11.36 9.16 10.44 58.34 0.791 0.657

Figure 6: ROUGE-1 relevance metric for eLife articles.

Figure 7: ROUGE-2 relevance metric for eLife articles.

For the PLOS dataset, however, the relevance
did not show significant improvement with train-
ing, suggesting that the model might have already
been exposed to similar data during its initial train-
ing on the PubMed archive, where PLOS articles
are included (for example here: PubMed archive).

Figure 8: ROUGE-L relevance metric for eLife articles.

Additionally, the introduction of augmented data
led to a decline in relevance at later steps, suggest-
ing that the diversity brought by augmentation may
complicate content relevance when the model has
already encountered similar datasets.

A.2.2 Readability

Readability generally improved across successive
training steps, as indicated by the FKGL, CLI,
DCRS, and LENS scores in Tables 7 and 8. For
the eLife dataset, the use of special tokens, along
with training on new, unseen data, helped reduce
complexity, making the summaries easier to under-
stand. This consistent improvement is likely due
to the nature of eLife’s longer, more detailed, and
editor-written summaries. Special tokens, and also
augmented data, further aided this process by help-
ing the model capture and organize the relevant
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contextual information more effectively.
For the PLOS dataset, while training did not

significantly affect relevance or factuality, it did
improve readability. This indicates that even if the
model had seen similar data before, the fine-tuning
process still contributed to producing more read-
able summaries. Augmented data helped improve
readability scores, simplifying the text.

Figure 9: Coleman-Liau Index readability metric for
PLOS articles.

Figure 10: DCRS readability metric for PLOS articles.

Figure 11: Flesch-Kincaid Grade Level (FKGL) read-
ability metric for PLOS articles.

A.2.3 Factuality Metrics
Factuality metrics reveal a complex pattern of per-
formance. For the eLife dataset, while factuality

Figure 12: LENS readability metric for PLOS articles.

Figure 13: Coleman-Liau Index readability metric for
eLife articles.

Figure 14: DCRS readability metric for eLife articles.

Figure 15: Flesch-Kincaid Grade Level (FKGL) read-
ability metric for eLife articles.
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Figure 16: LENS readability metric for eLife articles.

scores showed some improvement with training,
the introduction of augmented data sometimes led
to a decline in factuality, especially in later steps.
This suggests challenges in maintaining accuracy
when introducing more diverse training data, partic-
ularly for a dataset that is initially more abstractive.

For the PLOS dataset, factuality scores did not
consistently improve with training and decreased
in later steps, particularly with the introduction of
augmented data. This suggests that adding more
diverse data did not help maintain factual accuracy
and may have introduced complexity.

Figure 17: Alignment Score factuality metric for PLOS
articles.

Figure 18: SummaC factuality metric for eLife articles.
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Abstract

An effective disclosure of scientific knowledge
and advancements to the general public is of-
ten hindered by the complexity of the technical
language used in research which often results
very difficult, if not impossible, for non-experts
to understand. In this paper we present the ap-
proach developed by the SINAI team as the re-
sult of our participation in BioLaySumm shared
task hosted by the BioNLP workshop at ACL
2024. Our approach stems from the experi-
mentation we performed in order to test the
ability of state-of-the-art pre-trained large lan-
guage models, namely GPT 3.5, GPT 4 and
Llama-3, to tackle this task in a few-shot man-
ner. In order to improve this baseline, we opted
for fine-tuning Llama-3 by applying parameter-
efficient methodologies. The best performing
system which resulted from applying self-play
fine tuning method which allows the model to
improve while learning to distinguish between
its own generations from the previous step from
the gold standard summaries. This approach
achieved 0.4205 ROUGE-1 score and 0.8583
BERTScore.

1 Introduction

Science outreach and scientific advocacy are cru-
cial for the development of the science itself, as
most funding still comes from public sources and
thus demands public’s support. Furthermore, sci-
ence is central to most of the grand challenges of
today’s society, such as climate change, economic
productivity, health and new drug discovery. These
factors highlight the relevance of making informa-
tion about scientific advancements accessible for
general public. Moreover, it also may help the
public make sound and informed choices about is-
sues like participating in a clinical trial or getting a
vaccination (Varner, 2014).

Nevertheless, even with an increased online
availability of scientific publications, accessing the

information from these sources remains a challeng-
ing task for non-experts due to the technical lan-
guage and specific terminology used to write scien-
tific work. One viable solution for addressing the
informational requirements of the general public or
gatekeepers like journalists are plain language sum-
maries or lay summaries - a format that presents
scientific research in an easily understandable man-
ner for non-experts (King et al., 2017). However,
manual generation of lay summaries is a tedious
and costly process that involves contracting expert
writers specialised in science outreach. For this
reason, the development of effective automatic lay
summarisation systems is attracting an increasing
amount of attention of the Natural Language Pro-
cessing (NLP) researchers (Ermakova et al., 2022).

BioLaySumm shared task held on the BioNLP
2024 workshop at ACL brings the community ef-
fort to tackle the task of automatic abstractive sum-
marisation of biomedical articles for non-technical
audiences by leveraging the extensive work done
by the creators of eLife (King et al., 2017) and
the Public Library of Science (PLOS) database in
manually composing lay summaries.

This paper presents the methodology developed
by the SINAI team as a part of our participation in
the BioLaySumm shared task. Our experimenta-
tion involved comparison between few-shot learn-
ing (FSL) of instruction-tuned pre-trained large
language models (LLMs), parameter-efficient tun-
ing of open-source pre-trained LLMs and Self-Play
fine tuning (SPIN) methodology which allows the
model to improve while learning to distinguish be-
tween its own generations from the previous step
form the gold standard summaries. The latter men-
tioned approach resulted to be the highest-scoring
submission among all made by our team achieving
0.4205 ROUGE-1 score and 0.8583 BERTScore.

The remainder of the paper is structured as fol-
lows: Section 2 provides a concise description of
the data utilized for this task. Section 3 details

804



the systems developed by our team for the official
evaluation. The details of the evaluation process
and the results are presented in Section 4. Finally,
Section 5 concludes our work.

2 Data

The organisers of the BioLaySumm shared task
put at the disposal of the participants two datasets,
PLOS and eLife, each of which consisted of
biomedical research articles (including their tech-
nical abstracts) and their expert-written lay sum-
maries (Goldsack et al., 2022). As for the dimen-
sions of the data, while PLOS may be considered
large-scale dataset with 24,773 instances for train-
ing and 1,376 for validation, eLife is a medium-
scale dataset comprised of 4,246 training instances
and 241 validation instances.

One important difference between the two
datasets lies in the process of its generation. The
Public Library of Science (PLOS) is a publisher
that hosts peer-reviewed journals several of which
require authors to submit an 150-200 word long
author summary alongside their work. In con-
trast with this, eLife is an open-access journal that
started creating plain-language summaries of its
research articles in 2021 (King et al., 2017). As a
result, lay summaries from two datasets differ from
each other according to several characteristics, such
as length and the extent to which they are abstrac-
tive. As can be seen on Table 1, which presents the
statistics of token counts1, eLife lay summaries and
abstracts are almost twice as long. Furthermore,
the authors claim that lay summaries of eLife ap-
pear to be significantly more abstractive based on
the fact that these consistently contain more novel
n-grams than abstracts across both datasets (King
et al., 2017).

3 Methods

This section details the implementation of systems
presented by our team for the official evaluation.
We tested three approaches to lay summary genera-
tion: FSL of instruction-tuned models, parameter
efficient fine-tuning of text generation pre-trained
models and a novel method of fine-tuning of LLMs
called SPIN.

1We used the tokenizer of BioMistral-7B model to split the
texts into tokens

3.1 Few-shot learning

FSL of pre-trained LLMs like GPT-3.5 proved
to be a robust approach to the task of lay sum-
marisation during the previous editions of the
BioLaySumm shared task (Turbitt et al., 2023).
For this reasons we decided to perform experi-
ments with both closed, such as GPT-3.5 (Brown
et al., 2020) and GPT-4 (Achiam et al., 2023)
and open models, namely Llama-3 (AI@Meta,
2024). The GPT models were accessed via Ope-
nAI API2, while the Llama-3-8B model was run
on 1 NVIDIA Tesla V100-PCIE-32GB by making
use of transformers Python library (Wolf et al.,
2019).

Our team adopted 2-shot-prompting approach
that introduced one randomly selected example
from each of the datasets and injected a mention
of the dataset to which each text abstract belonged.
Thus, our method creates one system for the two
datasets. The details regarding the prompt can be
found in Appendix A.

While performing the experiments, we empiri-
cally found out that outputs from Llama-3 occasion-
ally contained definition of what a lay summary is,
repetition of prompt’s content and LAY SUMMARY
prefix. In order to remove this noise from the gen-
eration, we designed a post-processing procedure
based on regular expressions.

3.2 Fine-tuning

While FSL allows adaptation of the model to a task
without the need of further training of an LLM, fine-
tuning involves training the model using additional,
task-specific data.

We selected Llama-3-8B3, the newest open
LLM at the time of system’s development pro-
cess, for fine-tuning employing the QLoRA
method (Dettmers et al., 2023), which minimizes
memory usage and the number of trainable parame-
ters by backpropagating gradients through a frozen,
4-bit quantized pre-trained LLM into Low Rank
Adapters (LORA).

In order to obtain a single model capable of
generating lay summaries for instances of both
datasets, we trained Llama-3-8B on the data ob-
tained by merging both training dataset into one.

As for the hyperparameters set for training, the
LoRA alpha was set to 16, LoRA dropout was

2https://openai.com/api/
3https://huggingface.co/meta-llama/

Meta-Llama-3-8B
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Lay summaries Abstracts

Dataset Subset Avg(STD) Min Max Avg(STD) Min Max

eLife Train 479.53 (84.69) 226 875 255.87 (45.67) 95 798
Val 486.97 (93.62) 285 894 255.55 (43.24) 120 524

PLOS Train 269.11 (58.15) 18 675 400.85 (111.11) 18 1198
Val 269.53 (57.46) 72 530 404.1 (109.78) 112 877

Table 1: Token count statistics across two datasets.

equal to 0.1, LoRa rank - to 64 and the batch size
was set to 1. The number of training epochs was
initially set to 10, but an early stopping mechanism
was implemented to prevent overfitting by stopping
the training when validation loss does not decrease
for 3 consecutive epochs. This allowed us to deter-
mine that one epoch was optimal for this kind of
training.

3.3 Self-play fine-tuning

A significant advancement in LLMs performance is
often achieved by applying post-pretraining align-
ment with mode desirable behaviour by using
such techniques as Direct Preference Optimization
(DPO) (Rafailov et al., 2024). Nevertheless, most
alignment methods require a large volume of high-
quality human-annotated data, which was not avail-
able for this challenge. For this reason, we opted
for experimenting with SPIN (Chen et al., 2024), a
novel fine-tuning method which begins from a su-
pervised fine-tuning model, Llama-3-8B-instruct 4

denoted by pθt which is employed to generate re-
sponses y′ to the prompt x in the gold standard
dataset, y. The objective is to find a new LLM
pθt+1 capable of distinguishing y′ from y.

We employed this method to train a QLoRA
adapter in order to be able to perform training on
a single NVIDIA Ampere A100 50Gb GPU. We
applied this method to fine-tune the model on each
dataset separately, which resulted in two different
adapters for eLife and PLOS datasets respectively.

4 Evaluation

This section presents the results of the official eval-
uation campaign that was carried out by the orga-
nizers by assessing the predictions made by our
system on 142 articles for each of the two datasets.

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

4.1 Evaluation metrics

The generated summaries were evaluated across
three aspects: Relevance, Readability and Factual-
ity. To assess the relevance, n-gram based metrics
(ROUGE 1, 2 and L) and semantic similarity met-
rics were calculated (BERTScore). In order to eval-
uate the readability Flesch-Kincaid Grade Level
(FKGL) and Dale-Chall Readability Score (DCRS),
Coleman-Liau Index (CLI), and LENS were used.
Finally, to assess the factuality, the organisers cal-
culated AlignScore and SummaC (Goldsack et al.,
2024).

4.2 Results

Table 2 presents the details of the relevance metrics
scored by each of the presented systems. Among
the FSL experiments, Llama-8B-Instruct demon-
strated the lowest performance among the models
evaluated. Nonetheless given the unknown num-
ber of parameters of GPT-3.5-turbo and GPT-4-
turbo, as well as the lack of information about
whether these two closed-source systems add any
post-processing to their outputs, it is difficult to
draw conclusions about the performance of the
models themselves. Nevertheless, we could em-
pirically observe that the generations of both GPT-
3.5 and GPT-4 are always complete and concluded
texts, while Llama-3-8B-Instruct often outputted
truncated or, on the contrary, noisy at the end of the
sequence text. For this reason, as we noted previ-
ously, we introduced a rule-based post-processing
procedure, which resulted in achieving the highest
relevance scores for the eLife dataset.

As for GPT-3.5 and GPT-4, we were not able
to find a substantial difference in overall perfor-
mance between those two systems in the FSL set-
ting. However, it is noticeable that GPT-3.5 show-
cased one of the best performances in terms of
BERTScore for the eLife dataset and outperformed
GPT-4 in all relevance metrics for PLOS dataset.

Comparing the results from the two fine-
tuning methods employed, we can see that SPIN
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fine-tuning of Llama3-8B-Instruct outperformed
QLoRA in generating lay summaries for PLOS
dataset. This can result from a larger amount of
data available for this dataset, which makes SPIN to
produce a more robust model. Nevertheless, for a
much smaller dataset such as eLife, training a sepa-
rate adapter with SPIN did not yield a performance
improvement, while merging eLife with PLOS for
training a universal QLoRa adapter for Llama-3-8B
resulted to be a better solution in terms of relevance
metrics.

As for readability and factuality, Table 3 presents
the values these metrics. Overall, most of the sys-
tems produced less complex text that the reference
lay summaries for PLOS datasets were reported to
be (14.76, 10.91 and 15.90 for FKGL, DCRS and
CLI, respectively) (Goldsack et al., 2022), while
the reported lack of complexity for eLife’s lay sum-
maries (10.92, 8.83 and 12.51 for FKGL, DCRS
and CLI, respectively) was more difficult to achieve
even with our best system in terms of the readabil-
ity metrics, namely FSL with Llama-3-8B-Instruct
and rule-based post-processing.

Notably, the GPT-4 model, among all the pre-
sented systems, was the one that produced gener-
ally more complex text than others, while scoring
one of the lowest values for factuality metrics. With
regard to that, there can be perceived a trade-off be-
tween factuality and readability, with higher ranked
models in terms of readability criteria achieving
lesser factuality scores and vice-versa. The best
performing model in terms of factuality resulted
from fine-tuning of Llama-3-8B with QLoRA.

5 Conclusions

In this study, we explored various methodologies to
generate lay summaries of biomedical articles, an
important task for improving public accessibility to
scientific information. Our participation in the Bi-
oLaySumm shared task at the BioNLP2024 work-
shop involved experimenting with FSL, parameter-
efficient tuning and SPIN methods. Among these,
SPIN fine-tuning demonstrated the highest perfor-
mance in terms of relevance metrics, achieving a
0.4205 ROUGE-1 score and 0.8583 BERTScore.

The evaluation of readability and factuality re-
vealed a trade-off between these two aspects. Mod-
els that generated more readable texts tended to
have lower factuality scores, with the GPT-4 based
FSL systems exemplifying this trend. Conversely,
the fine-tuned Llama-3-8B with QLoRA achieved

the best factuality scores while getting fairly good
readability scores as well, indicating its potential
for producing accurate and readable summaries.

6 Limitations

The limitations of the presented approaches stem
from the inherent characteristics and potential bi-
ases of the pre-trained models they are based
on. Specifically, models like Llama-3-8B-Instruct,
GPT-3.5, and GPT-4 were pre-trained on extensive
text datasets, which were not thoroughly evaluated
for existing biases. Consequently, these models
may generate inappropriate content or replicate bi-
ases present in the underlying data. Therefore, it
is crucial to conduct comprehensive evaluations of
safety and fairness concerns before deploying these
systems in any practical applications.
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System Dataset ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BERTScore↑

Llama-3 + QLoRa on merged datasets
PLOS 0.4038 0.1419 0.3766 0.8495
eLife 0.418 0.1007 0.3969 0.836
Overall 0.4109 0.1213 0.3867 0.8428

Chat-GPT-3.5-turbo FSL
PLOS 0.4216 0.1076 0.3805 0.8603
eLife 0.3719 0.0987 0.3418 0.8491
Overall 0.3969 0.1032 0.3612 0.8547

Chat-GPT-4-turbo FSL
PLOS 0.4016 0.0834 0.3637 0.8548
eLife 0.4139 0.0941 0.3771 0.849
Overall 0.4077 0.0888 0.3704 0.8519

Llama-3-8B-Instruct FSL
PLOS 0.2958 0.067 0.2757 0.8045
eLife 0.4118 0.0933 0.3892 0.8118
Overall 0.3537 0.0802 0.3324 0.8082

Llama-3-8B-Instruct FSL + post-processing
PLOS 0.3904 0.0896 0.3609 0.8536
eLife 0.4262 0.1091 0.3997 0.8493
Overall 0.4083 0.0994 0.3803 0.8514

Llama-3-8B SPIN
PLOS 0.4591 0.1485 0.418 0.8692
eLife 0.3819 0.1013 0.3527 0.8474
Overall 0.4205 0.1249 0.3853 0.8583

Table 2: Detailed scores of the relevance metrics’ values obtained by the systems presented by the SINAI team

System Dataset FKGL↓ DCRS↓ CLI↓ LENS↑ AlignScore↑ SummaC↑

Llama-3 + QLoRa
on merged datasets

PLOS 12.5437 9.2242 14.5609 53.2788 0.7663 0.7752
eLife 11.7704 8.5377 13.5612 58.2338 0.747 0.7216
Overall 12.157 8.881 14.0611 55.7563 0.7567 0.7484

Chat-GPT-3.5-turbo
FSL

PLOS 12.5183 10.015 13.9546 78.4641 0.7311 0.5396
eLife 12.9662 9.8737 14.2676 77.5932 0.737 0.531
Overall 12.7423 9.9441 14.111 78.0286 0.734 0.5353

Chat-GPT-4-turbo
FSL

PLOS 14.4599 11.0353 15.8399 72.3903 0.6255 0.4635
eLife 14.6803 10.923 15.893 71.65 0.6598 0.4692
Overall 14.5701 10.9791 15.8664 72.0301 0.6427 0.4663

Llama-3-8B-Instruct
FSL

PLOS 12.2824 8.2744 12.0751 46.8115 0.4857 0.4943
eLife 12.3472 8.3412 12.8586 50.1217 0.5071 0.5057
Overall 12.315 8.3078 12.4668 48.4662 0.4964 0.4999

Llama-3-8B-Instruct
FSL + post-processing

PLOS 10.8711 8.6886 12.0567 81.3139 0.6274 0.5167
eLife 11.0275 8.5286 12.4404 81.1903 0.6603 0.5341
Overall 10.9493 8.6086 12.2486 81.2521 0.6439 0.5254

Llama3 SPIN
PLOS 12.8408 10.667 14.8027 73.3912 0.7521 0.5505
eLife 11.6155 9.0522 12.8268 80.5002 0.6713 0.5291
Overall 12.2281 9.8609 13.8148 76.9457 0.7117 0.5398

Table 3: Detailed scores of the readability and factuality metrics’ values obtained by the systems presented by the
SINAI team
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A Prompt engineering

This appendix section details the prompts used for
each of the lay summary generation methods de-
scribed in this paper.

A.1 Few-shot learning
For the FSL approach we randomly selected 2 ex-
amples from the training sets of each database. The
example A.1 presents the prompt template used for
FSL generation.

Example A.1. You are an expert in generating
of lay summaries - more readable summaries of
scientific papers that are accessible to the general
public. You will be given abstracts of scientific
paper either from PLOS of eLife databases and
will return only lay summaries like in the following
examples:

This document is from {source} database, create
the lay summary from abstract.

ABSTRACT: {Example abstract 1}
LAY SUMMARY: {Example lay summary 1}
This document is from {source} database, create

the lay summary from abstract.
ABSTRACT: {Example abstract 2}
LAY SUMMARY: {Example lay summary 2}
This document is from {source} database, create

the lay summary from abstract.
ABSTRACT: {Test set abstract}
LAY SUMMARY:
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Abstract

This paper introduces the RAG-RLRC-
LaySum framework, designed to make
complex biomedical research understandable
to laymen through advanced Natural Language
Processing (NLP) techniques. Our Retrieval
Augmented Generation (RAG) solution,
enhanced by a reranking method, utilizes mul-
tiple knowledge sources to ensure the precision
and pertinence of lay summaries. Additionally,
our Reinforcement Learning for Readability
Control (RLRC) strategy improves readability,
making scientific content comprehensible to
non-specialists. Evaluations using the publicly
accessible PLOS and eLife datasets show that
our methods surpass Plain Gemini model,
demonstrating a 20% increase in readability
scores, a 15% improvement in ROUGE-2
relevance scores, and a 10% enhancement in
factual accuracy. The RAG-RLRC-LaySum
framework effectively democratizes scientific
knowledge, enhancing public engagement with
biomedical discoveries 1.

1 Introduction

Biomedical research encompasses crucial discov-
eries, ranging from everyday health concerns to
significant disease outbreaks. Such studies are es-
sential not only for scientists and doctors but also
for journalists and the general public. However, the
specialized and complex language typical in these
studies often renders the content incomprehensible
to those without a scientific background Thoppilan
et al. (2022). To address this issue, the develop-
ment of automated lay summaries have become
increasingly important Goldsack et al. (2023b,a).
This initiative aims to summarize the detailed as-
pects of biomedical research into summaries that
are both comprehensible and devoid of complicated

1Our code and implementation details are available
here: https://github.com/JoyDajunSpaceCraft/RAG-RLRC-
LaySum

Figure 1: Knowledge Retrieval Augmented, with the
trained re-ranker, can provide more relevant knowledge
based on the first generation.

jargon. Although these systems show great poten-
tial, doubts about their accuracy are a major ob-
stacle to their widespread useGabriel et al. (2020);
Maynez et al. (2020); Yang et al. (2024); Li et al.
(2023b, 2024); Wang et al. (2024). Our frame-
work integrates specific external explanations for
complex terms to further enhance content simpli-
fication. In response to the concerns about the in-
tegrity of summarized information, our framework
employs a “knowledge retrieval” approach within
the Retrieval-Augmented Generation (RAG) frame-
work. This method uses a neural re-ranker to dy-
namically integrate trustworthy external knowledge
sources like Wikipedia, ensuring that summaries
are simplified, factually accurate, and contextually
relevantLewis et al. (2020); Kang et al. (2024).

The architecture of the proposed RAG is illus-
trated in Figure 1. We also introduce a reward-
based approach to overcome the limitations of tradi-
tional fine-tuning, which often produces summaries
that have high ROUGE scores but are not actually
readable to humans. This method fine-tunes the
model by rewarding outputs that align with read-
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Figure 2: This figure illustrates the architecture of the proposed RAG-RLRC-LaySum model. During the training
phase, we employ the Longformer Encoder-Decoder (LED) model as the backbone Beltagy et al. (2020). We enhance
the model’s capabilities through Wikipedia knowledge retrieval during inference. We utilize large language models
(LLMs) such as ChatGPT and Gemini to further improve readability and enhance textual clarity by modifying
prompts. For controlled text generation, readability scores are utilized to guide the model in generating expected
outputs. The outputs of these scores are normalized to ensure text consistency and quality across generated texts.

ability metrics (Flesch-Kincaid Grade Level and
Dale-Chall Readability Score Foster and Rhoney
(2002); Ribeiro et al. (2023)). Unlike traditional
supervised methods that might limit the model‘s
adaptability, our approach encourages the model
to alternative expressions to enhance clarity. The
BioLaySumm challenge is a research competition
that focused on developing and benchmarking mod-
els for generating lay summaries from complex
biomedical literature2. Our method is ranked 11th
on the leaderboard of the challenge Goldsack et al.
(2024).

2 Methodology

First, we employ a Retrieval-Augmented Genera-
tion (RAG) solution that processes entire papers
despite limited input capacity. Second, we improve
summary quality by optimizing readability using
relevant background information. The framework
is illustrated in Figure 2.

2.1 Retrieval Augmented Generation (RAG)
Our RAG framework enhances keyword-based re-
trieval by using an initial lay summary generated

2https://biolaysumm.org/

by the model as a query. In the inference stage,
it retrieves relevant descriptions from Wikipedia
Ponzetto and Strube (2007) by the Pyserini Lin
et al. (2021) index. However, retrieving relevant in-
formation from a large number of articles remains
a challenge because the first generated summaries
cannot work as effective queries. We initially use
the ground truth as a query but switch to the first
generated layman summary during inference for
passage retrieval. However, there’s a risk that the
top-k passages may not be the most relevant for
generating accurate summaries. Given a scien-
tific document D with a set of candidate passages
K = {k1, k2, ..., kn} from grounding sources, the
RAG framework generates a lay summary S by
maximizing the probability:

p(S|D,K) =

|S|∏

i=1

p(si|s<i, D,K) (1)

where si represents the i-th token in the sum-
mary, and s<i denotes the sequence of tokens pre-
ceding si. We use ColBERT Khattab and Zaharia
(2020) and BGE-v2 Li et al. (2023a); Chen et al.
(2024) as two different types of the neural re-ranker.
The details about the trained re-ranker are in Ap-
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pendix B.

2.2 Reinforcement Learning for Readability
Control (RLRC)

For details about the reranking model and sequence
generation model training can be seen in Appendix
A. The RLRC method inputs the first generation
from the plain LED and uses the ground truth as
the expected output. Our RLRC approach employs
a reinforcement learning strategy to fine-tune the
readability of summaries. We define a reward func-
tion R(y, r∗) based on the desired readability level
r∗ that encourages the generation of text towards
better readability, which is measured by the Flesch
Reading Ease score r∗:

R(y, r∗) = 1− exp

(
− (R(y)− r∗)2

2σ2

)
(2)

where R(y) denotes the readability score of the
generated summary y, and σ is a hyperparameter
that controls the sensitivity of the reward function
to deviations from the target readability score. Also,
we leverage a Gaussian-based reward that strongly
penalizes great variations in the readability Ribeiro
et al. (2023).

We employ the Proximal Policy Optimization
(PPO) Schulman et al. (2017) algorithm to optimize
our RLRC model. The objective is to adjust the
model’s parameters θ by maximizing the objective
function:

L(θ) = E(y,r∗)∼pθold

[(
pθ(y | D, r∗)

pθold(y | D, r∗)

)
R(y, r∗)

]
(3)

Here, pθoldand pθ denote the policy under the old
and current parameters, respectively.

2.3 Large Language Models
We use the LLMs in two ways: first, as a para-
phrasing tool during inference to refine initial gen-
erations, and second, for directly generating lay-
man summaries. This implementation is built on
Gemini-1.0-pro, developed by Google Team et al.
(2023), which also serves as our baseline LLM. We
aim to create readable summaries while incorporat-
ing as many input keywords as possible. We follow
Gemini-1.0-pro’s default settings, and the prompt
details are described in Appendix C.

3 Experimental Settings and Results

3.1 Datasets and Evaluation
This study uses biomedical research articles from
the PLOS and eLife datasets, which include both

technical abstracts and expert-crafted lay sum-
maries. The PLOS dataset contains 24,773 train-
ing and 1,376 validation instances, while the eLife
dataset comprises 4,346 training and 241 valida-
tion instances Goldsack et al. (2022). We as-
sess summarization quality using predefined met-
rics: Relevance is gauged by ROUGE Scores
(ROUGE-1, ROUGE-2, ROUGE-L) Lin (2004)
and BERTScore Zhang et al. (2019); Readability
by the Flesch-Kincaid Grade Level (FKGL) Kin-
caid et al. (1975), Dale-Chall Readability Score
(DCRS) Dale (1948), and Learnable Evaluation
Metric for Text Simplification (LENS) Maddela
et al. (2022); Factuality by Summac Laban et al.
(2022) and AlignScore Zha et al. (2023).

3.2 Performance of Baseline Models

The Plain LED model, serving as our baseline,
achieved ROUGE-L scores of 41.33 and 44.07.
In contrast, the Plain retrieve+LED model, which
integrates external knowledge through the BM25
retriever, slightly improved ROUGE-L scores to
47.02 and 47.21. This indicates that the incorpo-
ration of external knowledge slightly enhances the
relevance of the summaries.

3.3 Effect of Neural Re-rankers

Further improvements were observed with the
RAG+LED model, which incorporates a trained
neural re-ranker, boosting the ROUGE-L scores to
49.68 and 49.79. This significant increase demon-
strates that neural re-rankers are more precise in
selecting relevant content, effectively enhancing
the accuracy and relevance of the summaries.

3.4 Effect of Large Language Models

The RAG+ChatGPT and RAG+Gemini models,
utilizing LLMs, achieved high FKGL readabil-
ity scores of 9.93 and 9.25 respectively, but their
ROUGE-L scores were lower at 39.59 and 39.20,
indicating that LLMs can sometimes introduce ir-
relevant information. Similarly, the Plain Gemini
model, which relies solely on an LLM, scored only
33.63 in ROUGE-L, demonstrating the challenges
LLMs face in producing coherent and accurate sum-
maries without mechanisms for precise content se-
lection.

3.5 Effect of RLRC

The RAG+RLRC model, integrating reinforcement
learning training strategies, achieved a ROUGE-
L score of 47.24. It marked an improvement in
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Table 1: Results on PLOS and eLife validation datasets. For the ↑ means, the higher, the better; for the ↓ means, the
lower, the better. All best results are marked as bold. The RAG+different models represent the models that used
neural re-ranker.

Method Relevance Readability Factuality
Rouge1↑ Rouge2↑ RougeL↑ BERTScore↑ FKGL↓ DCRS↓ CLI↓ LENS↑ AlignScore↑ SummaC↑

PLOS
Plain LED 45.96 15.00 41.33 85.97 15.17 12.26 16.42 54.96 81.68 74.34

Plain retrieve+LED 45.53 14.37 41.10 85.66 15.06 12.10 16.32 51.82 77.38 71.94
RAG+LED 45.64 15.37 42.30 85.21 15.22 11.93 15.92 53.42 76.57 72.83

RAG+ChatGPT 37.39 6.81 33.96 84.70 11.21 10.37 12.50 71.90 65.71 57.85
RAG+Gemini 38.89 8.74 35.11 85.12 11.33 10.48 13.38 74.76 68.40 58.88
Plain Gemini 44.67 13.36 40.26 85.87 15.71 11.84 17.98 62.64 74.18 52.82
RAG-RLRC 46.58 14.96 41.81 85.83 14.89 11.81 16.78 47.55 78.45 72.97

eLife

Plain LED 47.02 12.52 44.07 84.73 10.52 9.33 11.49 73.45 62.37 60.12
Plain retrieve+LED 47.72 12.40 44.26 84.41 12.11 9.25 11.40 67.57 53.57 56.18

RAG+LED 47.69 12.41 44.34 84.41 11.99 9.25 11.39 67.95 53.89 55.65
RAG+ChatGPT 39.78 7.23 37.13 84.02 9.58 9.49 11.40 75.40 58.96 50.44
RAG+Gemini 39.90 9.04 36.97 84.29 9.58 9.65 12.47 78.93 62.91 55.81
Plain Gemini 22.60 3.22 20.85 80.81 16.38 12.72 24.18 52.44 53.19 44.97
RAG-RLRC 47.91 12.65 44.96 84.61 10.52 9.11 11.73 68.61 61.34 60.40

Average

Plain LED 46.49 13.76 42.70 85.35 12.84 10.79 13.95 64.20 72.02 67.23
Plain retrieve+LED 46.62 13.38 42.68 85.03 13.58 10.67 13.86 59.69 65.47 64.06

RAG+LED 46.66 13.89 43.32 84.81 13.60 10.59 13.65 60.68 65.23 64.24
RAG+ChatGPT 38.59 7.02 35.55 84.36 10.40 9.93 11.95 73.65 62.34 54.15
RAG+Gemini 39.39 8.89 36.04 84.70 10.46 10.06 12.93 76.85 65.66 57.35
Plain Gemini 33.63 8.29 30.55 83.34 16.04 12.28 21.08 57.54 63.68 48.89
RAG-RLRC 47.24 13.80 43.38 85.22 12.70 10.46 14.25 58.08 69.89 66.68

factual accuracy, with a Summac score of 78.45
compared to the 73.44 of Plain LED. This high-
lights the effectiveness of reinforcement learning
strategies in optimizing the text’s factual alignment.

4 Related Work

Automatic summarization in the biomedical do-
main has been extensively studied Du et al. (2019);
Krishna et al. (2020); Goldsack et al. (2023a); De-
varaj et al. (2022). The primary challenge in this
field is simplifying the content of original articles
to make them comprehensible to laypersons. While
Rosati (2023) supplement source documents to aid
in generating more comprehensible summaries, and
Devaraj et al. (2022) explore how text simplifica-
tion impacts summary accuracy, introducing a tax-
onomy of error types and identifying omissions as
a prevalent issue, these approaches often overlook
the balance between simplification and factuality.

To enhance summary factuality, researchers in-
corporate factual knowledge from external sources
during model training Mao et al. (2022), which
has proven effective in improving accuracy. Rosati
(2023) utilize Wikipedia to enrich summaries with

additional knowledge, while Poornash et al. (2023)
employ a trained re-ranker to select pertinent infor-
mation, enhancing the factuality of summaries.

5 Conclusion and Future Work

The RAG-RLRC-LaySum framework effectively
simplifies complex biomedical texts, enhancing
readability and factual accuracy for lay audiences.
It surpasses traditional models, offering new in-
sights into the pivotal role of knowledge retrieval
and readability optimization in scientific summa-
rization. Future work will expand the framework’s
knowledge sources and refine how knowledge is uti-
lized, potentially broadening its application across
various scientific fields. This will further explore
the integration of domain-specific knowledge to
improve the precision and relevance of summaries.

6 Limitations

While the RAG-RLRC-LaySum framework shows
promise, it has several limitations. The reliance on
external sources like Wikipedia can introduce bi-
ases. The framework’s computational complexity
is high, making real-time applications challeng-
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ing. Readability metrics like FKGL and DCRS
may not fully capture readability for all audiences.
Additionally, the generalizability to other domains
beyond biomedical texts is uncertain. Lastly, eval-
uations based on automated metrics may not fully
reflect user experience, highlighting the need for
human evaluations. Future work should address
these limitations by exploring diverse knowledge
sources, optimizing efficiency, refining readability
metrics, and conducting human evaluations.
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A Finetuning models

For training the Longformer Encoder-Decoder
(LED) model Beltagy et al. (2020), we utilized the
"allenai/led-base-16384" pre-trained checkpoint
available on Huggingface’s model hub. Our train-
ing setup included a configuration that processes
16,384 input tokens and generates outputs limited
to 512 tokens. This training was conducted over
the course of a single epoch.

In parallel, we employed BioLinkBERT-base Ya-
sunaga et al. (2022) as the foundational language
model for processing eLife and PLOS datasets,
leveraging its specialized capabilities in under-
standing biomedical context.

Then, we designed a neural re-ranker based on
the ColBERT Khattab and Zaharia (2020) and
BGE-v2 Li et al. (2023a); Chen et al. (2024) scor-
ing mechanism, which refines the results by eval-
uating the relevance of retrieved documents. The
training for this re-ranker was tailored to accept
inputs of up to 512 tokens, and it was fine-tuned
to generate models by considering the top 5 most
pertinent retrieval results. Futhermore, we define
the Flan-T5-Large from huggingface, we use the
model "google/flan-t5-large" as the base model. To
make use of the control generation, we use the key-
words in the article as the expected output to make
sure the relevance.

A.1 Retrieval Augmented Generation
We conduct the experiment based on the model
Longformer Encoder-Decoder (LED) Beltagy et al.
(2020) which supports an input token length of
16,384 tokens. For the basic fine-tuning method,
we find out in both the PLOS and eLife data that the
re-ranker result will be a higher result in the Rouge-
L and a lower score in the FKGL and DCRS score.
In that case, indicate the lower the complexity of
the description.

We use ColBERT Khattab and Zaharia (2020)
and BGE-v2 Li et al. (2023a); Chen et al. (2024)
as two different types of the neural re-ranker.

A.2 Reinforcement Learning for Readability
Control (RLRC)

By utilizing various control levels for readability
within the model-generated results, we focus on
understanding how modifications to the readabil-
ity scores, particularly the Flesch-Kincaid Grade
Level (FKGL), impact the final summaries. The
Flan-T5 model Chung et al. (2024) serves as the
primary backbone for text generation. During the
inference phase on testing data, where no ground
truth is available for the reward mechanism, key-
words are used as proxy indicators to ensure that
the generated summaries accurately reflect the ex-
pected concepts.

In our model, we define two key mathematical
expressions. The first is the Gaussian probability
density function, used to estimate the likelihood
of a given value within a normal distribution. The
expression for this function is:

calc_nd(value,mean) =

1

σ
√
2π

exp

(
−(value−mean)2

2σ2

) (4)

This function is essential for assessing how far a
data point deviates from the mean and is widely
used in statistical analyses.

The second formula defines our reward func-
tion, which combines three different scoring met-
rics—readability score, BERTScore, and text
length score—to comprehensively evaluate the
quality of the text. The formula is as follows:

reward = wr · normalized_flesch_scores+
wb · all_bertscore_scores + wl · length_scores

(5)

Here, wr, wb and wl are the weight factors for
each scoring metric, adjusting the influence of each
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score in the overall assessment. By default, we set
wr = 0.5, wb = 0.3, wl = 0.2.

This weighted approach allows us to tailor the
scoring criteria to different types of text analysis
tasks, accommodating the multifaceted nature of
text data.

B Retrieval Design

For the reranking of retrieved documents, we utilize
the pyserini package Lin et al. (2021). Following
the approach outlined by Rosati (2023), we employ
enwiki−paragraphs for background knowledge.
We first retrieved 20 candidate paragraphs and then
rerank the top 5 results.

B.1 Neural Re-ranker
In the provided Table 2, the performance trends
across the eLife and PLOS datasets reveal that neu-
ral re-ranking methods (ColBERT and BGE) con-
sistently outperform the traditional BM25 method.
Notably, BGE shows a clear upward trend in ac-
curacy from Top1 through Top20 in both datasets.
Similarly, ColBERT’s performance also exhibits an
upward trajectory, although it remains below BGE,
indicating a strong but second-tier efficacy among
the tested methods.

Table 2: Accuracy for Neural Re-ranker.

Dataset Method Top1 Top5 Top20

eLife
BM25 10.32 42.13 65.24

ColBERT 15.38 53.85 76.92
BGE 18.53 60.19 78.52

PLOS
BM25 20.33 53.74 80.12

ColBERT 26.09 57.97 84.06
BGE 29.30 59.98 88.92

C Prompts

Table 3: One shot prompt for ChatGPT 4 and Gemini
1.0.

System: You are a layman rephrase; your goal
is to rephrase the input and make it easier to
read. For example: ’Diabetes is a condition
in which the pancreas cannot produce enough
insulin to feed the body. This is caused by a
protein called proinsulin is an ingredient
a group of molecules called cysteine thiols.
The rephrased result should be: ’Diabetes is a
condition where the pancreas doesn’t produce
enough insulin to meet the body’s needs. This
happens because of a protein called proinsulin,
which consists of a group of molecules known
as cysteine thiols.’
Input: Here is the original text I want you to
help me to rephrase: {first generation}. Make
it easier to read and retain as much of the
biomedical phrase as possible and have a similar
length as the original text.

Table 4: Prompt used for Gemini for article summariza-
tion.

I will give you a long article in biomedical
publications, you should generate an
abstractive summarization of this article in
one single paragraph. I will also give you the
keyphrases in this article, you should try to
include as many keyphrases in your generated
summarization as possible. The summarization
is with an emphasis on catering to non-expert
audiences through the generation
of summaries that are more readable, containing
more background information and less technical
terminology. Keyphrases:{}, Article:{}.
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Abstract

Biomedical literature are crucial for disseminat-
ing new scientific findings. However, the com-
plexity of these research articles often leads
to misinterpretations by the public. To ad-
dress this urgent issue, we participated in the
BioLaySumm task at the 2024 ACL BioNLP
workshop, which focuses on automatically sim-
plifying technical biomedical articles for non-
technical audiences. We conduct a systematic
evaluation of the SOTA large language mod-
els (LLMs) in 2024 and found that LLMs can
generally achieve better readability scores than
smaller models like Bart. Then we iteratively
developed techniques of title infusing, K-shot
prompting, LLM rewriting and instruction fine-
tuning to further boost readability while bal-
ancing factuality and relevance. Notably, our
submission achieved the first place in readabil-
ity at the workshop, and among the top-3 teams
with the highest readability scores, we have
the best overall rank. Here, we present our ex-
periments and findings on how to effectively
adapt LLMs for automatic biomedical lay sum-
marization. Our code is available at https:
//github.com/zhoujieli/biolaysumm.

1 Introduction

The biomedical literature is one of the most impor-
tant information sources for researchers to share
their latest discoveries. However, the increasing
volume of information has become overwhelming,
e.g. PubMed alone hosts over 36 million papers,
with more than one million new articles added an-
nually (Jin et al., 2024). This information deluge
makes it challenging for even specialized biomedi-
cal experts to keep up with the latest research, let
alone the general public. General public, although
having a keen interest in biomedical research due
to its relevance to everyday life, may be prohibited
by the difficult biomedical terminology, experimen-
tal setups, or the metric abbreviations. Currently,
media outlets play a crucial role in bridging the

gap between scientific literature and public under-
standing (Peters, 2013). However, media often lack
the necessary context when reporting new stud-
ies, which can lead to exaggerated claims. For in-
stance, reports may claim that certain diets promote
longevity1, but closer inspection of the literature
reveals that these claims are typically based on pre-
liminary animal studies and lack robust support in
human studies (Bruijnis et al., 2013; Janssen et al.,
2019; Murphy et al., 2014).

In recent years, with the rapid advancements
of Transformer-based natural language processing
algorithms, many intelligent systems have been
developed to automate the process of explaining
and summarizing research papers to lay people.
Dangovski et al. (2021) collected 100,000 web-
pages from Science Daily, a popular press re-
lease websites for research papers, and finetuned a
Bert model to produce automatic science journal-
ism; Cohan et al. (2018) developed a hierarchical
disource-aware attention model to effectively sum-
marize the long and hierarchical research paper.
Interactive research paper summarization systems
like SciSummary 2, Scholarcy3 and SciSpace4 can
help researchers quickly get the gist from the lit-
erature and develop a map of connected research
(Nahas, 2024).

In particular, biomedical literature contains
many domain jargons which lack readable expla-
nations; background stories are frequently omitted,
and findings are hidden in obscure metrics names
without direct discussions. In essense, the literature
cannot "talk" by itself and answer general public’s
questions. To advance the research in automatic
lay summary generation for biomedical literature,
the ACL BioNLP task of BioLaySumm was started

1https://www.hsph.harvard.edu/nutritionsource/
media/

2https://scisummary.com/
3https://www.scholarcy.com/
4https://typeset.io/
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in 2023 (Goldsack et al., 2023, 2024). Accompany-
ing this task, a lay summary dataset was curated to
facilitate model training and evaluation (Goldsack
et al., 2022). The dataset contains 31,020 article-
summary pairs5 from two journal series, Public
Library of Science (PLOS) and eLife. Each article-
summary pair contains the paper full text and the
corresponding lay summaries written by paper au-
thors (PLOS) or journal editors (eLife). Due to
the different sources of lay summaries, the char-
acteritics of these summaries vary, e.g. PLoS lay
summaries are on average 175.6 words and eLife
summaries are on average 347.6 words 6. The task
of BioLaySumm is then given the full article text, a
system should automatically output a lay summary,
which will be measured in 10 metrics of factuality,
readability and relevance.

In the previous iteration of BioLaySumm, we ob-
serve that the best performing teams used advanced
large language models (LLMs) like GPT-3.5 to pro-
duce zero-shot lay summaries (Turbitt et al., 2023)
and augment training data (Sim et al., 2023). In
addition, we have frequently used tools like GPT4,
Kimi.ai, and ChatDoc.com to facilitate rapid un-
derstanding of research papers. In this work, we
make several key contributions. Firstly, we conduct
a comprehensive set of experiments demonstrat-
ing that while directly prompting Large Language
Models (LLMs) can enhance the readability of lay
summaries, it often compromises their factuality
and relevance. Secondly, we have developed a suite
of adaptation techniques, including title infusion,
K-shot prompting, LLM rewriting, and instruc-
tion fine-tuning, which enable LLMs to generate
lay summaries that are well-balanced in terms of
factuality, relevance, and readability. Notably, our
approach achieved first place in readability in the
2024 BioLaySumm competition, while also main-
taining a strong balance across the other evaluated
metrics.

2 Dataset and Evaluation Metrics

The dataset (Goldsack et al., 2022) of 31,020
article-summary pairs is divided into three parts,
train, validation and test, where the train and vali-
dation sets are given for model development, and
the lay summaries of the test set are hidden. The
distribution of the data is shown in Table 1. Model

5https://biolaysumm.org/
6https://aclanthology.org/2023.bionlp-1.44.

mp4

outputs are submitted to a competition website and
the scores are computed in around 1.5 hours.

Table 1: Distribution of the BioLaySumm data

Dataset Train Val Test # words

PLOS 24,773 1,376 142 175.6
eLife 4,346 241 142 347.6

Model-generated lay summaries are evaluated
against 10 metrics of three categories, relevance,
readability and factuality.

Relevance: ROUGE or Recall-Oriented Under-
study for Gisting Evaluation (1, 2, and L) (Lin,
2004) and BERTScore (Zhang et al.) are the rel-
evance metrics which uses lexical or embedding
based methods to measure the overlap between the
generated summaries to the reference ones. The
higher the scores the more relevant the summaries.

Readability: Flesch-Kincaid Grade Level
(FKGL)(Kincaid et al., 1975), Dale-Chall Read-
ability Score (DCRS)(Chall and Dale, 1995),
Coleman-Liau Index (CLI)(Coleman and Liau,
1975) are lightweight readability metrics that pre-
dict the US grade level of education needed to un-
derstand the generated summaries, so the lower the
scores, the more readable the summaries. Whereas
LENS (Learnable Evaluation Metric for Simplifi-
cation) (Maddela et al., 2022), a readability met-
ric trained on human judgment data, aligns more
closely with human preferences, the goal is to
achieve a higher LENS score.

Factuality: Alignscore (Zha et al., 2023) is an
automatic factual consistency metric for checking
whether all information in the summary is con-
tained in the reference. Similarly, SummaC (La-
ban et al., 2022) or Summary Consistency is a nat-
ural language inference (NLI) method that mea-
sures the factual consistency between generated
summary and reference sentence-wise. The goal is
to maximize these two factuality metrics.

3 Method and Results

Following previous work (Turbitt et al., 2023), we
mainly focus on using LLMs in this work. In our
settings, the input is the article text and relevant
metadata, and different LLMs are prompted along
with a system prompt to generate the lay summary.
In this section, we explain our methods and the
results in detail.
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Table 2: Large Language Models’ Performances on BioLaySum test set. 5 SOTA LLMs are prompted to
generate lay summarization for the test dataset, the title for each article is retrieved and added to the prompt. Overall,
LLM models, although lacking in relevance and factuality, generally outperform the baseline model in readability
metrics. Notice that the Llama3 models beat the baseline by a large margin in the LENS metric.

Method Relevance Readability Factuality

R1 ↑ R2 ↑ RL ↑ BS ↑ FKGL↓ DCRS↓ CLI↓ LENS↑ AS ↑ SC ↑

Baseline (BART) 0.4696 0.1395 0.4358 0.8623 12.0359 10.1475 13.4852 48.0963 0.7788 0.7026
Claude-3-Opus 0.4426 0.1194 0.3966 0.8506 13.2162 10.1755 15.2807 73.093 0.5794 0.4912
Gemini-1.5-pro 0.4405 0.11 0.4076 0.8554 13.6968 10.4408 16.0192 73.5596 0.6823 0.5004
GPT-4 0.4299 0.0983 0.3837 0.8524 14.362 10.7441 15.9209 72.2514 0.5818 0.452
Llama3-8B-Instruction 0.4152 0.1065 0.3847 0.854 11.6099 9.2043 12.8627 80.1454 0.6539 0.5172
OpenBioLLM-Llama3-70B 0.4104 0.0993 0.3801 0.855 11.0162 9.369 12.9965 81.2052 0.7018 0.5463

3.1 Title Infusing
We observe that article titles are missing in the test
data. However, we think titles are essential for
summarization since it encapsulates the high-level
description of the article by the authors. To retrieve
the title for the articles, we used BeautifulSoup47

to retrieve the article titles from the eLife and PLOS
website based on the DOI urls. The titles are then
infused into the prompt for LLMs to better position
its lay summarization. All models in this work have
the information of the title at inference time.

3.2 Large Language Models
Since the last iteration of BioLaySumm, more ad-
vanced LLMs emerged which showcased better
reasoning and text processing skills. We bench-
marked five SOTA LLMs against the official base-
line method based on BART: Anthropic’s Claude-3-
Opus8, Google’s Gemini-1.5-Pro9, OpenAI’s GPT-
4 10 and Meta’s Llama-3 11. These LLMs have over
billions or even hundreds of billions of parameters
and are very good at instruction following. We also
included, OpenBioLLM-LLama3-70B (Ankit Pal,
2024), which is a Llama-3-70B model finetuned
on biomedical domain and is reported to specialize
in various BioNLP tasks. Due to the prohibitive
costs, we limit the input tokens to only the abstract
part of the test set. The result of these 5 LLMs
on test data is shown in Table 2. It is surprising
that even the most advanced LLMs cannot surpass
the Bart-baseline model in terms of relevance or
factuality. However, it is evident that LLMs hold

7https://beautiful-soup-4.readthedocs.io/en/
latest/

8https://www.anthropic.com/api
9https://blog.google/technology/ai/

google-gemini-next-generation-model-february-2024/
10https://openai.com/index/gpt-4/
11https://llama.meta.com/llama3/

a distinct advantage in readability, particularly as
measured by the LENS score. Next, building on
these findings, we aimed to enhance readability
while also improving the metrics for relevance and
factuality.

3.3 Finetuning for Relevance and Factuality

LLMs are autoregressive transformer models which
are trained to predict the next token12. Without fur-
ther fine-tuning, they lack capabilities in producing
factual and relevant summaries, as shown in ta-
ble 2. Inspired by the success of techniques like
Supervised Fine-Tuning (SFT) (Alt et al., 2019)
and instruction tuning (IT) (Wu et al., 2024) on
LLMs in solving downstream NLP tasks, we adopt
a parameter efficient finetuning technique called
Low-Rank Adaption (LoRA) (Hu et al., 2021) to
further fine-tune two models, one for PLOS and
another for eLife, due to the different characteris-
tics of these two journal lay summaries as shown
in table 1. We first construct instruction tuning
data from the article-summary pair by including
an instruction prompt, "Write lay summary for
the given input (a summary that is suitable for
non-experts). Here is the article:...". We use
the article full text (up to 8K as of the Llama3’s
context window) as input, and the corresponding
lay summary as output. We report the result on the
validation dataset in Table 3, and for the test data
submission, we perform instruction fine-tuning on
the entire train-val dataset and predict on the test
dataset. The experiments were done on a GPU
server with 8 NVIDIA RTX 4090Ti 48GB GPUs.
We used Llama-3-8B-Instruct 13 as our base model,

12https://huggingface.co/docs/transformers/llm_
tutorial

13https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Table 3: Performance of Llama-3-8B model on the validation dataset with and without Instruction-finetuning. With
finetuning the metrics of 8B model compare favorably to larger un-finetuned 70B model, and is consistently better
than the baseline Llama3-8B model in relevance and factuality.

Method Relevance Readability Factuality

R1 ↑ R2 ↑ RL ↑ BS ↑ FKGL↓ DCRS↓ CLI↓ LENS↑ AS ↑ SC ↑

Llama3-8B 0.4185 0.1049 0.3855 0.8563 11.7285 9.2582 12.9303 80.1033 0.6316 0.5282
Llama3-8B-FT 0.4297 0.111 0.3977 0.8513 11.8257 8.6854 13.1627 80.7012 0.70628 0.5816
OpenBioLLM-70B 0.4180 0.1071 0.3821 0.8583 11.6109 9.8948 13.3855 80.0218 0.6966 0.5763

and training goes on for 3 epochs, with learning
rate of 5e-5. More details are available in our code
repo.

3.4 K-Shot Prompting for Factuality

In constructing the prompts for LLMs, we used
in-context learning (Dong et al., 2022) or few-shot
learning 14, in which we provide some examples
to the LLMs. For test data, we proposed to use
the top K semantically similar articles in the train
and validation dataset or K-shot prompting. To
compute the semantic similarities, we used a recent
state-of-the-art embedding model BGE M3 (Chen
et al., 2024) from BAAI15 to compute and pick the
K most similar abstracts from the train-val dataset
to the given test article. Together with the input
article, the K-Shot example pairs are sent to the
LLMs. Due to time limit, we set K=1. We experi-
mented this K-shot Prompting technique with the
smaller Llama-3-8B model, and observe better per-
formance metrics in factuality as shown in Table 4.
This implies LLMs can be prompted with seman-
tically similar lay summary example to be more
grounded in the origincal text, boosting factuality.

Table 4: Factuality Scores for Llama3-8B-Instruction
Models with and without K-shot Prompting on the test
dataset, K=1

Model AlignScore↑ SummaC↑
Llama3-8B (kshot) 0.7523 0.5582
Llama3-8B 0.6539 0.5172

3.5 LLM-rewrite for Readability

In observing the results from the five LLMs as in
table 2, we hypothesized that Bart model finetuned
on the given dataset does better in relevance and
factuality while LLMs may be better in readability.

14https://www.promptingguide.ai/techniques/
fewshot

15https://www.baai.ac.cn/english.html

We aim to boost the readability of Bart, thus con-
firming our hypothesis that LLMs’ lay summaries
are better in readability, so we developed a strategy
of LLM-rewrite, where we first finetuned a Bart
model, then used a specialized biomedical LLM,
OpenBioLLM-LLama3-70B to rewrite the sum-
mary. It is observed that readability of the LLM-
rewrote Bart summary is improved and especially
in the LENS metric as shown in Table 5. However,
Bart+rewrite still have consistently lower readabil-
ity compared to LLM (OpenBioLLM-70B).

Table 5: Readability Metrics for BART-Finetuned
Models with and without rewrite with OpenBioLLM-
LLama3-80B.

Model FKGL↓ DCRS↓ CL↓ LENS↑
BART 12.5053 9.948 13.5215 60.1214
BART+rewrite 11.1444 9.9033 13.4803 80.3856
LLM-70B 11.0162 9.369 12.9965 81.2052

4 Results and Conclusion

We constructed our final submission based a com-
bination of three techniques: title infusing, instruc-
tion finetuning and K-Shot prompting. Overall, our
submission achieved the 1st place in the readability
catorgy, and had the better overall score compared
with the top-3 team in the readability category (29th
vs. 36th and 40th)
Team Relevance Readability Factuality Overall

YXZ 0.6845 0.8395 0.3190 29th
NLPSucks 0.3870 0.8297 0.5299 36th
jimmyapples 0.7008 0.8270 0.1875 40th

In this work, through systematic experiments on
the capabilities and limitatons of the SOTA Large
Language Models, we developed strategies to adapt
LLMs for the task of BioLaySumm, and achieved
the best result in readability while balancing other
metrics. We provide experiment details and find-
ings for researchers to keep advancing in this field.
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Limitations

Our study demonstrates effective strategies for
adapting large language models (LLMs) to biomed-
ical lay summarization, achieving good perfor-
mances in readability while balancing factuality
and relevance. However, several limitations war-
rant attention. First, while our techniques, title
infusion, K-shot prompting, instruction tuning, and
LLM rewriting showed promising results on the
BioLaySumm datasets, their applicability to other
types of biomedical papers, such as systematic re-
views, remains untested. These methods may re-
quire further domain-specific adaptations for them
to work well on other datasets. Second, the compu-
tational demands of current state-of-the-art LLMs
are high, restricting their use in resource-limited
settings. We will explore techniques to reduce
model sizes and enable them for low-resource sce-
narios. Third, our efforts to balance readability
with factuality and relevance reveal inherent trade-
offs, that is enhancing readability may sometimes
oversimplify complex biomedical concepts, risking
factual accuracy and detail omission. We plan to
develop more balanced summarization strategies
in future studies. Lastly, the ethical implications
of using LLMs for generating lay summaries in
highly sensitive biomedical fields are significant,
especially given the risk of misinformation due to
LLMs’ hallucination issues. We will develop meth-
ods to automatically detect the toxic contents in the
LLM outputs, and develop effective methods to cor-
rect them. In conclusion, while our study advances
the field of LLM-based biomedical summarization,
ongoing efforts are necessary to address these limi-
tations and enhance the reliability and scope of our
methodologies.
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A Appendix

A.1 LLMs
In total, we spent around 200 USD on prompt-
ing various LLMs to generate lay summaries. For
Claude-3-opus, we used API from Antropic, and
for GPT-4, we used API from OpenAI. For Gemini-
1.5-pro we used API from Google. Due to the
prohibitive costs, we only tested the LLMs’ perfor-
mances on the test dataset.

For the local LLM models, BART, Llama3-8B-
Instruction and OpenBioLLM-Llama3-70B, we
downloaded the weights and checkpoints from Hug-
gingface16 and Modelscope17. All experiments
were done on a single GPU-server with 8 NVIDIA
RTX 4090 GPUs. We also used the Google Colab
platform 18 for ideation and prototyping.

A.2 Prompts for LLMs
Our system prompt is set to be
System Prompt: "Please write a corresponding
lay summary based on the content of the article
provided. Requirements:
1. Lay summary needs to be easy to understand so
that it can be quickly understood by non-specialists;
2. Lay summary needs to grasp the point of the
article and be concise and to the point;
3. Just output a lay summary, no other content is
required."

Then, the computed K-Shot example pairs are
added along with the input (abstract/full text). An
example of K-shot prompt is shown as below.

messages = [
{"role": "system",
"content": system_prompt},
{"role": "user",
"content": "Abstract: xxx"},
{"role": "assistant",
"content": "Lay summary: xxx"},
{"role": "user",
"content": "Abstract: xxx"},

16https://huggingface.co/
17https://www.modelscope.cn/
18https://colab.research.google.com/
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{"role": "assistant",
"content": "Lay summary: xxx"},
{"role": "user",
"content": "Abstract: xxx"},
{"role": "assistant",
"content": "Lay summary: xxx"},
{"role": "user",
"content": "Abstract: {xxx}"}
]

A.3 Llama-3 Instruction Tuning
We construct instruction tuning dataset based on
the given train and validation dataset, an example
of the instruction tuning data is shown as below.

{
"instruction": "Write lay summary
for the given input (a summary that
is suitable for non-experts).
Here is the article.",
"input": article,
"output": lay summary

}

Then we used unsloth 19 and LoRA 20 to con-
duct instruction finetuning. Code implementa-
tion is made available in our code repo https:
//github.com/zhoujieli/biolaysumm.

A.4 Analysis on Readability
To further corroborate our findings on readability,
we evaluated local LLMs on the validation dataset
and analyze their readability performances over
the two journal datasets. The results are shown
in Figure 1 and Figure 2. This is in line with our
findings, and highlights a novel observation: lay
summaries written by journal editors in eLife have
better and harder-to-beat readability whereas in
PLOS, authors’ own lay summaries are generally
worse in readabilities. This observation provides a
unique opportunity for lay summarization systems
like ours to help in generating lay summaries for
the authors, and make their research more readable.

19https://www.unsloth.ai/blog/llama3
20https://huggingface.co/docs/diffusers/

training/lora
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Figure 1: A comparison of readability performance of lay summaries generated by different methods on the eLife
validation dataset. (a) Median FKGL score, (b) Median DCRS score, (c) Median CLI score, (d) Median LENS
score. In each figure, the gray horizontal dashed line represents the median readability score of the reference lay
summary in the validation set. The (*) symbol indicates that the Wilcoxon signed-rank test was passed (p-value less
than 0.05), meaning that the readability score of the generated lay summary is significantly better or worse than
that of the reference lay summary. From (d), it can be observed that leveraging the powerful language expression
capabilities of LLM significantly enhances the LENS scores of the generated lay summary.

Figure 2: Analysis on models’ readability performance on the PLOS validation dataset. (a) Median FKGL score,
(b) Median DCRS score, (c) Median CLI score, (d) Median LENS score. gray horizontal dashed line represents
the median readability score of the reference lay summary in the validation set. The (*) symbol indicates that the
Wilcoxon signed-rank test was passed (p-value less than 0.05), meaning that the readability score of the generated
lay summary is significantly better or worse than that of the reference lay summary. We found that the lay summaries
written by authors in the PLOS journal generally have significantly lower scores in (a), (b), (c), and (d) readability
compared to those generated with the help of LLM.

825



Proceedings of the 23rd Workshop on Biomedical Language Processing, pages 826–830
August 16, 2024. ©2024 Association for Computational Linguistics

Eulerian at BioLaySumm: Preprocessing Over Abstract is All You Need

Satyam Modi*

Indian Institute of Technology, Delhi
smodi50448@gmail.com

T Karthikeyan*

Indian Institute of Technology, Delhi
tkarthikeyanai@gmail.com

Abstract

In this paper, we present our approach to the
BioLaySumm 2024 Shared Task on Lay Sum-
marization of Biomedical Research Articles
at BioNLP workshop 2024 (Goldsack et al.,
2024). The task aims to generate lay summaries
from the abstract and main texts of biomedical
research articles, making them understandable
to lay audiences. We used some preprocessing
techniques and finetuned Flan-T5 models for
the summarization task. Our method achieved
an AlignScore of 0.9914 and a SummaC metric
score of 0.944. Notably, we scored the highest
on the Factuality metric, composed of Align-
Score and SummaC, among all the teams.

1 Introduction

Research in every domain has increased signifi-
cantly, making it challenging for cross-domain re-
searchers to keep track of terminologies outside
their expertise. Providing layman summarization
in biomedical research addresses this issue. This
task is particularly important given the growing vol-
ume of biomedical literature, which makes manual
summarization impractical. Automated lay sum-
marization can significantly enhance the reach and
impact of scientific findings by making them ac-
cessible to a wider audience, including patients,
healthcare providers, policymakers, and the gen-
eral public.

The BioLaySumm 2024 Shared Task on Lay Sum-
marization of Biomedical Research Articles is de-
signed to advance the development of automated
systems capable of generating accurate and coher-
ent lay summaries from biomedical articles. This
task utilizes two separate datasets, focusing on gen-
erating summaries that maintain the essence and
factuality of the original research while being un-
derstandable to a lay audience.

*These authors contributed equally to this work.

2 Related Work

Past works in summarisation has been along two di-
rections: extractive summarisation and abstractive
summarisation. Extractive summarisation involves
selecting and extracting key phrases, sentences, or
segments directly from the original text to create
a summary while in abstractive summarisation the
summary is generated by creating new sentences
that convey the key information from the origi-
nal text. Recent works like PEGASUS (Zhang
et al., 2020a) uses transformer like models with
a self supervised objective for summarisation. In
recent years, most of the work on abstractive sum-
marisation has been based on treating the task as
a sequence-to-sequence task and using pretrained
encoders (Liu and Lapata, 2019).

In this work, we explore on the usage of LLMs
for biomedical articles summarisation. Specifically,
we use Flan-T5 model (Chung et al., 2022) for fine-
tuning it for our use case by treating summarisation
as a sequence-to-sequence task.

3 Datasets

The task included two datasets, PLOS and eLife
(Goldsack et al., 2022). PLOS is the larger dataset
derived from Public Library of Science, comprising
24,773 instances for training and 1,376 for valida-
tion whereas the eLife dataset was derived from the
peer-reviewed eLife journal and it contains 4,346
instances for training and 241 for validation. The
test data used for evaluation consisted of 142 arti-
cles each of PLOS and elife datasets.

4 Methodology

4.1 PoA(Preprocessing over Abstract)

The PoA(Preprocessing over Abstract) involves ex-
tracting the initial sentences from the research pa-
per which mainly comprises of the abstract and
provide a concise overview of the study. Then we
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apply a regular expression to remove content with
parentheses, braces and brackets. These segments
often contain supplementary details that can be
omitted for a lay audience. This preprocessing step
aims to improve readability without compromising
the core information.

4.2 Finetuning Flan T5 Models

In our experiments, we fine-tuned various versions
of the Flan-T5 model to enhance their performance
in summarizing biomedical research articles. Input
was the preprocessed abstract obtained from the
PoA technique(Section: 4.1) and output was the
summary provided in the training data. We began
with the Flan-T5 small model, initially fine-tuning
it on the PLOS dataset alone.

Next, we expanded the training data to include
both PLOS and eLife articles, aiming to improve
the model’s generalization and robustness. By in-
corporating a larger and more diverse dataset, we
hypothesized that the model would generate more
accurate and comprehensive summaries.

We then progressed to fine-tuning the Flan-T5 base
model, also using the combined PLOS and eLife
datasets. The base model, being larger and more
complex than the small model, was expected to
capture more intricate patterns and dependencies
in the data.

In our final experiment, we applied a cosine sched-
uler during the fine-tuning of the Flan-T5 base
model with the combined datasets. The cosine
scheduler adjusts the learning rate dynamically,
aiming to improve convergence and model per-
formance by reducing the learning rate gradually,
which helps in avoiding overfitting and ensuring
better generalization.

5 Experiments and Results

5.1 Hyperparameters for reproducibility

All experiments utilized a batch size of 25, a max
input token length of 512, and a max output token
length of 300. The learning rate was set to 1e-
3. These experiments were conducted on a single
NVIDIA A100 40GB GPU for 25 epochs. The
code1 used in this research is publicly accessible.

1Available at https://github.com/tkarthikeyan132/
PoA

5.2 Evaluation Metrics

The submission was evaluated across three di-
mensions: relevance, readability, and factuality.
Relevance is measured through metrics includ-
ing Rouge-1, Rouge-2, Rouge-L (Lin, 2004) and
BERTScore (Zhang et al., 2020b). Readability
is assessed via the Flesch-Kincaid Grade Level
(FKGL) (Kincaid et al., 1975), CLI (Coleman Liau
Index) , Dale-Chall Readability Score (DCRS)
(Dale and Chall, 1948) and LENS (Maddela et al.,
2023). Factuality is measured utilizing AlignScore
(Zha et al., 2023) and SummaC (Laban et al., 2021).
The scores calculated for each metric are the aver-
age of those calculated independently for the gen-
erated lay summaries of PLOS and eLife. The aim
is to have higher relevance and factuality scores.
All the readability scores must be low except the
LENS metric.

5.3 Main Results

The evaluation of various Flan-T5 models and the
PoA technique yielded several notable observa-
tions, which are summarized below:

5.3.1 Flan-T5 Small: PLOS vs. PLOS + eLife
Data

When comparing the Flan-T5 small model trained
on PLOS data alone to the same model trained on
combined PLOS and eLife data, it was observed
that the latter configuration was beneficial across all
ROUGE scores and readability metrics, indicating
better performance in capturing relevant content
and readability. However, this enhancement comes
at the cost of factuality metrics, as demonstrated
by a decrease in AlignScore and SummaC values.

5.3.2 Flan-T5 Small vs. Flan-T5 Base:
Combined Data

Comparing the Flan-T5 small and Flan-T5 base
models, both trained on the combined PLOS and
eLife datasets, revealed that the base model exhib-
ited superior performance in almost all the rele-
vance and readability metrics, with the exception
of the DCRS metric, which did not show improve-
ment. Despite these gains, the factuality metrics
(AlignScore and SummaC) were compromised in
the Flan-T5 base model compared to the small
model.
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Relevance Readability Factuality

Model Training data ROUGE-1 ROUGE-2 ROUGE-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

PoA N/A 0.4302 0.1327 0.3965 0.8571 15.5542 11.1486 17.2919 37.4521 0.9914 0.944

Flan-T5 small PLOS 0.3935 0.1152 0.3589 0.8479 14.832 11.3634 16.8313 48.7148 0.9369 0.8732

Flan-T5 small PLOS + eLife 0.4035 0.1166 0.371 0.8451 14.7954 10.7561 16.5336 48.4619 0.9173 0.8538

Flan-T5 base PLOS + eLife 0.4228 0.1255 0.3879 0.8511 14.2915 10.7817 16.1177 52.1659 0.8858 0.8024

Flan-T5 base PLOS + eLife 0.4277 0.1297 0.3942 0.8501 15.0451 10.6537 16.6125 52.3009 0.9122 0.8385

Table 1: Inference Results of Flan-T5 Models

5.3.3 Flan-T5 Base: With vs. Without Cosine
Scheduler

When analyzing the impact of incorporating a co-
sine learning rate scheduler in the training of the
Flan-T5 base model with combined data, it was ev-
ident that the scheduler contributed to better read-
ability and factuality metrics. Improvements were
noted in DCRS and LENS, while FKGL and CLI
metrics became little worse, which are also indi-
cators of readability, were slightly compromised.
This suggests that the scheduler helps in fine-tuning
the model to better balance readability and factual
accuracy.

5.3.4 PoA Technique Performance
Interestingly, the PoA (Preprocessing over Ab-
stract) technique, which does not involve any train-
ing, outperformed all Flan-T5 models in terms of
relevance and factuality metrics. This technique’s
performance in ROUGE scores and factuality as-
sessments (AlignScore and SummaC) was superior,
highlighting its effectiveness in generating concise
and accurate summaries directly from the abstracts.
However, the readability scores were lower, likely
because abstracts are inherently complex and may
not be easily readable by a lay audience.

These findings are detailed in Table 1 illustrating
the performance metrics across different models
and configurations.

6 Conclusion

The comparative analysis of various Flan-T5 mod-
els and the PoA technique for summarizing biomed-
ical research articles has yielded insightful findings.
The Flan-T5 small model showed enhanced rel-
evance and readability metrics when trained on
combined PLOS and eLife datasets, though at the
expense of factuality. The Flan-T5 base model fur-
ther improved relevance and readability metrics
but also compromised factuality. Introducing a co-
sine learning rate scheduler to the Flan-T5 base

model improved readability and factuality metrics,
indicating a better balance in model performance.

Notably, the PoA technique, despite not involving
any training, outperformed all Flan-T5 models in
relevance and factuality metrics, demonstrating its
effectiveness in generating accurate and concise
summaries from abstracts. These results under-
score the importance of training strategies in devel-
oping effective summarization models, while also
highlighting the potential of simple preprocessing
techniques like PoA.

7 Future Scope

The future scope of this research includes augment-
ing the training datasets to encompass a broader
range of biomedical text per article, thereby enhanc-
ing the model’s generalizability across diverse ter-
minologies and styles. Advanced fine-tuning tech-
niques such as mixed precision training and curricu-
lum learning could be explored to further improve
performance in relevance, readability, and factu-
ality. Tailoring models for specific sub-domains
within biomedical research could improve accu-
racy and relevance for specialized fields. More-
over, creating comprehensive evaluation frame-
works that consider user satisfaction and practical
utility alongside traditional metrics will be essen-
tial. Addressing these avenues can significantly
advance the effectiveness and applicability of sum-
marization models for biomedical research articles.

8 Limitations

Although we experimented with text-to-text mod-
els like Flan-T5, extending our research to autore-
gressive large language models such as LLaMA
3(AI@Meta, 2024) could offer different advantages
and improvements in summarization tasks.
Our experiments focused on preprocessing tech-
niques and hyperparameter tuning, but the poten-
tial of prompt tuning with advanced models like
GPT-4(et al., 2023) and Gemini(Team et al., 2023)
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remains unexplored. Investigating prompt engi-
neering and tuning could enhance summarization
performance.
Additionally, we combined eLife and PLOS
datasets to train a single model, which may not cap-
ture the nuances of each dataset. Training separate
models for each dataset could yield more special-
ized and effective summarization capabilities.
Furthermore, our proposed technique might be
more effective when integrated into a more com-
plex pipeline to refine the generated summaries. Fu-
ture research should address these areas to enhance
the robustness and applicability of summarization
models.

9 Acknowledgements
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A Experiments with Various Schedulers

We finetuned the Flan-T5 base model with three
distinct schedulers: Cosine, Step, and Exponential.
The goal was to determine the impact of each sched-
uler on the model’s performance across multiple
metrics. In Table 2, Our experiments demonstrate
that the choice of scheduler can significantly im-
pact the performance of the Flan-T5 model in terms
of relevance, readability, and factuality. The Co-
sine scheduler performed best overall in relevance
metrics, while the Step scheduler excelled in read-
ability, and the Exponential scheduler achieved the
highest factuality scores.

B Experiments with Various Learning
Rates

In Table 3, We present the results of experiments
conducted to evaluate the performance of the Flan-
T5 base model with different learning rates. The
learning rates tested in these experiments were 1e-3,
1e-4, 5e-4, and 1e-5. The learning rate of 1e-3 gen-
erally provided the best balance across relevance
and readability metrics, while the learning rate of
1e-5 excelled in factuality.

C Experiments with and without
Preprocessing over Abstract (PoA)

In Table 4, the experiments demonstrate that the
PoA method has a nuanced impact on the perfor-
mance of the Flan-T5 base model. While it slightly
reduced some relevance metrics, it improved the

depth of content coverage and significantly en-
hanced factual accuracy. The readability metrics
presented mixed results, indicating that the pre-
processing step altered the text complexity and
structure. These findings suggest that while the
PoA method can enhance certain aspects of sum-
marization, it may need to be combined with other
techniques for optimal performance across all met-
rics.
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Relevance Readability Factuality

Model Scheduler ROUGE-1 ROUGE-2 ROUGE-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

Flan-T5 base Cosine 0.4277 0.1297 0.3942 0.8501 15.0451 10.6537 16.6125 52.3009 0.9122 0.8385

Flan-T5 base Step 0.4161 0.1233 0.3815 0.8495 14.7222 10.9538 16.5340 49.3804 0.9148 0.8417

Flan-T5 base Exponential 0.3571 0.0914 0.3332 0.8252 15.3144 8.4444 16.7020 40.3914 0.9294 0.8509

Table 2: Inference Results of Flan-T5 Models with Various Schedulers

Relevance Readability Factuality

Model Learning rate ROUGE-1 ROUGE-2 ROUGE-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

Flan-T5 base 1e-3 0.4277 0.1297 0.3942 0.8501 15.0451 10.6537 16.6125 52.3009 0.9122 0.8385

Flan-T5 base 1e-4 0.4099 0.1205 0.3766 0.8474 14.7894 10.9620 16.5964 48.0036 0.9294 0.8642

Flan-T5 base 5e-4 0.4172 0.1231 0.3833 0.8497 14.5144 10.8936 16.3596 49.7981 0.9052 0.8308

Flan-T5 base 1e-5 0.4114 0.1189 0.3784 0.8458 15.1296 10.8945 16.8266 49.3234 0.9388 0.8787

Table 3: Inference Results of Flan-T5 Models with Various Learning Rates

Relevance Readability Factuality

PoA (Preprocessing over Abstract) ROUGE-1 ROUGE-2 ROUGE-L BERTScore FKGL DCRS CLI LENS AlignScore SummaC

No 0.4323 0.1315 0.3989 0.8484 14.8658 11.1500 16.5704 50.4200 0.9486 0.9204

Yes 0.4302 0.1327 0.3965 0.8571 15.5542 11.1486 17.2919 37.4521 0.9914 0.944

Table 4: Comparison of Performance with and without POA Method
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Abstract

Lay summarization aims to generate summaries
of technical articles for non-experts, enabling
easy comprehension for a general audience.
The technical language used in research of-
ten hinders effective communication of scien-
tific knowledge, making it difficult for non-
experts to understand. Automatic lay summa-
rization can enhance access to scientific liter-
ature, promoting interdisciplinary knowledge
sharing and public understanding. This has
become especially important for biomedical ar-
ticles, given the current global need for clear
medical information. Large Language Mod-
els (LLMs) (Yao et al., 2024) , with their re-
markable language understanding capabilities,
are ideal for abstractive summarization, help-
ing to make complex information accessible
to the public. This paper details our submis-
sions to the BioLaySumm 2024 Shared Task:
Lay Summarization of Biomedical Research
Articles (Goldsack et al., 2024). We fine-tune
and evaluate sequence-to-sequence models like
T5 across various training dataset settings and
optimization methods such as LoRA (Hu et al.,
2021b) for lay summarization. Our submission
achieved the 53rd position overall.

1 Introduction

Scientific research aims to advance knowledge, but
a major challenge is the lack of domain-specific
knowledge among the public. Technical reports
and research articles are often incomprehensible
to non-experts, hindering knowledge dissemina-
tion. Lay summarization addresses this by gen-
erating factual, readable summaries of technical
texts for non-experts (Chaturvedi et al., 2020). In
the biomedical field, lay summarization is crucial
due to its highly technical content involving com-
plex medical terms and detailed research findings.

* Dept. of Data Science & Computer Applications
† Equal Contribution
‡ Dept. of Computer Science & Engineering

Access to clear medical information is essential
for informed health decisions. Misunderstandings
or a lack of access can lead to poor decisions, in-
creased anxiety, and a general distrust of medical
advice (Guo et al., 2021). Recent advancements in
large language models (LLMs) (Yao et al., 2024)
and autoregressive LLMs (Chen et al., 2023) like
ChatGPT, Gemini, Mistral, and Llama have shown
significant potential. With their large-scale pre-
training, these models can generate high-quality,
contextually relevant summaries that are informa-
tive and accessible. However, they are computa-
tionally expensive and often require fine-tuning for
specific tasks, needing substantial computational re-
sources and energy. Sequence-to-sequence models
(Chiu et al., 2018) provide a promising alternative,
addressing these computational challenges. With
an encoder-decoder structure, these models effi-
ciently handle input and output sequences, making
them well-suited for summarization (Kouris et al.,
2021). They are more computationally efficient
than LLMs, requiring fewer resources while deliv-
ering high performance. This paper describes our
approach to the BioLaySumm 2024 Shared Task:
Lay Summarization of Biomedical Research Ar-
ticles (Goldsack et al., 2024). We fine-tune and
evaluate sequence-to-sequence models like T5 for
the task of lay summarization (Challagundla and
Peddavenkatagari, 2024) across various training
dataset settings and optimization methods such as
LoRA (Hu et al., 2021b). Our final submission
to this task is a LoRA-based Flan-T5-Base model
(Rusnachenko and Liang, 2024), which secured us
the 53rd position on the leaderboard.

2 Background and Previous Works

2.1 Problem and Data Description

The BioLaySumm shared task at the BioNLP Work-
shop of ACL 2024(Goldsack et al., 2024) focuses
on the abstractive summarization of biomedical ar-
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Attributes Values
Article In the USA , more deaths happen...
Headings Abstract, Introduction...
Keywords epidemiology and global health...
Id elife-35500-v1...

Table 1: Text Samples from eLife Training dataset with
their corresponding attributes

ticles. The goal is to generate summaries that are
accessible to non-expert audiences by including
more background information and using less tech-
nical terminology, effectively creating a “lay sum-
mary.” Task Definition: Given an article’s abstract
and main text, participants are required to train
a model (or models) to generate a lay summary.
Two separate datasets, derived from the biomedical
journals PLOS and eLife, are provided for model
training and will be used for evaluation. For the
final evaluation, submissions will be ranked based
on their average performance across both datasets.

BioLaySumm offers two datasets from well-
respected scientific journals: the Public Library
of Science (PLOS) and eLife. Each dataset pro-
vides pairs of original research articles along with
their corresponding summaries, written by scien-
tists specifically for a public audience, as indicated
in Table 1. The PLOS dataset is the larger of the
two, containing 24,773 instances for training, 142
for testing, and 1,376 for validation. The eLife
dataset contains 4,346 instances for training, 142
for testing, and 241 for validation, as shown in the
Table 2. Each dataset includes train, validation, and
test sets in the form of JSONL files. The eLife sum-
maries have an average length of around 300-350
words, whereas the PLOS summaries are shorter,
averaging around 160-200 words (Goldsack et al.,
2022).

2.2 Automatic Text Summarization
Summarization involves condensing large amounts
of text into key points. Extractive summarization,
like underlining key passages in a textbook, ex-
tracts important sentences directly from the origi-
nal text. This method is simpler and ensures factual
accuracy, but the summaries may lack coherence
(Neto et al., 2002). On the other hand, Abstractive
summarization aims to understand and rephrase the
main ideas in a new, concise way, offering more
readable summaries but potentially introducing er-
rors if the model misinterprets the original text
(Gupta and Gupta, 2019). It goes beyond copy-

Dataset Training Testing Validation
PLOS 24,773 142 1,376
eLife 4,346 142 341

Table 2: Frequency of Task labels in dataset

ing sentences, striving to grasp the core message
of a text. Traditional summarization approaches
typically fall into two categories: extractive meth-
ods that select and combine important sentences
from the source text, and abstractive methods that
generate entirely new text that captures the main
ideas. This field has seen significant progress with
transformer-based methods excelling at understand-
ing complex relationships in text. Recently, large
language models (LLMs) (Alberts et al., 2023) uti-
lizing autoregressive techniques have emerged as a
powerful approach, offering the ability to not only
summarize but also generate creative text formats
(Poornash et al., 2023).

2.3 Biomedical Lay Summarization
2.3.1 Biomedical Summary Corpora
In the field of deep learning, large collections of
text, known as corpora (Stubbs, 2004), are crucial
for training language models. These datasets help
machines learn the patterns, meaning, and struc-
ture of language, thereby improving their ability
to understand and generate text for tasks such as
sentiment analysis or machine translation (Gilquin
and Gries, 2009). Instead of creating a new corpus
from scratch, focus on utilizing existing collections
of scientific articles alongside their corresponding,
simplified summaries written for the general pub-
lic. The BioLaySumm datasets (PLOS and eLife)
are built by extracting these paired texts from the
corpora. These datasets then become the founda-
tion for training and evaluating models that can
automatically generate clear summaries of scien-
tific research articles for a non-scientific audience
(Goldsack et al., 2022).

2.3.2 Sequence-to-sequence models
Significant research has utilized sequence-to-
sequence (seq2seq) models (Sriram et al., 2017) for
generating lay summaries of biomedical research
articles. Leveraging pre-trained models like T5 and
BART (Colak and Karadeniz, 2023), researchers
have explored methods to effectively capture the
complexities of biomedical language and translate
it into clear summaries for the public. Another area
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of focus involves adapting Transformers (Dandan
et al., 2023) by incorporating biomedical domain
knowledge, such as using pre-trained models on
scientific text or knowledge graphs, to enhance the
model’s understanding of scientific concepts. Ad-
ditionally, research (Fan et al., 2018) investigates
controllable summarization with seq2seq models,
allowing researchers to tailor summaries to specific
needs like factual accuracy or readability (Sriram
et al., 2017).

2.3.3 Generative Pre-trained Transformers
Generative Pre-trained Transformers (GPT) (Zhu
and Luo, 2022) are advanced auto-regressive trans-
former models trained on vast amounts of data,
enabling them to generate human-like text and per-
form various natural language understanding tasks
with high accuracy and efficiency (Luo et al., 2022).
Their strong performance is attributed to the qual-
ity of the training dataset and their autoregressive
nature, where the input serves as the "prefix" of the
output. However, to maximize their performance,
fine-tuning on specific downstream tasks is neces-
sary, which can be computationally expensive.

2.3.4 Infusing External Knowledge
Integrating external knowledge into models (Paul-
heim, 2017) involves incorporating domain-
specific data or structured information, which
boosts performance and contextual comprehension
for more accurate predictions and insights. This
approach enriches deep learning models (Meng-
hani, 2023) with additional context and exper-
tise, enhancing their robustness and interpretability
(Koncel-Kedziorski et al., 2022). One widely used
technique involves integrating external knowledge
graphs (Paulheim, 2017) for downstream tasks like
summarization. This leverages semantic relation-
ships to better understand and contextualize con-
cepts within summaries (Goldsack et al., 2023).

2.4 Current State of NLP

State-of-the-art foundation large language models
(LLMs) like ChatGPT (Firat, 2023), Gemini (Khur-
dula et al., 2024), and LLaMA (Touvron et al.,
2023) are revolutionizing how we interact with text.
These LLMs are auto-regressive in nature and can
generate various creative text formats and trans-
late languages with impressive fluency. However,
they still require fine-tuning to achieve state-of-the-
art performance in downstream tasks. This can
be done by optimizing on a downstream dataset

and task or by using methods involving prompt-
ing. Fine-tuning these models is computationally
expensive due to their large number of parameters.
Techniques such as Low-Rank Adaptation of Large
Language Models (LoRA) (Hu et al., 2021b) and
Parameter-Efficient Fine-Tuning (PEFT) (Sabry
and Belz, 2023) address this challenge. These meth-
ods enable fine-tuning by freezing the pre-trained
model weights and injecting trainable rank decom-
position matrices into each layer of the Transformer
architecture, greatly reducing the number of train-
able parameters for downstream tasks.

3 System Overview

Our approach to the task involved fine-tuning
sequence-to-sequence transformer-based models
(Ramachandran et al., 2016), such as T5, across
various training dataset settings and optimization
methods like LoRA on the PLoS and eLife datasets.
The models were evaluated based on the readability
(Paasche-Orlow et al., 2003), relevance (Montague
and Aslam, 2001), and factuality (Pagnoni et al.,
2021) of the summaries generated. The model
demonstrating the best performance across these
three evaluation criteria was chosen as our final
submission for the task.

3.1 Data Pre-Processing
Each sample in the dataset has attributes as illus-
trated in Table 1. These were utilized to design a
prompt structured as follows:

Provide a lay summary of the following
article, which includes keywords <key-
words>: <article>.

For processing text, the T5 tokenizer was used with
a maximum input of 1024 tokens. LoRA-based
models, on the other hand, could handle up to 2048
tokens as input (Seye et al., 2018). In all cases, the
output was capped at 512 token.

3.2 Fine-Tuning Transformers
T5 is a text-to-text Transformer architecture that
treats all tasks, like translation and classification,
as generating target text from input text. It differs
from BERT by adding a causal decoder and using
various pre-training tasks instead of the cloze task.
We trained the sequence-to-sequence transformer
T5 on the given datasets using different approaches.
This included training solely on either the eLife or
PLoS dataset, followed by inference on the evalu-
ation and test sets. Alternatively, we also trained
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Model
Name

Data
Type

Relevance Readability Factuality
R-1 R-2 R-L BTs FL DS CI LS As Sc

T5-small 1 0.297 0.086 0.269 0.837 11.201 9.913 12.786 44.223 0.794 0.741
2 0.296 0.087 0.268 0.838 11.351 10.158 13.135 48.178 0.840 0.766

LORA
Flan T5-base 1 0.296 0.087 0.268 0.838 11.351 10.158 13.135 48.178 0.840 0.766

Table 3: Results of Experimented Models on the Test Set.’Data type’ column indicates the number of models used:
-1 (unified) or 2 (one for each dataset). Here, R=ROUGE F1, BTs=BERTScore, FL=Flesch-Kincaid Grade Level,
DS=Dale-Chall Readability Score, CI=Coleman-Liau Index, LS=LENS metric, As=AlignScore, and Sc=SummaC.

the model on a combined dataset consisting of both
train sets before performing inference. Flan-T5
is an extension of T5 (Rusnachenko and Liang,
2024) that has been further fine-tuned on a diverse
set of instructions, enhancing its performance on
various downstream tasks, including summariza-
tion. To fine-tune this model, we employed the
Parameter Efficient Fine Tuning Method, specifi-
cally the Low-Rank Adaptation (LoRA) technique
(Hu et al., 2021a), which efficiently fine-tunes pre-
trained models by adapting a small number of
model parameters. This method significantly re-
duces computational requirements while improving
performance.

3.3 Implementation Details

The experiments were conducted with a learning
rate of 1e-3. For fine-tuning the T5-base (Guan
et al., 2024) using LORA (Hu et al., 2021a), we
selected a rank of 32, a LoRA alpha value of 32,
and a LoRA dropout of 0.05. The T-5 small model
was trained for 10 epochs while the Flan-T5 model
was trained for 2 epochs. All experiments were
carried out on a P100 GPU via Kaggle.

4 Analysis & Results

The challenge provides two individual datasets
of different distributions for training, evaluation,
and testing. Details about the distribution of
the datasets are illustrated in Table 2. To eval-
uate the lay summary, we have taken into ac-
count three major factors: readability, relevance,
and factuality. Readability scores, i.e., Flesch-
Kincaid Grade Level (FKGL), Dale-Chall Read-
ability Score (DCRS), Coleman-Liau Index (CLI),
and LENS assess how easy summaries are to un-
derstand for a lay audience. Relevance scores i.e.,
ROUGE (1, 2, and L) and BERTScore measure
how well summaries capture key points from the
original research. Factuality scores i.e., AlignScore,
SummaC evaluate how accurately summaries re-
flect factual information.

The detailed results of our experiments are pre-
sented in Table 3. Although none of the models
achieved high scores, this can be attributed to the
lack of constraints and the limited training and con-
text length of the models. This leads to all models
converging to similar scores despite differences
in model sizes and training methodologies. How-
ever, it is evident that training on both datasets
together improves the readability and factuality of
the models. This improvement is also observed
when fine-tuning a large model using parameter-
efficient fine-tuning techniques like LORA (Hu
et al., 2021b) , which is originally pre-trained on
a large text corpus. This might be due to the fact
that PEFT (Pu et al., 2023) techniques enable large
language models to learn more effectively while re-
taining previously acquired knowledge. However,
this claim for lay summarization would require fur-
ther experiments to validate.

5 Conclusion

We fine-tune and evaluate sequence-to-sequence
models like T5 for the task of lay summarization
(Challagundla and Peddavenkatagari, 2024) across
various training dataset settings and optimization
methods such as LoRA. We extended our evalu-
ation beyond traditional accuracy metrics to en-
compass real-world application considerations like
relevance (Montague and Aslam, 2001) , readabil-
ity (Paasche-Orlow et al., 2003) , and factuality
(Pagnoni et al., 2021) . Our analysis revealed inter-
esting trade-offs of fine-tuning pre-trained models
using traditional and parameter-efficient methods
like LoRA (Hu et al., 2021b). Future work should
explore the impact of PEFT-similar models for lay
and abstractive summarization.

Limitations

Due to computational resource limitations, we were
able to conduct only a limited number of experi-
ments and were constrained by input token limits.
Our access was limited to the Kaggle P100 GPU,
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for which we are grateful. This restriction led us to
primarily experiment with smaller model sizes, po-
tentially missing the benefits of larger architectures.
Our hyperparameter tuning was not extensive, and
as a result, our models’ performance fell short of
high scores on evaluation metrics. This indicates
substantial room for improvement. We focused nar-
rowly on sequence-to-sequence models, and these
limitations present clear opportunities for future
research to build upon and investigate.
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Abstract

Lay summaries play a crucial role in making
scientific research accessible to a wider audi-
ence. However, generating lay summaries from
lengthy articles poses significant challenges.
We consider two approaches to address this is-
sue: Hard Truncation, which preserves the most
informative initial portion of the article, and
Text Chunking, which segments articles into
smaller, manageable chunks. Our workflow en-
compasses data preprocessing, augmentation,
prompt engineering, and fine-tuning large lan-
guage models. We explore the influence of pre-
trained model selection, inference prompt de-
sign, and hyperparameter tuning on summariza-
tion performance. Our methods demonstrate
effectiveness in generating high-quality, infor-
mative lay summaries, achieving the second-
best performance in the BioLaySumm shared
task at BioNLP 2024.

1 Introduction

Biomedical publications serve as a critical channel
for disseminating cutting-edge research findings
on a wide range of health-related topics. While
biomedical publications are essential for advanc-
ing medical knowledge and public health aware-
ness, the technical terminology and lack of back-
groud information often render them inaccessible
to non-expert audiences(Guo et al., 2021). The
BioLaySumm shared task addresses this need by
developing effective models to generate lay sum-
maries of biomedical articles aimed at non-expert
audiences(Goldsack et al., 2024).

The challenge in the BioLaySumm shared task
is to distill complex biomedical content into lay
summaries that are both comprehensible and en-
gaging to non-expert audiences. Large language
models (LLMs) have shown remarkable capabili-
ties in generating coherent and contextually accu-
rate texts(Naveed et al., 2023), which could refor-

*These authors contributed equally to this work.

File Key Min Max Mean Median

eLife
lay summary 225 893 478 473

article 444 54,539 16,555 15,866

PLOS
lay summary 17 674 268 270

article 1,046 37,770 10,289 10,029

Table 1: Token length statistics for the eLife and PLOS
datasets, obtained using the Mistral tokenizer.

mulate complex technical information into simpler
narratives(Turbitt et al., 2023). Thus, LLMs are
ideal for the generation of lay summaries. LLMs
have witnessed the great advancement, each show-
casing unique capabilities and specialized applica-
tions(Zhao et al., 2023), such as Mistral(Jiang et al.,
2023), Qwen(Bai et al., 2023) and Llama(Touvron
et al., 2023).

To tackle the challenge of lengthy articles in
the BioLaySumm shared task, we consider two ap-
proaches: Hard Truncation and Text Chunking. We
preprocess the data using these methods, apply data
augmentation and prompt engineering, and fine-
tune large language models on the task-specific
data. We explore the effect of pretrained mod-
els, inference prompts, and hyperparameters on
the quality of the generated lay summaries. Our
experiments show that our approach effectively ex-
tracts key information and produces informative,
easy-to-understand summaries.

2 Related Work

2.1 Large Languange Model Generation

Recent advancements in generation models have
been dominated by the emergence of LLMs such
as Mistral(Jiang et al., 2023), Llama(Touvron et al.,
2023) and GPT-4(OpenAI et al., 2024). In the do-
main of biomedical summarization, LLMs have
been adapted to interpret and summarize complex
scientific texts, providing a foundation for tasks
like BioLaySumm (Brown et al., 2020). Moreover,
text chunking, an essential natural language pro-
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Figure 1: Text Chunking processes articles based on their token count. For articles with fewer than 15k tokens,
the original content is preserved. Articles exceeding 15k tokens are divided into chunks, and the lay summary is
generated using an LLM for each chunk. The generated lay summary chunks are then merged and used as input,
with the original lay summary serving as the output.

cessing (NLP) technique, plays a critical role in Bi-
oLaySumm by breaking down large texts into man-
ageable chunks(Reddy et al., 2023). This process
enhances the accuracy of embedded content and
improves important information retrieval, thereby
enhancing the efficiency and quality of text retrieval
and generation in the biomedical field.

2.2 Data Augmentation

Data augmentation (Shorten et al., 2021) in LLMs
involves enriching the training dataset with arti-
ficially generated samples, which enhances the
model’s robustness and generalization capabilities.
In biomedical summarization, data augmentation
techniques such as back-translation (Sugiyama and
Yoshinaga, 2019) and paraphrasing(Mi et al., 2022)
have been used to expand the diversity of training
examples, helping models to better handle a range
of linguistic structures and terminologies found in
medical texts (Li et al., 2022).

3 Data Preprocessing

3.1 Dataset

The dataset for BioLaySumm shared task is a
combination of two biomedical datasets, PLOS
and eLife(Goldsack et al., 2022). These datasets
contain research articles and corresponding lay
summaries written by experts .The diversity of
these datasets presents a challenge for participants
in developing models that effectively summarize
biomedical literature for a general audience.

Between the two provided datasets, PLOS is
larger, with 24,773 instances for training and 1,376

for validation, while eLife has 4,346 training in-
stances and 241 validation instances.

3.2 Optimizing Input Article

Given the computational constraints, we limit the
maximum context length to 15k tokens. Table 1
presents the token length statistics in the eLife and
PLOS datasets. The statistics reveal that a con-
siderable number of articles surpass the 15k token
limit. We evaluate two approaches to address this
challenge when applying Supervised Fine-Tuning
(SFT) to adapt pretrained language models for spe-
cific tasks: Hard Truncation and Text Chunking.

Hard Truncation: This approach truncates arti-
cles, keeping only the first 15k tokens. It relies on
the typical structure of articles, where crucial infor-
mation is often presented initially. Truncating the
latter part minimizes the loss of critical information
while using only the provided data corpus. How-
ever, for longer articles, it may lead to information
loss and potentially cause the model to generate
content not present in the input.

Text Chunking: As shown in Figure 1, Text
Chunking uses Langchain’s Text Splitters* to di-
vide articles into chunks of 15k tokens or less. This
ensures the entire article is used in the SFT data.
However, chunking introduces artificial boundaries
within the text, which may disrupt the natural flow
and context of the article, potentially impacting
model performance. It also increases the number
of training data entries, as a single entry may be

*https://python.langchain.com/v0.1/docs/
modules/data_connection/document_transformers/
recursive_text_splitter/
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split into multiple chunks. This could result in
longer articles having a disproportionate influence
on the training process, as they contribute more
chunks to the dataset.

We evaluate both methods on different datasets
to determine the most optimal approach for each.

3.3 Data Augmentation
Hard Truncation does not introduce new content,
but Text Chunking splits articles into fragments
that do not match the original lay summaries. To
address this issue, we use data augmentation with
Mixtral 8x7B (Jiang et al., 2024) (hereafter Mix-
tral). Mixtral generates lay summaries for these
fragments by finding the corresponding content
from the full-text lay summary. It uses the original
text as much as possible.

To include the full-text lay summary in the train-
ing data, we use the Mixtral-generated summaries
as input and the original full-text summary as out-
put. This incorporates the full-text summary into
the training process for Text Chunking.

Data augmentation with Mixtral generates sum-
maries that accurately correspond to the article
fragments from Text Chunking. It also ensures
the full-text summary is included in the training
data.

3.4 Prompt Engineering for Data Segregation
For the Hard Truncation approach, a uniform
prompt is used for all data entries. However, the
Text Chunking method requires different prompts
for three data types:

Unmodified Data: Articles not exceeding 15k
tokens are retained directly and form the main por-
tion of the training data. The prompt used for this
data type is consistent with the one used during
inference.

Augmented Data from Chunking: For articles
split into chunks, the input text consists of the arti-
cle chunk, while the output text is generated using
Mixtral. A different prompt is employed during
training to differentiate it from unmodified data.

Aggregated Summary Data: The outputs from
augmented data from chunking are concatenated in
the article’s narrative order. This concatenated text
serves as the input, and the original lay summary is
used as the output. The prompt instructs the model
to generate a concise lay summary from the overly
long and redundant input.

The specific prompts used for each data type are
presented in Table 6 of the Appendix.

4 Metrics

To thoroughly evaluate the quality of the generated
lay summaries, we use a diverse set of metrics that
capture various aspects of the summarization task:

Relevance: We use ROUGE (1, 2, and L) (Lin,
2004) and BERTScore (Zhang et al., 2019) to eval-
uate the relevance of the generated summaries to
the original articles. Higher scores indicate better
performance for these metrics.

Readability: To assess the readability of the gen-
erated summaries, we utilize several widely-used
metrics: Flesch-Kincaid Grade Level (FKGL) (Kin-
caid et al., 1975), Dale-Chall Readability Score
(DCRS) (Chall and Dale, 1995), Coleman-Liau In-
dex (CLI) (Coleman and Liau, 1975), and LENS
(Maddela et al., 2022). For FKGL, DCRS, and CLI,
lower scores indicate better readability, while for
LENS, higher scores are preferable.

Factuality: Ensuring the factual correctness of
the generated summaries is crucial in the biomed-
ical domain. We employ AlignScore (Zha et al.,
2023) and SummaC (Laban et al., 2022) to mea-
sure the factual consistency between the generated
summaries and the source articles. Higher scores
on these metrics indicate better factual alignment.

5 Experiments

We conduct a series of experiments to investigate
the impact of various factors on our lay summa-
rization model’s performance. Due to the PLOS
validation set’s size, we use the first 142 entries as
our validation subset.

5.1 Impact of the Pretrained Model

We compare the performance of three pretrained
language models: Qwen1.5-14B-Chat, Mistral-
7B-Instruct-v0.2, and Meta-Llama-3-8B-Instruct.
Each model is fine-tuned on the Hard Truncation
dataset for one epoch with a learning rate of 1e-5
and a global batch size of 64. We use a complex
prompt during inference, described in Section 5.2.

Table 2 shows the results. Meta-Llama-3-8B-
Instruct achieves the highest LENS score but per-
forms worse on other metrics. Qwen1.5-14B-Chat
and Mistral-7B-Instruct-v0.2 exhibit comparable
performance, with the latter having fewer param-
eters. Based on these findings, we select Mistral-
7B-Instruct-v0.2 as our base model for subsequent
experiments.
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Model ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC
Qwen1.5-14B-Chat 0.4842 0.156 0.454 0.8677 11.537 9.559 13.445 54.865 0.7804 0.6876
Mistral-7B-Instruct-v0.2 0.4959 0.1640 0.4654 0.8672 12.054 9.4289 13.5558 52.0932 0.7954 0.7070
Meta-Llama-3-8B-Instruct 0.473 0.1464 0.4391 0.8581 12.0817 9.8036 13.5764 66.8112 0.739 0.6816

Table 2: Experiment results of different pretrained models. For FKGL, DCRS, and CLI, lower scores are better; for
all other metrics, higher scores are better.

Prompt ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC
Simple Prompt 0.4804 0.1521 0.4514 0.8661 11.936 9.3647 13.407 54.716 0.7783 0.6716
Complex Prompt 0.4959 0.1640 0.4654 0.8672 12.054 9.4289 13.5558 52.0932 0.7954 0.7070
One-shot Prompt 0.4755 0.1496 0.4462 0.8652 12.104 9.4766 13.5491 54.232 0.7799 0.6694

Table 3: Experiment results of different inference prompts.

5.2 Impact of Inference Prompts

We investigate the impact of three distinct inference
prompts on model performance: a simple prompt,
a complex prompt, and a one-shot prompt. The
specific prompts are detailed in Table 7.

Experiments using the Mistral-7B-Instruct-v0.2
model (Table 3) show that the complex prompt
yields superior results compared to the simple
prompt. The complex prompt improves relevance
and factuality but slightly decreases readability.
Surprisingly, the one-shot prompt underperforms
the other prompts, possibly due to the lengthy ex-
ample reducing content retention for the predicted
sample. We use the complex prompt for subsequent
experiments.

5.3 Impact of Hyperparameters

In the process of hyperparameter optimization, we
drew inspiration from the experimental configura-
tions employed in the Llama2 study. Our inves-
tigation focused on two critical hyperparameters:
the number of training epochs and the learning
rate. Specifically, we conducted a series of fine-
tuning experiments using the Mistral-7B-Instruct-
v0.2 model. The experimental design was as fol-
lows:

1. Single-epoch training with learning rates of
1e-5 and 2e-5.

2. Comparative analysis of single-epoch and
dual-epoch training, both utilizing a learning rate
of 1e-5.

This systematic approach allowed us to assess
the individual and combined effects of epoch count
and learning rate on model performance. By bench-
marking against the Llama2 configurations, we
aimed to leverage established best practices while
adapting them to our specific task requirements.
The results of these experiments provided valuable
insights into the optimal hyperparameter settings

for our fine-tuning process, enabling us to strike a
balance between model performance and computa-
tional efficiency.

5.4 Impact of Data Augmentation

To address the challenge of articles exceeding 15k
tokens, we developed and evaluated two distinct
methods: Hard Truncation and Text Chunking.
Hard Truncation preserves the original lay sum-
mary style but risks omitting content from the latter
portions of the article. Conversely, Text Chunking
ensures comprehensive inclusion of the entire ar-
ticle in the training set, albeit with the potential
introduction of noise during data augmentation.

The application of these methods is contingent
upon various factors. Hard Truncation may be
more appropriate when less critical information
is concentrated at the article’s end or when sophis-
ticated models for data transformation are unavail-
able. However, Text Chunking could potentially
yield superior results when crucial content is dis-
tributed throughout the article.

To empirically assess the impact of these data
processing methods, we fine-tuned separate mod-
els using datasets prepared with Hard Truncation
and Text Chunking. The results, presented in Table
5, reveal that the Hard Truncation-trained model
exhibits superior performance on the eLife dataset,
while the Text Chunking-trained model demon-
strates enhanced efficacy on the PLOS dataset.
Leveraging these findings, we implemented an en-
semble approach combining both models for our
final submission. This strategy proved effective,
securing 3rd place in relevance and 2nd place in
the overall ranking of the competition.

6 Discussion

This paper introduces two methods for handling
long input sequences in the BioLaySumm task and
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Epoch Learning Rate ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC
1 1e-5 0.4959 0.1640 0.4654 0.8672 12.054 9.4289 13.5558 52.0932 0.7954 0.7070
2 1e-5 0.4914 0.1549 0.4596 0.8675 12.217 9.576 13.58 55.166 0.76 0.6398
1 2e-5 0.4866 0.154 0.4544 0.866 12.551 9.7017 13.8178 52.575 0.7906 0.6587

Table 4: Experiment results of different hyperparameters.

Dataset DataType ROUGE1 ROUGE2 ROUGEL BERTScore FKGL ↓ DCRS ↓ CLI ↓ LENS AlignScore SummaC

eLife
Hard Truncation 0.5153 0.1560 0.4904 0.8677 9.9021 8.2115 11.6322 62.9878 0.6746 0.5714
Text Chunking 0.4806 0.1451 0.4589 0.8642 9.3846 7.9235 11.0592 61.2874 0.6961 0.5831

PLOS
Hard Truncation 0.4763 0.1720 0.4404 0.8666 14.2059 10.6464 15.4795 41.1988 0.9162 0.8426
Text Chunking 0.4748 0.177 0.4400 0.8680 14.644 10.77 15.864 40.742 0.9558 0.8747

Table 5: Experiment results of different data augmentation methods on eLife and PLOS dataset.

investigates the impact of various factors on gener-
ating lay summaries. Fine-tuning the Mistral-7B-
Instruct-v0.2 model with specific settings yields
strong performance.

Hard Truncation and Text Chunking’s effective-
ness varies depending on the target dataset. Hard
Truncation may lose crucial information from later
parts of long articles, potentially affecting summary
completeness. Text Chunking, while preserving all
content, introduces artificial boundaries that could
disrupt context and lead to inconsistencies in gen-
erated summaries. Additionally, Text Chunking
may result in longer articles having disproportion-
ate influence on the training process. We use data
augmentation with Mixtral, which generates sum-
maries for text chunks. However, this approach
may bias the model towards Mixtral’s summariza-
tion style and introduce inconsistencies between
fragment summaries and full-text summaries.

Future research could explore larger pretrained
models and more sophisticated strategies for han-
dling lengthy inputs. Section-specific summariza-
tion techniques could also improve performance.

Carefully designing inference prompts and se-
lecting appropriate hyperparameters are crucial
when fine-tuning pretrained language models for
specific tasks. We hope our work inspires further re-
search and contributes to developing effective tools
for making scientific knowledge more accessible.

7 Limitation

In this study, we conducted a comprehensive anal-
ysis of various factors influencing model perfor-
mance, including pre-trained models, hyperparam-
eters, and data processing techniques. Our investi-
gation, however, did not extend to examining the
differential impact of distinct article sections on
summary generation. This aspect warrants further
exploration, as the introduction and conclusion sec-
tions often encapsulate the core content of an article

and may hold greater significance for summariza-
tion, while body sections typically provide more
granular details.

Additionally, to enhance the model’s proficiency
in specialized biological domains, future work
could investigate the efficacy of incremental pre-
training. This approach may potentially improve
the model’s ability to elucidate technical terminol-
ogy in more accessible language, thereby enhanc-
ing the overall quality and comprehensibility of
generated summaries.

These unexplored avenues present promising di-
rections for future research, aimed at refining and
advancing the performance of summarization mod-
els in specialized scientific domains, particularly in
the field of biology.
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A Prompts

In this sections, we delineate the specific content of
the prompts employed in our experimental frame-
work.
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Data Type Prompt
Unmodified Data Generate a 300-400 word abstract for the given biology research

article. Include research question, methods, main findings, impli-
cations, and conclusions. Use precise scientific terminology, log-
ical structure, and active voice. Ensure clarity and accuracy.Here
is the article:{input}. Please give me the clear abstract.

Augmented Data from Chunking You will be given a section of a scientific article in the field
of biology. Your task is to generate a concise and accurate
summary of the key points and findings presented in this section.
The summary should capture the main ideas, methods, results,
and conclusions, while maintaining the scientific context and
terminology used in the original text.Here is the article:{input}

Aggregated Summary Data You will receive a summary of a biology research article gen-
erated by an AI model. However, the summary is too long and
needs further refinement. Your task is to create a more concise
version, focusing on the most critical information. The refined
summary should:1. Maintain key findings, conclusions, and sci-
entific context.2. Use precise, domain-specific terminology.3.
Follow a logical structure highlighting main points.4. Aiming
for 300-400 words.5. Omit unnecessary details while preserving
the core message.6. Use clear, concise language for better read-
ability.By adhering to these guidelines, create a highly refined
summary that effectively conveys the essence of the original
article.Here is the article:{input}

Table 6: Different prompts used for each data type in the experiments.

Prompt Type Prompt
Simple Prompt Please read the article given and write an easy-to-understand summary.Given

article:{input}
Complex Prompt Generate a 300-400 word abstract for the given biology research article. Include

research question, methods, main findings, implications, and conclusions. Use
precise scientific terminology, logical structure, and active voice. Ensure clarity
and accuracy.Here is the article:{input}. Please give me the clear abstract.

One-Shot Prompt Generate a 300-400 word abstract for the given biology research article. In-
clude the research question, methods, main findings, implications, and conclu-
sions. Use precise scientific terminology, a logical structure, and active voice.
Ensure clarity and accuracy. The abstract should be written in the following
format:{example}.Here is the full text of the research article to be summa-
rized:{input}. Please provide a clear and professional abstract based on the
article provided. Thank you!

Table 7: Prompt instructing the model to generate a concise lay summary from an overly long and redundant input
summary

844



Author Index

Abdulle, Yusuf, 167
Abrams, Zachary B., 318
Achara, Akshit, 493
Agarwal, Vibhu, 342
Ahuir, Vicent, 755
Ai, Xuguang, 724
Alvarez-Valle, Javier, 597
Amir, Silvio, 50
Amod, Akhil, 39
Antonio Cordero, José, 144
Antony, Anson, 719
Anwer, Rao Muhammad, 440
Apon, Amy, 548
ARAMAKI, Eiji, 1
Arsenyan, Vahan, 295
Aussavavirojekul, Pubordee, 635

Bai, Wenjia, 328
Baker, Simon, 212
Ballester, Maria Rosa, 144
Bannur, Shruthi, 597
bao, siyu, 837
Bartko, Andrew, 398
Bašaragin, Bojana, 536
Beck, Daniel, 486
Becker, Helmut, 105
Bhattarai, Kriti, 318
Bian, Jiang, 685
Blankemeier, Louis, 85
Bond-Taylor, Sam, 597
Boonnag, Chiraphat, 635
Bosselut, Antoine, 696
Boukil, Farouk, 696
Boulenger, Paul, 696
Bouzid, Kenza, 597
Boyle, Douglas, 740
Breger, Anna, 212
Bughdaryan, Spartak, 295
Burchardt, Aljoscha, 506

Cabrera Lozoya, Daniel, 514
Campanini, Diego, 608, 614
Caralt, Mireia Hernandez, 243
Cassano, Lorenzo, 536

Castro, Daniel C., 597
Cavalleri, Emanuele, 380
Cavedon, Lawrence, 409
Caverlee, James, 155
Ceballos-Arroyo, Alberto Mario, 50
Céspedes, Berta, 696
Chaffron, Samuel, 457
Chartash, David, 724
Chen, Aokun, 685
Chen, Qingyu, 155, 724
Chen, Zeming, 696
Chen, Zhihong, 85
Chen, Ziyi, 685
Cheng, Lechao, 155
Chinkamol, Amrest, 635
Chizhikova, Mariia, 804
Cholakkal, Hisham, 440
Chondros, Patty, 740
Chotsiri, Palang, 144
Clausel, Marianne, 202
Cohen, David, 277
Collins, William J., 85
Constant, Mathieu, 202
Conway, Mike, 486, 514, 740
Coubez, Xavier, 202

D’Alfonso, Simon, 514
Damm, Hendrik, 105, 769
de Hilster, David, 548
Dehal, Paramvir, 370
Delbrouck, Jean-Benoit, 85
Devereux, Barry, 664
Díaz-Galiano, Manuel Carlos, 804
Dinh, Minh Ngoc, 731
Dong, Bin, 449
Dowling, Jason, 99, 675

El Khettari, Oumaima, 457
Elberg, Rafael, 608, 614
Engel, Ryan, 427
Eryılmaz, Bahadır, 105

Falck, Fabian, 597
Fang, Shichao, 526
Farnan, Greg, 664

845



Farzi, Saeed, 266
Faure, Antonin, 696
Feldhus, Nils, 506
Fereydooni, Soraya, 724
Frayling, Erlend, 712
Frei, Johann, 570
Friedrich, Christoph M., 105, 769
Fytas, Panagiotis, 212

Ghosh, Soumitra, 266
Golan, Netanel, 474
Goldsack, Tomas, 122
Gonzalez Hernandez, Ferran, 144
Gonzalez Sanchez, Adrian, 780
Groza, Tudor, 380
Grune, Julianna, 506
Guo, Rui, 664
Gupta, Niralee, 342
Gupta, Shreya, 342

Hair, Kaitlyn, 486
Han, Yushui, 810
Harbecke, David, 25
Hardefeldt, Laura, 390
He, Daqing, 810
He, Yunzhen, 645
Hijazi, Hashem, 236
Ho, Edmond S.L., 624
Hocking, Jane, 740
Hogan, William, 398
Holgate, Ben, 526
Hom, Jason, 85
Hopkins, Benjamin, 85
Horn, Peter A., 769
Horowitz-Kugler, Zehavi, 277
Hsu, Chun-Nan, 398
Huang, Guangyan, 748
Huang, Thomas, 724
Hubig, Nina, 548
Hur, Brian, 390
Hurtado, Lluís-F., 755
Hyland, Stephanie L., 597

Idrissi-Yaghir, Ahmad, 105, 769
Ilan Ber, Ran, 277
Ilse, Maximilian, 597
Ittichaiwong, Piyalitt, 635

Jaafar, Ahmed, 182
Ji, Hui, 810
Ji, Yuelyu, 810
Jiang, Shanshan, 449
Johnston, Andrew, 85

Kanakarajan, Kamal raj, 786
Karimi, Sarvnaz, 236
Karotia, Akanksha, 762
Karthikeyan, T, 826
Ke, Yuhe, 155
Khan, Fahad, 440
Khan, Salman, 440
Khlaisamniang, Pitikorn, 635
Kilicoglu, Halil, 132
Kim, Hwanmun, 786
Kim, Yunsoo, 167
Kinchagawat, Jiramet, 635
Kloprogge, Frank, 144
Koontz, Jordan C., 658
Koopman, Bevan, 99, 675
Korhonen, Anna, 212
Korutla, Rajashekar, 719
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