
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 207–216
November 15, 2024 ©2024 Association for Computational Linguistics

Transformers Learn Transition Dynamics when Trained to Predict Markov
Decision Processes

Yuxi Chen* and Suwei Ma* and Tony Dear
Department of Computer Science

Columbia University
New York, NY 10027

{yc4041, sm5011, tbd2115}@columbia.edu

Xu Chen
Department of Electronic Engineering

Tsinghua University
Beijing, China 10084

chenxu323@tsinghua.edu.cn

Abstract

Language models have displayed a wide array
of capabilities, but the reason for their perfor-
mance remains a topic of heated debate and
investigation. Do these models simply recite
the observed training data, or are they able to
abstract away surface statistics and learn the
underlying processes from which the data was
generated? To investigate this question, we ex-
plore the capabilities of a GPT model in the
context of Markov Decision Processes (MDPs),
where the underlying transition dynamics and
policies are not directly observed. The model
is trained to predict the next state or action
without any initial knowledge of the MDPs or
the players’ policies. Despite this, we present
evidence that the model develops emergent rep-
resentations of the underlying parameters gov-
erning the MDPs.1

1 Introduction

Recently, large language models (LLMs) have
gained significant popularity and attention due to
their versatility and performance, including in writ-
ing code, engaging in meaningful conversations,
and much more. Many of these models, trained on
the simple principle of “predicting the next word,”
go on to become vastly capable polymaths. Yet the
reason behind how language models come to obtain
this performance remains a subject of continuous
debate and research.

Many have suggested, based on the extensive
number of parameters of these language models,
that their performance may result from merely
memorizing “surface statistics,” or external correla-
tions that do not necessarily reflect the underlying
data generation process. Such issues can arise, for
instance, when the pre-training corpora contains
frequently co-occurring words, which can be pre-
ferred over the right answer (Kang and Choi, 2023).

*equal contribution
1https://github.com/YuxiChen25/TF-MDP

Another instance in which a language model has
been shown to learn causal statistical dependencies
is due to dataset selection bias (McMilin, 2022).

It has also been suggested that language models
can construct world models—interpretable and in-
ternal characterizations of the environment from
which the data generating process is derived (Gold-
stein and Levinstein, 2024). Recent works have
shown that LLMs are able to develop internal rep-
resentations of concepts such as color (Abdou et al.,
2021) and direction (Patel and Pavlick, 2021).

A standard way to evaluate the emergence of in-
ternal representations of the world state in these
models is to assess them in a relatively well-
behaved, self-contained environment in which the
rules are clearly stated and understood. To illus-
trate, Toshniwal et al. (2021) have explored how
such models, trained on sequences of chess moves,
are able to predict valid chess moves with high ac-
curacy. The authors also suggest that the model
keeps track of the current board state for the pre-
diction step. Li et al. (2022) extended this idea by
exploring the internal representations of a GPT-2
variant trained on the game of Othello.

However, previous works have only investigated
how these models are able to internally identify
the current state and stop short of demonstrating
whether they are able to identify parameters gov-
erning the underlying data generation process. The
main goal of this paper is to take a step towards
filling in this gap in the context of Markov Decision
Processes (MDPs), where the sequence of states
and actions are generated by hidden, parameter-
ized policies and transition dynamics.

Specifically, we consider the synthetic and well-
understood game of ConnectFour for our inves-
tigation. First, we generate data in the form of
game transcripts where the both players follow a
policy guided by either Deep Q-Learning (DQL)
or Monte-Carlo Tree Search (MCTS). Then, we
train 3 transformer models each when the game

207

https://github.com/YuxiChen25/TF-MDP

transcript is represented using only the states (co-
ordinates of the played pieces) or actions (which
column the piece is placed in), hence totaling 12
transformers.

Next, we investigate whether the transformer
models trained on the game transcripts contain an
internal representation of the parameters governing
the transition dynamics, which takes the form of
either the players’ deep Q-Values or MCTS values.
We verify whether the model is able to identify
a salient representation when predicting the next
state or action conditioned on the partial transcript
seen thus far via probing—training classifiers to
predict the deep Q-values or MCTS values of the
current game state using the network’s internal ac-
tivations as input (Alain and Bengio, 2016; Tenney
et al., 2019). Using this probing technique, we
find ample evidence of these models being able to
internally represent the generative process despite
changing the transition dynamics and representa-
tion of the input data.

In summary, our contributions are twofold: 1)
we show evidence that transformer models contain
internal representations of the underlying transition
dynamics governing Markov Decision Processes
after trained to predict the next tokenized state or
action 2) we show that our result is robust to how
this process is represented to the transformer model
as input data and how the policy of the MDP is
defined.

2 Dataset Generation and Language
Modeling

We focus on investigating internal representations
of language models in a well-understood, self-
contained synthetic game setting. This is motivated
by the observation from past works that the lan-
guage models learn to predict valid game moves
by simply being trained to extend game transcripts
(Toshniwal et al., 2021; Li et al., 2022). Specif-
ically, we select ConnectFour, a turn-based, two-
player, board-completion game in which the goal is
to connect four pieces of a player’s own color. The
ConnectFour environment is shown in Figure 1.

In ConnectFour, the game is played on a 6× 7
board where two agents place alternating pieces of
red or yellow discs on the board, which fall down
to the bottom-most unoccupied row of the column
chosen by the agent. The objective for both agents
is to connect four pieces of the same color before
the opponent, whether horizontally, vertically, or

Figure 1: ConnectFour

diagonally. The agent who wins the game secures
a terminal reward.

We choose this environment for two reasons:
first, ConnectFour has a game tree that is expo-
nentially large, hence making it infeasible for any
transformer model to brute-force “memorize” or
“recite” the optimal game-play strategy for all out-
comes; second, training deep reinforcement learn-
ing agents or growing Monte-Carlo search trees on
ConnectFour to approximate optimal playing strate-
gies have been shown to enjoy good performance
(Alderton et al., 2019; Sheoran et al., 2022).

2.1 Generation of Game Transcripts

We describe below how game transcripts are gen-
erated using when players are trained on deep Q-
learning or guided by MCTS in the ConnectFour
environment to be used to autoregressively train
our transformer models. Then, we give a high-
level overview of MDPs and its connection to our
setting.

2.1.1 Deep Q-Learning
To start, we use deep Q-learning (DQL) to train
both players in the ConnectFour environment since
traditional Q-learning often struggles to converge
in when the space of outcomes is combinatorially
large (Mnih et al., 2013). We define a neural net-
work parameterized by weights θ, which takes the
current state s, and action a and outputs a scalar
value Qθ(s, a). The state space S consists of all
possible configurations of the 6 × 7 board, while
the action space A is defined as placing a disc in
the i-th column, where i ∈ {1, 2, . . . , 7}.

Our training process is based on a variant of the
original deep Q-learning algorithm. Specifically,
the architecture of our network Qθ consists of one
convolutional layer followed by two linear layers.
The network predicts the Q-values for placing a
disc in each of the seven columns. See algorithm
1 in Appendix A for further training details. We
train nine pairs of RL agents, each pair competing

208

against each other for one million games. For each
game, we record the action (the column into which
the piece is placed), the state (represented hence-
forth as coordinate of the played piece), and the
deep Q-values of all the feasible moves at each step
(if a move is infeasible, then the value is set to 0).
Then, we combine the last 111K games played for
every pair totaling one million game transcripts.

2.1.2 Monte-Carlo Tree Search
We also generate data using MCTS. MCTS is
a heuristic search algorithm that has shown re-
markable success in classic board-games, modern-
board games, and video games. MCTS combines
depth-first search and stochastic simulation to build
and use a game tree of possible outcomes based
on selection, expansion, simulation, and back-
propagation (Chaslot et al., 2008). In our setting,
we implement the standard MCTS algorithm where
at each move decision, we run 100 rollouts, and
the action with the highest MCTS value (win rate)
is selected. Similar to the above, we generate one
million game transcripts by running 1 million in-
dependent ConnectFour games where both agents
play according to the MCTS heuristic. We also
record the action, state, and corresponding MCTS
values at each step (the value is likewise 0 if the
move is infeasible).

2.2 Connection to MDPs

A Markov Decision Process (Ghavamzadeh et al.,
2015) M is a tuple ⟨S,A, P, P0, R⟩ where S is
the set of states, A is the set of actions, P (·|s, a) ∈
P(S) is the probability distribution over next states,
conditioned on action a being taken in state s,
P0 ∈ P(S) is the probability distribution ac-
cording to which the initial state is selected, and
R(s, a) ∈ P(R) is a random variable representing
the reward obtained when action a is taken in state
s. A policy—a mapping from past observations to
a distribution over the set of actions—is a rule for
choosing actions at any given state. Policies can be
characterized as

1. Markov if the distribution is only dependent
on the last state of the observation sequence.

2. Stationary if the distribution does not change
over time.

3. Deterministic if the probability distribution
concentrates on a single action for all possible
histories of states and actions.

A Markov Decision Process is called first-order
if the state transition probability P (st+1|Ht =
s1, a1, . . . , st, at) = P (st+1|st, at) depends only
on the latest state and action and n-th order if
P (st+1|Ht) = P (st+1|s1, a1, . . . , st−n, at−n) de-
pends on the last n states and actions.

In the ConnectFour setting, we can define the
components of the MDP as

• S: All possible board configurations.

• A: Valid column placements out of the 7
columns on the ConnectFour board.

• P : Deterministic transitions based on player
actions.

• P0: The initial empty ConnectFour board
state.

• R: Reward based on game outcome, which
can either be a win, loss, or draw.

Having outlined the above, we see that players
guided by deep Q-learning in ConnectFour follow
a policy that is

• Markov: The neural network only considers
the current board state as input.

• Non-stationary: The network’s parameters are
continuously updated during training, which
means that their game-playing strategy can
also evolve.

• Non-deterministic: This is due to ϵ-greedy
exploration, mini-batch sampling, and other
sources of randomness during training.2

The resulting MDP is first-order, as the next state
depends only on the current state and action.

Players guided by MCTS, on the other hand, can
be viewed in two ways. If we consider the Monte-
Carlo Search Tree as part of the state, then the
policy is

• Markov: The current game tree and board
state completely determine the distribution
over the next action.

• Non-stationary: The search tree is able to
grow over time and output different moves.

• Non-deterministic: This is due to the inherent
stochastic nature of MCTS simulations.

2However, if all these random factors are controlled, the
policy becomes deterministic.

209

In this worldview, the MDP under MCTS re-
mains first-order. However, if we regard the search
tree as external to the state, then the policy and
MDP become n-th order. This is because the search
tree’s evolution stochastically depends on all previ-
ous moves and simulations.

In ConnectFour, given a chosen action, the next
board state and terminal reward is deterministic.
Therefore, the stochasticity in the MDP formula-
tions of both deep Q-learning and MCTS are at-
tributed only to randomness in the policy parame-
ters. This means that a transformer model that inter-
nally characterizes deep Q-values or MCTS values
with accuracy effectively captures the transition
dynamics P (·|s, a). From here, we can conclude
that such a model has a internal representation of
the underlying parameters governing the MDP that
generates the observed data. This insight guides
our later experiments.

2.3 Language Modeling and Training

For both settings, each state and action are tok-
enized as input. We supply no further auxiliary
information during training, as our goal is to study
how much they can infer the underlying transition
dynamics from only information of the observed
histories. Each history is treated as a sentence tok-
enized with a predefined vocabulary (for states, this
corresponds to 42 possible coordinates of the discs;
for actions, this corresponds to the 7 column place-
ments; an extra padding vocabulary is included for
both).

For each setting (deep Q-Learning and MCTS)
and each representation of the history (using state
or action), we train three separate 8-layer GPT
models (Radford et al., 2018) with an 8-head at-
tention mechanism and a 512-dimensional hidden
space. When we represent the history using only ac-
tions, we let the transformer predict state st condi-
tioned on the history {s1, . . . , st−1}. In the action-
exclusive setting, we let the transformer predict ac-
tion at conditioned on {a1, . . . , at−1}.3 The mod-
els’ weights are initialized randomly, including the
layer for word embeddings.

Training is next performed autoregressively: for
each tokenized partial history where each element
is either a state or action, the forward process con-
verts the input via the trainable word embedding

3As mentioned above, we want to explore both represen-
tations to see if the transformers’ model’s learning of the
parameters of the MDP, if successful, is robust to how the
input data is represented during training.

into {c0t }T−1
t=1 , where cit is the intermediate feature

for the t-th token after the i-th layer to be sequen-
tially processed by 8 multi-head attention layers.
Using a causal mask, we ensure that only ci−1

≤t are
visible to cit during training; that is, the prediction
step only involves features in the preceding layer
and earlier time steps. c8T−1 is lastly fed through
a linear layer to predict logits for the ground-truth
state or action. We use cross-entropy loss between
the predicted logits and the ground-truth state or
action as the objective during training. The pa-
rameters of the network are optimized by gradient
descent, and we use the model weights correspond-
ing to the epoch with the lowest validation loss to
explore internal representations.4

3 Exploring Internal Representations

As mentioned above, to see if our language model
effectively captures the underlying transition dy-
namics of the Markov Decision Processes, we use
a standard tool called “probing," which is the pro-
cess of training a classifier or regressor using the
internal activations of a transformer model as input
features to predict labels or values of interest. If
we can train probes in all four settings (whether the
policy is governed by MCTS or deep Q-learning
and whether the MDP is represented using states
or actions), then we can conclude that the trans-
former models effectively internally characterize
information about the parameters governing the
MDPs.

3.1 Experimental Setup

To train all probes, we first randomly sample
one time stamp t in each game to obtain par-
tial histories Ht−1 = {s1, . . . , st−1} or Ht−1 =
{a1, . . . , at−1}. Then, we retrieve the correspond-
ing internal embedding Et

i of the network that is
used to predict st or at when the input isHt−1 after
the i-th layer of the network. We repeat this pro-
cess of retrieving the embedding after every layer
of the network, and obtain {Et

i}8i=1 for each sam-
pled partial history Ht−1. We repeat this process
679K times for each probe and split the dataset
into training, validation, and testing data according
to a 8-1-1 split. The embeddings after each layer
are used to train separate probes, that is, we use
{Et

1}t to train the probe who uses embedding in-
formation output by the transformer after the first
layer, {Et

2}t to train the probe that uses the em-

4See Appendix B for more training details.

210

beddings after the second layer, totaling 8 probes
for any particular combination of policy and data
representation. We also repeat the probe training
process 3 times for any setting corresponding to
the 3 transformer models trained in each setting.

To train the probes, we use the embedding Et
i as

input to regress against the true corresponding deep
Q-values or MCTS values underlying the MDP at
the time-step t− 1 given the partial historyHt−1.
For example, suppose at time t− 1 that a player’s
MCTS values used to make the decision at time
t are mt−1 = (0.2, 0.4, 0.7, 0.9, 0.1, 0.1, 0.1) cor-
responding to columns 1 through 7. The player
would have chosen action at = 4 or st = (4, 2)5

since the MCTS value corresponding to column
4 is highest. Then, we extract the embedding Et

i

associated with predicting at or st and use it to
regress the 7-dimensional vector mt−1. The pa-
rameters of each probe is optimized by gradient
descent, and we select the model weights with the
lowest validation loss to explore our hypothesis.

Inspired by Li et al. (2022), we also explore if
the performances of linear and non-linear probes
have significantly different accuracies, which may
suggest how the parameters of the MDP are rep-
resented in the transformer model. In both set-
tings, we compare probe performance trained on
internal activations after each layer against a probe
trained and validated on randomly generated em-
beddings.6 It is clear that probes trained even on
randomized embeddings may perform better than
blindly “guessing" a random real-valued vector.7

This approach allows us to see whether a random
probe can encode information about the parameters
of the MDP without any additional data as good as
a properly trained probe. If the test loss between
the two types of probes are indistinguishable, then
this suggest that the transformers’ internal activa-
tions do not contain any effective information of
the MDP parameters.

For linear probes, the prediction of the deep Q-
values or MCTS values parameterized by weights θ
is given by WEt

i where θ = {W ∈ RD×d}, D =

5Here, we suppose there already exists a disc beneath it
played before, hence the current y-coordinate is 2.

6Each entry in the embedding is drawn independently from
a normal distribution with mean of 0 and standard deviation
of 5. We refer to these probes as “random probes" hereinafter
for concision.

7Since even a network with random valued vectors as input
can encode the empirical mean of the observed data. Then, if
the distribution of the training and testing data are the same,
we should expect to see that this network performs better than
blindly guessing.

512 is the number of dimensions of the internal
embedding Et

i and d = 7 is the dimension of the
output space. For nonlinear probes, the prediction
can be written as W1ReLU(W2E

t
i), where θ =

{W1 ∈ RD×d,W2 ∈ RD×D}.

3.2 Empirical Evaluations

We verify the performance of our probes on 2 dif-
ferent metrics: 1) mean squared error between the
predicted and ground truth deep Q-values or MCTS
values of the moves 2) whether the best move pre-
dicted by a probe matches the ground-truth best
move. We do not normalize any of the ground-
truth or predicted values prior to evaluation.

3.2.1 Mean Squared Error

We first show the test MSE loss when the trained
probes regress against the target deep Q-values or
MCTS values of the player. The first column de-
notes the layer of the transformer model after which
the embeddings are used to train the probe, where
“R" stands for randomly generated embeddings. We
report the mean and standard deviation of the test
losses obtained from the three probes in each sce-
nario in Tables 1-4. We see that trained probes have
a significantly lower test loss compared to random
probes across all settings, which strongly suggests
that the internal activations do contain represen-
tations of the MDP parameters. We also see that
non-linear probes consistently yield lower losses
than linear ones, which suggests that the MDP pa-
rameters may admit a non-linear representation in
the transformer models. In addition, the difference
in the scale between the DQL and MCTS settings
can be easily explained: while MCTS values are
bounded between 0 and 1, it is known that conven-
tional Deep Q-learning is impacted by an overes-
timation bias (Hessel et al., 2017). Nevertheless,
our conclusion remains valid since all the probes
in each setting are trained to regress against values
generated from the same space.

In terms of robustness to data representation, we
see how the losses of the probes when the data is
being represented using only states or using only ac-
tions do not differ significantly: the non-linear lay-
ers when data is represented using states performs
slightly better than that using actions. This intu-
itively makes sense since encoding using states in-
herently provide more explicitly information (since
they include the y-coordinate of the played discs)
compared to actions.

211

Table 1: MSE | DQL | Ht−1 = {s1, . . . , st−1}

Linear Non-Linear

1 528.6 ± 0.02 514.0 ± 0.06
2 494.1 ± 1.49 362.2 ± 1.80
3 477.5 ± 1.27 338.4 ± 2.28
4 469.5 ± 1.01 328.5 ± 0.95
5 467.2 ± 2.71 327.2 ± 1.00
6 466.1 ± 0.31 327.9 ± 1.66
7 466.3 ± 0.95 328.6 ± 1.83
8 467.8 ± 0.89 328.8 ± 1.95
R 1306.6 ± 0.06 1224.5 ± 0.41

Table 2: MSE | DQL |Ht−1 = {a1, . . . , at−1}

Linear Non-Linear

1 496.2 ± 0.02 493.5 ± 0.02
2 475.2 ± 1.41 395.8 ± 1.12
3 465.1 ± 2.63 357.3 ± 2.83
4 462.5 ± 1.88 340.8 ± 1.74
5 462.3 ± 1.44 343.0 ± 2.70
6 461.9 ± 1.31 346.1 ± 4.38
7 461.4 ± 1.23 345.9 ± 3.88
8 462.4 ± 1.01 348.8 ± 3.02
R 1306.6 ± 0.06 1224.5 ± 0.41

Table 3: MSE |MCTS | Ht−1 = {s1, . . . , st−1}

Linear Non-Linear

1 0.0419 ± 1.0 e-7 0.0411 ± 4.0 e-6
2 0.0323 ± 1.7 e-4 0.0206 ± 2.1 e-5
3 0.0290 ± 1.9 e-4 0.0196 ± 5.6 e-5
4 0.0273 ± 1.6 e-4 0.0191 ± 8.8 e-5
5 0.0270 ± 1.6 e-4 0.0191 ± 1.0 e-4
6 0.0269 ± 1.6 e-4 0.0189 ± 4.7 e-5
7 0.0270 ± 1.2 e-4 0.0190 ± 5.9 e-5
8 0.0272 ± 1.3 e-4 0.0191 ± 3.7 e-5
R 1.4103 ± 1.0 e-7 1.4259 ± 1.1 e-4

Table 4: MSE |MCTS | Ht−1 = {a1, . . . , at−1}

Linear Non-Linear

1 0.0420 ± 3.0 e-6 0.0416 ± 1.0 e-6
2 0.0341 ± 7.6 e-5 0.0269 ± 7.9 e-5
3 0.0309 ± 2.0 e-4 0.0224 ± 2.7 e-4
4 0.0297 ± 1.7 e-4 0.0205 ± 3.8 e-5
5 0.0285 ± 1.1 e-4 0.0202 ± 1.3 e-4
6 0.0275 ± 1.8 e-4 0.0196 ± 1.0 e-4
7 0.0267 ± 2.3 e-4 0.0195 ± 8.2 e-5
8 0.0261 ± 2.3 e-4 0.0195 ± 9.3 e-5
R 1.4103 ± 1.0 e-7 1.4259 ± 1.1 e-4

3.2.2 Correctly Identifying the Best Move
Here, we would like to investigate whether the
best move predicted by the probe matches the best
ground-truth move. We define the loss function as

1[Best Predicted Move ̸= True Best Move]

In other words, we want to see whether

arg maxiṽi ̸= arg maxivi

for i ∈ {1, 2, . . . , 7} where ṽ, v ∈ R7 are our pre-
dicted and ground-truth target deep Q-values or
MCTS values respectively. We report the mean and
standard deviation of the test losses across differ-
ent settings in Tables 5-8. Here, we observe that
the performance of the trained probes significantly
excel that of the random probes, meaning that the
embeddings also contain internal information on
how to make the best moves.8

In terms of robustness to data representation, we
see how the data encoded using only actions yield a
lower loss compared to that of states. This may be
explained by how encoding the input data using ac-
tions is more directed towards identifying the best
move, since the dimensionality of the space of ac-
tions and the space of best moves are identical and
their structure may hence share greater similarity.
Nevertheless, both ways of representing the input
data to the transformer exceeds the performance of
random probes.

3.3 Alternative Loss Functions
It should also be noted that mean-squared error
and correctly identifying the best move are not

8In addition, our probes are trained to minimize the MSE
between the predicted and target values, not cross-entropy loss
of the predicted and actual best move. This also implies that
minimizing MSE can help partially achieve this functionality.

212

Table 5: BEST | DQL | Ht−1 = {s1, . . . , st−1}

Linear Non-Linear

1 0.3892 ± 7.4 e-5 0.3494 ± 2.0 e-3
2 0.4070 ± 9.6 e-3 0.4398 ± 5.3 e-3
3 0.4419 ± 1.1 e-2 0.4620 ± 4.4 e-3
4 0.4646 ± 1.5 e-2 0.4486 ± 1.8 e-2
5 0.4723 ± 5.8 e-3 0.4623 ± 1.4 e-2
6 0.4720 ± 4.3 e-3 0.4599 ± 2.8 e-3
7 0.4751 ± 7.0 e-3 0.4487 ± 5.0 e-3
8 0.4739 ± 5.2 e-3 0.4548 ± 7.2 e-3
R 0.8264 ± 5.1 e-3 0.5698 ± 6.0 e-2

Table 6: BEST | DQL |Ht−1 = {a1, . . . , at−1}

Linear Non-Linear

1 0.3489 ± 4.5 e-4 0.3013 ± 2.2 e-3
2 0.3785 ± 1.3 e-2 0.3682 ± 2.2 e-3
3 0.3887 ± 6.1 e-3 0.3803 ± 7.7 e-3
4 0.4176 ± 2.1 e-3 0.4020 ± 1.0 e-2
5 0.4283 ± 9.5 e-3 0.4034 ± 1.0 e-2
6 0.4324 ± 7.4 e-3 0.4016 ± 1.5 e-2
7 0.4305 ± 8.0 e-3 0.3936 ± 6.4 e-3
8 0.4335 ± 2.9 e-3 0.4043 ± 1.1 e-2
R 0.8264 ± 5.1 e-3 0.5698 ± 6.0 e-2

Table 7: BEST |MCTS | Ht−1 = {s1, . . . , st−1}

Linear Non-Linear

1 0.0346 ± 1.0 e-7 0.0346 ± 1.0 e-7
2 0.0733 ± 9.2 e-4 0.0366 ± 4.5 e-4
3 0.0784 ± 1.6 e-3 0.0388 ± 5.8 e-4
4 0.0789 ± 1.7 e-4 0.0406 ± 2.2 e-4
5 0.0847 ± 1.3 e-3 0.0410 ± 4.0 e-4
6 0.0894 ± 2.1 e-3 0.0424 ± 4.6 e-4
7 0.0929 ± 2.6 e-3 0.0431 ± 1.0 e-4
8 0.0959 ± 1.9 e-3 0.0437 ± 7.4 e-4
R 0.8180 ± 4.6 e-3 0.8284 ± 9.8 e-4

Table 8: BEST |MCTS | Ht−1 = {a1, . . . , at−1}

Linear Non-Linear

1 0.0346 ± 1.0 e-7 0.0346 ± 1.0 e-7
2 0.0347 ± 7.5 e-5 0.0360 ± 3.6 e-4
3 0.0355 ± 2.6 e-4 0.0361 ± 1.6 e-4
4 0.0375 ± 5.2 e-4 0.0362 ± 9.6 e-5
5 0.0459 ± 2.1 e-3 0.0367 ± 5.9 e-4
6 0.0558 ± 3.5 e-3 0.0376 ± 6.7 e-4
7 0.0636 ± 3.6 e-3 0.0382 ± 3.2 e-4
8 0.0678 ± 1.6 e-3 0.0386 ± 3.0 e-4
R 0.8180 ± 4.6 e-3 0.8284 ± 9.8 e-4

necessarily the optimal loss functions to evaluate
the extent to which the model has captured the
structural properties of the transition dynamics. As
an illustrative example, consider when the ground
truth values are

v = (0.9, 0.7, 0.2, 0.3, 0, 0.5, 0.4)

in addition to two candidate predictions

ṽ = (0.7, 0.8, 0.2, 0.35, 0, 0.5, 0.4)

v̂ = (0.8, 0.6, 0.05, 0.4, 0, 0.1, 0.2)

We see that while the first prediction ṽ fails to cap-
ture the best move, it learns to predict the values of
other moves with little-to-no error. In contrast, the
second prediction v̂ identifies the best move, but
learns the other moves with much less precision.
However, it is often unclear which of these predic-
tions can be considered better, since they surpass
the other under a different evaluation metric.

To address this issue, one potentially appealing
alternative to consider may be the Rank-Biased
Overlap (Webber et al., 2010). We define ϕi :=
(j : −v(j) = −vi) to be the rank of the i-th feature,
with 1 being the best (since higher MCTS or deep
Q-values correspond to more promising moves)
and 7 being the worst. Then, we define τi := (j :
ϕj = i) to be the feature corresponding to rank
i. The predicted ranks and corresponding features
ϕ̂, τ̂ are defined similarly. Then, given a parameter
0 < p < 1, the rank-biased overlap is given by

RBO({τ̂i}7i=1, {τi}7i=1)

:= (1− p)

7∑

s=1

ps−1 |{τ̂i}si=1 ∩ {τi}si=1|
s

The output is bounded between 0 and 1 and cap-
tures how well the values of our predicted moves

213

match those of the ground truth with regards to
their orderings. It is clear that this metric, while
not evaluating the numerical differences at each
index, is able to preserve some notion of structural
similarity between the predicted and ground-truth
values. By varying p from close to 0 to close to 1,
one is able to interpolate between putting emphasis
on only the best move to virtually all the moves.

We also remark that the choice of the evalua-
tion metric may be highly problem-specific. For
instance, one may resort to evaluation using the
Kullback-Leibler (KL) divergence when the out-
puts are or can be normalized to probability distri-
butions. We defer investigating alternative choices
of metrics and their properties for future works.

4 Conclusion

In summary, our study provides compelling evi-
dence that transformer-based models, when trained
on data generated from a Markov Decision Pro-
cesses, are able to develop internal representations
of the underlying parameters governing these pro-
cesses. Our investigation, primarily focused on the
game of ConnectFour, shows that these models are
able to capture information about the players’ poli-
cies and hence transition dynamics of the MDPs,
whether they are guided by deep Q-learning or
Monte Carlo Tree Search, and is robust to how the
data is being fed as input to the transformer model.

Specifically, we show that 1) probes trained on
the internal activations of our transformer models
always outperform random probes in predicting
the deep Q-values or MCTS values, which sug-
gests that the model encode meaningful informa-
tion about the MDP parameters 2) the superior per-
formance of non-linear probes suggest that the in-
ternal representation of MDP dynamics may have a
non-linear structure within the transformer models
3) the probes’ ability to identify the best move us-
ing the embeddings further support this hypothesis
that they capture salient features of the MDPs 4)
the robustness of these findings across different in-
put representations and types of policy underscores
the generality of our result.

We hope this study contributes to the ongoing
debate about the capabilities of language models,
providing evidence that they can develop rich inter-
nal representations of underlying data-generating
processes. As technological advancements con-
tinue to push the boundaries of what these models
can achieve, understanding their internal mecha-

nisms becomes increasingly crucial. We also wish
to extend this work in the future to where there is
even greater variability within the generative pro-
cess, and consider alternative evaluation metrics to
provide more insight along this line of research.

References
Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich,

Stella Frank, Ellie Pavlick, and Anders Søgaard.
2021. Can language models encode perceptual struc-
ture without grounding? a case study in color. arXiv
preprint arXiv:2109.06129.

Guillaume Alain and Yoshua Bengio. 2016. Under-
standing intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644.

E. Alderton, E. Wopat, and J. Koffman. 2019. Re-
inforcement learning for connect four. Accessed:
2024-08-13.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and
Pieter Spronck. 2008. Monte-carlo tree search: A
new framework for game ai. In Bijdragen.

Mohammed Ghavamzadeh, Shie Mannor, Joelle Pineau,
and Aviv Tamar. 2015. Bayesian reinforcement learn-
ing: A survey. Foundations and Trends® in Machine
Learning, 8(5–6):359–483.

Simon Goldstein and Benjamin A. Levinstein. 2024.
Does chatgpt have a mind? Preprint,
arXiv:2407.11015.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Azar, and David Silver. 2017.
Rainbow: Combining improvements in deep rein-
forcement learning. Preprint, arXiv:1710.02298.

Cheongwoong Kang and Jaesik Choi. 2023. Impact
of co-occurrence on factual knowledge of large lan-
guage models. arXiv preprint arXiv:2310.08256.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2022. Emergent world representations: Exploring a
sequence model trained on a synthetic task. arXiv
preprint arXiv:2210.13382.

Emily McMilin. 2022. Selection bias induced spurious
correlations in large language models. arXiv preprint
arXiv:2207.08982.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Roma Patel and Ellie Pavlick. 2021. Mapping language
models to grounded conceptual spaces. In Interna-
tional conference on learning representations.

214

https://web.stanford.edu/class/aa228/reports/2019/final106.pdf
https://web.stanford.edu/class/aa228/reports/2019/final106.pdf
https://doi.org/10.1561/2200000049
https://doi.org/10.1561/2200000049
https://arxiv.org/abs/2407.11015
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Kavita Sheoran, Geetika Dhand, Mayank Dabas,
Nishthavan Dahiya, and Pratish Pushparaj. 2022.
Solving connect 4 using optimized minimax and
monte carlo tree search. Advances and Applications
in Mathematical Sciences, 21(6):3303–3313.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. arXiv preprint
arXiv:1905.05950.

Shubham Toshniwal, Sam Wiseman, Karen Livescu,
and Kevin Gimpel. 2021. Learning chess blindfolded:
Evaluating language models on state tracking. arXiv
preprint arXiv:2102.13249, 2.

William Webber, Alistair Moffat, and Justin Zobel. 2010.
A similarity measure for indefinite rankings. ACM
Trans. Inf. Syst., 28(4).

A Deep Q-Learning Algorithm

As mentioned above, to train our players using deep
Q-Learning, we use Algorithm 1 shown below. The
DQN architecture consists of a single convolutional
layer followed by two fully connected layers and
an output layer, designed to map 2D input states
to Q-values for 7 possible actions. In our imple-
mentation of the network, we use a replay buffer
of size 1000, and a mini-batch size of 32. We se-
lect actions using an epsilon-greedy policy, with
ϵ = 0.1.

B Language Modeling Details

B.1 Dataset and Data Representations
We trained our transformers models on datasets
consisting of 1 million games, with each game rep-
resented in four different forms: (1) sequences of
states generated by deep Q-Learning, (2) sequences
of states generated by MCTS, (3) sequences of
actions generated by deep Q-Learning, and (4)
sequences of actions generated by MCTS. Every
dataset is split into 80% for training, 10% for vali-
dation, and 10% for testing.

B.2 Model Architecture
The transformer model we use have a block size of
42, an embedding dimension of 512, and 8 attention
heads for a total of 8 layers with a predefined vocab-
ulary size. The dropout rates are 0.1 for embedding
dropout, 0.1 for residual dropout, and 0.1 for atten-
tion dropout. The model consists of an embedding
layer, followed by a series of transformer blocks,

each containing a causal self-attention mechanism
and a feed-forward neural network. The final layers
include layer normalization and a linear projection
to the vocabulary size.

B.3 Training Procedure
For each of the four dataset representations, three
transformers with identical architectures were
trained to account for variability and potential error.
This resulted in a total of 12 trained transformers.
The models were optimized using Adam with a
learning rate of 0.001, and training was conducted
for 15 epochs with a batch size of 32. The loss
function used is cross-entropy, calculated between
the predicted logits and the true next tokens in the
sequence.

B.4 Computational Resources
All training was performed on instances equipped
with 8 NVIDIA RTX 4090 GPUs.

215

https://doi.org/10.1145/1852102.1852106

Algorithm 1 Training ConnectFour with Deep Q-Learning

Input: Number of episodes M , number of game moves T , buffer capacity N , exploration rate ϵ
Output: Trained Q-networks Q0, Q1

1: Initialize replay buffers D0, D1 with capacity N
2: Initialize Q-networks Q0, Q1 with random weights θ0, θ1
3: for episode = 1 : M do
4: x0 ← empty board
5: for t = 0 : T do
6: p← t mod 2
7: p̂← (p+ 1) mod 2

8: at ←
{

random action with probability ϵ

argmaxaQp(st, a; θp) otherwise
9: Execute at, observe rt and xt+1

10: if xt+1 is terminal then
11: Store (xt, at, rt, xt+1) in Dp

12: Store (xt−1, at−1, rt−1, xt+1) in Dp̂

13: Update(Dp, Qp) using algorithm 2
14: Update(Dp̂, Qp̂) using algorithm 2
15: break
16: else
17: Store (xt−1, at−1, rt−1, xt+1) in Dp̂

18: Update(Dp̂, Qp̂)
19: end if
20: end for
21: end for

Algorithm 2 Update Q-network

Input: Replay buffer D, Q-network Q
Output: Updated Q-network Q

1: Sample (xj , aj , rj , xj+1) from D

2: yj ←
{
rj for terminal xj+1

rj + γmaxa′ Q(xj+1, a
′; θ) for non-terminal xj+1

3: Gradient descent on loss (yj −Q(xj , aj ; θ))
2

216

