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Abstract

Prior work suggests that language models
manage the limited bandwidth of the residual
stream through a "memory management" mech-
anism, where certain attention heads and MLP
layers clear residual stream directions set by
earlier layers. Our study provides concrete evi-
dence for this erasure phenomenon in a 4-layer
transformer, identifying heads that consistently
remove the output of earlier heads. We further
demonstrate that direct logit attribution (DLA),
a common technique for interpreting the output
of intermediate transformer layers, can show
misleading results by not accounting for era-
sure.

1 Introduction

Understanding the internal mechanisms of lan-
guage models is an increasingly urgent scientific
and practical challenge (Zhao et al., 2023; Luo and
Specia, 2024). For instance, we lack a clear expla-
nation of the interaction between internal compo-
nents, such as attention heads and MLPs. Elhage
et al. (2021) referred to residual stream dimensions
as memory or bandwidth that components use to
communicate with each other.

Memory management Elhage et al. (2021) ob-
serve that there are much more computational di-
mensions (such as neurons and attention head result
dimensions) than residual stream dimensions, thus
we should expect residual stream bandwidth to be
in high demand. The authors speculated that some
model components perform a memory management
role, clearing residual stream dimensions set by ear-
lier components to free some of this bandwidth.

Direct logit attribution (DLA) is a technique
for interpreting the output activations of model
components in vocabulary space (Wang et al., 2022;
Elhage et al., 2021; nostalgebraist, 2020). In par-
ticular, DLA applies the unembedding matrix to
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model internal activations, effectively skipping
further computation of downstream components.
This method implicitly assumes continuity of the
residual stream, meaning a direction written to
the stream stays conserved throughout the forward
pass. However, the continuity assumption would
not hold if some components erase residual direc-
tions set by earlier ones. Overall, our main contri-
butions are as follows:

• Defining erasure, a form of memory manage-
ment in transformer models and proposing
projection ratio, a metric for quantifying era-
sure

• Presenting a concrete example of erasure in a
4-layer transformer

• Demonstrating that DLA can yield misleading
results when erasure is present

Figure 1: The output of attention head L0H2 across the
residual stream with (green) and without (red) erasure
behavior. We show the median projection ratios between
residual stream activations and L0H2, with and without
V-composition patching. Shaded region represents 25th
and 75th quantiles.

2 Methods

We characterize erasure as 3 steps during a for-
ward pass of a model: (1) A writing component
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adds its output to the residual stream. (2) Subse-
quent components read this information to perform
their function. (3) An erasing component removes
the writing component’s output from the residual
stream, by reading it and writing out a negative
version.

2.1 Identifying writing components
We examine whether the output of each component,
once written to the residual stream, persists in sub-
sequent transformer layers. To quantify this, we
define the projection ratio

PR(a,b) :=
a · b
||b||2 , (1)

which measures the proportion of vector b present
in vector a. We set a to be the residual stream
activations at each layer and b to be the output of
each attention head or MLP. This allows us to track
how much of each component’s output remains in
the residual stream as it propagates through the
model.

2.2 Identifying erasing components
To identify erasing components, we look for com-
ponents that write to the residual stream in the di-
rection opposite to the previously identified writing
components. We quantify this with the projection
ratio, this time setting a to be the output of a writing
component and b outputs of other components.

2.3 Investigating causality
To investigate a causal relationship between writ-
ing and erasure, we repeat experiments identifying
writing and erasing components, while intervening
on the direct path between them with activation
patching (Zhang and Nanda, 2023).

Specifically, to compute the value vector of an
erasing attention head, we use a modified residual
stream activation, where the output of the writing
component is set to zero. In other words, we per-
form activation patching with zero ablation to the
V-composition (as defined by Elhage et al. (2021)
and applied by Wang et al. (2022); Heimersheim
and Janiak (2023); Lieberum et al. (2023)) of writer
and erasure heads. Put simply, V-composition is
the direct path between the output of an upstream
component and the value input of a downstream
attention head.

Zero-ablation of the writing component’s output
allows us to observe the impact on the erasing be-
havior and establish a causal link between the two

components. For example, to investigate the causal-
ity of L0H2 (an early writing component) on L2H2
(a later erasing component), we can subtract the
output of L0H2 from the value input of L2H2. This
helps answer the question "how does L2H2 behave
differently when L0H2’s output is not present?".

2.4 Erasure as a potential confounder in DLA
interpretation

We hypothesize that erasure can lead to misleading
results when using DLA to interpret the role of writ-
ing components. If an erasing component removes
the output of a writing component from the resid-
ual stream, the writing component’s contribution
to the final logits (as measured by DLA) will be
diminished, as the effects of the two components
will largely cancel out.

To test this, we collect prompts from the model’s
training dataset and measure the contribution of the
identified writing and erasing components to the
logit difference between the model’s top two next
token predictions. We isolate the erasing effect by
applying DLA only to the part of the erasing com-
ponents’ output that comes from V-composition
with the writing component. This is obtained by
taking the erasing components’ output on a stan-
dard forward pass and subtracting their output from
a modified forward pass where the writing compo-
nent’s output is zeroed out in the residual stream.

2.5 Verifying DLA predictions through
context manipulation

To find examples that yield significant DLA results
for the writing component, we search for tokens
whose unembedding directions consistently align
with the writing component’s output. Having iden-
tified tokens that yield significant DLA results, we
investigate whether these results are genuine con-
tributions of the writing component or artifacts of
erasure. For each selected token, we construct a
prompt that makes the token a natural next-word
prediction, and the model indeed predicts it as the
most likely continuation.

We then measure the logit difference between
the selected token and the model’s second most
likely prediction using DLA in two scenarios: (1)
a clean run with the original prompt and (2) a run
where the input to the writing component is patched
with randomly sampled prompts from the training
dataset. If the writing component is genuinely us-
ing the information in the prompt to infer the best
prediction, then patching its input should signifi-
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cantly reduce the logit difference observed in the
clean run. Conversely, if the DLA predictions are
primarily artifacts of erasure, patching the input
should have little impact on the observed logit dif-
ferences.

2.6 Model architecture and training

For our experiments, we utilized a GELU-4L
model (Nanda, 2022). This model is based on a
GPT-2 style transformer architecture with 4 trans-
former layers, learned positional embeddings, and
layer normalization. It employs GELU activations
in the MLP layers, uses separate embedding and
unembedding matrices (not tied), and has a residual
stream dimension of 512. The model was trained
on a dataset of 22 billion tokens, comprising 80%
web text and 20% Python code.

3 Results

3.1 Output of head L0H2 is being erased

We measured the projection ratio between residual
stream activations at subsequent layers and outputs
of every transformer component in forward passes
on 300 random samples of the model’s training
data.

We distinguish the states of the residual stream
in GELU-4L as follows: resid_pre_0 before any
attention or MLP layers (just token and positional
embeddings), resid_mid_n after the attention layer
n, and resid_post_n after the MLP layer n, where
n = 0, 1, 2, 3 denotes the layer index.

The most interesting results were observed for
attention head 2 in layer 0 (L0H2), shown by the
green line (clean) in Figure 1. We can track the
presence of L0H2’s information in the residual
stream across subsequent layers of the model.

Initially, we see a projection ratio close to 0 at
resid_pre_0, as L0H2 has not written to the resid-
ual stream yet. After L0H2 writes to the residual
stream at resid_mid_0, the projection ratio goes to
about 1, meaning its output is fully present in the
residual stream. The projection ratio stays close to
1 between resid_mid_0 and resid_post_1. However,
between resid_post_1 and resid_mid_2, attention
heads appear to remove the information that L0H2
originally wrote, resulting in a much smaller pro-
jection ratio, close to 0.

3.2 Layer 2 attention heads are erasing L0H2

In Figure 2, we can see the projection ratio be-
tween the outputs of every component in layers 1

to-3 and the output of head L0H2. We find that 6
out of 8 attention heads in layer 2, numbered 2 to 7,
have consistently negative projection ratio, imply-
ing that they are writing to the residual stream in
the direction opposite to L0H2. In aggregate, they
are responsible for erasing 90.7% 1 of the output
of L0H2. We refer to them as erasing heads.

Figure 2: Median projection ratios between components
in layers 1–3 and head L0H2. Error bars represent 25th
and 75th quantiles.

3.3 Erasure depends on writing
Figure 1 shows the projection ratio of residual
stream onto L0H2 in the clean run and in a patched
run, where we prevented V-composition between
L0H2 and erasing heads. As we can see, in the
patched run the projection ratio remains high after
the attention block in layer 2 (0.91 in patched, 0.12
in clean), indicating that around 85% of the erasure
in layer 2 is dependent on V-composition. We note
that the projection ratio goes down after layer 2,
suggesting that components in subsequent layers
are involved in the erasure as well.

Figure 3 compares projection ratios between
erasing heads and L0H2 in patched and clean runs.
While these heads express consistently negative
projection ratios in the clean run, the median goes
close to zero in the patched run. These results show
that the erasure behavior disappears when we pre-
vent V-composition between L0H2 and the erasing
heads.

3.4 DLA contributions of writing and erasure
are highly anti-correlated

To investigate how erasure can affect the interpre-
tation of writing components using DLA, we ap-
plied the methodology described in Section 2.4.
We collected 30 random samples from the model’s

1The distribution of projection ratio between the sum of
erasing heads output and L0H2 has quantiles: 25% = -1.128,
50%=-0.907, 75%=-0.700.
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Figure 3: Median projection ratios between selected
heads in layer 2 and head L0H2, with and without V-
composition patching. Error bars represent 25th and
75th quantiles.

training dataset and considered the top 2 next token
predictions at every sequence position.

The results, shown in Figure 4, reveal a strong
negative correlation (r=-0.702) between the DLA
contributions of the writing head L0H2 and the
erasing heads in layer 2. The line of best fit has
a slope of -0.613, indicating that on average, the
erasing heads remove about 61% of L0H2’s appar-
ent contribution to the final logits, as measured by
DLA.

This anti-correlation suggests that DLA results
for the writing component L0H2 may be largely
artifacts of the downstream erasure. When the writ-
ing component appears to make a large contribution
to the final logits according to DLA, the erasing
components tend to make a similarly large contri-
bution in the opposite direction. As a result, the net
effect of the writing component on the final output
may be much smaller than what DLA alone would
suggest.

3.5 Adversarial examples of high DLA values
without direct effect

We selected four tokens for which the unembed-
ding direction aligns with the output of L0H2: "
bottom", " State", " __", and " Church". Then,
we constructed four prompts such that the model
predicts one of the tokens with highest probability.

1. prompt: "It’s in the cupboard, either
on the top or on the"
top-2 tokens: " bottom", " top"
(logit difference 1.07)

2. prompt: "I went to university at
Michigan"

Figure 4: Correlation between the effects of writing and
erasure on the logit difference of top 2 model predic-
tions, according to DLA.

top-2 tokens: " State", " University"
(logit difference 1.89)

3. prompt: "class MyClass:\n\tdef"
top-2 tokens: " __", " get"
(logit difference 3.02)

4. prompt: "The church I go to is the
Seventh-day Adventist"
top-2 tokens: " Church", " church"
(logit difference 0.94)

We use the methodology described in Sec-
tion 2.5. We find that patching the input to
L0H2 with unrelated text does not affect the DLA-
measured logit difference, as shown in Figure 5
(top). Therefore, we conclude that L0H2 does
not directly contribute to the model predictions
in prompts 1 to 4, despite significant DLA values.

For example, if we change Prompt 1 to a context
completely different to the vertical placement of
an object in a cupboard (such as in the patched
run), we no longer expect the model to differen-
tially boost the logit of " bottom" over " top".
However, DLA of L0H2 still suggests that L0H2 is
indeed differentially boosting the " bottom" token,
and this remains true for 300 randomly sampled
inputs.

The invariance of L0H2’s DLA to input tokens
is unusual. We reran the patching experiment for
four other attention heads that, according to DLA,
have the highest direct effect on logit difference
for the respective prompt in Figure 5 (bottom). In
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Figure 5: Logit difference of top 2 predictions on ad-
versarial examples, according to DLA. Patched refers
to replacing the input to the head L0H2 (top) or other
heads with high logit difference according to DLA (bot-
tom) with one from a run on unrelated text with the
same number of tokens (300 examples). The orange
bars show median with error bars at the 25th and 75th
quantiles.

contrast to L0H2, the results for these heads are
severely affected by the patch, as expected.

4 Conclusion

In this paper, we presented a concrete example
of memory management in a 4-layer transformer
model. It is important to note that our study fo-
cused on a single model and a specific attention
head. Further research is needed to determine the
extent to which these phenomena generalize across
different model components and model sizes.

Our findings also highlight the need for caution
when using DLA, as in the presence of the era-
sure phenomenon, these results can be misleading.
To mitigate this, we advocate for testing effects
across varied prompts, particularly those with dif-
ferent correct next token completions, as averaging
over many prompts can cancel out spurious results.
Moreover, we recommend complementing DLA
with activation patching to measure both direct and
indirect effects of model components.
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