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Abstract
The Linear Representation Hypothesis (LRH)
states that neural networks learn to encode con-
cepts as directions in activation space, and a
strong version of the LRH states that models
learn only such encodings. In this paper, we
present a counterexample to this strong LRH:
when trained to repeat an input token sequence,
gated recurrent neural networks (RNNs) learn
to represent the token at each position with
a particular order of magnitude, rather than a
direction. These representations have layered
features that are impossible to locate in distinct
linear subspaces. To show this, we train in-
terventions to predict and manipulate tokens
by learning the scaling factor corresponding to
each sequence position. These interventions
indicate that the smallest RNNs find only this
magnitude-based solution, while larger RNNs
have linear representations. These findings
strongly indicate that interpretability research
should not be confined by the LRH. 1

1 Introduction

It has long been observed that neural networks en-
code concepts as linear directions in their represen-
tations (Smolensky, 1986), and much recent work
has articulated and explored this insight as the Lin-
ear Representation Hypothesis (LRH; Elhage et al.
2022; Park et al. 2023; Guerner et al. 2023; Nanda
et al. 2023; Olah 2024). A strong interpretation
of the LRH says that such linear encodings are en-
tirely sufficient for a mechanistic analysis of a deep
learning model (Smith, 2024).

In this paper, we present a counterexample to
the Strong LRH by showing that recurrent neural
networks with Gated Recurrent Units (GRUs; Cho
et al. 2014) learn to represent the token at each po-
sition using magnitude rather than direction when
solving a simple repeat task (memorizing and gen-
erating a sequence of tokens). This leads to a set of

1Our code is public: https://github.com/
robertcsordas/onion_representations
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Figure 1: We find that GRUs solve a repeat task by
learning a scaling factor corresponding to each sequence
position, leading to layered onion-like representations.
In this simplified illustration, the learned token embed-
dings (a) are rescaled to have magnitudes proportional
to their sequence positions (b). To change an element of
the sequence, remove (c) and replace (d) the token em-
bedding at the given positional magnitude. The layered
nature of the representations makes them non-linear;
any direction will cross-cut multiple layers of the onion.

layered features that are impossible to locate in dis-
tinct linear subspaces. We refer to the resulting hid-
den states as ‘onion representations’ to evoke how
sequence position can be identified by iteratively
peeling off these magnitude changes from the posi-
tions before it (Figure 1). In our experiments, this
is the only solution found by the smallest networks
(hidden size 48, 64); the larger networks (128, 512,
1024) learn to store input tokens in position-specific
linear subspaces, consistent with the LRH, though
we find these linear representations are compatible
with onion-based mechanisms as well.

We made this surprising finding in a hypothesis-
driven fashion. Our Hypothesis 1 was that GRUs
would store each token in a linear subspace. To
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test this hypothesis, we employed a variant of
distributed alignment search (DAS; Geiger et al.
2024b; Wu et al. 2023) that uses a Gumbel softmax
to select dimensions for intervention. This revealed
that the larger GRUs do in fact have linear sub-
spaces for each position, but we found no evidence
of this for the smaller ones (section 5). This led
to Hypothesis 2: GRUs learn to represent input bi-
grams in linear subspaces. A DAS-based analysis
supports this for the medium-sized models but not
for the smallest ones (section 6). This left the task
success of the smallest models to be explained.

For the smallest models, we observed that the
update gates of the GRUs got gradually lower as
the sequence progressed. This led to Hypothesis 3:
onion representations. To evaluate this hypothesis,
we learned interventions on the hidden vector en-
coding a sequence of tokens that replaces token A
with token B at position j. The intervention adds
the scaled difference of learned embeddings for A
and B, where the scaling factor is determined by
the position j with learned linear and exponential
terms. Across positions, this intervention works
with ≈90% accuracy, demonstrating the existence
of layered features stored at different scales.

The existence of non-linear representations is a
well-formed theoretical possibility. For example,
under the framework of Geiger et al. (2024a) and
Huang et al. (2024), any bijective function can be
used to featurize a hidden vector, and interventions
can be performed on these potentially non-linear
features. However, the typical causal analysis of
a neural networks involves only interventions on
linear representations (see Section 2 for a brief
review of such methods). We hope that our coun-
terexample to the strong version of the LRH spurs
researchers to consider methods that fall outside of
this class, so that we do not overlook concepts and
mechanisms that our models have learned.

2 Related Work

The Linear Representation Hypothesis Much
early work on ‘word vectors’ was guided by the
idea that linear operations on vectors could identify
meaningful structure (Mikolov et al., 2013; Arora
et al., 2016; Levy and Goldberg, 2014). More re-
cently, Elhage et al. (2022) articulated the Linear
Representation Hypothesis (LRH), which says that
(1) features are represented as directions in vector
space and (2) features are one-dimensional (see
also Elhage et al. 2022; Park et al. 2023; Guerner

et al. 2023; Nanda et al. 2023). Engels et al. 2024
challenged (2) by showing some features are ir-
reducibly multi-dimensional. Olah (2024) subse-
quently argued that (1) is the more significant as-
pect of the hypothesis, and it is the one that we
focus on here. Smith (2024) adds important nuance
to the LRH by distinguishing a weak version (some
concepts are linearly encoded) from a strong one
(all concepts are linearly encoded).

Our concern is with the strong form; there is
ample evidence that linear encoding is possible,
but our example shows that other encodings are
possible. In onion representations, multiple con-
cepts can be represented in a linear subspace by
storing each concept at a different order of magni-
tude, i.e., a ‘layer’ of the onion, and any direction
will cross-cut multiple layers of the onion.

Intervention-based Methods Recent years have
seen an outpouring of new methods in which inter-
ventions are performed on linear representations,
e.g., entire vectors (Vig et al., 2020; Geiger et al.,
2020; Finlayson et al., 2021; Wang et al., 2023),
individual dimensions of weights (Csordás et al.,
2021) and hidden vectors (Giulianelli et al., 2018;
De Cao et al., 2020; Davies et al., 2023), linear
subspaces (Ravfogel et al., 2020; Geiger et al.,
2024b; Belrose et al., 2023), or linear features from
a sparse dictionary (Marks et al., 2024; Makelov
et al., 2024). These methods have provided deep in-
sights into how neural networks operate. However,
the vast and varied space of non-linear representa-
tions is woefully underexplored in a causal setting.

RNNs Recurrent Neural Networks (RNNs) were
among the first neural architectures used to process
sequential data (Elman, 1990, 1991). Many vari-
ants arose to help networks successfully store and
manage information across long sequences, includ-
ing LSTMs (Hochreiter and Schmidhuber, 1997)
and GRUs (Cho et al., 2014). Bidirectional LSTMs
provided the basis for one of the first large-scale
pretraining efforts (ELMo; Peters et al. 2018). With
the rise of Transformer-based models (Vaswani
et al., 2017), RNNs fell out of favor somewhat,
but the arrival of structured state-space models
(Gu et al., 2021b,a; Gu and Dao, 2023; Dao and
Gu, 2024) has brought RNNs back into the spot-
light, since such models seek to replace the Trans-
former’s potentially costly attention mechanisms
with recurrent connections. We chose GRUs for our
studies, with an eye towards better understanding
structured state space models as well.
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N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Exact-Match Accuracy 0.95 ± 0.01 0.97 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 1: Exact-match accuracy (mean of 5 runs; ± 1 s.d.) for GRUs of different sizes trained on the repeat task.

3 Models

In this paper, we focus on how RNNs solve the
repeat task. As noted in section 2, this question has
taken on renewed importance with the development
of structured state-space models that depend on
recurrent computations and are meant to provide
efficient alternatives to transformers.

Define an RNN as ht = f(ht−1,xt), h0 = 0,
where f(·, ·) is the state update function, t ∈
{1, . . . , T} is the current timestep, xt ∈ RN is
the current input, and ht ∈ RN is the state after
receiving the input xt. The output of the model is
yt = g(ht). Vectorized inputs xt are obtained with
a learned embedding E ∈ RNS×N , using the index-
ing operator xt = E[it], where it ∈ {1, . . . , NS}
is the index of the token at timestep t.

In our experiments, we use GRU cells over the
more widely-used LSTM cells because they have a
single state to intervene on, as opposed to the two
states of the LSTM. GRU-based RNNs defined as:

zt = σ (Wzxt +Uzht + bz) (1)

rt = σ (Wrxt +Urht + br) (2)

ut = tanh (Whxt +Uh(rt ⊙ ht) + bh) (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ ut (4)

For output generation, we use g(ht) =
softmax(htWo + bo). The learned parameters are
weights W∗,U∗ ∈ RN×N , and biases b∗ ∈ RN .

We will investigate how the final hidden state
hL of a GRU represents an input token sequence
i = i1, i2, . . . iL. The final state is a bottle-neck
between the input token sequence and the output.

4 Repeat Task Experiments

Our over-arching research question is how different
models learn to represent abstract concepts. The re-
peat task is an appealingly simple setting in which
to explore this question. In this task, the network
is presented with a sequence of random tokens
i = i1, i2, . . . , iL, where each ij is chosen with re-
placement from a set of symbols NS and the length
L is chosen at random from {1 . . . Lmax}. This is
followed by a special token, iL+1 = ‘S’, that in-
dicates the start of the repeat phase. The task is

to repeat the input sequence: yL+1+j = ij . The
variables in this task will represent positions in the
sequence and take on token values.

As a preliminary step, we evaluate RNN models
on the repeat task. The core finding is that all of the
models solve the task. This sets us up to explore
our core interpretability hypotheses in sections 5–7.

4.1 Setup

For our experiments, we generate 1M random se-
quences of the repeat task. The maximum sequence
length is Lmax = 9, and the number of possible
symbols is NS = 30. For testing, we generate an
additional 5K examples using the same procedure,
ensuring that they are disjoint at the sequence level
from those included in the train set.

We use the same model weights during both the
input and decoding phases. During the input phase,
we ignore the model’s outputs. No loss is applied to
these positions. We use an autoregressive decoding
phase: the model receives its previous output as
input in the next step. We investigate multiple
hidden state sizes, from N = 48 to N = 1024.

We train using a batch size of 256, up to 40K it-
erations, which is sufficient for each model variants
to converge. We use an AdamW optimizer with a
learning rate of 10−3 and a weight decay of 0.1.

4.2 Results

Table 1 reports on model performance at solving
the repeat task. It seems fair to say that all the mod-
els solve the task; only the smallest model comes
in shy of a perfect score, but it is at 95%. Overall,
these results provide a solid basis for asking how
the models manage to do this. This is the question
we take up for the remainder of the paper.

5 Hypothesis 1: Unigram Variables

Intuitively, to solve the repeat task, the token at
each position will have a different feature in the
state vector hL (the boundary between the input
and output phrases). In line with the LRH, we
hypothesize these features will be linear subspaces.
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Intervention N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Linear Unigram 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.18 ± 0.03 0.91 ± 0.08 1.00 ± 0.00
Linear Bigram 0.01 ± 0.00 0.01 ± 0.00 0.54 ± 0.05 0.97 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
Onion Unigram 0.83 ± 0.03 0.87 ± 0.03 0.89 ± 0.04 0.91 ± 0.08 0.95 ± 0.01 0.94 ± 0.04

Table 2: Intervention accuracy (mean of 5 runs; ± 1 s.d.) for GRUs of different sizes trained on the repeat task.

5.1 Interchange Intervention Data
In causal abstraction analysis (Geiger et al., 2021),
interchange interventions are used to determine
the content of a representation by fixing it to the
counterfactual value it would have taken on if a
different input were provided. These operations
require datasets of counterfactuals. To create such
examples, we begin with a random sequence y of
length L consisting of elements of our vocabulary.
We then sample a set of positions I ⊆ {1, . . . , L},
where each position k has a 50% chance of being
selected. To create the base b, we copy y and then
replace each bk with a random token, for k ∈ I .
To create the source s, we copy y and then replace
each sj with a random token, for j /∈ I . Here is a
simple example with I = {1, 3}:

y = b d a c

b = X d Y c

s = b 4 a 1

Our core question is whether we can replace repre-
sentations obtained from processing b with those
obtained from processing s in a way that leads the
model to predict y in the decoding phase.

5.2 Method: Interchange Interventions on
Unigram Subspaces

Our goal is to localize each position k in the input
token sequence to a separate linear subspaces Sk of
hL. We will evaluate our success using interchange
interventions. For each position in k ∈ I , we re-
place the subspace Sk in the hidden representation
hb
L for base input sequence b with the value it takes

in hs
L for source input sequence s. The resulting

output sequence should exactly match y. If we suc-
ceed, we have shown that the network has linear
representations for each position in a sequence.

There is no reason to assume that the subspaces
will be axis-aligned. Thus, we use Distributed
Alignment Search (DAS) and train a rotation ma-
trix R ∈ RN×N to map h into a new rotated space
h̄. However, a remaining difficulty is to determine
which dimensions in the rotated space belong to
which position. The size of individual subspaces

may differ: for example, the first input of a repeated
sequence, b1, is always present, and the probability
of successive inputs decreases due to the random
length of the input sequences. Thus, the network
might decide to allocate a larger subspace to the
more important variables that are always present,
maximizing the probability of correct decoding for
popular sequence elements.

To solve this problem, we learn an assignment
matrix A ∈ {0, 1}N×(L+1) that assigns dimen-
sions of the axis-aligned representation h̄ with at
most one sequence position. Allowing some di-
mensions to be unassigned provides the possibility
for the network to store other information that is
outside of these positions, such as the input length.

We can learn this assignment matrix by defining
a soft version of it Â ∈ RN×(L+1), and taking the
hard gumbel-softmax (Jang et al., 2017; Maddison
et al., 2017) with straight-through estimator (Hin-
ton, 2012; Bengio et al., 2013) over its columns for
each row (r ∈ {1 . . . N}) independently:

A[r] = gumbel_softmax(Â[r]) (5)

For intervening on the position k ∈ N, we re-
place dimensions of the rotated state h̄, that are 1
in A[·, v]. Specifically, intervention ĥb is defined:

h̄b = Rhb (6)

h̄s = Rhs (7)
ˆ̄hb = A[·, v]⊙ h̄s + (1−A[·, v])⊙ h̄b (8)

ĥb = R⊺ ˆ̄hb (9)

When learning the rotation matrix R and assign-
ment matrix A, we freeze the parameters of the
already trained GRU network. We perform the
intervention on the final state of the GRU, after
encoding the input sequences, and use the original
GRU to decode the output sequence ŷ from the
intervened state ĥb

L. We update R and A by back-
propogating with respect to the cross entropy loss
between the output sequence ŷ and the expected
output sequence after intervention y.
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5.3 Results

We use the same training set as the base model to
train the intervention model, and we use the same
validation set to evaluate it. The first row of Table 2
shows the accuracy of the unigram intervention. It
works well for “big” models, with N ≥ 512. In
these cases, we can confidentially conclude that
the model has a separate linear subspace for each
position in the sequence.

5.4 Discussion

The above results suggest that the model prefers
to store each input element in a different subspace
if there is “enough space” in its representations
relative to the task. However, Hypothesis 1 seems
to be incorrect for autoregressive decoders where
N < 512. Since these models do solve our task,
we need to find an alternative explanation for how
they succeed. This leads us to Hypothesis 2.

6 Hypothesis 2: Bigram Variables

Our second hypothesis is a minor variant of Hypoth-
esis 1. Here, we posit that, instead of representing
variables for unigrams, the model instead stores
tuples of inputs (it, it+1) we call bigram variables.

6.1 Intervention Data

We create counterfactual pairs using the same
method as we used for Hypothesis 1 (section 5.1).
In this case, each token it affects two bigram vari-
ables (if present). Thus, the subspace replacement
intervention must be performed on both of these
variables. This also means that, for each k ∈ I , the
tokens sk−1 and sk+1 in the source sequence input
must match bt−1 and bt+1 in the base sequence,
because the bigram at position t − 1 depends on
(it−1, it) and the bigram at t depends on (it, it+1).

6.2 Method: Interchange Interventions on
Bigram Subspaces

For a sequence of length L, there are L − 1 bi-
gram variables. To try to identify these, we use the
same interchange intervention method described
in section 5.2. Because targeting a single position
in the base input sequence requires replacing two
bigram variables, we intervene on only a single to-
ken at a time. Otherwise, the randomized sequence
could be too close to the original, and most of the
subspaces would be replaced at once, thereby arti-
ficially simplifying the task.

6.3 Results

We show the effectiveness of bigram interventions
in the middle row of Table 2. The intervention is
successful on most sizes, but fails for the smallest
models (N ≤ 64).

6.4 Discussion

We hypothesize that the models prefer to learn bi-
gram representations because of their benefits for
autoregressive input: the current input can be com-
pared to each of the stored tuples, and the output
can be generated from the second element of the
tuple. This alone would be enough to repeat all
sequences which have no repeated tokens. Because
our models solve the task with repeat tokens, an ad-
ditional mechanism must be involved. Regardless,
bigrams could provide a powerful representation
that is advantageous for the model.

Two additional remarks are in order. First, suc-
cessful unigram interventions entail successful bi-
gram interventions; a full argument is given in Ap-
pendix E.1. Second, one might worry that our
negative results for smaller models trace to limita-
tions of DAS on the small models. Appendix E.2
addresses this by showing DAS succeeding on a
non-autoregressive control model (N ≤ 64) that
solves the copy task. This alleviates the concern,
suggesting that the small autoregressive model does
not implement the bigram solution and highlighting
the role of autoregression in the bigram solution.

However, we still do not have an explanation
for how the smallest models (N ≤ 64) manages
to solve the repeat task; Hypotheses 1 and 2 are
unsupported as explanations for this model. This
in turn leads us to Hypothesis 3.

7 Hypothesis 3: Onion Representations

In an effort to better understand how the smallest
GRUs solve the repeat task, we inspected the gate
values zt as defined in equation 1 from the GRU
definition (section 3).

Figure 2a visualizes the first 64 input gates for
the N = 1024 model (Appendix figure 5 is a larger
diagram with all the gates). The x-axis is the se-
quence (temporal dimension) and the y-axis de-
picts the gate for each dimension. One can see
that this model uses gates to store inputs by clos-
ing position-dependent channels sharply, creating a
position-dependent subspace for each input. (This
gating pattern is consistent across all inputs.)

Figure 2b shows all the gates for the N = 64
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(a) The first 64 channels of GRU with N = 1024. The
model learns to store variables in different, axis-aligned sub-
spaces. Gates close sharply, freezing individual subspaces at
different times. For all channels, please refer to Figure 5 in
the Appendix.
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(b) GRU with N = 64 learns a “onion representation”,
using different scales of the same numbers to represent the
variables. The gates close gradually and synchronously in
the input phase, providing the exponentially decaying scaling
needed to represent different positions in the sequence.

Figure 2: The input gate zt in GRUs learning different representations Yellow is open; dark blue is closed; y-axis is
the channel; x axis is the position. Both models use input gates to let in different proportions of each dimension
across the sequence in order to store the positions of the input tokens. The large model (left) sharply turns off
individual channels to mark position; in contrast, the small model (right) gradually turns off all channels.

model. Here, the picture looks substantially differ-
ent. This model gradually closes its gates simul-
taneously, suggesting that the network might be
using this gate to encode token positions. This led
us to Hypothesis 3: RNNs learn to encode each
position in a sequence as a magnitude.

This hypothesis relies heavily on the autoregres-
sive nature of the GRU, the discriminative capacity
of the output classifier g(ht), and the sequential na-
ture of the problem. Multiple features can be stored
in the same subspace, at different scales. When
the GRU begins to generate tokens at timestep
t = L + 2, if the scales st′ associated with po-
sition t′ > t are sufficiently small (st′ ≪ st), the
output classifier yt = g(ht) will be able to cor-
rectly decode the first input token i1. In the follow-
ing step, i1 is fed back to the model as an input,
and the model is able to remove the scaled repre-
sentation corresponding to i1 from ht, obtaining
ht+1. In this new representation, the input with
the next largest scale, i2, will be dominant and will
be decoded in the next step. This can be repeated
to store a potentially long sequence in the same
subspace, limited by the numerical precision. We
call these ‘onion representations’ to invoke peeling
back layers corresponding to sequence positions.

Hypothesis 3 falls outside of the LRH. In lin-

ear representations, tokens are directions and each
position has its own subspace. All positions are in-
dependently accessible; tokens can be read-out and
manipulated given the right target subspace. Onion
representations have very different characteristics.

First, tokens have the same direction regardless
of which position they are stored in; the magnitude
of the token embedding determines the position
rather than its direction. As a result, if multiple po-
sitions contain the same token, the same direction
will be added twice with different scaling factors
(see figure 1d where the token c occurs in positions
2 and 3). Second, because the memory is the sum
of the scaled token embeddings, it is impossible to
isolate the position associated with a given scale.
Only the token with the most dominant scale can
be extracted at a given time, by matching it to a dic-
tionary of possible token directions. This is done
by the final classifier for our GRUs. The autore-
gressive feedback for GRUs in effect peels off each
layer, clearing access to the next variable.

Appendix F provides a toy implementation of the
onion solution to elucidate the underlying concepts.

7.1 Intervention Data
For the causal analysis of onion representations,
we do not use interchange interventions. Instead,
we learn an embedding matrix for each token that
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Figure 3: The intervention described by Equations 10–
13 where the input sequence is (a, b, c, d) and the inter-
vention is to fix the second position to be the token c.

encodes how the model represents that token in
its hidden state vector. To replace a token in a
sequence i1 . . . iL, we add the difference of the
embeddings for a new îj and old ij token scaled
according to the target position j. Our goal is to
intervene upon the hidden representation ĥL so
that the sequence decoded is i1 . . . îj . . . iL. We
randomly sample îj and use inputs from the GRU
training data.

7.2 Method: Onion Interventions

To replace token ij with token îj , we add the dif-
ference of the corresponding token embeddings
scaled by a factor determined by the position j. We
parameterize this as:

x = E[ij ] (10)

x̂ = E [̂ij ] (11)

s = gγj + βj + b (12)

h′ = ĥ+ s⊙ (x̂− x) (13)

where E ∈ RNS×N is the embedding for the to-
kens (distinct from the the GRU input embedding,
learned from scratch for the intervention), and
g,γ,β, b ∈ RN are learned scaling parameters.
Intuitively, s is the scale used for the token in posi-
tion j. Its main component is the exponential term
γ. In order to replace the token in the sequence,
compute the difference of their embeddings, and
scale them to the scale corresponding to the given
position. Different channels in the state h ∈ RN

might have different scales. Figure 3 depicts an
example intervention, extending figure 1.

7.3 Results
The last row of Table 2 shows that our onion in-
tervention achieves significantly better accuracy
on the small models compared to the alternative
unigram and bigram interventions. For example,
for N = 64, the onion intervention achieves 87%
accuracy compared to the 1% of the bigram inter-
vention. As a control, if we fix γ = 1 and β = 1,
we only reach 21% accuracy.

Linear MLP Onion GRU - AR. GRU - No in.

Probe

0

100

A
cc

ur
ac

y
[%

]

Figure 4: Accuracy of different probes on the final repre-
sentation hL of GRUs with N = 64 and autoregressive
input (mean of 5 runs; ± 1 s.d.). Only the probes that
use autoregressive denoising can successfully decode
the sequence.

7.4 Discussion

Why do GRUs learn onion representations? In
order to distinguish NS tokens stored in Lmax pos-
sible positions, the model needs to be able to dis-
tinguish between NS × Lmax different directions
in the feature space. In our experiments this is 300
possible directions, stored in a 64-dimensional vec-
tor space. In contrast, for onion representations,
they only have to distinguish between NS = 30
directions at different orders of magnitude.
Onion representations require unpeeling via au-
toregression. We train a variety of probes to de-
code the final representation hL after encoding
the input sequence of GRUs with N = 64, which
learn onion representation. We show our results
in figure 4. The linear and MLP probes predict
the entire sequence at once by mapping the hidden
vector hL ∈ RN to the logits for each timestep
yall ∈ RNS×Lmax . The GRU Autoregressive (GRU –
AR) probe is equivalent to the original model, and
we use it as a check to verify that the decoding is
easy to learn. The GRU – No input probe is similar,
but unlike the original decoder of the model, it does
not receive an autoregressive input.

The probe results confirm that it’s not merely
a free choice whether the decoder uses an autore-
gressive input or not: if an onion representation
is learned during the training phase, it is impossi-
ble to decode it with a non-autoregressive decoder,
contrary to the same-size models that are trained
without an autoregressive input, shown in Table 4
in Appendix E.3. We also show the special probe
we designed for onion representations in a similar
spirit to the intervention described in section 7.2,
which performs almost perfectly. More details can
be found in Appendix E.3.
What is the feature space of an onion represen-
tation? Together, the embeddings E learned for
each token and the probe P that predicts the to-
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ken sequence form an encoder F that projects the
hidden vector hL into a new feature space:

F(hL) =⟨E[P(hL)1], . . . ,

E[P(hL)L],hL −
L∑

j=2

E[P(hL)j ] · sj⟩

where the first L features are the token embeddings
corresponding to the token sequence predicted by
the probe and the final feature is what remains
of the hidden state after those embeddings are re-
moved. The inverse is a simple weighted sum:

F−1(f) = fL+1 +

L∑

j=1

fj · sj

If the probe had perfect accuracy, this inverse
would be perfect. Since our probe has 98% ac-
curacy, there is a reconstruction loss when apply-
ing the featurizer and inverse featurizer (similar
to sparse autoencoders, e.g., Bricken et al. 2023;
Huben et al. 2024).

This onion feature space is parameterized by
an embedding for each token, a dynamic scaling
factor, and a probe. In contrast, a single linear
feature is just a vector. However, because F is
(approximately) bijective, we know that F (approx-
imately) induces an intervention algebra (Geiger
et al., 2024a) where each feature is modular and can
be intervened upon separately from other features.
Our embedding-based interventions are equiva-
lent to onion interchange interventions. We eval-
uated the linear representations of large networks
with interchange interventions that fixed a linear
subspace to the value it would have taken on if a
different token sequence were input to the model.
There is a corresponding interchange intervention
for onion representations. However, it turns out that
these onion interchange interventions are equiva-
lent to the scaled difference of embeddings used in
our experiments (see Appendix B).
Why do Onion interventions also work on
large models? Surprisingly, the onion interven-
tion works well on the big models that have linear
representations of position (N ≥ 256). We hypoth-
esize that this is possible because all of the models
start with gates open before closing them in a mono-
tonic, sequential manner as the input sequence is
processed. This enables the scaling-based onion
intervention to simulate the actual gating pattern
sufficiently closely to be able to perform the in-
tervention well enough. The intervention cannot

express arbitrarily sharp gate transitions but can
compensate for them by creating an ensemble with
different decay factors for the different channels.

From Table 5 in the Appendix, it can be seen
that the onion intervention achieves significantly
worse performance on the small non-autoregressive
models that use linear representations compared to
the autoregressive ones. This is expected, as the
onion intervention cannot express an arbitrary gat-
ing pattern that might be learned by these models.

8 Discussion and Conclusion

The preceding experiments show that GRUs learn
highly structured and systematic solutions to the
repeat task. It should not be overlooked that two of
these solutions (those based in unigram and bigram
subspaces) are consistent with the general guiding
intuitions behind the LRH and so help to illustrate
the value of testing hypotheses in that space. How-
ever, our primary goal is to highlight the onion
solution, as it falls outside the LRH.

Our hope is that this spurs researchers working
on mechanistic interpretability to consider a wider
range of techniques. The field is rapidly converg-
ing around methods that can only find solutions
consistent with the LRH, as we briefly reviewed
in section 2. In this context, counterexamples to
the LRH have significant empirical and theoretical
value, as Olah (2024) makes clear:

But if representations are not mathemati-
cally linear in the sense described above
[in a definition of the LRH], it’s back
to the drawing board – a huge number
of questions like “how should we think
about weights?” are reopened.

Our counterexample is on a small network, but
our task is also very simple. Very large networks
solving very complex tasks may also find solutions
that fall outside of the LRH.

There is also a methodological lesson behind our
counterexample to the LRH. Much interpretability
work is guided by concerns related to AI safety.
The reasoning here is that we need to deeply under-
stand models if we are going to be able to certify
them as safe and robust, and detect unsafe mecha-
nisms and behaviors before they cause real harm.
Given such goals, it is essential that we analyze
these models in an unbiased and open-minded way.
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9 Limitations

The generality of onion representations. Onion
representations are well fit for memorizing a se-
quence in order or in reverse order, but they cannot
provide a general storage mechanism with arbitrary
access patterns. It is unclear if such representa-
tions are useful in models trained on more complex
real-world tasks.
Using GRU models. Our exploration is limited to
GRU models, which themselves might have less
interest in the current Transformer-dominated state
of the field. However, we suspect that the same rep-
resentations are beneficial for other gated RNNs as
well, such as LSTMs. Although we have a reason
to believe that such representations can emerge in
Transformers and state space models as well, we
do not verify this hypothesis empirically.
Onion representations only emerge in small
models. This might indicate that onion represen-
tations are not a problem for bigger models used
in practice. However, this might not be the case:
LLMs, which are much bigger, operate on an enor-
mous feature space using a relatively small residual
stream. Thus, the pressure to compress representa-
tions and the potential for similar representations
to emerge could be well motivated there as well.
Numerical precision. The number of elements
that can be stored in onion representations depends
on the numerical precision of the data type used for
the activations. We found that the network finds it
easy to use these representations even with 16-bit
floating point precision (bf16), potentially because
multiple redundant channels of the state can be
used as an ensemble. It remains unclear what the
capacity of such representations is.
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Variant N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Autoregressive 0.95 ± 0.01 0.97 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.88 ± 0.11 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 3: Exact-match accuracy (mean of 5 runs; ± 1 s.d.) for GRUs of different sizes trained on the repeat task
results, with and without autoregressive input during the decoding.

Appendix

A Performance of the Non-Autoregressive GRUs

We show the performance of all our models in Table 3, both autoregressive and those that do not
receive autoregressive feedback during the decoding phase. All models solve the task well, except
the smallest N = 48 model without autoregressive decoding. The model finds it hard to distinguish
between NS × Lmax = 300 different directions in the 48-dimensional space. On the other hand, onion
representations learned with autoregressive decoding work well even in these small models.

B Onion Interchange Interventions

For position j and input token sequences a1, . . . , aL and b1, . . . , bM , define the onion interchange
intervention to be

fa = F(ha)

f b = F(hb)

ĥa = F−1(fa1 , . . . , f
b
j , . . . f

a
L, f

a
L+1)

However, observe that that is simply the intervention of adding in the difference of the embeddings bj and
aj scaled according to the position j from Equations 10–13:

ĥa = F−1(fa1 , . . . , f
b
j , . . . f

a
L, f

a
L+1)

= F−1(E[a1], . . . ,E[bj ], . . .E[aL], f
a
L+1)

= faL+1 +

L∑

k=1

sk ·E[ak] + (E[bj ]−E[aj ]) · sj

= ha + (E[bj ]−E[aj ]) · sj

This means the success of our intervention ĥ to replace the token in a1, . . . , aL at position j with a new
token t entails the success of any onion interchange interventions where we patch from an input sequence
b1, . . . , bM with bj = t. The learned token embeddings for onion representations creates a semantics for
tokens that is externtal to the underlying model, so interchange interventions on the feature space have to
do with the token embeddings rather than the representations actually created on the given source input.
This is not the case for linear interchange interventions, where the value of the subspace intervention that
must be performed is computed directly from the hidden representation created for the second input token
sequence.

C Probe Accuracy For All Models

We show the accuracy of all of our probes in all models that we trained in Table 4. Linear and MLP
probes work well when the learned solution respects LRH. Onion probes work well even for our smallest
autoregressive models. We can see that autoregressive GRU can successfully decode all sequences, as
expected, proving that relearning the decoding phase is a relatively easy learning problem. However,
non-autoregressive GRUs are unable to decode sequences from onion representations. For more details,
refer to sections 5–7.
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Decoder Variant N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Linear
Autoregressive 0.01 ± 0.00 0.01 ± 0.00 0.31 ± 0.03 0.89 ± 0.03 0.97 ± 0.00 0.99 ± 0.01
No input 0.31 ± 0.10 0.89 ± 0.05 0.98 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

MLP
Autoregressive 0.02 ± 0.00 0.04 ± 0.00 0.55 ± 0.04 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.53 ± 0.25 0.95 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Onion
Autoregressive 0.92 ± 0.02 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.76 ± 0.08 0.96 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GRU - autoregressive
Autoregressive 0.97 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.92 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GRU - no input
Autoregressive 0.10 ± 0.02 0.25 ± 0.08 0.86 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
No input 0.77 ± 0.07 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 4: Probe accuracy (mean of 5 runs; ± 1 s.d.).

Intervention N = 48 N = 64 N = 128 N = 256 N = 512 N = 1024

Linear Unigram 0.06 ± 0.07 0.37 ± 0.17 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
Linear Bigram 0.18 ± 0.04 0.95 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Onion Unigram 0.24 ± 0.02 0.41 ± 0.04 0.76 ± 0.01 0.92 ± 0.01 0.96 ± 0.01 0.98 ± 0.00

Table 5: Intervention accuracy for GRUs without an autoregressive input in the decoding phase, with different sizes,
trained on the repeat task (mean of 5 runs; ± 1 s.d.).

D GRU Models Without Autoregressive Decoding

In principle, RNN models do not need an autoregressive feedback loop during the decoding phase to be
able to produce a consistent output. Given that we found that the network often relies on storing bigrams
(section 6) or on onion representations (section 7), both of which benefit from autoregressive feedback, we
asked what representation the models learn without such a mechanism. Thus, we changed our GRU model
to receive only special PAD tokens during the decoding phase. We show the intervention accuracies in
Table 5. We can see that the model is heavily based on storing unigrams, and the intervention now works
down to N = 1024. For the N = 64 case, the models store bigrams. No intervention works well for the
N = 48 non-autoregressive model, but that model also does not perform well on the validation set (see
Table 3). The model is unable to to learn onion representation at any scale, since the autoregressive input
is required for that, as shown in figure 4. This experiment also confirms that our subspace intervention
method introduced in section 5.2 works well even for models with N = 64.

E Additional Discussion of the Bigram Interventions

E.1 Successful Unigram Interventions Entail Successful Bigram Interventions

With bigram interventions, in addition to copying a token to the randomized sequence, we also copy its
neighborhood and replace two variables. In contrast, unigram interventions only move the corrupted token
and replace its corresponding variable. Thus, the unigram intervention performs a subset of movements
performed by the bigram. This means that if the unigram intervention is successful, it is guaranteed that
the bigram intervention will be successful as well.

E.2 Verifying the Expressivity of the Subspace Intervention

Obtaining negative results for the unigram intervention on smaller models (N < 512) might raise the
question of whether our intervention is expressive enough to capture the relatively small subspaces of
these models. In order to verify this, we trained a GRU model without autoregressive input (Appendix D)
during the decoding phase. By doing this, we eliminate some of the advantages provided by bigram
representations. Since GRUs are RNNs, they can learn a decoding state machine without relying on seeing
the output generated so far. We confirm this in Table 3. In these modified networks, unigram interventions
are successful down to N = 128, and the bigram intervention is successful on all scales. We show the
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Figure 5: All 1024 channels of the GRU gate zt shown in Figure 2a. All channels follow similar patterns.

261



detailed results in Table 5.

E.3 The Onion-probe
We designed a probe for onion representations similarly to the intervention described in section 7.2. We
take the final representation after encoding the sequence, hL, and decode yL + 1 = i1 . . . y2L = iL from
it as follows:

st = gγt−L + β(t− L) + b (14)

yt = argmaxg(ht−1) (15)

ht = ht−1 − stE[yt] (16)

As a denoising classifier g(h) we use a 2 layer MLP with a layernorm (Ba et al., 2016) on its inputs
g(h) = softmax (Wo2 max(0,LN(hWo1 + bo1)) + bo2), where LN(·) is the layernorm. Layernorm is
not strictly necessary, but it greatly accelerates the learning of the probe, so we decided to keep it.

F Toy Model Implementing Onion Representations

To show more clearly how a model can learn to represent sequence elements in different scales, we
constructed a toy model that uses prototypical onion representations:

st =





1, if t = 1

−1, if t = L+ 1

γst−1 otherwise

(17)

h1 = 0 (18)

ht+1 = ht + stxt (19)

yt = softmax (htWo + bo) (20)

where st ∈ R is a scalar state representing the current scale, γ ∈ R represents the difference in the scales
used for different variables, and ht ∈ RN is the vector memory. In a real RNN, both the vector memory
and the current scale are part of a single state vector. In our experiments, we use a fixed γ = 0.4. The
inputs are embedded in the same way as for our GRU model: xt = E[it], where it ∈ N is the input
token and E ∈ RNS×N is the embedding matrix. The only learnable parameters of this model are the
embedding matrix, E and the parameters of the output projection, Wo ∈ RN×N and bo ∈ RN .

The idea behind this model is based on the fact that a linear layer followed by a softmax operation
is able to ‘denoise’ the representation ht. γ is chosen as < 0.5, because in that case the contribution to
the hidden state ht of all future t′ > t positions will be lower than the contribution of input xt. Thus,
xt will dominate all ht′ for all t′ > t. Thus, when decoding from ht′ , Eq. 20, followed by the argmax
used in greedy decoding, the model will always recover the first, most dominant it that is not yet decoded
from the model. Then, this token is autoregressively fed back to the next step, where it is subtracted from
ht′ , letting the next token dominate the representation ht′+1. This allows storing an arbitrary sequence
at different scales of the representation ht. All 5 seeds of this model that we trained achieve perfect
validation accuracy.
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