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Abstract

Sparse autoencoders (SAEs) are an unsuper-
vised method for learning a sparse decompo-
sition of a neural network’s latent represen-
tations into seemingly interpretable features.
Despite recent excitement about their poten-
tial, research applications outside of indus-
try are limited by the high cost of training a
comprehensive suite of SAEs. In this work,
we introduce Gemma Scope, an open suite
of JumpReLU SAEs trained on all layers and
sub-layers of Gemma 2 2B and 9B and se-
lect layers of Gemma 2 27B base models.
We primarily train SAEs on the Gemma 2
pre-trained models, but additionally release
SAEs trained on instruction-tuned Gemma 2
9B for comparison. We evaluate the quality
of each SAE on standard metrics and release
these results. We hope that by releasing these
SAE weights, we can help make more ambi-
tious safety and interpretability research eas-
ier for the community. Weights and a tutorial
can be found at https://huggingface.co/
google/gemma-scope and an interactive demo
can be found at https://neuronpedia.org/
gemma-scope.

1 Introduction

There are several lines of evidence that suggest
that a significant fraction of the internal activations
of language models are sparse, linear combination
of vectors, each corresponding to meaningful fea-
tures (Elhage et al., 2022; Gurnee et al., 2023; Olah
et al., 2020; Park et al., 2023; Nanda et al., 2023a;
Mikolov et al., 2013). But by default, it is difficult
to identify which vectors are meaningful, or which
meaningful vectors are present. Sparse autoen-
coders are a promising unsupervised approach to
do this, and have been shown to often find causally
relevant, interpretable directions (Bricken et al.,
2023; Cunningham et al., 2023; Templeton et al.,
2024; Gao et al., 2024; Marks et al., 2024). If this
approach succeeds it could help unlock many of the

hoped for applications of interpretability (Nanda,
2022; Olah, 2021; Hubinger, 2022), such as detect-
ing and fixing hallucinations, being able to reliably
explain and debug unexpected model behaviour
and preventing deception or manipulation from au-
tonomous AI agents.

However, sparse autoencoders are still an imma-
ture technique, and there are many open problems
to be resolved (Templeton et al., 2024) before these
downstream uses can be unlocked – especially val-
idating or red-teaming SAEs as an approach, learn-
ing how to measure their performance, learning
how to train SAEs at scale efficiently and well, and
exploring how SAEs can be productively applied
to real-world tasks.

As a result, there is an urgent need for further
research, both in industry and in the broader com-
munity. However, unlike previous interpretability
techniques like steering vectors (Turner et al., 2024;
Li et al., 2023) or probing (Belinkov, 2022), sparse
autoencoders can be highly expensive and difficult
to train, limiting the ambition of interpretability
research. Though there has been a lot of excellent
work with sparse autoencoders on smaller models
(Bricken et al., 2023; Cunningham et al., 2023;
Dunefsky et al., 2024; Marks et al., 2024), the
works that use SAEs on more modern models have
normally focused on residual stream SAEs at a sin-
gle layer (Templeton et al., 2024; Gao et al., 2024;
Engels et al., 2024). In addition, many of these
(Templeton et al., 2024; Gao et al., 2024) have
been trained on proprietary models which makes
it more challenging for the community at large to
build on this work.

To address this we have trained and released the
weights of Gemma Scope: a comprehensive, open
suite of JumpReLU SAEs (Rajamanoharan et al.,
2024b) on every layer and sublayer of Gemma 2 2B
and 9B (Gemma Team, 2024a),1 as well as select

1We also release one suite of transcoders (Dunefsky et al.
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layers of the larger 27B model in this series. We re-
lease these weights under a permissive CC-BY-4.0
license2 on HuggingFace to enable and accelerate
research by other members of the research commu-
nity.

Gemma Scope was a significant engineering
challenge to train. It contains more than 400 sparse
autoencoders in the main release3, with more than
30 million learned features in total (though many
features likely overlap), trained on 4-16B tokens of
text each. We used over 20% of the training com-
pute of GPT-3 (Brown et al., 2020), saved about
20 Pebibytes (PiB) of activations to disk, and pro-
duced hundreds of billions of sparse autoencoder
parameters in total. This was made more chal-
lenging by our decision to make a comprehensive
suite of SAEs, on every layer and sublayer. We be-
lieve that a comprehensive suite is essential for en-
abling more ambitious applications of interpretabil-
ity, such as circuit analysis (Conmy et al., 2023;
Wang et al., 2022; Hanna et al., 2023), essentially
scaling up Marks et al. (2024) to larger models,
which may be necessary to answer mysteries about
larger models like what happens during chain of
thought or in-context learning.

In Section 2 we provide background on SAEs in
general and JumpReLU SAEs in particular. Sec-
tion 3 contains details of our training procedure,
hyperparameters and computational infrastructure.
We run extensive evaluations on the trained SAEs
in Section 4.

2 Preliminaries

2.1 Sparse autoencoders
Given activations x ∈ Rn from a language model,
a sparse autoencoder (SAE) decomposes and re-
constructs the activations using a pair of encoder
and decoder functions (f , x̂) defined by:

f(x) := σ (Wencx+ benc) , (1)

x̂(f) := Wdecf + bdec. (2)

These functions are trained to map x̂(f(x)) back to
x, making them an autoencoder. Thus, f(x) ∈ RM

(2024); Appendix C), a ‘feature-splitting’ suite of SAEs with
multiple widths trained on the same site (Section 4.2), and
some SAEs trained on the Gemma 2 9B IT model (Kissane
et al. (2024b); Section 4.4).

2Note that the Gemma 2 models are released under a dif-
ferent, custom license.

3For each model, layer and site we in fact release multiple
SAEs with differing levels of sparsity; taking this into account,
we release the weights of over 2,000 SAEs in total.

is a set of linear weights that specify how to com-
bine the M ≫ n columns of Wdec to reproduce x.
The columns of Wdec, which we denote by di for
i = 1 . . .M , represent the dictionary of directions
into which the SAE decomposes x. We will refer
to to these learned directions as latents to disam-
biguate between learnt ‘features’ and the concep-
tual features which are hypothesized to comprise
the language model’s representation vectors.4

The decomposition f(x) is made non-negative
and sparse through the choice of activation func-
tion σ and appropriate regularization, such that
f(x) typically has much fewer than n non-zero
entries. Initial work (Cunningham et al., 2023;
Bricken et al., 2023) used a ReLU activation func-
tion to enforce non-negativity, and an L1 penalty
on the decomposition f(x) to encourage spar-
sity. TopK SAEs (Gao et al., 2024) enforce spar-
sity by zeroing all but the top K entries of f(x),
whereas the JumpReLU SAEs (Rajamanoharan
et al., 2024b) enforce sparsity by zeroing out all en-
tries of f(x) below a positive threshold. Both TopK
and JumpReLU SAEs allow for greater separation
between the tasks of determining which latents are
active, and estimating their magnitudes.

2.2 JumpReLU SAEs
In this work we focus on JumpReLU SAEs as they
have been shown to be a slight Pareto improvement
over other approaches, and allow for a variable
number of active latents at different tokens (unlike
TopK SAEs).

JumpReLU activation The JumpReLU activa-
tion is a shifted Heaviside step function as a gating
mechanism together with a conventional ReLU:

σ(z) = JumpReLUθ(z) := z⊙H(z− θ). (3)

Here, θ > 0 is the JumpReLU’s vector-valued
learnable threshold parameter, ⊙ denotes elemen-
twise multiplication, and H is the Heaviside step
function, which is 1 if its input is positive and 0
otherwise. Intuitively, the JumpReLU leaves the
pre-activations unchanged above the threshold, but
sets them to zero below the threshold, with a differ-
ent learned threshold per latent.

Loss function As loss function we use a squared
error reconstruction loss, and directly regularize

4This is different terminology from earlier work (Bricken
et al., 2023; Rajamanoharan et al., 2024a,b), where feature is
normally used interchangeably for both SAE latents and the
language models features
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the number of active (non-zero) latents using the
L0 penalty:

L := ∥x− x̂(f(x))∥22 + λ∥f(x)∥0, (4)

where λ is the sparsity penalty coefficient. Since
the L0 penalty and JumpReLU activation function
are piecewise constant with respect to threshold
parameters θ, we use straight-through estimators
(STEs) to train θ, using the approach described
in Rajamanoharan et al. (2024b). This introduces
an additional hyperparameter, the kernel density
estimator bandwidth ε, which controls the quality
of the gradient estimates used to train the threshold
parameters θ.5

3 Training details

3.1 Data

We train SAEs on the activations of Gemma 2 mod-
els generated using text data from the same dis-
tribution as the pretraining text data for Gemma
1 (Gemma Team, 2024b) , except for the one
suite of SAEs trained on the instruction-tuned (IT)
model (Section 4.4). We generate activations on
sequences of length 1024.

For a given sequence we only collect activa-
tions from tokens which are neither BOS, EOS, nor
padding. After activations have been generated,
they are shuffled in buckets of about 106 activa-
tions. We speculate that a perfect shuffle would not
significantly improve results, but this was not sys-
tematically checked. We would welcome further
investigation into this topic in future work.

During training, activation vectors are normal-
ized by a fixed scalar to have unit mean squared
norm.6 This allows more reliable transfer of hyper-
parameters (in particular the sparsity coefficient λ
and bandwidth ε) between layers and sites, as the
raw activation norms can vary over multiple orders
of magnitude, changing the scale of the reconstruc-
tion loss in Eq. (4). Once training is complete,
we rescale the trained SAE parameters so that no

5A large value of ε results in biased but low variance es-
timates, leading to SAEs with good sparsity but sub-optimal
fidelity, whereas a low value of ε results in high variance esti-
mates that cause the threshold to fail to train at all, resulting
in SAEs that fail to be sparse. We find through hyperparam-
eter sweeps across multiple layers and sites that ε = 0.001
provides a good trade-off (when SAE inputs are normalized
to have an unit mean squared norm) and use this to train the
SAEs released as part of Gemma Scope.

6This is similar in spirit to Conerly et al. (2024), who
normalize the dataset to have mean norm of

√
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Figure 1: Locations of sparse autoencoders inside a
transformer block of Gemma 2. Note that Gemma 2 has
RMS Norm at the start and end of each attention and
MLP block.

input normalization is required for inference (see
Appendix B for details).

As shown in Table 1, SAEs with 16.4K latents
are trained for 4B tokens, while 1M-width SAEs
are trained for 16B tokens. All other SAEs are
trained for 8B tokens.

Location We train SAEs on three locations per
layer, as indicated by Fig. 1. We train on the at-
tention head outputs before the final linear trans-
formation WO and RMSNorm has been applied
(Kissane et al., 2024a), on the MLP outputs af-
ter the RMSNorm has been applied and on the
post MLP residual stream. For the attention output
SAEs, we concatenate the outputs of the individual
attention heads and learn a joint SAE for the full
set of heads. We zero-index the layers, so layer 0
refers to the first transformer block after the embed-
ding layer. In Appendix C we define transcoders
(Dunefsky et al., 2024) and train one suite of these.
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3.2 Hyperparameters

Optimization We use the same bandwidth ε =
0.001 and learning rate η = 7 × 10−5 across
all training runs. We use a cosine learning rate
warmup from 0.1η to η over the first 1,000 train-
ing steps. We train with the Adam optimizer
(Kingma and Ba, 2017) with (β1, β2) = (0, 0.999),
ϵ = 10−8 and a batch size of 4,096. We use a linear
warmup for the sparsity coefficient from 0 to λ over
the first 10,000 training steps.

During training, we parameterise the SAE us-
ing a pre-encoder bias (Bricken et al., 2023), sub-
tracting bdec from activations before the encoder.
However, after training is complete, we fold this
bias into the encoder parameters, so that no pre-
encoder bias needs to be applied during inference.
See Appendix B for details.

Throughout training, we restrict the columns of
Wdec to have unit norm by renormalizing after ev-
ery update. We also project out the part of the
gradients parallel to these columns before comput-
ing the Adam update, as described in Bricken et al.
(2023).

Initialization We initialize the JumpReLU
threshold as the vector θ = {0.001}M . We ini-
tialize Wdec using He-uniform (He et al., 2015)
initialization and rescale each latent vector to be
unit norm. Wenc is initalized as the transpose of
Wdec, but they are not tied afterwards (Conerly
et al., 2024; Gao et al., 2024). The biases bdec and
benc are initialized to zero vectors.

3.3 Infrastructure

3.3.1 Accelerators
Topology We train most of our SAEs using
TPUv3 in a 4x2 configuration. Some SAEs, es-
pecially the most wide ones, were trained using
TPUv5p in either a 2x2x1 or 2x2x4 configuration.

Sharding We train SAEs with 16.4K latents with
maximum amount of data parallelism, while using
maximal amounts of tensor parallelism using Mega-
tron sharding (Shoeybi et al., 2020) for all other
configurations. We find that as one goes to small
SAEs and correspondingly small update step time,
the time spent on host-to-device (H2D) transfers
outgrows the time spent on the update step, favor-
ing data sharding. For larger SAEs on the other
hand, larger batch sizes enable higher arithmetic
intensity by reducing transfers between HBM and
VMEM of the TPU. Furthermore, the specific archi-

tecture of SAEs means that when using Megatron
sharding, device-to-device (D2D) communication
is minimal, while data parallelism causes a costly
all-reduce of the full gradients. Thus we recom-
mend choosing the smallest degree of data sharding
such that the H2D transfer takes slightly less time
than the update step.

As an example, with proper step time optimiza-
tion this enables us to process one batch for a 131K-
width SAE in 45ms on 8 TPUv3 chips, i.e. a model
FLOP utilization (MFU) of about 50.8%.

3.3.2 Data Pipeline

Disk storage We store all collected activations
on hard drives as raw bytes in shards of 10-20GiB.
We use 32-bit precision in all our experiments. This
means that storing 8B worth of activations for a sin-
gle site and layer takes about 100TiB for Gemma
2 9B, or about 17PiB for all sites and layers of
both Gemma 2 2B and 9B. The total amount is
somewhat higher still, as we train some SAEs for
16B tokens and also train some SAEs on Gemma 2
27B, as well as having a generous buffer of addi-
tional tokens. While this is a significant amount of
disk space, it is still cheaper than regenerating the
data every time one wishes to train an SAE on it.
Concretely, in our calculations we find that storing
activations for 10-100 days is typically at least an
order of magnitude cheaper than regenerating them
one additional time. The exact numbers depend on
the model used and the specifics of the infrastruc-
ture, but we expect this relationship to hold true
in general. If there is a hard limit on the amount
of disk space available, however, or if fast disk
I/O can not be provided (see next paragraph), then
this will favor on-the-fly generation instead. This
would also be the case if the exact hyperparameter
combinations were known in advance. In practice,
we find it advantageous for research iteration speed
to be able to sweep sparsity independently from
other hyperparameters and to retrain SAEs at will.

Disk reads Since SAEs are very shallow models
with short training step times and we train them on
activation vectors rather than integer-valued tokens,
training them requires high data throughput. For
instance, to train a single SAE on Gemma 2 9B
without being bottlenecked by data loading requires
more than 1 GiB/s of disk read speed. This demand
is further amplified when training multiple SAEs on
the same site and layer, e.g. with different sparsity
coefficients, or while conducting hyperparameter
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Gemma 2 Model SAE Width Attention MLP Residual # Tokens
2.6B PT 214 ≈ 16.4K All All All+ 4B

(26 layers) 215 ✗ ✗ {12} 8B
216 All All All 8B
217 ✗ ✗ {12} 8B
218 ✗ ✗ {12} 8B
219 ✗ ✗ {12} 8B

220 ≈ 1M ✗ ✗ {5, 12, 19} 16B
9B PT 214 All All All 4B

(42 layers) 215 ✗ ✗ {20} 8B
216 ✗ ✗ {20} 8B
217 All All All 8B
218 ✗ ✗ {20} 8B
219 ✗ ✗ {20} 8B
220 ✗ ✗ {9, 20, 31} 16B

27B PT (46 layers) 217 ✗ ✗ {10, 22, 34} 8B
9B IT 214 ✗ ✗ {9, 20, 31} 4B

(42 layers) 217 ✗ ✗ {9, 20, 31} 8B

Table 1: Overview of the SAEs that were trained for which sites and layers. For each model, width, site and layer,
we release multiple SAEs with differing levels of sparsity (L0).
All+: We also train one suite of transcoders on the MLP sublayers on Gemma 2.6B PT (Appendix C).

tuning.

To overcome this bottleneck we implement a
shared server system, enabling us to amortize disk
reads for a single site and layer combination:

• Shared data buffer: Multiple training jobs
share access to a single server. The server
maintains a buffer containing a predefined
number of data batches. Trainers request these
batches from the servers as needed.

• Distributed disk reads: To enable parallel
disk reads, we deploy multiple servers for
each site and layer, with each server exclu-
sively responsible for a contiguous slice of the
data.

• Dynamic data fetching: As trainers request
batches, the server continually fetches new
data from the dataset, replacing the oldest data
within their buffer.

• Handling speed differences: To accommo-
date variations in trainer speeds caused by
factors like preemption, crashes and different
SAE widths, trainers keep track of the batches
they have already processed. If a trainer
lags behind, the servers can loop through the
dataset again, providing the missed batches.
Note that different training speeds result in
different trainers not seeing the same data or
necessarily in the same order. In practice we

found this trade-off well worth the efficiency
gains.

4 Evaluation

In this section we evaluate the trained SAEs from
various different angles. We note however that as of
now there is no consensus on what constitutes a re-
liable metric for the quality of a sparse autoencoder
or its learned latents and that this is an ongoing area
of research and debate (Gao et al., 2024; Karvonen
et al., 2024; Makelov et al., 2024).

Unless otherwise noted all evaluations are on
sequences from the same distribution as the SAE
training data, i.e. the pretraining distribution of
Gemma 1 (Gemma Team, 2024b).

4.1 Evaluating the sparsity-fidelity trade-off
Methodology For a fixed dictionary size, we
trained SAEs of varying levels of sparsity by sweep-
ing the sparsity coefficient λ. We then plot curves
showing the level of reconstruction fidelity attain-
able at a given level of sparsity.

Metrics We use the mean L0-norm of latent ac-
tivations, Ex∥f(x)∥0, as a measure of sparsity. To
measure reconstruction fidelity, we use two met-
rics:

• Our primary metric is delta LM loss, the in-
crease in the cross-entropy loss experienced
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Figure 2: Sparsity-fidelity trade-off for layer 12 Gemma 2 2B and layer 20 Gemma 2 9B SAEs. An ideal SAE
should have low delta loss and low L0, i.e. correspond to a point towards the bottom-left corner of each plot. For an
analogous plot using FVU as the measure of fidelity see Fig. 11.

by the LM when we splice the SAE into the
LM’s forward pass.

• As a secondary metric, we also use fraction
of variance unexplained (FVU) – also called
the normalized loss (Gao et al., 2024) – as
a measure of reconstruction fidelity. This is
the mean reconstruction loss Lreconstruct of a
SAE normalized by the reconstruction loss ob-
tained by always predicting the dataset mean.
Note that FVU is purely a measure of the
SAE’s ability to reconstruction the input ac-
tivations, not taking into account the causal
effect of any error on the downstream loss.

All metrics were computed on 2,048 sequences
of length 1,024, after masking out BOS, EOS, and
padding tokens when aggregating the results.

Results Fig. 2 compares the sparsity-fidelity
trade-off for SAEs in the middle of each Gemma
model. For the full results see Appendix D. Delta
loss is consistently higher for residual stream SAEs
compared to MLP and attention SAEs, whereas
FVU (Fig. 11) is roughly comparable across sites.
We conjecture this is because even small errors in
reconstructing the residual stream can have a signif-
icant impact on LM loss, whereas relatively large
errors in reconstructing a single MLP or attention
sub-layer’s output have a limited impact on the LM
loss.7

7The residual stream is the bottleneck by which the previ-
ous layers communicate with all later layers. Any given MLP
or attention layer adds to the residual stream, and is typically
only a small fraction of the residual, so even a large error in
the layer is a small error to the residual stream and so to the

4.2 Studying the effect of SAE width
Holding all else equal, wide SAEs learn more la-
tent directions and provide better reconstruction
fidelity at a given level of sparsity than narrow
SAEs. Intuitively, this suggests that we should use
the widest SAEs practicable for downstream tasks.
However, there are also signs that this intuition may
come with caveats. The phenomenon of ‘feature-
splitting’ (Bricken et al., 2023) – where latents in
a narrow SAE seem to split into multiple special-
ized latents within wider SAEs – is one sign that
wide SAEs do not always use their extra capacity
to learn a greater breadth of features (Bussmann
et al., 2024). It is plausible that the sparsity penalty
used to train SAEs encourages wide SAEs to learn
frequent compositions of existing features instead
of or in addition to learning new features (Anders
et al., 2024). If this is the case, it is currently un-
clear whether this is good or bad for the usefulness
of SAEs on downstream tasks.

In order to facilitate research into how SAEs’
properties vary with width, and in particular how
SAEs with different widths trained on the same
data relate to one another, we train and release
a ‘feature-splitting‘ suite of mid-network residual
stream SAEs for Gemma 2 2B and 9B PT with
matching sparsity coefficients and widths between
214 ≈ 16.4K and 219 ≈ 524K in steps of powers of

rest of the network’s processing. On the other hand, a large
error to the residual stream itself will significantly harm loss.
For the same reason, mean ablating the residual stream has far
higher impact on the loss than mean ablating a single layer.
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Figure 3: Delta loss versus sparsity curves for a series of
SAEs of differing width (keeping λ and other hyperpa-
rameters constant), trained on the residual stream after
layer 20 of Gemma 2 9B.

two.8 The SAEs are trained with different sparsity
settings after layers 12 and 20 of Gemma 2 2B and
9B respectively.

Sparsity-fidelity trade-off Similar to Sec-
tion 4.1, Fig. 3 compares fidelity-versus-sparsity
curves for SAEs of differing width in this ladder.

Latent firing frequency Fig. 4 shows frequency
histograms for λ = 6 × 10−4 SAEs in the same
ladder of widths from 214 to 219 latents. To com-
pute these, we calculate the firing frequency of
each latent over 20,000 sequences of length 1,024,
masking out special tokens. The mode and most of
the mass shifts towards lower frequencies with in-
creased number of latents. However there remains
a cluster of ultra-high frequency latents, which
has also been observed for TopK SAEs but not
for Gated SAEs (Cunningham and Conerly, 2024;
Gao et al., 2024; Rajamanoharan et al., 2024b).

4.3 Interpretability of latents
The interpretability of latents for JumpReLU SAEs
and other architectures was investigated in Raja-
manoharan et al. (2024b), finding little difference
between various SAE architectures. Since we also
use JumpReLU SAEs, we refer to section 5.3 of
that work for a detailed discussion of the method-
ology and results.

4.4 SAEs trained on base models transfer to
IT models

Additional IT SAE training Prior research has
shown that SAEs trained on base model activations
also faithfully reconstruct the activations of IT mod-
els derived from these base models (Kissane et al.,
2024b). We find further evidence for these results

8Note the 1M-width SAEs included in Fig. 2 do not form
part of this suite as they were trained using a different range
of values for the sparsity coefficient λ.

Figure 4: Frequency histogram of SAEs trained on
Gemma 2 9B, layer 20, post MLP residual with sparsity
coefficient λ = 6 × 10−4. (These correspond to the
SAEs with L0 ≈ 50 in Fig. 3.)

by comparing the Gemma Scope SAEs with sev-
eral SAEs we train on the activations from Gemma
2B 9B IT. Specifically, we train these IT SAEs by
taking the same pretraining documents used for all
other SAEs (Section 3.1) and prepend them with
Gemma’s IT prefix for the user’s query, and append
Gemma’s IT prefix for the model’s response.9 We
then train each SAE to reconstruct activations at
all token positions besides the user prefix (since
these tokens have much larger norm (Kissane et al.,
2024b), and are the same for every document). We
also release the weights for these SAEs to enable
further research into the differences between train-
ing SAEs on base and IT models. 10

Methodology To evaluate the SAEs trained on
the IT model’s activations, we generate 1,024 roll-
outs of the Gemma 2 9B IT model on a random
sample of the SFT data used to train Gemini 1.0 Ul-
tra (GoogleDeepmind, 2024) , with temperature 1.0.

9See e.g. https://huggingface.co/google/
gemma-2-2b-it for the user and model prefixes.

10https://huggingface.co/google/
gemma-scope-9b-it-res
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We then use SAEs trained on the residual stream
of the base model and the IT model to reconstruct
these activations, and measured the FVU.

Results In Fig. 5 we show that using PT model
SAEs results in increases in cross-entropy loss al-
most as small as the increase from the SAEs di-
rectly trained on the IT model’s activation. We
show further evaluations such as on Gemma 2 2B,
measuring FVU rather than loss, and using activa-
tions from the user query (not just the rollout) in
Appendix D.6. In Fig. 19 we find that the FVU
for the PT SAEs is somewhat faithful, but does not
paint as strong a picture as Fig. 5. A speculative
explanation for this is that finetuning consists of ‘re-
weighting’ old features from the base model, in ad-
dition to learning some new, chat-specific features
that do not have as big an impact on next-token
prediction. This would mean the FVU looks worse
than the increase in loss since the FVU would be
impacted by low impact chat features, but change
in loss would not be.

Future work could look into finetuning these
SAEs on chat interactions if even lower reconstruc-
tion error is desired (Kissane et al., 2024b), or eval-
uating on multi-turn and targeted rollouts.

4.5 Additional evaluation results
In Appendix D, we present additional evaluation
results covering

• Sparsity-Fidelity trade-off for more SAEs

• Studying SAE performance as a function of
token position.

• SAE performance on different subsets of The
Pile (Gao et al., 2020), showing stronger per-
formance on Deepmind Mathematics (Saxton
et al., 2019) and weaker performance on Eu-
roparl (Koehn, 2005).

• Impact of low precision inference, show-
ing little performance regression from using
bfloat16.

• Uniformity of active latent importance, which
is a measure for how diffuse the downstream
effect of a single SAE latent is, introduced by
Rajamanoharan et al. (2024b).

• Additional evaluation results for SAEs trained
on the activations of Gemma 2 IT models.

5 Related Work

Open Weights Sparse Autoencoders There
have been several open weights SAE contributions
by the research community. However, all releases
we are aware of have focused on smaller and older
language models or have not released a comprehen-
sive set of autoencoder weights.

Marks and Mueller (2023) trained SAEs on the
MLP outputs of all layers of Pythia-70M (Bider-
man et al., 2023). Braun et al. (2024) trained dif-
ferent variants of SAEs on GPT-2 small (Radford
et al., 2019) and Tinystories-1M (Eldan and Li,
2023) on the residual stream activations in select
layers. Belrose (2024) released TopK SAEs on the
residual stream of Llama 3.1 8B (Meta, 2024). En-
gels et al. (2024) released Mistral 7B SAEs trained
on the residual stream in layers 8, 16, and 24. Gao
et al. (2024) released various SAEs on GPT-2 small
with the latest release including TopK SAEs on ev-
ery layer and sublayer, including the post-attention
residual stream. Kissane et al. (2024c) released
SAEs on the attention output of every layer of GPT-
2 small. Kissane et al. (2024b) released PT, IT,
and fine-tuned SAEs for Mistral-7B and Qwen 1.5
0.5B on the residual stream in the middle of the
language model. Dunefsky et al. (2024) released
MLP transcoders on all layers of GPT-2 small. Han
(2024) released an SAE on the residual stream of
layer 25 of Llama 3B IT. We also refer to f SAEs
supported by the SAELens (Joseph Bloom, 2024)
library for an overview of easily accessible open
weights SAEs .

In contrast to the above work, Gemma Scope
is the first release of SAE weights which contains
SAEs for all layers and sublayers of a recently
released, performant 2B and 9B language model.

6 Discussion and Future Work

In this report we have introduced Gemma Scope,
a comprehensive suite of Sparse Autoencoders
(SAEs) on all layers and sublayers of Gemma 2
2B and 9B PT. We have described the engineering
challenges involved in this project and how we ap-
proached them. In order to shed light on the quality
of the Gemma Scope SAEs, we have provided re-
sults of various evaluation experiments. While we
have extensively evaluated these SAEs, their real
test is how much they can enable and accelerate
downstream interpretability research. To further
underscore this point, we provide a broad range
of open research questions related to SAEs which
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we think are enabled or aided by Gemma Scope in
Appendix A and which we would be excited to see
pursued by the interpretability research community.

Training such a comprehensive suite of Sparse
Autoencoders requires a significant upfront cost in
compute and energy (Section 3) and thus also has
a certain carbon footprint. It is our hope that by
paying this cost once, we can avoid the broader
research community having to train their own mod-
els again and again. We think Gemma Scope will
enable research into language model internals for
years to come, even if and when the state of the
art of SAE training improves in the future, and so
we are optimistic that the cost of training Gemma
Scope can be amortized.
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A Open problems that Gemma Scope
may help tackle

Our main goal in releasing Gemma Scope is to help
the broader safety and interpretability communities
advance our understanding of interpretability, and
how it can be used to make models safer. As a
starting point, we provide a list of open problems
we would be particularly excited to see progress
on, where we believe Gemma Scope may be able
to help. Where possible we cite work that may be
a helpful starting point, even if it is not tackling
exactly the same question.

Deepening our understanding of SAEs
1. Exploring the structure and relationships be-

tween SAE features, as suggested in Watten-
berg and Viégas (2024).

2. Comparisons of residual stream SAE features
across layers, e.g. are there persistent features
that one can “match up” across adjacent lay-
ers?

3. Better understanding the phenomenon of “fea-
ture splitting” (Bricken et al., 2023) where
high-level features in a small SAE break apart
into several finer-grained features in a wider
SAE.

4. We know that SAEs introduce error, and com-
pletely miss out on some features that are cap-
tured by wider SAEs (Templeton et al., 2024;
Bussmann et al., 2024). Can we quantify and
easily measure “how much” they miss and
how much this matters in practice?

5. How are circuits connecting up superposed
features represented in the weights? How do
models deal with the interference between fea-
tures (Nanda et al., 2023b)?

Using SAEs to improve performance on real–
world tasks (compared to fair baselines)

1. Detecting or fixing jailbreaks.
2. Helping find new jailbreaks/red-teaming mod-

els (Ziegler et al., 2022).
3. Comparing steering vectors (Turner et al.,

2024) to SAE feature steering (Conmy and
Nanda, 2024) or clamping (Templeton et al.,
2024).

4. Can SAEs be used to improve interpretabil-
ity techniques, like steering vectors, such as
by removing irrelevant features (Conmy and
Nanda, 2024)?

Red-teaming SAEs
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1. Do SAEs really find the “true” concepts in a
model?

2. How robust are claims about the interpretabil-
ity of SAE features (Huang et al., 2023)?

3. Can we find computable, quantitative mea-
sures that are a useful proxy for how “inter-
pretable” humans think a feature vector is
(Bills et al., 2023)?

4. Can we find the “dark matter” of truly non-
linear features?11

5. Do SAEs learn spurious compositions of in-
dependent features to improve sparsity as has
been shown to happen in toy models (Anders
et al., 2024), and can we fix this?

Scalable circuit analysis: What interesting cir-
cuits can we find in these models?

1. What’s the learned algorithm for addition
(Stolfo et al., 2023) in Gemma 2 2B?

2. How can we practically extend the SAE fea-
ture circuit finding algorithm in Marks et al.
(2024) to larger models?

3. Can we use SAE-like techniques such as MLP
transcoders (Dunefsky et al., 2024) to find
input independent, weights-based circuits?

Using SAEs as a tool to answer existing ques-
tions in interpretability

1. What does finetuning do to a model’s internals
(Jain et al., 2024)?

2. What is actually going on when a model uses
chain of thought?

3. Is in-context learning true learning, or just pro-
moting existing circuits (Hendel et al., 2023;
Todd et al., 2024)?

4. Can we find any “macroscopic structure” in
language models, e.g. families of features that
work together to perform specialised roles,
like organs in biological organisms?12

5. Does attention head superposition (Jermyn
et al., 2023) occur in practice? E.g. are many
attention features spread across several heads
(Kissane et al., 2024b)?

Improvements to SAEs
1. How can SAEs efficiently capture the circular

features of Engels et al. (2024)?
11We distinguish truly non-linear features from low-rank

subspaces of linear features as found in Engels et al. (2024).
12We know this happens in image models (Voss et al., 2021)

but have not seen much evidence in language models. But
superposition is incentivized for features that do not co-occur
(Gurnee et al., 2023), so specialized macroscopic structure
may be a prime candidate to have in superposition. Now we
have SAEs, can we find and recover it?

2. How can they deal efficiently with cross-layer
superposition, i.e. features produced in super-
position by neurons spread across multiple
layers?

3. How much can SAEs be quantized without
significant performance degradation, both for
inference and training?

B Standardizing SAE parameters for
inference

As described in Section 3, during training, we nor-
malize LM activations and subtract bdec from them
before passing them to the encoder. However, af-
ter training, we reparameterize the Gemma Scope
SAEs so that neither of these steps are required
during inference.

Let xraw be the raw LM activations that we
rescale by a scalar constant C, i.e. x := xraw/C,
such that E

[
∥x∥22

]
= 1. Then, as parameterized

during training, the SAE forward pass is defined
by

f(xraw) := JumpReLUθ

(
Wenc

(xraw

C
− bdec

)
+ benc

)
,

(5)

x̂raw(f) := C · (Wdecf + bdec) . (6)

It is straightforward to show that by defining the
following rescaled and shifted parameters:

b′
enc := C benc − CWencbdec (7)

b′
dec := C bdec (8)

θ′ := C θ (9)

we can simplify the SAE forward pass (operating
on the raw activations xraw) as follows:

f(xraw) = JumpReLUθ′
(
Wencxraw + b′

enc
)
,

(10)

x̂raw(f) = Wdecf + b′
dec. (11)

C Transcoders

MLP SAEs are trained on the output of MLPs,
but we can also replace the whole MLP with a
transcoder (Dunefsky et al., 2024) for easier cir-
cuit analysis. Transcoders are not autoencoders:
while SAEs are trained to reconstruct their input,
transcoders are trained to approximate the output
of MLP layers from the input of the MLP layer. We
train one suite of transcoders on Gemma 2B PT,
and release these at https://huggingface.co/
google/gemma-scope-2b-pt-transcoders.
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Evaluation We find that transcoders cause a
greater increase in loss to the base model relative
to the MLP output SAEs (Fig. 6), at a fixed sparsity
(L0). This reverses the trend from GPT-2 Small
found by Dunefsky et al. (2024). This could be due
to a number of factors, such as:

1. Transcoders do not scale to larger mod-
els or modern transformer architectures (e.g.
Gemma 2 has Gated MLPs unlike GPT-2
Small) as well as SAEs.

2. JumpReLU provides a bigger performance
boost to SAEs than to transcoders.

3. Errors in the implementation of transcoders in
this work, or in the SAE implementation from
Dunefsky et al. (2024).

4. Other training details (not just the JumpReLU
architecture) that improve SAEs more than
transcoders. Dunefsky et al. (2024) use train-
ing methods such as using a low learning rate,
differing from SAE research that came out at
a similar time to Bricken et al. (2023) such as
Rajamanoharan et al. (2024a) and Cunning-
ham et al. (2023). However, Dunefsky et al.
(2024) also do not use resampling (Bricken
et al., 2023) or an architecture which prevents
dead features like more recent SAE research
(Rajamanoharan et al., 2024a; Conerly et al.,
2024; Gao et al., 2024), which means their
results are in a fairly different setting to other
SAE research.

Language model technical details We fold the
pre-MLP RMS norm gain parameters (Zhang and
Sennrich (2019), Section 3) into the MLP input
matrices, as described in (Gurnee et al. (2024),
Appendix A.1) and then train the transcoder on in-
put activations just after the pre-MLP RMSNorm,
to reconstruct the MLP sublayer’s output as the
target activations. To make it easier for Gemma
Scope users to apply this change, in Fig. 7 we pro-
vide TransformerLens code for loading Gemma 2
2B with this weight folding applied. Fig. 7 also
includes an explanation of why only a subset of
the weight folding techniques described in Ap-
pendix A.1 of Gurnee et al. (2024) can be applied
to Gemma 2, due to its architecture.

Technical details of transcoder training We
train transcoders identically to MLP SAEs except
for the following two differences:

1. We do not initialize the encoder kernel Wenc
to the transpose of the decoder kernel Wdec;

2. We do not use a pre-encoder bias, i.e. we

do not subtract bdec from the input to the
transcoder (although we still add bdec at the
transcoder output).

These two training changes were motivated by the
fact that, unlike SAEs, the input and outputs spaces
for transcoders are not identical. To spell out how
we apply normalization: we divide the input and
target activations by the root mean square of the
input activations. Since the input activations all
have norm

√
dmodel due to RMSNorm, this means

we divide input and output activations by
√
dmodel.

D Additional evaluation results

D.1 Sparsity-fidelity tradeoff
Fig. 11 illustrates the trade off between fidelity
as measured by fraction of variance unexplained
(FVU) against sparsity for layer 12 Gemma 2 2B
and layer 20 Gemma 2 9B SAEs.

Fig. 12 shows the sparsity-fidelity trade off for
the 131K-width residual stream SAEs trained on
Gemma 2 27B after layers 10, 22 and 34 that we
include as part of this release.

Fig. 15 and Fig. 16 show fidelity versus spar-
sity curves for more layers (approximately evenly
spaced) and all sites of Gemma 2 2B and Gemma
2 9B, demonstrating consistent and smoothly vari-
ance performance throughout these models.

D.2 Impact of sequence position
Methodology Prior research has shown that lan-
guage models tend to have lower loss on later token
positions (Olsson et al., 2022). It is thus natural
to ask how an SAE’s performance changes over
the length of a sequence. Similar to Section 4.1,
we track reconstruction loss and delta loss for vari-
ous sparsity settings, however this time we do not
aggregate over the sequence position. Again, we
mask out special tokens.

Result Fig. 8 shows how reconstruction loss
varies by position for 131K-width SAEs trained
on the middle-layer of Gemma 2 9B. Reconstruc-
tion loss increases rapidly from close to zero over
the first few tokens. The loss monotonically in-
creases by position for attention SAEs, although
it is essentially flat after 100 tokens. For MLP
SAEs, the loss peaks at around the tenth token be-
fore gradually declining slightly. We speculate that
this is because attention is most useful when track-
ing long-range dependencies in text, which matters
most when there is significant prior context to draw
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compared to the vanilla model when compared with an MLP output SAE. The sites are (the MLP sub-) layers
throughout Gemma 2B PT.

import transformer_lens # pip install transformer-lens

model = transformer_lens.HookedTransformer.from_pretrained(
"google/gemma-2-2b",
# In Gemma 2, only the pre-MLP, pre-attention and final RMSNorms can
# be folded in (post-attention and post-MLP RMSNorms cannot be folded in):
fold_ln=True,
# Only valid for models with LayerNorm, not RMSNorm:
center_writing_weights=False,
# These model use logits soft-capping, meaning we can't center unembed:
center_unembed=False,

)

Figure 7: Code for loading Gemma 2B in TransformerLens (Nanda and Bloom, 2022) to use this with our
Transcoders.
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Figure 8: Reconstruction loss by sequence position for
Gemma 2 9B middle-layer 131K-width SAEs with λ =
10−3.

from, while MLP layers do a lot of local process-
ing, like detecting n-grams (Gurnee et al., 2023),
that does not need much context. Like attention
SAEs, residual stream SAEs’ loss monotonically
increases, plateauing more gradually. Curves for
other models, layers, widths and sparsity coeffi-
cients were found to be qualitatively similar.

Fig. 13 shows how delta LM loss varies by se-
quence position. The high level of noise in the delta
loss measurements makes it difficult to robustly
measure the effect of position, however there are
signs that this too is slightly lower for the first few
tokens, particularly for residual stream SAEs.

D.3 Pile subsets
Methodology We perform the sparsity-fidelity
evaluation from Section 4.1 on different validation
subsets of The Pile (Gao et al., 2020), to gauge
whether SAEs struggle with a particular type of
data.13

Results In Fig. 9 we show delta loss by subset.
Of the studied subsets, SAEs perform best on Deep-
Mind mathematics (Saxton et al., 2019). Possibly

13Note that this is a different dataset to the dataset used to
train the Gemma Scope SAEs.

this is due to the especially formulaic nature of the
data. SAEs perform worst on Europarl (Koehn,
2005), a multilingual dataset. We conjecture that
this is due to the Gemma 1 pretraining data, which
was used to train the SAEs, containing predomi-
nantly English text.

D.4 Impact of low precision inference
We train all SAEs in 32-bit floating point precision.
It is common to make model inference less memory
and compute intensive by reducing the precision at
inference time. This is particularly important for
applications like circuit analysis, where users may
wish to splice several SAEs into a language model
simultaneously. Fig. 10 compares fidelity-versus-
sparsity curves computed using float32 SAE and
LM weights versus the same curves computed us-
ing bfloat16 SAE and LM weights, suggesting
there is negligible impact in switching to bfloat16
for inference.

D.5 Uniformity of active latent importance
Methodology Conventionally, sparsity of SAE
latent activations is measured as the L0 norm of
the latent activations. Olah et al. (2024) suggest to
train SAEs to have low L1 activation of attribution-
weighted latent activations, taking into account that
some latents may be more important than others.
We repurpose their loss function as a metric for
our SAEs, which were trained penalising activation
sparsity as normal. As in Rajamanoharan et al.
(2024b), we define the attribution-weighted latent
activation vector y as

y := f(x)⊙WT
dec∇xL, (12)

where we choose the mean-centered logit of the
correct next token as the loss function L.

We then normalize the magnitudes of the entries
of y to obtain a probability distribution p ≡ p(y).
We can measure how far this distribution diverges
from a uniform distribution u over active latents
via the KL divergence

DKL(p∥u) = log ∥y∥0 − S(p), (13)

with the entropy S(p). Note that 0 ≤ DKL(p∥u) ≤
log ∥y∥0. Exponentiating the negative KL diver-
gence gives a new measure rL0

rL0 := e−DKL(p∥u) =
eS(p)

∥y∥0
, (14)
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with 1
∥y∥0 ≤ rL0 ≤ 1. Note that since eS can be

interpreted as the effective number of active ele-
ments, rL0 is the ratio of the effective number of
active latents (after re-weighting) to the total num-
ber of active latents, which we call the ‘Uniformity
of Active Latent Importance’.

Results In Fig. 14 we show rL0 on middle layer
SAEs. In line with Rajamanoharan et al. (2024b),
we find that the attributed effect becomes more
diffuse as more latents are active. This effect is
most pronounced for residual stream SAEs, and
seems to be independent of language model size
and number of SAE latents.

D.6 Additional Gemma 2 IT evaluation results
In this sub-appendix, we provide further evalua-
tions of SAEs on the activations of IT models, con-
tinuing Section 4.4.

As mentioned in Section 4.4, we find in Fig. 19
that PT SAEs achieve reasonable FVU on rollouts,
but the gap between PT and IT SAEs is larger than
in the change in loss in the main text (Fig. 5).

In Fig. 17 we evaluate the FVU on the user
prompt and model prefix (not the rollout). In
Fig. 18 we evaluate the change in loss (delta loss)
on the user prompts, and surprisingly find that splic-
ing in the base model SAE can reduce the loss in
expectation in some cases. Our explanation for this
result is that post-training does not train models to
predict user queries (only predict high-preference
model rollouts) and therefore the model is not in-
centivised to have good predictive loss by default
on the user prompt.

While we do not train IT SAEs on Gemma 2
2B, we find that the base SAEs transfer well as
measured by FVU in Fig. 20.

Finally, we do not find evidence that rescaling IT
activations to have same norm in expectation to the
pretraining activations is beneficial (Fig. 21). The
trend for individual SAEs in this plot is that their
L0 decreases but the Pareto frontier is very slightly
worse. This is consistent with prior observations
that SAEs are surprisingly adaptable to different
L0s (Smith, 2024; Gao et al., 2024).
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Figure 11: Sparsity-fidelity trade-off for middle-layer Gemma 2 2B and 9B SAEs using fraction of variance
unexplained (FVU) as the measure of reconstruction fidelity.

2 5 100 2 5

5

0.001

2

5

0.01

2

5

0.1

2

5

1

2 5 100 2 5 2 5 100 2 5

Width

131K

L0 L0 L0

D
e
lt
a
 L

o
s
s

Layer=10 Layer=22 Layer=34

(a)

2 5 100 2 5

2

5

0.1

2

5

2 5 100 2 5 2 5 100 2 5

Width

131K

L0 L0 L0

F
V
U

Layer=10 Layer=22 Layer=34

(b)

Figure 12: Sparsity-fidelity trade-off for Gemma 2 27B SAEs using (a) delta LM loss and (b) as measures of
reconstruction fidelity.
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Figure 13: Delta loss by sequence position for Gemma 2 9B middle-layer 131K-width SAEs with λ = 10−3.
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Figure 14: Uniformity of active latent importance for the middle layer SAEs.
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Figure 15: Sparsity-fidelity trade-off across multiple layers of Gemma 2 2B, approximately evenly spaced. (Note
Gemma 2 2B has 26 layers.)
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Figure 16: Sparsity-fidelity trade-off across multiple layers of Gemma 2 9B, approximately evenly spaced. (Note
Gemma 2 2B has 42 layers.)
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Figure 17: Fraction of variance unexplained when using SAEs trained on Gemma 2 9B (base and IT) to reconstruct
the activations generated with Gemma 2 9B IT on user prompts.
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Figure 18: Change in loss when splicing in SAEs trained on Gemma 2 9B (base and IT) to reconstruct the activations
generated with Gemma 2 9B IT on user prompts.
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Figure 19: Fraction of variance unexplained when using SAEs trained on Gemma 2 9B (base and IT) to reconstruct
the activations generated with Gemma 2 9B IT on rollouts.
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Figure 20: Fraction of variance unexplained when using SAEs trained on Gemma 2 2B PT to reconstruct the
activations generated with Gemma 2 2B IT on user prompts.
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Figure 21: Fraction of variance unexplained when using SAEs trained on Gemma 2 9B PT to reconstruct the
activations generated with Gemma 2 9B IT on rollouts, including when rescaling the IT activations to have the same
norm (in expectation) as the pretraining activations.
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