
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 337–363
November 15, 2024 ©2024 Association for Computational Linguistics

Copy Suppression: Comprehensively Understanding a Motif in Language
Model Attention Heads

Callum McDougall∗,1 Arthur Conmy∗,2,† Cody Rushing∗,3

Thomas McGrath1,† Neel Nanda2

1Independent 2Google DeepMind 3University of Texas at Austin

Abstract
We present the copy suppression motif: an
algorithm implemented by attention heads in
large language models that reduces loss. If
i) language model components in earlier lay-
ers predict a certain token, ii) this token ap-
pears earlier in the context and iii) later atten-
tion heads in the model suppress prediction of
the token, then this is copy suppression. To
show the importance of copy suppression, we
focus on reverse-engineering attention head
10.7 (L10H7) in GPT-2 Small. This head sup-
presses naive copying behavior which improves
overall model calibration, which explains why
multiple prior works studying certain narrow
tasks found negative heads that systematically
favored the wrong answer. We uncover the
mechanism that the negative heads use for copy
suppression with weights-based evidence and
are able to explain 76.9% of the impact of
L10H7 in GPT-2 Small, by this motif alone.
To the best of our knowledge, this is the most
comprehensive description of the complete role
of a component in a language model to date.
One major effect of copy suppression is its
role in self-repair. Self-repair refers to how
ablating crucial model components results in
downstream neural network parts compensat-
ing for this ablation. Copy suppression leads to
self-repair: if an initial overconfident copier is
ablated, then there is nothing to suppress. We
show that self-repair is implemented by several
mechanisms, one of which is copy suppression,
which explains 39% of the behavior in a nar-
row task. Interactive visualizations of the copy
suppression phenomena may be seen at our
web app https://copy-suppression.
streamlit.app/.

1 Introduction
Mechanistic interpretability research aims to re-
verse engineer neural networks into the algorithms

∗: Joint contribution. †: Work partially
done at Google DeepMind. Correspondence
to: cal.s.mcdougall@gmail.com and
neelnanda@google.com

that network components implement (Olah, 2022).
A central focus of this research effort is the search
for explanations for the behavior of model com-
ponents, such as circuits (Cammarata et al., 2020;
Elhage et al., 2021), neurons (Radford et al., 2017;
Bau et al., 2017; Gurnee et al., 2023) and attention
heads (Voita et al., 2019; Olsson et al., 2022). How-
ever, difficulties in understanding machine learning
models has often limited the breadth of these ex-
planations or the complexity of the components
involved (Räuker et al., 2023).

In this work we explain how “Negative Heads”
(which include ‘negative name mover heads’ from
Wang et al. (2023) and ‘anti-induction heads’ from
Olsson et al. (2022)) function on the natural lan-
guage training distribution in GPT-2 Small. Pre-
vious work found that Negative Heads systemati-
cally write against the correct completion on nar-
row datasets, and we explain these observations as
instances of copy suppression. Copy suppression
accounts for a majority of the head’s behavior and
reduces the model’s overall loss. To the best of our
knowledge, our explanation is the most comprehen-
sive account of the function of a component in a
large language model (Section 5 reviews related
literature).

We define Negative Heads as attention heads
which primarily reduce the model’s confidence in
particular token completions. We show that the
main role of Negative Heads in GPT-2 Small is
copy suppression (Figure 1), which is defined by
three steps:

1. Prior copying. Language model components
in early layers directly predict that the next
token is one that already appears in context,
e.g that the prefix “All’s fair in love and” is
completed with “ love”.

2. Attention. Copy suppression heads detect the
prediction of a copied token and attend back
to the previous instance of this token (“ love”).

3. Suppression. Copy suppression heads write

337

https://copy-suppression.streamlit.app/
https://copy-suppression.streamlit.app/

" love" " and" " war"... All's fair in

 ' love'
Layer 10
Head 7

Early naive prediction
of ' love'.

 ' love'?
The main role of
head L10H7 in GPT-2 Small
is copy suppression.

+

Copy suppression:
attend to previous
instance of ' love', and
suppress it.

Figure 1: L10H7’s copy suppression mechanism. Attention head L10H7 detects the naive prediction of “love”
(copied from earlier in the prompt by upstream model components), attends back to the previous instance of
the “love” token, and writes to the residual stream in the opposite direction to the “love” unembedding, thereby
suppressing the prediction of that token.

directly to the model’s output to decrease the
logits on the copied token.

By lowering incorrect logits, steps 1–3 can in-
crease the probability on correct completions (e.g
“ war”) and decrease model loss.1 Our central
claim is that at least 76.9% of the role of at-
tention head L10H7 on GPT-2 Small’s training
distribution is copy suppression. However, we
do not explain precisely when or how much copy
suppression is activated in different contexts. Nev-
ertheless, to the best of our knowledge, there is no
prior work which has explained the main role of
any component in a large language model in terms
of its input stimulus and specific downstream effect
across a whole training distribution.

Explaining language models components across
wide distributions in mechanistic detail may be im-
portant for engineering safe AI systems. While
interpreting parts of language models on narrow
distributions (Hanna et al., 2023; Heimersheim and
Janiak, 2023; Wang et al., 2023) may be easier than
finding complete explanations, researchers can be
misled by hypotheses about model components that
do not generalize (Bolukbasi et al., 2021). Mecha-
nistically understanding models could fix problems
that arise from opaque training processes, as mech-
anisms can predict behavior on off-distribution and
adversarial inputs rather than merely those that
arise in training (Mu and Andreas, 2020; Goh et al.,
2021; Carter et al., 2019).

Mechanistic interpretability research is difficult
to automate and scale (Räuker et al., 2023), and

1We recommend using our web app https://
copy-suppression.streamlit.app/ to understand
L10H7’s behavior interactively.

understanding negative and backup heads2 could
be crucial for further progress. Many approaches to
automating interpretability use ablations - remov-
ing a neural network component and measuring the
effect of this intervention (Conmy et al., 2023; Wu
et al., 2023; Bills et al., 2023; Chan et al., 2022).
Ideally, ablations would provide accurate measures
of the importance of model components on given
tasks, but negative and backup components compli-
cate this assumption. Firstly, negative components
may be ignored by attribution methods that only
find the positive components that complete tasks.
This means that these attribution methods will not
find faithful explanations (Jacovi and Goldberg,
2020) of model behavior. Secondly, backup com-
ponents may counteract the effects of ablations (Li
et al., 2023; Turner et al., 2023) and hence cause
unreliable importance measurements.

In this work we rigorously reverse-engineer at-
tention head L10H7 in GPT-2 Small to show that its
main role on the training distribution is copy sup-
pression. We do not know why language models
form copy suppression components, but in Sec-
tion 4.1 and Appendix C we discuss ongoing re-
search into some hypotheses. Appendix A provides
evidence that copy suppression occurs in models
trained without dropout. Our main contributions
are:

1. Finding the main role of an attention head
in an LLM on an entire training distribution
(Section 2), and verifying this hypothesis (Sec-
tion 3.3).

2We define backup heads (see Section 4) as attention heads
that respond to the ablation of a head by imitating that original
behavior.

338

https://copy-suppression.streamlit.app/
https://copy-suppression.streamlit.app/

2. Using novel weights-based arguments to ex-
plain the role of language model components
(Section 3).

3. Applying our mechanistic understanding to
the practically important self-repair phe-
nomenon, finding that copy suppression ex-
plains 39% of self-repair in one setting (Sec-
tion 4).

2 Negative Heads Copy Suppress
In this section we show that Negative Head L10H7
suppresses copying across GPT-2 Small’s training
distribution. We show that copy suppression ex-
plains most of L10H7’s role in the model, and de-
fer evaluation of our mechanistic understanding
to Section 3.3. We use the logit lens (nostalge-
braist, 2020) technique to measure what interme-
diate model components predict, and use mean
ablation to delete internal model activations.

2.1 Behavioral Results

We can find where L10H7 has the largest impact by
looking at the OpenWebText (Gokaslan et al., 2019)
examples where mean ablating L10H7’s effect on
model outputs increases loss. Specifically, we sam-
pled from the top 5% of completions where L10H7
had greatest effect as these accounted for half of
the attention head’s loss reducing effect across the
dataset. 80% of the sampled completions were
examples of copy suppression when we opera-
tionalized the three qualitative copy suppression
steps from Section 1 by three corresponding condi-
tions:

1. The model’s predictions at the input to L10H7
included a token which appeared in context as
one of the top 10 most confident completions
(as measured by the logit lens, a technique to
measure the direct influence of specific model
components on output logits using the unem-
bedding matrix);

2. The source token was one of the top 2 tokens
in context that L10H7 attended to most;

3. The 10 tokens that L10H7 decreased logits for
the most included the source token.

Examples can be found in the Section 2.
These results and more can also be ex-
plored on our interactive web app (https://
copy-suppression.streamlit.app/).

2.2 How Does L10H7 Affect the Loss?

To investigate the relative importance of the direct
and indirect effect of L10H7 on the model’s loss,
we decompose its effect into a set of different paths

(Elhage et al., 2021; Goldowsky-Dill et al., 2023),
and measure the effect of ablating certain paths.
We measure the effect on model’s loss as well as
the KL divergence to the model’s clean predictions.
Results can be seen in Figure 2.

Fortunately, we find that most of L10H7’s effect
on loss was via the direct path to the final log-
its. This suggests that a) explaining the direct path
from L10H7 to outputs would explain the main
role of the attention head in the model and b) KL
divergence is correlated with the increase in loss of
ablated outputs. Our goal is to show that our copy
suppression mechanism faithfully reflects L10H7’s
behaviour (Section 3.3) and therefore in the rest of
our main text, we focus on minimizing KL diver-
gence, which we discuss further in Section 3.3.1.

3 How Negative Heads Copy Suppress

In this section, we show that copy suppression ex-
plains 76.9% of L10H7’s behavior on OpenWeb-
Text. To reach this conclusion, we perform the
following set of experiments:

1. In Section 3.2, we analyse the output-value
(OV) circuit, which is the circuit determining
what information the attention head moves
from source to destination tokens. We show
that the head suppresses the prediction of
84.70% of tokens which it attends to.

2. In Section 3.2, we analyse the query-key (QK)
circuit, which is the circuit determining which
tokens the head will pay attention to. We show
that the head attends to the token which the
model is currently predicting across 95.72

3. In Section 3.3, we define a form of ablation
(CSPA) which deletes all of L10H7’s function-
ality except 1. and 2., and preserves 76.9% of
its effect.

In step 3 we project L10H7’s outputs onto the un-
embedding vectors, but apply a filtering operation
(that is weaker than a weights-based projection)
to the QK circuit, as described in Section 3.3.1.
We also performed an ablation that involved pro-
jecting the query vectors onto unembedding vec-
tors present in the residual stream (Appendix M),
but found that this did not recover as much KL
divergence, likely due to issues discussed in Sec-
tion 4. In Section 3.1-3.2 we apply the zeroth
MLP layer of GPT-2 Small to its embedding, ie
we use MLP0(WE) rather than WE and call this
the model’s ‘effective embedding’. We discuss
this in Appendix H and compare with other works.

339

https://copy-suppression.streamlit.app/
https://copy-suppression.streamlit.app/

Prompt Source
token

Incorrect com-
pletion

Correct
completion

... Millions of Adobe users picked easy-to-
guess Adobe passwords ... “ Adobe” “ Adobe” “ passwords”

... tourist area in Beijing. A university in
Beijing Northeastern ... “ Beijing” “ Beijing” “ Northeastern”

... successfully stopped cocaine and cocaine
alcohol ... “ cocaine” “ cocaine” “ alcohol”

Table 1: Dataset examples of copy suppression, in cases where copy suppression behaviour decreases loss by
suppressing an incorrect completion.

+0.0016

+0.0102

0.0030

0.0032

None Indirect paths Direct path

3.03

3.032

3.034

3.036

3.038

3.04

3.042

3.044

0

0.005

0.01

0.015

0.02

Ablating different paths from L10H7

L
o
s
s

K
L
 D

iv
e
r
g

e
n

c
e

Figure 2: Loss effect of L10H7 via different paths. Grey
paths denote ablated paths.

1 5 10 15 ≥20
0

20

40

60

80

100

Query and Key Inputs:
Q = MLP 0 (W E)
K = MLP 0 (W E)
Q = W U
K = MLP 0 (W E)

Distribution of token ranks in QK circuit

Token rank

P
er

ce
nt

ag
e

of
 M

od
el

 V
oc

ab
ul

ar
y

Figure 3: Distribution of ranks of diagonal
elements of Eqn. (2).

3.1 OV Circuit

To understand L10H7’s output, we study the sim-
ple setting where the attention head i) only attends
to a single source token and ii) the source token
position only contains information about one to-
ken. We can then look at what effect L10H7 has on
the model’s logits for each token in the vocabulary.
This motivates studying L10H7’s OV circuit (El-
hage et al., 2021), with our effective embedding re-
finement: WUW

L10H7
OV MLP0(WE) ∈ Rnvocab×nvocab

(1), where WU and MLP0(WE) is the unembed-
ding and effective embedding matrix of the model,
respectively, and W L10H7

OV is the OV Matrix of
L10H7.

The OV circuit (1) studies the impact that L10H7
has on all output tokens, given it attended to the ef-
fective embedding of a particular input token. The
ith column of (1) is the vector of logits added at
any destination token which attends to the ith to-
ken in the model’s vocabulary (ignoring layernorm
scaling). If L10H7 is suppressing the tokens that
it attends to, then the diagonal elements of (1))
will consistently be the most negative elements in
their columns. This is what we find: 84.70% of the

tokens in GPT-2 Small’s vocabulary have their di-
agonal elements as one of the top 10 most negative
values in their columns, and 98.86% of tokens had
diagonal elements in the bottom 5%. This suggests
that L10H7 is copy suppressing almost all of the
tokens in the model’s vocabulary.

This effect can also be seen in practice. We fil-
tered for (source, destination token) pairs in Open-
WebText where attention in L10H7 was large, and
found that in 78.24% of these cases the source was
among the 10 most suppressed tokens from the di-
rect effect of L10H7 (full experimental details in
Appendix E). This indicates that our weights-based
analysis of L10H7’s OV circuit does actually tell
us about how the head behaves on real prompts.

3.2 QK Circuit
Having understood L10H7’s outputs in a controlled
setting, we need to understand when the head is
activated by studying its attention patterns. In a sim-
ilar manner to Section 3.1 we study L10H7’s atten-
tion in the simple setting where i) the query input
is equal to the unembedding vector for a single to-
ken and ii) the key input is the effective embedding
for another single token, i.e we study the QK cir-

340

QK Ablation Copy Suppression
Preserving Ablation
(CSPA)
Both OV and QK ablations.

OV Ablation
Project each result vector along
the unembedding vector for that
token (and take only the negative
components).

" and" " war"

 " love"

 " love"?

+
 " love"? " in"?

Mean ablate all vectors, except
from source tokens which are
most strongly predicted at the
destination token.

" love"" in" " and" " war"

 " love"

 " love"?

+

" in" " love" " and" " war"

 " love"

 " love"?

+

" in" " love"

 " love"?

Figure 4: Illustration of three different kinds of ablation: just OV, just QK, and CSPA.

cuit WUW
L10H7
QK MLP0(WE) ∈ Rnvocab×nvocab (Eqn.

(2)).3

Copy suppression (Section 1) suggests that
L10H7 has large attention when i) a token is confi-
dently predicted at the query position and ii) that
token appeared in the context so is one of the key
vectors. Therefore we expect the largest elements
of each row of Eqn. (2) to be the diagonal elements
of this matrix. Indeed, in Figure 3 (orange bars) we
find that 95.72% of diagonal values in this matrix
were the largest in their respective rows.

However, this result alone doesn’t imply that
copying (the first step of the three copy suppres-
sion steps in Section 1) explains L10H7’s attention.
This is because GPT-2 Small uses the same ma-
trix for embeddings and unembeddings, so L10H7
could simply be matching similar vectors at query
and keyside (for example, in a ‘same matching’ QK
matrix (Elhage et al., 2021)) Therefore in Figure 3
(blue bars) we also compare to a baseline where
both query and keys are effective embeddings,4 and
find that the ranks of the diagonal elements in their
rows are much smaller, which provides evidence
that W L10H7

QK is not merely a ‘same matching’ ma-
trix. We also verify the copy suppression attention
pattern further in Appendix L.1. However, one
limitation of our analysis of the QK circuit is that
this idealised setup does not completely faithfully
represent L10H7’s real functioning (Appendices
L.2, L.3 and M).

3We ignore bias terms in the key and query parts (as we
find that they do not change results much in Appendix L).
Our experimental setup allows us to ignore LayerNorm (Ap-
pendix G).

4i.e in Eqn. (2) we replace the WU term with MLP0(WE).

3.3 How much of L10H7’s behavior have we
explained?

In this section, we perform an ablation which
deletes all functionality of L10H7’s OV and QK
circuits, except for the mechanisms described in
Section 3.1 and 3.2 respectively, with the goal of
seeing how much functionality we can remove with-
out damaging performance. We refer to this as
Copy Suppression-Preserving Ablation (CSPA).
In the Section 3.3.1 section we explain exactly how
each part of CSPA works, and in the Section 3.3.2
section we present the ablation results.
3.3.1 Methodology
CSPA consists of both an OV ablation and a QK
ablation.

OV ablation. The output of an attention head
at a given destination token D can be written as
a sum of result vectors from each source token S,
weighted by the attention probabilities from D to
S (Elhage et al., 2021). We can project each of
these vectors onto the unembedding vector for the
corresponding source token S. We only keep the
negative components.5

QK ablation. We mean ablate the result vectors
from each source token S, except for the top 5%
of source tokens which are predicted with highest
probability at the destination token D (as measured
with the logit lens).

As an example of how the OV and QK ablations
work in practice, consider the opening example
“All’s fair in love and war”. In this case the des-
tination token D is “ and”. The token “love” is
highly predicted to follow D (as measured with
the logit lens), and also appears as a source token
S, and so we would take the result vector from
S and project it onto the unembedding vector for

5In Figure 16 we show the results when we also keep
positive components.

341

“ love”, mean-ablating everything else. Although
this deletes most of the dimensions of L10H7, it
still captures how L10H7 suppresses the “ love”
prediction.

Ablation metric. After performing an ablation,
we can measure the amount of L10H7’s behavior
that we have explained by comparing the ablation
to a baseline that mean ablates L10H7’s direct ef-
fect. Formally, if the model’s output token distribu-
tion on a prompt is π and the distribution under an
ablation Abl is πAbl, then we measure the KL diver-
gence DKL(π||πAbl). We average these values over
OpenWebText for both ablations we use, defining
DCSPA for CSPA and DMA for the mean ablation
baseline. Finally, we define the effect explained as
1−

(
DCSPA/DMA

)
(Eqn. (3)).

We choose KL divergence for several reasons,
including how 0 has a natural interpretation as the
ablated and clean distributions being identical –
in other words, 100% of the head’s effect being
explained by the part we preserve. See Appendix I
for limitations, comparison and baselines.

3.3.2 Results
CSPA explains 76.9% of L10H7’s behavior. Since
the QK and OV ablations are modular, we can ap-
ply either of them independently and measure the
effect recovered. We find that performing only the
OV ablation leads to 81.1% effect explained, and
only using QK leads to 95.2% effect explained.
To visualize the performance of CSPA, we group

each OpenWebText completion into one of 100 per-
centiles, ordered by the effect that mean ablation of
L10H7 has on the output’s KL divergence from the
model. The results are shown in Figure 6, where
we find that CSPA preserves a larger percentage of
KL divergence in the cases where mean ablation is
most destructive: in the maximal percentile, CSPA
explained 88.1% of L10H7’s effect.

4 Applications of Copy Suppression

In this section, we explore some different appli-
cations of copy suppression. First, we connect
it to the previously observed phenomena of anti-
induction, while also providing evidence that it oc-
curs in several different sizes and classes of models.
Second, we discuss the phenomena of self-repair,
which refers to how neural network components
can sometimes compensate for perturbations made
to earlier components.

We will focus on the narrow Indirect Object Iden-

tification (IOI; Wang et al. (2023)) task during this
section. We give a short introduction to IOI in
points i)-iii) below. Non-essential further details
can be found in Wang et al. (2023).

i) The IOI task consists of sentences such as
‘When John and Mary went to the store, Mary
gave a bottle of milk to’ which are completed
with the indirect object (IO) ‘ John’.

ii) The task is performed by an end-to-end circuit.
The final attention heads involved in this cir-
cuit are called Name Mover Heads; they copy
the IO to the model’s output.

iii) We can measure the extent to which IOI oc-
curs by measuring the logit difference metric,
which is equal to the difference between the ‘
John’ and ‘ Mary’ logits in the above example.

Copy suppression heads like L10H7 usually
come after the name mover heads. They detect
the IO prediction, attend back to the first instance
of the IO, and suppress it (but not enough to change
the model’s prediction). This is a relatively clean
domain in which to study copy suppression.

4.1 Anti-induction
While studying induction heads, Olsson et al.
(2022) discovered attention heads which identify
repeating prefixes and suppress the prediction of
the token which followed the first instance of the
prefix - in other words the opposite of the induction
pattern. We suspected this anti-induction was an
instance of copy suppression, because induction
heads writing the prediction of this token into the
residual stream could cause copy suppression heads
to attend back to and suppress the first instance of
the token. To investigate this, we created scores
for how much a set of attention heads (across GPT,
Pythia and SoLU architectures copy suppressed on
both the IOI task and the anti-induction task. We
measured these scores by taking the negation of the
attention head’s direct effect on the correct token:
in the induction task this was the repeated token,
in the copy-suppression task this was the indirect
object name. We found a strong correlation in the
quadrant where both were positive (Figure 5).

There are two important lessons to draw from
these experiments. Firstly, copy suppression
heads exist in larger models, and models of dif-
ferent classes. We observed copy suppression
heads in models as large as Pythia-6B. Secondly,
this result demonstrates the danger of drawing con-
clusions from narrow distribution-based studies,
since it strongly implies that two seemingly sep-

342

−0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5
Model Class

GPT

Pythia

Other

Anti-Induction vs IOI Copy Suppression Scores

Copy-Suppression Score

A
n
t
i-

In
d
u
c
t
io

n
 S

c
o
r
e

GPT2-Small L10H7

Figure 5: Anti-induction and copy suppression on the IOI task
compared.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D MA

D C
SP

A

KL divergence of CSPA vs. clean predictions

Clean predictions

Mean ablation

CSPA

Figure 6: We plot (DCSPA, DMA) for each
percentile of our OpenWebText data (with
percentiles given by the values of DMA).

Head Type Response to Name Movers predicting T Effect of attending to T

Negative More attention to T Decrease logits on T

Backup Less attention to T Increase logits on T

Table 2: Qualitative differences between Negative and Backup Heads.

arate and task-specific behaviors (anti-induction
on random repeated sequences, and suppression
of the IO token in the IOI task) are actually not
task-specific at all, but are both consequences of
the same core algorithm: copy suppression. Study-
ing attention heads on just one of these distribu-
tions might give the incorrect impression that it
was using details of the task to make its predic-
tions, but our study across the entire OWT distribu-
tion has revealed an algorithm which explains both
behaviours.

4.2 Self-Repair

Self-repair refers to how some neural network com-
ponents compensate for other components that have
been perturbed earlier in the forward pass (Mc-
Grath et al., 2023). Copy suppressing components
self-repair: if perturbing specific model compo-
nents causes them to stop outputting an unembed-
ding, copy suppression is deactivated. In this sec-
tion, we show that copy suppression explains 39%
of self-repair in one setting. However Appendix R
gives weights-based evidence that self-repair relies
on more than just copy suppression, and finds that
the unembedding direction in the residual stream
does not have a large effect on self-repair.

To visualize self-repair under an ablation of the
three Name Mover Heads, for every attention head
downstream of the Name Mover Heads we measure
its original contribution to logit difference (xc),

as well as its contribution to logit difference post-
ablation (yc). We then plot all these (xc, yc) pairs
in Figure 8.

In Figure 8, the higher the points are above the
y = x line, the more they contribute to self-repair.
This motivates a way to measure self-repair: if we
let C denote the set of components downstream of
Name Mover Heads and take c ∈ C, then the pro-
portion of self-repair that a component c explains
is (yc − xc)/

∑
i∈C(yi − xi) (Eqn. (4)). The sum

of the proportions of self-repair explained by Neg-
ative Heads L10H7 and L11H10 is 39%. This pro-
portion is almost entirely copy suppression since
Appendix O shows that the Negative Heads in the
IOI task are entirely modulated by Name Mover
Heads.

However, Figure 8 indicates another form of self-
repair in the heads on the right side of the figure:
these heads do not have large negative effects in
clean forward passes, but then begin contributing
to the logit difference post-ablation. We found that
these backup heads on the right hand side use a
qualitatively different mechanism for self-repair
than (copy suppressing) negative heads, which we
summarise behaviorally in Table 2.

To justify the description in Table 2, we analyze
how Name Movers determine the attention patterns
of self-repairing heads using Q-composition, i.e.
their queries are computed from the output of up-
stream attention heads. We study Q-composition

343

Figure 7: Red edges denote less, and blue edges denote
more attention to names due to the Name Movers.

L10H0

L10H10

L11H2

L10H7

L11H10
L10H2 L10H6

−2 −1 0 1 2

−2

−1

0

1

2

Components:

Backup Head

Negative Head

MLP

Other Heads

y=x

Logit Difference Self-Repair in IOI

Clean Logit Difference

P
o
s
t
-
In

t
e
r
v
e
n
t
io

n
 L

o
g
it

 D
iff

e
r
e
n
c
e

Figure 8: Ablating the Name Mover Heads in Layer
9 causes a change in the direct effects of all the down-
stream heads. Plotting the Clean Logit Difference vs the
Post-Intervention Logit Difference for each head high-
lights the heads above the y = x line which perform
self-repair.

between a Name Mover’s OV matrix WOV and the
QK matrix WQK of downstream heads by calculat-
ing MLP0(WE)

⊤W⊤
OV WQKMLP0(WE) and find

that backup heads attend less to names when Name
Movers copy them, and negative heads attend more
(Figure 7; Appendix N). Combining this result with
the prior results that i) backup heads copy names
(Wang et al., 2023) and ii) negative heads have
negative-copying OV matrices (Section 3.1), this
explains self-repair at a high-level in IOI: when the
Backup/Negative heads attend more/less to a to-
ken T upon the Name Mover’s ablation, they copy
more/suppress less of T , increasing the logit dif-
ference and thus self-repairing. However, there are
limits to this line of reasoning, since in Appendix R
we explore how the unembedding component does
not seem to be the most important component used;
we hope future works can probe self-repair further.

5 Related Work

Explanations of neural network components in
post-hoc language model interpretability include
explanations of neurons, attention heads and cir-
cuits. Related work includes the automated ap-
proach by Bills et al. (2023) and manual explana-
tions found by Voita et al. (2023) who both find
suppression neurons. More comprehensive expla-
nations are found in Gurnee et al. (2023). Attention
heads correlated with previous tokens (Vig, 2019)
and rare words (Voita et al., 2019) have been an-
alyzed. Circuits have been found on narrow dis-
tributions (Wang et al., 2023) and induction heads
(Elhage et al., 2021) are the most general circuits
found in language models, but they have only been
explained in as much detail as our work in toy
models. Chan et al. (2022)’s loss recovered metric
inspired our loss recovered analysis.

Iterative inference. Greff et al. (2017) propose
that neural networks layers iteratively update fea-
ture representations rather than recomputing them,
in an analysis specific to LSTMs and Highway
Networks. Several works have found that trans-
former language model predictions are iteratively
refined (Dar et al., 2022; nostalgebraist, 2020; Bel-
rose et al., 2023; Halawi et al., 2023) in the sense
that the state after intermediate layers forms a par-
tial approximation to the final output, though no
connections have yet been made to Negative Heads.

6 Conclusion

In summary, in this work we firstly introduced copy
suppression, a description of the main role of an
attention head across GPT-2 Small’s training distri-
bution. Secondly, we applied weights-based argu-
ments using QK and OV circuits to mechanistically
verify our hypotheses about copy suppression. Fi-
nally, we showed how our comprehensive analysis
has applications to open problems in ablation-based
interpretability (Section 4).

Two limitations of our work include our under-
standing of the query inputs to self-repair heads,
and the transferability of our results to different
models. In both Section 3.2 and 4 we found that
copy suppression and self-repair rely on more than
simply unembedding directions, and we hope that
future work can fully explain this observation. Fur-
ther, while we show that some of our insights gen-
eralize to large models (Section 4.1 and A), we
don’t have a mechanistic understanding of copy
suppression in these cases. Despite this, our work
shows that it is possible to explain LLM compo-
nents across broad distributions with a high level
of detail. For this reason, we think that our insights
will be useful for future interpretability research.

344

References
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and

Antonio Torralba. 2017. Network dissection: Quanti-
fying interpretability of deep visual representations.
Preprint, arXiv:1704.05796.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
Preprint, arXiv:2303.08112.

Steven Bills, Nick Cammarata, Dan Mossing, Henk
Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. 2023.
Language models can explain neurons in language
models. https://openaipublic.blob.
core.windows.net/neuron-explainer/
paper/index.html.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Co-
enen, Emily Reif, Fernanda Viégas, and Martin Wat-
tenberg. 2021. An interpretability illusion for bert.
arXiv preprint arXiv:2104.07143.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah,
Michael Petrov, Ludwig Schubert, Chelsea Voss, Ben
Egan, and Swee Kiat Lim. 2020. Thread: Circuits.
Https://distill.pub/2020/circuits.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian
Johnson, and Chris Olah. 2019. Activation atlas.
Distill, 4(3):e15.

Lawrence Chan, Adria Garriga-Alonso, Nix Goldowsky-
Dill, Ryan Greenblatt, Jenny Nitishinskaya, Ansh
Radhakrishnan, Buck Shlegeris, and Nate Thomas.
2022. Causal scrubbing: A method for rigorously
testing interpretability hypotheses. Alignment Fo-
rum.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit dis-
covery for mechanistic interpretability. Preprint,
arXiv:2304.14997.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2022. Analyzing transformers in embedding space.
arXiv preprint arXiv:2209.02535.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan
Carter, Michael Petrov, Ludwig Schubert, Alec Rad-
ford, and Chris Olah. 2021. Multimodal neurons in
artificial neural networks. Distill, 6(3):e30.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Ste-
fanie Tellex. 2019. Openwebtext corpus.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,
and Aryaman Arora. 2023. Localizing model behav-
ior with path patching. Preprint, arXiv:2304.05969.

Klaus Greff, Rupesh K. Srivastava, and Jürgen
Schmidhuber. 2017. Highway and residual net-
works learn unrolled iterative estimation. Preprint,
arXiv:1612.07771.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case studies
with sparse probing. Preprint, arXiv:2305.01610.

Danny Halawi, Jean-Stanislas Denain, and Jacob Stein-
hardt. 2023. Overthinking the truth: Understanding
how language models process false demonstrations.
Preprint, arXiv:2307.09476.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Preprint, arXiv:2305.00586.

Stefan Heimersheim and Jett Janiak. 2023. A circuit for
Python docstrings in a 4-layer attention-only trans-
former.

Mengting Hu, Zhen Zhang, Shiwan Zhao, Minlie
Huang, and Bingzhe Wu. 2023. Uncertainty in natu-
ral language processing: Sources, quantification, and
applications. Preprint, arXiv:2306.04459.

Alon Jacovi and Yoav Goldberg. 2020. Towards
faithfully interpretable nlp systems: How should
we define and evaluate faithfulness? Preprint,
arXiv:2004.03685.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023. Inference-time
intervention: Eliciting truthful answers from a lan-
guage model. Preprint, arXiv:2306.03341.

Thomas McGrath, Matthew Rahtz, Janos Kramar,
Vladimir Mikulik, and Shane Legg. 2023. The hy-
dra effect: Emergent self-repair in language model
computations. Preprint, arXiv:2307.15771.

Jesse Mu and Jacob Andreas. 2020. Compositional
explanations of neurons. CoRR, abs/2006.14032.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.

nostalgebraist. 2020. interpreting gpt: the logit lens.

Chris Olah. 2022. Mechanistic interpretability,
variables, and the importance of interpretable bases.
https://www.transformer-circuits.
pub/2022/mech-interp-essay.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads.

345

https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2303.08112
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://doi.org/10.23915/distill.00024
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/1612.07771
https://arxiv.org/abs/1612.07771
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2307.09476
https://arxiv.org/abs/2307.09476
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn
https://arxiv.org/abs/2306.04459
https://arxiv.org/abs/2306.04459
https://arxiv.org/abs/2306.04459
https://arxiv.org/abs/2004.03685
https://arxiv.org/abs/2004.03685
https://arxiv.org/abs/2004.03685
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2006.14032
https://arxiv.org/abs/2006.14032
https://github.com/neelnanda-io/TransformerLens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. Preprint, arXiv:1704.01444.

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2023. Toward transparent ai: A
survey on interpreting the inner structures of deep
neural networks. Preprint, arXiv:2207.13243.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Alexander Matt Turner, Lisa Thiergart, David Udell,
Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
2023. Activation addition: Steering language models
without optimization. Preprint, arXiv:2308.10248.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42.
Association for Computational Linguistics.

Elena Voita, Javier Ferrando, and Christoforos Nalmpan-
tis. 2023. Neurons in large language models: Dead,
n-gram, positional. Preprint, arXiv:2309.04827.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. Preprint, arXiv:1905.09418.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Zhengxuan Wu, Atticus Geiger, Christopher Potts, and
Noah D. Goodman. 2023. Interpretability at scale:
Identifying causal mechanisms in alpaca. Preprint,
arXiv:2305.08809.

346

https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/2207.13243
https://arxiv.org/abs/2207.13243
https://arxiv.org/abs/2207.13243
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/1905.09418
https://arxiv.org/abs/1905.09418
https://arxiv.org/abs/1905.09418
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2305.08809
https://arxiv.org/abs/2305.08809

Glossary

Anti-induction Anti-induction heads are our name for ‘anti-copying prefix search’ heads (Olsson et al.,
2022). See Section 4.1.

Backup heads are attention heads that are characterised by responding to the ablation of a head by
imitating the original behavior, studied in the IOI task in Section 4.

Copy Suppression is a mechanism in a language models determined by the three steps naive copying,
attention and suppression, as described in Section 1.

Copy suppression-preserving ablation (CSPA) refers to our ablation that deletes all functionality of
attention head 10.7 except the copy suppression mechanism (Section 3.3.1).

Direct Logit Attribution is defined in https://www.neelnanda.io/
mechanistic-interpretability/glossary.

Effective embedding is what models use to identify tokens at different positions after the first transformer
layer. We define this as MLP0(WE), and discuss the choice in Appendix H.

Eqn. (1) is defined in Section 3.1 and is our OV circuit expression.

Eqn. (2) is defined in Section 3.2 and is our QK circuit expression.

Eqn. (3) is defined in Section 3.3.1 and measures how well ablations preserve L10H7’s functionality.

Eqn. (4) is defined in Section 4.2 and measures how much self-repair a component c explains.

Induction heads are attention heads that identify repeating prefixes, attend back to the token following
the previous instance of the prefix, and predict that same token will come next in the sequence.

IOI . The IOI task is the prediction that ‘ John’ completes the sentence ‘When John and Mary went to
the store, Mary gave a bottle of milk to’ (Wang et al., 2023).

Logit difference is described in point iii) in Section 4.2.

Logit Lens We can measure which output predictions different internal components push for by applying
the Logit Lens method (nostalgebraist, 2020). Given model activations, such as the state of the
residual stream or the output of an attention head, we can multiply these activations by GPT-2 Small’s
unembedding matrix. This measures the direct effect (ie not mediated by any downstream layers)
that this model component has on the output logits for each possible token in the model’s vocabulary
(sometimes called direct logit attribution). The Logit Lens method allows us to refer to the model’s
predictions at a given point in the network.

Mean ablation refers to replacing the output of a machine learning model component with the mean
output of that component over some distribution.

Name Mover Heads are heads that attend to (and copy) IO rather than S in the IOI task.

Negative Head are attention heads in transformer language models which which primarily reduce the
model’s confidence in particular token completions. This is a qualitative definition. These heads tend
to be rare since the majority of attention heads in models positively copy tokens (Elhage et al., 2021;
Olsson et al., 2022).

Self-repair refers to how some neural network components compensate for other components that have
been perturbed earlier in the forward pass (McGrath et al., 2023).

347

https://www.neelnanda.io/mechanistic-interpretability/glossary
https://www.neelnanda.io/mechanistic-interpretability/glossary

−2 0 2 4 6
−0.5

0

0.5

1

1.5
Llama
GPT
GELU
Pythia
SoLU

Anti-Induction Scores (repeated random tokens) vs Copy-Suppression Scores (OWT)

OWT Copy Suppression Score

An
ti-

In
du

ct
io

n
Sc

or
e

Figure 9: Copy Suppression scores on OWT measured against the Anti-Induction scores in the IOI distribution.

A Scaling Copy Suppression

In this appendix we discuss how our observations about copy suppression scale to larger models (Llama-2
7B and 13B (Touvron et al., 2023)). Our high-level takeaways are that

1. General distribution copy-suppression heads exist across model scales and architectures.

2. Larger models have weaker copy suppression heads.

3. The mechanism behind the IOI task does not generalize to larger models.

1: Repeating the methodology that generated Figure 5, we can also compare the copy suppression
effect on OWT to the anti-induction score.

We filter for token positions where there the maximally predicted token (measured via the Logit Lens)
occurs in context as a token so that copy suppression is indeed a potential behavior, and again measure the
direct logit attribution from the token in context.

The results are in Figure 9 and show that once more anti-induction heads do not perform any positive
behavior (there are no points in bottom right or top left quadrant). We do find that the there are heads that
only implement anti-induction or copy suppression, however. We discuss Llama in 2.

2: In Figure 10(a) we show that while there do exist Copy Suppression heads in Llama-2 (e.g the points
closest to the top right are L26H28 and L30H24 in Llama-2 7B and 13B respectively), the direct logit
attribution magnitude is much smaller than in Figure 9. This suggests that the more attention heads models
have, the more they distribute behavior across heads. We also find heads that copy suppress on the general
distribution but not on the anti-induction task, showing further specialization.

3: When we studied the IOI direct logit attribution of Llama-2 7B and Llama-2 13B, we found that
the direct logit attribution was smaller still, and further there was no division between positive heads and
negative heads. This suggests that IOI is performed qualitatively differently to small models, perhaps not
using direct attention back to the IO name.

348

((a)) Broad distribution (OWT). ((b)) Narrow distribution (IOI).

Figure 10: Copy Suppresion in Llama-2.

+0.0008

+0.0016

0.0030
0.0032

None Indirect paths

(except L11H10)

Indirect paths

(all)

3.03

3.032

3.034

3.036

3.038

3.04

3.042

3.044

0

0.005

0.01

0.015

0.02

Ablating different paths from L10H7

L
o
s
s

K
L
 D

iv
e
r
g

e
n

c
e

Figure 11: Loss effect of L10H7 via different paths. Grey paths denote ablated paths.

B L11H10

In Section 2.2 we showed that the majority of L10H7’s effect on loss is via its direct effect. In this
appendix we show that we can explain up to half of L10H7’s indirect effect by considering the indirect
through L11H10, the second Negative Head in GPT-2 Small. We repeat the same methodology as in the
indirect path experiment in Figure 2, but also controlling for the path from L10H7 to L11H10 by not mean
ablating this connection. We show the results in Figure 11.

The indirect path through L11H10 is special because both Negative Heads perform copy suppression,
which is a self-repair mechanism: once a predicted token is suppressed, it is no longer predicted, and
therefore does not activate future copy suppression components. This means that ablating head L10H7
will often result in it being backed up by head L11H10. In an experiment that ablates the effect of L10H7
on L11H10 but not on the final model output, we would expect excessive copy suppression to take place
since i) L10H7 will have a direct copy suppression effect, and ii) L11H10 will copy suppress more than in
normal situations, since its input from L10H7 has been ablated. Indeed the loss increase is roughly twice
as large in the normal indirect effect case compared to when we control for the effect through L11H10
(Figure 11). However, surprisingly there is little effect on KL Divergence.

349

((a)) Marginal contribution to entropy (via the direct path) per
head. L10H7 increases entropy (as do other negative heads
like L11H10); most other heads decrease it.

0 5 10

10

8

6

4

2

0

−100%

−50%

0%

50%

100%

Marginal effect on overconfidence metric

Head

L
a
y
e
r

((b)) Marginal effect on overconfidence metric per head.
L10H7 decreases overconfidence; most other heads increase
it.

Figure 12: Effect of attention heads on entropy & calibration.

Empirical
accuracy

Model's mean
predicted probability

Perfect
calibrat ion

Characterist ic
overconfidence
curve

Convolved integral
for measuring overconfidence

?

÷ ?

=

Figure 13: Illustration of the calibration curve, and overconfidence metric.

C Entropy and Calibration

A naive picture of attention heads is that they should all reduce the model’s entropy (because the purpose
of a transformer is to reduce entropy by concentrating probability mass in the few most likely next tokens).
We can calculate a head’s direct contribution to entropy by measuring (1) the entropy of the final logits,
and (2) the entropy of the final logits with the head’s output subtracted. In both cases, the negative head
L10H7 stands out the most, and the other negative heads L11H10 and L8H10 are noticeable.

We can also examine each attention head’s effect on the model’s calibration. Hu et al. (2023) use
calibration curves to visualise the model’s degree of calibration. From this curve, we can define an
overconfidence metric, calculated by subtracting the perfect calibration curve from the model’s actual
calibration curve, and taking the normalized L2 inner product between this curve and the curve we get
from a perfectly overconfident model (which only ever makes predictions of absolute certainty). The L2

inner product can be viewed as a measure of similarity of functions, so this metric should tell us in some
sense how overconfident our model is: the value will be 1 when the model is perfectly overconfident, and
0 when the model is perfectly calibrated. Figure 13 illustrates these concepts.

We can then measure the change in overconfidence metric from ablating the direct effect of an attention
head, and reverse the sign to give us the head’s direct effect on overconfidence. This is shown in the figure
below, with the change shown relative to the model’s original overconfidence (with no ablations). Again,
we see that head L10H7 stands out, as do the other two negative heads. Interestingly, removing the direct

350

effect of head L10H7 is enough to push the model from net over-confident to net under-confident.

What are we to interpret from these results? It is valuable for a model to not be over-confident, because
the cross-entropy loss will be high for a model which makes high-confidence incorrect predictions. One
possible role for negative heads is that they are reducing the model’s overconfidence, causing it to make
fewer errors of this form. However, it is also possible that this result is merely incidental, and not directly
related to the reason these heads form. For example, another theory is that negative heads form to
suppress early naive copying behaviour by the model, and in this case they would be better understood as
copy-suppression heads rather than ”calibration heads”. See the next section for more discussion of this.

D Why do negative heads form? Some speculative theories

This paper aimed to mechanistically explain what heads like L10H7 do, rather than to provide an
explanation for why they form. We hope to address this in subsequent research. Here, we present three
possible theories, present some evidence for/against them, and discuss how we might test them.

• Reducing model overconfidence.

– Theory: Predicting a token with extremely high confidence has diminishing returns, because
once the logprobs are close to zero, any further increase in logits won’t decrease the loss if the
prediction is correct, but it will increase loss if the prediction is incorrect. It seems possible that
negative heads form to prevent this kind of behaivour.

– Evidence: The results on calibration and entropy in Appendix C provide some evidence for this
(although these results aren’t incompatible with other theories in this table).

– Tests: Examine the sequences for which this head decreases the loss by the most (particularly
for checkpointed models, just as the negative head is forming). Are these cases where the
incorrect token was being predicted with such high probability that it is in this “diminishing
returns” window?

• Suppressing naive copying.

– Theory: Most words in the English language have what we might term the “update property”
- the probability of seeing them later in a prompt positively updates when they appear. Early
heads might learn to naively copy these words, and negative heads could form to suppress this
naive behaviour.

– Evidence: The “All’s fair in love and love” prompt is a clear example of this, and provides
some evidence for this theory.

– Tests: Look at checkpointed models, and see if negative heads form concurrently with the
emergence of copying behaviour by other heads.

• Suppressing next-token copying for tied embeddings.

– Theory: When the embedding and unembedding matrices are tied, the direct path WUWE will
have large diagonal elements, which results in a prediction that the current token will be copied
to the next sequence position. Negative heads could suppress this effect.

– Evidence: This wouldn’t explain why negative heads appear in models without tied embeddings
(although it might explain why the strongest negative heads we found were in GPT-2 Small, and
the Stanford GPT models, which all have tied embeddings).

– Tests: Look at attention patterns of the negative head early in training (for checkpointed models,
with tied embeddings). See if tokens usually self-attend.

While discussing these theories, it is also important to draw a distinction between the reason a head
forms during training, and the primary way this head decreases loss on the fully trained model - these
two may not be the same. For instance, the head seems to also perform semantic copy suppression (see
Appendix J), but it’s entirely possible that this behaviour emerged after the head formed, and isn’t related
to the reason it formed in the first place.

351

E Experiment details for OV-Circuit in practice

We ran a forward pass on a sample of OpenWebText where we i) filtered for all (source, destination)
token pairs where the attention from destination to source is above some threshold (we chose 10%), ii)
measured the direct logit attribution of the information moved from each of these source tokens to the
corresponding destination token and finally iii) performed the same analysis as we did in Section 3.1 -
measuring the rank of the source token amongst all tokens.

We found that the results approximately matched our dynamic analysis (with slightly more noise): the
proportion of (source, destination) token pairs where the source token was in the top 10 most suppressed
tokens was 78.24% (which is close to the static analysis result of 84.70%).

F Function Words

In Section 3.1 we found that a large fraction of the tokens which failed to be suppressed were function
words. The list of least copy suppressed tokens are: [‘ of’, ‘ Of’, ‘ that’, ‘ their’, ‘ most’, ‘ as’, ‘ this’, ‘
for’, ‘ the’, ‘ in’, ‘ to’, ‘ a’, ‘Their’, ‘ Its’, ’When’, ‘ The’, ‘ its’, ‘ these’, ‘The’, ‘Of’, ‘ it’, ‘ nevertheless’, ‘
an’, ‘<|endoftext|>, ’Its’, ‘ have’, ‘ some’, ‘ By’]. Sampling randomly from the 3724 tokens other
than 92.59% that are copy suppressed, many are also connectives (and rarely nouns): [‘ plainly’, ‘ utterly’,
‘ enhance’, ‘ obtaining’, ‘ entire’, ‘ Before’, ‘eering’, ‘.)’, ‘ holding’, ‘ unnamed’].

It is notable that this result is compatible with all three theories which we presented in the previous
section.

• Reducing model overconfidence. The unembedding vectors for function words tend to have smaller
magnitude than the average token in GPT-2 Small. This might lead to less confident predictions for
function words than for other kinds of tokens.

• Suppressing naive copying. There would be no reason to naively copy function words, because
function words don’t have this ”update property” - seeing them in a prompts shouldn’t positively
update the probability of seeing them later. So there is no naive copying which needs to be suppressed.

• Suppressing next-token copying for tied embeddings. Since function words’ unembedding vectors
have smaller magnitudes, the diagonal elements of WUWE are small anyway, so there is no risk of
next-token copying of function words.

G Model and Experiment Details

All of our experiments were performed with Transformer Lens (Nanda and Bloom, 2022). We note that
we enable all weight processing options,6 which means that transformer weight matrices are rewritten
so that the internal components are different and simpler (though the output probabilities are identical).
For example, our Layer Norm functions only apply normalization, with no centering or rescaling (this
particular detail significantly simplifies our Logit Lens experiments).

H Effective Embedding

GPT-2 Small uses the same matrix in its embedding and unembedding layers, which may change how it
learns certain tasks.7 Prior research on GPT-2 Small has found the counter-intuitive result that at the stage
of a circuit where the input token’s value is needed, the output of MLP0 is often more important for token
predictions than the model’s embedding layer (Wang et al., 2023; Hanna et al., 2023). To account for this,
we define the effective embedding. The effective embedding is purely a function of the input token, with
no leakage from other tokens in the prompt, as the attention is ablated.

Why choose to extend the embedding up to MLP0 rather than another component in the model? This is
because if we run forward passes with GPT-2 Small where we delete WE from the residual stream

6That are described here: https://github.com/neelnanda-io/TransformerLens/blob/main/
further_comments.md#weight-processing

7As a concrete example, Elhage et al. (2021) show that a zero-layer transformer with tied embeddings cannot perfectly model
bigrams in natural language.

352

https://github.com/neelnanda-io/TransformerLens/blob/main/further_comments.md#weight-processing
https://github.com/neelnanda-io/TransformerLens/blob/main/further_comments.md#weight-processing

-
0

.0
7

5
6

-
0

.0
6

6
5

-
0

.0
5

7
4

-
0

.0
4

8
4

-
0

.0
3

9
3

-
0

.0
3

0
2

-
0

.0
2

1
2

-
0

.0
1

2
1

-
0

.0
0

3

0
.0

0
6

0
.0

1
5

1

0
.0

2
4

2

0
.0

3
3

3

0
.0

4
2

3

0
.0

5
1

4

0
.0

6
0

5

0
.0

6
9

5

0.00015

0.0006

0.00104

0.00149

0.00194

0.00238

0.00283

0.00328

0.00372

0.00417

0.00462

0.00506

0.00551

0.00596

0.0064

0.00685

0.0073

−10

−8

−6

−4

Log Density of Points in CSPA Ranges

CSPA Loss - Model Loss

C
S
P
A

 K
L

Figure 14: Log densities of dataset examples with loss change due to CSPA (x axis) and KL divergence due to
CSPA (y axis). The x axis range is between −1 and +1 standard deviation of loss changes due to CSPA, and the y
axis range is between 0 and +1 standard deviation of CSPA KL.

just after MLP0 has been added to the residual stream, cross entropy loss decreases.8 Indeed, we
took a sample of 3000 documents of at least 1024 tokens from OpenWebText, took the loss on their first
1024 positions, and calculated the average loss. The result was 3.047 for GPT-2 and 3.044 when we
subtracted WE .

I CSPA Metric Choice

I.1 Motivating KL Divergence

To measure the effect of an ablation, we primarily focused on the KL divergence DKL(P∥Q) =∑
i pi log pi/qi, where P was the clean distribution and Q was the distribution after our ablation had been

applied. Conveniently, a KL Divergence of 0 corresponds to perfect recovery of model behavior, and it is
linear in the log-probabilities log qi obtained after CSPA.

There are flaws with the KL divergence metric. For example, if the correct token probability is very
small, and a head has the effect of changing the logits for this token (but not enough to meaningfully
change the probability), this will affect loss but not KL divergence. Our copy suppression preserving
ablation on L10H7 will not preserve situations like these, because it filters for cases where the suppressed
token already has high probability. Failing to preserve these situations won’t change how much KL
divergence we can explain, but it will reduce the amount of loss we explain. Indeed, the fact that the
loss results appear worse than the KL divergence results is evidence that this is happening to some
extent.Indeed empirically, we find that density of points with KL Divergence close to 0 but larger change
in loss is greater than the opposite (change in loss close to 0 but KL larger) in Figure 14, as even using two
standard deviations of change on the x axis leads to more spread acrosss that axis. In Appendix I.2 we
present results on loss metrics to complement our KL divergence results, and we compare these metrics to
baselines in Appendix I.3.

I.2 Comparing KL Divergence and Loss

In Figure 2, we use two different metrics to capture the effect and importance of different model compo-
nents. Firstly, the amount by which ablating these components changes the average cross-entropy loss
of the model on OpenWebText. Secondly, the KL Divergence of the ablated distribution to the model’s
ordinary distribution, again on OpenWebText. In essence, the first of these captures how useful the head is
for the model, and the second captures how much the head affects the model’s output (good or bad). In

8Thanks to an anonymous colleague for originally finding this result.

353

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Change in loss from ablation (relative to clean model)

Change in loss under mean ablation

C
h
a
n
g
e
 i
n
 l
o
s
s
 u

n
d
e
r
 C

S
P
A

No intervention

Full ablation

((a)) Change in loss from ablation (relative to clean
model).

((b)) Absolute change in loss effect recovered (relative to
clean model).

Figure 15: Studying CSPA under metrics other than KL Divergence.

Section 3.3 we only reported the recovered effect from KL divergence. We can also compute analogous
quantities to Eqn. (3) for loss, in two different ways.

Following the ablation metric definition in Section 3.3.1, suppose at one token completion GPT-2 Small
usually has loss L, though if we ablate of L10H7’s direct effect has loss LAbl. Then we could either
measure LAbl − L and try and minimise the average of these values over the dataset, or we could instead
minimize |LAbl − L|. Either way, we can compare CSPA (Abl = CSPA) to the baseline of mean ablation
(Abl = MA), by a similar ratio calculation as Eqn. (3). We get 82% effect recovered for the net loss
effect and 45% effect recovered for the absolute change in loss. Despite these differing point values, the
same visualisation method as Section 3.3.2) can be used to see where Copy Suppression is not explaining
L10H7 behavior well (see Figure 15). We find that the absolute change in loss captures the majority of
the model’s (73.3%) in the most extreme change in loss percentile (Figure 15(b), far right), which shows
that the heavy tail of cases where L10H7 is not very useful for the model is likely the reason for the poor
performance by the absolute change in loss metric.

Also, surprisingly Figure 15(a)’s symmetry about x = 0 shows that there are almost as many com-
pletions on which L10H7 is harmful as there are useful cases. We observed that this pattern holds on a
random sample of OpenWebText for almost all Layer 9-11 heads, as most of these heads have harmful
direct effect on more than 25% of completions, and a couple of heads (L8H10 and L9H5) are harmful on
the majority of token completions (though their average direct effect is beneficial).

I.3 Does Eqn. (3) accurately measure the effect explained?
If Eqn. (3) is a good measure of the copy suppression mechanism, it should be smaller for heads in
GPT-2 Small that aren’t negative heads. We computed the CSPA value for all heads in Layers 9-11 in
Figure 16.9 We also ran two forms of this experiment: one where we projected OV-circuit outputs onto the
unembeddings (right), and one where we only kept the negative components of OV-circuit outputs (left).

While we find that CSPA recovers more KL divergence L10H7 than all other heads, we also find that
the QK and OV ablations (Section 3.3.1) lead to large (> 50%) KL divergence recovered for many other
heads, too. In ongoing experiments, we’re looking into projection ablations on the QK circuit that will
likely not recover as much KL divergence for other heads.

J Semantic Similarity

42.00% of (source, destination) pairs had the source token in the top 10 most suppressed tokens, but not
the most suppressed. When we inspect these cases, we find a common theme: the most suppressed token

9All attention heads in Layers 0-8 have small direct effects: the average increase in loss under mean ablation of these direct
effects is less than 0.05 for all these heads, besides 8.10. However heads in later layers have much larger direct effects, e.g 10/12
attention heads in Layer 10 (including L10H7) have direct effect more than 0.05.

354

Figure 16: Calculating CSPA (with KL divergence) for all Layer 9-11 heads in GPT-2 Small.

is often semantically related to the source token. For our purposes, we define semantically related as an
equivalence relation on tokens, where if tokens S and T are related via any of the following:

• Capitalization (e.g. “ pier” and “ Pier” are related),

• Prepended spaces (e.g. “ token” and “token” are related),

• Pluralization (e.g. “ device” and “ devices” are related),

• Sharing the same morphological root (e.g. ”drive”, ”driver”, ”driving” are all related)

• Tokenization (e.g. “ Berkeley” and “keley” are related, because the non-space version “Berkeley” is
tokenized into [“Ber”, “keley”]).

We codify these rules, and find that in 90% of the aforementioned cases, the most suppressed token is
semantically related to the source token. Although part of this is explained by the high cosine similarity
between semantically related tokens, this isn’t the whole story (on this set of examples, the average cosine
similarity between the source token and the semantically related most suppressed token was 0.520). We
speculate that the copy suppression algorithm is better thought of as semantic copy suppression, i.e. all
tokens semantically related to the source token are suppressed, rather than pure copy suppression (where
only the source token is suppressed). The figure below presents some OpenWebText examples of copy
suppression occurring for semantically related tokens.

Table 3: Dataset examples of copy suppression, with semantic similarity.

Prompt Source
token

Incorrect com-
pletion

Correct
completion

Form of
semantic
similarity

...America’s private prisons ... the biggest
private prison - ... “ prisons” “ prison” “-” Pluralization

...SteamVR (formerly known as OpenVR),
Valve’s alternate VR reality ... “VR” “ VR” “ reality” Prepended space

...Berkeley to offer course ... university of
Berkeley California ... “keley” “ Berkeley” “ California” Tokenization

...Wrap up the salmon fillets in the foil, care-
fully wrapping sealing ... “ Wrap” “ wrapping” “ sealing”

Verb conjugation
& capitalization

K Breaking Down the Attention Score Bilinear Form

In Section 4, we observed that Negative Heads attend to IO rather than S1 due to the outputs of the Name
Mover heads. We can use QK circuit analysis (Section 3.2) in order to understand what parts of L10H7’s
query and key inputs cause attention to IO rather than S1.

355

0 0.05 0.1 0.15

Q = L9H9, K = MLP 7

Q = L9H6, K = MLP 2

Q = L9H9, K = MLP 5

Q = L9H9, K = MLP 3

Q = L9H9, K = MLP 6

Q = L9H9, K = MLP 2

Q = L9H9, K = L0H1

Q = L9H9, K = MLP 1

Q = L9H6, K = MLP 0

Q = L9H9, K = MLP 0

Contribution proportion

((a))

0 0.05 0.1

Q = L9H6, K = MLP 1 , q ⊥ W U [IO], k ⊥ MLP 0

Q = L9H9, K = MLP 7 , q ⊥ W U [IO], k ∥ MLP 0

Q = L9H6, K = MLP 9 , q ⊥ W U [IO], k ⊥ MLP 0

Q = L9H9, K = MLP 9 , q ⊥ W U [IO], k ∥ MLP 0

Q = L9H9, K = MLP 9 , q ⊥ W U [IO], k ⊥ MLP 0

Q = L9H9, K = MLP 1 , q ⊥ W U [IO], k ⊥ MLP 0

Q = L9H6, K = MLP 0 , q ∥ W U [IO], k ∥ MLP 0

Q = L9H6, K = MLP 0 , q ⊥ W U [IO], k ∥ MLP 0

Q = L9H9, K = MLP 0 , q ∥ W U [IO], k ∥ MLP 0

Q = L9H9, K = MLP 0 , q ⊥ W U [IO], k ∥ MLP 0

Contribution proportion

((b))

Figure 17: Decomposing the bilinear attention score. 17(a): decomposing by all model components. 17(b):
decomposing by all model components, and further by terms in the MLP0 direction (keyside) and terms in the IO
unembedding direction (queryside). Terms involving name movers and MLP0 are highlighted.

As a gentle introduction to our methodology in this section, if an attention score was computed from
an incoming residual stream vector q at queryside and k at queryside, then mirroring Eqn. (2) we could
decompose the attention score

s = q⊤W L10H7
QK k (5)

into the query component from each residual stream component10 (e.g MLP9, the attention heads in
layer 9, ...) so s = q⊤MLP9W

L10H7
QK k+ q⊤L9H0W

L10H7
QK k+ · · · . We could then further decompose the keyside

input in each of these terms.

However, in this appendix we’re actually interested in the difference between how the model attends to
IO compared to S, so we decompose the attention score difference

∆s := q⊤W L10H7
QK kIO − q⊤W L10H7

QK kS1 = q⊤W L10H7
QK (kIO − kS1). (6)

Since ∆s is in identical form to Equation (5) when we take k = kIO − kS1, we can decompose both
the query inputs and key inputs of ∆s. We also take q from the END position in the IOI task. Under
this decomposition, we find that the most contributions are from L9H6 and L9H9 queryside and MLP0
keyside (Figure 17(a)), which agrees with our analysis throughout the paper.

Further, we can test the hypotheses in Section 3.1 and Section 3.2 that copy suppression is modulated
by an unembedding vector in the residual stream, by further breaking up each of the attention scores
in Figure 17(a) into 4 further components, for the queryside components parallel and perpendicular to
the unembedding direction, as well as the keyside components parallel and perpendicular to the MLP0
direction (Figure 17(b)). Unfortunately the direction perpendicular to IO is slightly more important than
the parallel direction, for both name movers. This supports the argument in Section 4 that self-repair is
more general than the simplest possible form of copy suppression described in Section 3.2.

L L10H7’s QK-Circuit

L.1 Details on the QK-Circuit experiments (Figure 3).
We normalize the query and key inputs to norm

√
dmodel to simulate the effect of Layer Norm. Also,

MLP0 in Figure 3 refers to taking the embeddings for all tokens and feeding this through MLP0 (so is
identical to effective embedding besides not having WE added).

10As in Eqn. (2), we found that the query and key biases did not have a large effect on the attention score difference computed
here.

356

W E W EE MLP 0

W U

W EE

W E

1

10

100

1000

10000

Average Rank

Median rank with biases

Keyside lookup table

Q
u
e
r
y
s
id

e
 l
o
o
k
u
p
 t

a
b
le

4005 64 65

4171 78 79

166 1 1

((a)) Median rank of tokens (as in Figure 3) but including
biases before multiplying query and key vectors.

W E W EE MLP 0

W U

W EE

W E

1

10

100

1000

10000

Average Rank

Median rank of L3H0

Keyside lookup table

Q
u
e
r
y
s
id

e
 l
o
o
k
u
p
 t

a
b
le

8050 2 2

8163 2 2

3491 1910 1937

((b)) Median rank of tokens (as in Figure 3) but for L3H0
(a Duplicate Token Head).

Figure 18: Median rank of tokens (as in Figure 3) while adding biases (Figure 18(a)) and on a different head
(Figure 18(b))

Actually, key and query biases don’t affect results much so we remove them for simplicity of Eqn. (2).
Results when we uses these biases can be found in Figure 18(a). Additionally, the median ranks for other
attention heads do not show the same patterns as Figure 3: for example, Duplicate Token Heads (Wang
et al., 2023) have a ‘matching’ QK circuit that has much higher median ranks when the queryside lookup
table is an embedding matrix (Figure 18(b)). Additionally, most other attention heads are different to copy
suppression heads and duplicate token heads, as e.g for Name Mover Heads across all key and queryside
lookup tables the best median rank is 561.

L.2 Making a more faithful keyside approximation

Is our minimal mechanism for Negative Heads faithful to the computation that occurs on forward passes
on dataset examples? To test this, we firstly select some important key tokens which we will measure
faithfulness on. We look at the top 5% of token completions where L10H7 was most useful (as in
Section 2) and select the top two non-BOS tokens in context that have maximal attention paid to them. We
then project L10H7’s key input onto a component parallel to the effective embedding for the key tokens,
and calculate the change in attention paid to the selected key tokens. The resulting distribution of changes
in attention can be found in Figure 19.

We find that the median attention change is −0.09, with lower quartile −0.19. Since the average
attention amongst these samples is 0.21, this suggests that the effective embedding does not faithfully
capture the model’s attention.

To use a more faithful embedding of keyside tokens, we run a forward pass where we set all attention
weights to tokens other than BOS and the current token to 0. We then measure the state of the residual
stream before input to Head L10H7, which we call the context-free residual state. Repeating the
experiment used to generate Figure 19 but using the context-free residual state rather than the effective
embedding, we find a more faithful approximation of L10H7’s keyside input as Figure 20 shows that the
median change in L10H7’s attention weights is −0.06 which is closer to 0.

L.3 Making a more faithful queryside approximation

We perform a similar intervention to the components on the input to the model’s query circuit. We study
the top 5% of token completions where L10H7 has most important effect. For the two key tokens with
highest attention weight in each of these prompts, we project the query vector onto the unembedding
vector for that key token. We then recompute attention probabilities and calculate how much this differs
from the unmodified model. We find that again our approximation still causes a lot of attention decrease
in many cases (Figure 21).

There is a component of the queryside input perpendicular to the unembedding direction that is

357

Figure 19: Change in attention on tokens when projecting key vectors onto the effective embedding for tokens.

Figure 20: Change in attention on tokens when projecting key vectors onto the context free residual state.

358

Figure 21: Change in attention on tokens when projecting query vectors onto the unembedding vectors for particular
tokens.

Figure 22: Correlation between change in attention on tokens when projecting onto the component parallel to the
unembedding and (x-axis) and also projecting onto the component perpendicular to the unembedding (y-axis).

important for L10H7’s attention. This component seems more important for L10H7s attention when the
unembedding direction is more important, by performing an identical experiment to the experiment that
produced Figure 21 except projecting onto the perpendicular direction, and then measuring the correlation
between the attention change for both of these interventions on each prompt, shown in Figure 22. The
correlation shows that it’s unlikely that there’s a fundamentally different reason why L10H7 attends to
tokens other than copy suppression, as if this was the case it would be likely that some points would be in
the low very negative x, close-to-0 y region. This does not happen often.

We’re not sure what this perpendicular component represents. Appendix R dives deeper into this
perpendicular component in the IOI case study, and Appendix K further shows that the model parts that
output large unembedding vectors (the Name Mover heads) are also the parts that output the important
perpendicular component.

M CSPA with query projections

In this appendix, we design a similar ablation to CSPA, except we compute L10H7’s attention pattern by
only using information about the unembeddings in the residual stream, and the exact key tokens present in
context, and we also do not perform any OV interventions. This means that together we only study how
confident predictions in the residual stream are, as well as which types of tokens are more likely to be
copy suppressed.

A simple baseline. The simplest query projection intervention is to recalculate the attention score

359

on each key token T by solely using the residual stream component in the direction WU [T]. Sadly, this
intervention results in only 25% of KL divergence recovered.

Improving the baseline. Observing the starkest failure cases of the simple baseline, we often see that
this intervention neglects cases where a proper noun and similar words are copy suppressed: the model
attended most to a capitalized word in context 9x times as frequently as occurred in this ablation. To

remedy these problems, we performed two changes. 1) Following Appendix J, when we compute the
attention score back to a token T , we don’t just project onto the unembedding vector WU [T], but instead
take all T ∗ that are semantically similar to T , and project onto the subspace spanned by all those vectors.
2) we learnt a scaling and bias factor for every token in GPT-2 Small’s vocabulary, such that we multiply
the attention score back to a token T by the scaling factor and then add the bias term. We never train on
the test set we evaluate on, and for more details see our Github (which will be released upon successful
publication). With this setup, we recover 61% of KL divergence.

Limitations. This setup may recover more KL divergence than the 25% of the initial baseline, but
clearly shows that L10H7 has other important functions. However, observing the cases where this
intervention has at least 0.1 KL divergence to the original model (57/6000 cases), we find that in 39/57
of the cases the model had greatest attention to a capitalized word, which is far above the base rate in
natural language. This suggests that the failure cases are due to our projection not detecting cases where
the model should copy suppress a token, rather than L10H7 performing an entirely different task to copy
suppression.

N Weights-based evidence for self-repair in IOI

In this section, we provide evidence for how the attention heads in GPT-2 Small compose to perform
self-repair. As shown in Elhage et al. (2021), attention heads across in different layers can compose via
the residual stream.

Copy Suppression qualitatively explains the mechanism behind the self-repair performed in the Negative
Heads: ablating the upstream Name Mover Heads reduces copying of the indirect object (IO) token,
causing less attention to that token (Appendix O). In this section, we show that the opposite effect arises
in backup heads: ablation indirectly cause more attention to the IO token, as the Name Mover Heads
outputs prevent backup heads from attending to the IO token.

112 86 139 96 72 79 114 1 65 65 138 74 30 117 141 119 83 34 138 45 73 39 1 112

140 128 138 112 92 67 134 1 82 77 136 106 34 123 141 127 63 63 138 103 60 106 1 110

27 123 141 139 37 60 131 103 74 116 1 128

L10H
0

L10H
1

L10H
2

L10H
3

L10H
4

L10H
5

L10H
6

L10H
7

L10H
8

L10H
9

L10H
10

L10H
11

L11H
0

L11H
1

L11H
2

L11H
3

L11H
4

L11H
5

L11H
6

L11H
7

L11H
8

L11H
9

L11H
10

L11H
11

L10H0

L9H6

L9H9

0

50

100

Median Rank

Median Token Ranks in Q-Composition QK circuit

QK Head

O
V

 H
e
a
d

Figure 23: A graph of the Median Token Ranks between the Name Mover Heads (on the OV side) and Layer 10 and
11 Heads (on the QK side), to measure Q-composition in the QK circuit. There are nnames = 141 names.

To reach this conclusion, we conduct a weights-based analysis of self-repair in GPT-2 Small. Specifi-
cally, we can capture the reactivity of downstream heads to Name Mover Heads by looking at how much
the OV matrix WOV of the Name Mover Heads causes Q-composition (Elhage et al., 2021) with the QK
matrix WQK of a downstream QK-head. To this end, we define

M := MLP0(WE)
⊤W T

OV WQKMLP0(WE) ∈ Rnvocab×nvocab . (7)

M is an extension to the setup in Section 3.2.1112 We studied this composition over the nnames = 141

11This is similar to how Elhage et al. (2021) test the ‘same matching’ induction head QK circuit with a K-composition path
through a Previous Token Head

12As in Section 3.2 we ignore query and key biases as they have little effect.

360

Figure 24: Measuring the difference in attention paid to different names when editing the input Negative Heads
receive from Name Mover Heads.

name tokens in GPT-2 Small’s vocabulary by studying the Rnnames×nnames submatrix of M corresponding
to these names. For every (Name Mover Head, QK-head) pair, we take the submatrix and measure the
median of the list of ranks of each diagonal element in its column. This measures whether QK-heads
attend to names that have been copied by Name Movers (median close to 1), or avoid attending to these
names (median close to nnames = 141). Figure 23 shows the results.

These ranks reflect qualitatively different mechanisms in which self-repair can occur (Table 2). In the
main text Figure 26, we colour edges with a similar blue-red scale as Figure 24.

O Negative heads’ self-repair in IOI

We edited the input that the Negative Heads receive from the Name Mover heads by replacing it with
an activation from the ABC distribution. We then measured the difference between the attention that
the negative head paid to the IO token compared to the S token. We found that the Negative Heads now
attended equally to the IO and the S1 token, as the average IO attention minus S1 attention was just 0.08
for Head L10H7 and 0.0006 for Head L11H10 (Figure 24).

Since Negative Heads are just copying heads (Section 3.1), this fully explains copy suppression.

P Universality of IOI Self-Repair

Since Negative Heads exist across distributions and models, we also expect that IOI self-repair potentially
exists universally as well. Initial investigations across other models about self-repair in the IOI task
highlight similarities to the phenomena we observe here but with some subtleties in the specifics. For
instance, one head in Stanford GPT-2 Small E wrote ’less against’ the correct token upon the ablation of
earlier Name Mover Heads; however, it is distinct from the copy suppression heads in GPT-2 Small in that
it attended to both the IO and S2 tokens equally on a clean run.

Q Amplifying Query Signals into Self-Repair Heads

As a part of our exploration into how self-repair heads respond to signals in the residual stream, we noticed
that the output of the name mover heads was extremely important for the queries of the self-repair heads.
We wanted to decompose the signal down into subcomponents to determine which parts were meaningful
- in particular, we were curious if the IO unembedding direction of the name mover head’s output was
important.

To do this, we intervened on the query-side component of a self-repair head by:

1. Making a copy of the residual stream before the self-repair head, and adding a scaled vector sv⃗
(where v⃗ is a vector and s is some scaling) to this copy (before the LayerNorm)

2. Replacing the query component of the head with the query that results from the head reading in this
copied residual stream into the query

361

Figure 25: Observing the change in attention scores of Negative Heads upon scaling the presence of the output of
L9H9, both parallel and perpendicular to the WU [IO] direction.

3. Varying the scaling s while repeatedly observing the new attention patterns of the self-repair of the
head

Figure 25 shows a specific instance in which the vector is the output of head L9H9. We add scaled
versions of the output into the residual streams of the Negative Heads which produce their queries (before
LayerNorm). Additionally, we do an analogous operation with the projection of L9H9 onto the IO
unembeddings, as well as the projection of L9H9 away from the IO unembeddings.

We observe that the Negative Heads have a positive slope across all of the IO subgraphs. In particular,
this still holds while using just the projection of L9H9 onto the IO unembedding direction: this implies
that the greater the presence of the IO unembedding in the query of the negative name mover head, the
greater the neagtive head attends to the IO token. The result still holds whether or not we add the vector
before or after LayerNorm, or whether or not we freeze LayerNorm.

Unfortunately, this same trend does not hold for backup heads. In particular, it seems that while we
expect a predictable ’negative’ slope of all the subgraphs (as the L9H9 output causes the backup heads to
attend less to the IO token), this trend does not hold for the projection of L9H9 onto the IO unembedding.
This provides additional evidence for the claim that the unembeding component is not the full story of all
of self-repair.

R Complicating the Story: Component Intervention Experiments

Copy suppression explains self-repair in negative heads via the importance of the unembedding direction
(Section 3.2). Ideally, the unembedding direction would also help understand backup heads. However, we
present two pieces of evidence to highlight how the unembedding only explains part of the self-repair in
GPT-2 Small, including showing that our understanding of Negative Heads on the IOI task also requires
understanding more than simply the unembedding directions.

First, we intervened on the output of the Name Movers and L10H7,13 and edited the resulting changes
13We also ablate the output of L10H7 due to self-repair that occurs between L11H10 and L10H7, as explained in Appendix B.

362

L10H2

L10H10

L10H6

L10H7

L11H10

L11H2

L10H2

L10H10

L10H7

L11H10

L11H2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Project:

away from W U [IO]

onto W U [IO]

Self-repairing attention heads under projection interventions

Pre-intervention logit difference

P
o
s
t
-
in

t
e
r
v
e
n
t
io

n
 l
o
g
it

 d
iff

e
r
e
n
c
e

Figure 26: Intervening in the
IO unembedding input into self-
repairing heads, and measuring the
logit difference before and after
these intervetions. The unembed-
ding direction doesn’t completely
describe the backup effect.

into the queries of downstream heads. The intervention, shown in Figure 26, was either a projection onto
or away from the IO unembedding WU [IO]14. We also froze the Layer Norm scaling factor equal to the
value on the original forward pass. To interpret Figure 26, note that for most backup heads, projecting
away from WU [IO] does not change the heads’ logit differences much, suggesting that the unembedding
direction isn’t very causally important for self-repair in backup heads. As such, there must be important
information in the WU [IO]-perpendicular direction that controls self-repair.

To complement this analysis, we also broke the attention score (a quadratic function of query and key
inputs) down into terms and again found the importance of the perpendicular direction (Appendix K).
Beyond this, intervening in the queries of self-repair heads reflects that the perpendicular direction is
particularly important in the Backup Heads (Appendix Q). Ultimately, we conclude that while Name
Mover Heads modulate Negative Heads’ copy suppression, this is only partly through the unembedding
direction. Further, backup heads do not seem to depend on the unembedding direction.

14By ‘away from’, we mean removing the unembedding direction from the head output, so the resultant vector is orthogonal
to the unembedding direction.

363

