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Abstract

Despite the widespread adoption of autore-
gressive language models, explainability eval-
uation research has predominantly focused
on span infilling and masked language mod-
els. Evaluating the faithfulness of an explana-
tion method—how accurately it explains the
inner workings and decision-making of the
model—is challenging because it is difficult
to separate the model from its explanation.
Most faithfulness evaluation techniques cor-
rupt or remove input tokens deemed important
by a particular attribution (feature importance)
method and observe the resulting change in the
model’s output. However, for autoregressive
language models, this approach creates out-of-
distribution inputs due to their next-token pre-
diction training objective. In this study, we
propose a technique that leverages counterfac-
tual generation to evaluate the faithfulness of
attribution methods for autoregressive language
models. Our technique generates fluent, in-
distribution counterfactuals, making the evalua-
tion protocol more reliable.

1 Introduction

Most modern NLP systems rely on autoregressive,
transformer-based language models (Brown et al.,
2020; Touvron et al., 2023; Groeneveld et al., 2024).
These models are inherently opaque, creating a
strong need to understand their decision-making
processes. As a result, explanation methods have
become increasingly important in the field.

A widely-used approach for model explainabil-
ity is attribution, also known as feature importance
(FI) (Zhao et al., 2023). Attribution methods aim
to identify which input features contribute most
to a model’s predictions, assigning a scalar value
to each feature that reflects its relevance in the
decision-making process. In typical NLP tasks,
input features are often subwords or their combina-
tions.

A key challenge in evaluating the faithfulness
of attribution methods is that many existing tech-
niques are designed for denoising or masked lan-
guage models (MLMs) (Kobayashi et al., 2020,
2021; Ferrando et al., 2022b; Modarressi et al.,
2022, 2023; Mohebbi et al., 2023). Recent work
on autoregressive models has primarily focused
on the plausibility of attributions (Yin and Neubig,
2022; Ferrando et al., 2023). While plausible (or
persuasive) explanations might be the objective of
the explainer, the core objective for the user is to
truly understand the model’s decision-making pro-
cess, rather than simply being convinced that the
model’s decisions are correct (Jacovi and Goldberg,
2021).

Nearly all previous methods for faithfulness eval-
uation modify the input in some way, such as
masking or removing important tokens based on
the attribution results, and then measuring the im-
pact on the model’s predictions. These methods
tend to work well for MLMs, which are specifi-
cally trained for tasks like span or mask infilling.
However, in the case of autoregressive models like
GPT-2, which predict the next token, such modifi-
cations produce out-of-distribution (OOD) inputs.
This raises a crucial question: are these evalua-
tion methods truly assessing the informativeness of
the selected tokens, or merely testing the model’s
robustness to unnatural text and the artifacts in-
troduced by testing modifications (Hooker et al.,
2019)? Moreover, the OOD nature of these in-
puts results in explanations that become socially
misaligned (Hase et al., 2021). In other words,
the expectations of users—who seek to understand
which features are most relevant to the model’s de-
cision—no longer align with the actual output of
the attribution method. Instead, feature importance
becomes influenced by the model’s priors rather
than the learned features that truly drive predic-
tions.

In this work, drawing inspiration from coun-
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terfactual generation—where the input is altered
to flip the model’s output—we propose a new
technique to evaluate the faithfulness of attribu-
tion methods in autoregressive language models.
Specifically, we use counterfactual generators to
modify the input by focusing on tokens highlighted
by attribution methods, while ensuring that the al-
tered input remains natural, fluent, and within the
model’s original distribution. This ensures that any
observed change in the model’s predictions is due
to the modification of the important tokens, rather
than an effect of OOD inputs.

We argue that if an attribution method enables
a counterfactual generator to modify fewer tokens
to change the model’s prediction, then it demon-
strates a stronger understanding of the model’s in-
ner workings, indicating higher faithfulness. To
validate our approach, we apply this faithful-
ness evaluation technique to several attribution
methods—including gradient norm, gradient × in-
put, erasure, KernelSHAP, and integrated gradi-
ents—within the context of next-word prediction
for two language models: the fine-tuned Gemma-
2b and the off-the-shelf Gemma-2b-instruct (Team
et al., 2024).

Our contributions are as follows: (i) We intro-
duce a novel faithfulness evaluation protocol that
preserves the model’s input distribution, designed
for attribution methods in autoregressive language
models. (ii) We apply this protocol to evaluate and
rank widely-used attribution methods, showcasing
differences in sensitivity between fine-tuned and
off-the-shelf models when handling OOD data and
proposing a solution.1

2 Related work

Evaluating Explanations. Most current metrics
for evaluating faithfulness involve either removing
important tokens or retraining the model using only
those identified as important by attribution meth-
ods (Chan et al., 2022). For instance, Abnar and
Zuidema (2020) assess explanations by comparing
them with gradient and ablation techniques. Al-
though Wiegreffe and Pinter (2019) caution that
gradients should not be considered ideal or the
“ground truth,” they still utilize gradients as a proxy
for the model’s intrinsic semantics. Importantly,
the trustworthiness of explanations is both task-
and model-dependent (Bastings et al., 2022), and

1The code is available at https://github.com/
Sepehr-Kamahi/faith

different attribution methods frequently produce
inconsistent results (Neely et al., 2022). As a result,
it is not justifiable to treat any single explanation
method as a universal standard across all contexts.

In their work, DeYoung et al. (2020) introduce
two key concepts: comprehensiveness (whether
the important tokens identified are the only ones
necessary for making a prediction) and sufficiency
(whether these important tokens alone are enough
to make the prediction). Carton et al. (2020) build
on this by proposing normalized versions of these
concepts, comparing comprehensiveness and suffi-
ciency to the null difference—the performance of
an empty input (for sufficiency) or a full input (for
comprehensiveness). However, it remains unclear
whether these corruption techniques evaluate the
informativeness of the corrupted tokens or merely
the robustness of the model to unnatural inputs and
artifacts introduced during evaluation.

Further, Han et al. (2020) and Jain et al. (2020)
frame attribution methods as either faithful or un-
faithful, with no consideration for degrees of faith-
fulness. They describe attribution methods that
are "faithful by construction." In contrast, other
researchers propose that faithfulness exists on a
spectrum and suggest evaluating the “degree of
faithfulness” of explanation methods (Jacovi and
Goldberg, 2020). Our approach aligns with this
view, as we aim to find explanation methods that
are sufficiently faithful for autoregressive models.

Atanasova et al. (2023) evaluate the faithfulness
of natural language explanations using counterfac-
tuals, applying techniques from Ross et al. (2021)
to assess how well explanations align with the
model’s decision-making. This line of work of-
fers valuable insights into the use of counterfactu-
als, which we build upon for evaluating attribution
methods in language models. Another relevant
direction is the evaluation of explanations using
uncertainty estimation. For example, Slack et al.
(2021) develop a Bayesian framework that gener-
ates feature importance estimates along with their
associated uncertainty, expressed through credi-
ble intervals, highlighting the importance of un-
certainty in faithfulness evaluations

The OOD Problem in Explainability.
The issue of OOD inputs in explainability has

been raised by several works. Hooker et al. (2019)
and Vafa et al. (2021) suggest retraining or fine-
tuning the model using partially erased inputs to
align training and evaluation distributions. How-
ever, this process can be computationally expen-
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sive and is not always practical. An alternative
approach by Kim et al. (2020) aims to ensure that
the explanation remains in-distribution to mitigate
OOD problems. Our work addresses this concern
by preserving the input distribution during faith-
fulness evaluation, particularly for autoregressive
models.

Feature Importance (Attribution). Attri-
butions, or feature importance scores, are lo-
cal explanations that assign a score to each in-
put feature—typically token embeddings in NLP
tasks—indicating how crucial that feature is to the
model’s prediction. Attribution methods can be
categorized into four types: i) Perturbation-based
methods, which alter or mask input features to as-
sess their importance by observing changes in the
model’s output (Li et al., 2016, 2017; Feng et al.,
2018; Wu et al., 2020). ii) Gradient-based meth-
ods, which calculate the derivative of the model’s
output with respect to each input to measure the
influence of each feature (Mohebbi et al., 2021;
Kindermans et al., 2019; Sundararajan et al., 2017;
Lundstrom et al., 2022; Enguehard, 2023; Sanyal
and Ren, 2021; Sikdar et al., 2021). iii) Surrogate-
based methods, which explain a complex black-box
model using a simpler, interpretable model (Ribeiro
et al., 2016; Lundberg and Lee, 2017; Kokalj et al.,
2021). iv) Decomposition-based methods, which
break down the overall importance score into linear
contributions from the input features (Montavon
et al., 2019; Voita et al., 2021; Chefer et al., 2021;
Modarressi et al., 2022; Ferrando et al., 2022a).

3 Our method

Our faithfulness evaluation protocol involves two
models: a counterfactual generator model and a
predictor model. Our goal is to evaluate the faithful-
ness of attribution methods for the predictor model.
Due to the large output space of autoregressive lan-
guage models (LMs), which often includes thou-
sands of vocabulary items, examining the entire
output space does not provide much insight. There-
fore, we use the contrastive explanations proposed
by Yin and Neubig (2022), which measure the at-
tribution of input tokens for a contrastive model
decision. Contrastive attributions aim to identify
the most important tokens that led the model to pre-
dict the target yt instead of a foil yf . We then use
a separate editor model to modify these important
tokens to generate counterfactuals—examples that
make the original predictor model more likely to

Figure 1: Prompting techniques used for counterfactual
generation in the second phase.

predict the foil.

Our protocol for evaluating attributions consists
of two phases. The first phase involves creating
the editor that can generate counterfactuals. In
the second phase, we use the editor and predictor
together to determine what percentage of tokens the
editor needs to change to flip the predictor model’s
prediction. Figure 2 illustrates the second phase.

To create the editor, we fine-tune an autoregres-
sive language model specifically for counterfactual
generation. During fine-tuning, we add two to-
kens to the embedding space and the tokenizer:
‘<mask>’ and ‘<counterfactual>’. Inspired by Wu
et al. (2021) and Donahue et al. (2020), we create
training examples for our counterfactual genera-
tor by randomly masking between 5% and 50% of
the tokens. We then append each example’s label
(e.g., positive or negative for the SST-2 dataset),
the ‘<counterfactual>’ token, and finally the orig-
inal unmasked example. The process of creating
training examples is shown in Figure 3.

In the second phase of evaluating attributions,
we first input a sentence into the predictor and ap-
ply an attribution method to identify the most im-
portant tokens influencing the predictor’s decision-
making process. We begin by replacing 10% of
these most important tokens with ‘<mask>’ and
present the masked sentence along with the foil
label (the label with the second-highest logit) to the
editor to generate a counterfactual sentence—one
that flips the prediction of the predictor model. If
unsuccessful in flipping the prediction, we incre-
mentally increase the masking by 10% until we
either flip the prediction or reach a masking thresh-
old of 50%. This evaluation protocol is depicted in
Figure 2. The prompting technique used for coun-
terfactual generation during this phase is shown
in Figure 1. The attribution technique that identi-
fies the most critical tokens for creating counter-
factuals and enables counterfactuals with the least
amount of change to the original text is considered
to provide the most faithful representation of the
predictor’s decision-making process.
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Figure 2: Our process of generating counterfactuals for evaluating attribution methods. The predictor (an LM)
generates a label for the given text, and an attribution method specifies the most important tokens. We mask the top
n% of them and ask an editor (another LM) to change the label of the input text by filling in the masked tokens. If
the attribution method is more faithful, then the required n% should be lower.

Figure 3: Creation of training examples for fine-tuning the counterfactual generator, and one given sample.

4 Experimental Setup

4.1 Datasets

We use three datasets for evaluating faithfulness:
SST-2 (Socher et al., 2013) and IMDB (Maas et al.,
2011), which are both binary classification datasets,
and AG-News (Zhang et al., 2015), a four-class
classification dataset.

Faithfulness evaluation datasets should not have
gold attribution labels because we do not want hu-
man intuition to influence the evaluation. Instead,
we aim to understand how the model makes predic-
tions (Jacovi and Goldberg, 2020).

4.2 Models

4.2.1 Editor Models

For the editor model, our method is similar to Wu
et al. (2021), which uses GPT-2, a decoder-only
causal model, for generating counterfactuals. We
extend this by using three more modern decoder-
only models: GPT-J-6B (Wang and Komatsuzaki,
2021), which we refer to as "gptj," and two sizes
of Pythia: Pythia-1.4B (pythia1) and Pythia-2.8B
(pythia2) (Biderman et al., 2023). We fine-tune
these models following the process described in
Section 3. The pythia1 model is fully fine-tuned,
while the other two (gptj and pythia2) are fine-
tuned using Low-Rank Adaptation (LoRA) (Hu
et al., 2022). All models are trained for 8 epochs
using dynamic masking (Liu et al., 2019), meaning
each example is masked differently in each epoch.

4.2.2 Predictor Models
We use Gemma-2b (Team et al., 2024) as the pre-
dictor model. We fine-tune the raw language model
for the three datasets (referred to as gemma-ft)
using Low-Rank Adaptation (LoRA). Addition-
ally, we employ an off-the-shelf instruct-tuned
version (gemma-it) for zero-shot evaluation. We
then conduct a detailed comparison between these
two versions—fine-tuned (gemma-ft) and non-fine-
tuned (gemma-it)—to assess their differences in
attribution evaluation.

4.3 Attribution Methods

Here we detail the six widely used attribution meth-
ods employed in our study. We use all attribution
methods in a contrastive way (Yin and Neubig,
2022). Contrastive attributions measure which fea-
tures from the input make the foil token yf more
likely and the target token yt less likely. We denote
contrastive, target, and foil attributions by SC , St,
and Sf respectively:

SC = St − Sf (1)

We use the implementation of these attribution
methods provided by Yin and Neubig (2022) (for
Gradient × input, gradient norm and erasure) and
by Captum (Miglani et al., 2023) (for KernelSHAP
and Integrated Gradient).

4.3.1 Gradient Norm
We can calculate attributions based on the norm of
the gradient of the model’s prediction with respect
to the input x (Simonyan et al., 2013; Li et al.,
2016).The gradient with respect to feature xi is
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given by:
g(xi) = ∇xiq(yt|x)

Where q(yt|x) is the model output for token yt
given the input x. The contrastive gradient:

gC(xi) = ∇xi (q(yt|x)− q(yf |x))

We will use both norm one (gradnorm1) and norm
two (gradnorm2):

SC
GN1(xi) = ||gC(xi)||L1

SC
GN2(xi) = ||gC(xi)||L2

4.3.2 Gradient × Input
In gradient × input (gradinp) method (Shrikumar
et al., 2016; Denil et al., 2014), we compute the
dot product of the gradient and the input token
embedding xi:

SGI(xi) = g(xi) · xi

By multiplying the gradient by the input embed-
ding, we also account for how much each token is
expressed in the attribution score. The Contrastive
Gradient × Input is:

SC
GI(xi) = gC(xi) · xi

4.3.3 Erasure
Erasure-based methods measure the importance of
each token by erasing it and observing the effect on
the model output (Li et al., 2017). This is achieved
by taking the difference between the model output
with the full input x and the model output with the
input where token xi is zeroed out, denoted as x¬i:

St
E(xi) = q(yt|x)− q(yt|x¬i)

For the contrastive case, SC
E (xi) becomes:

(q(yt|x)− q(yt|x¬i))− (q(yf |x)− q(yf |x¬i))

4.3.4 KernelSHAP
KernelSHAP (Lundberg and Lee, 2017) explains
the prediction of a classifier q by learning a lin-
ear model ϕ locally around each prediction. The
objective function of KernelSHAP constructs an
explanation that approximates the behavior of q
accurately in the neighborhood of x. More im-
portant features have higher weights in this linear
model ϕ. Let Z be a set of N randomly sampled
perturbations around x:

St
ϕ = argmin

ϕ

∑

z∈Z
[q(yt|z)− ϕT z]2πx(z) (2)

KernelSHAP uses a kernel πx that satisfies cer-
tain principles when input features are considered
agents of a cooperative game in game theory. We
use equation 2 in a contrastive way. First we nor-
malize St

ϕ and Sf
ϕ by dividing by their L2 norm

and then subtracting:

SC
ϕ =

St
ϕ

||St
ϕ||

−
Sf
ϕ

||Sf
ϕ ||

(3)

4.3.5 Integrated Gradients
Integrated Gradients (IG) (Sundararajan et al.,
2017) is a gradient-based method which addresses
the problem of saturation: gradients may get close
to zero for a well-fitted function. IG requires a
baseline b as a way of contrasting the given input
with the absence of information. For input i, we
compute:

St
IG(xi) =

1

m

m∑

k=1

∇xiq
(
yt

∣∣∣b+ k

m
(x−b)

)
·(xi−bi)

(4)
That is, we average over m gradients, with the
inputs to q being linearly interpolated between the
baseline b and the original input x in m steps. We
then take the dot product of that averaged gradient
with the input embedding xi minus the baseline.

We use a zero vector baseline (Mudrakarta et al.,
2018) and five steps. The contrastive case becomes:

SC
IG =

St
IG

||St
IG||

− Sf
IG

||Sf
IG||

(5)

5 Results and Discussion

5.1 The Out-of-Distribution Problem

Why should we use counterfactuals instead of
erasing important tokens or replacing them
with unimportant ones? First, we demonstrate
that our counterfactual generators produce in-
distribution text for the predictor. Second, we show
that the rankings of attribution methods’ faithful-
ness are consistent when using a counterfactual
generator for token replacement, but these rankings
differ when other replacement methods are used.

To achieve our first goal—demonstrating that the
generated counterfactuals are in-distribution—we
employ an out-of-distribution (OOD) detection
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Editor gradnorm1 Erasure KernelSHAP
gemma-ft gemma-it gemma-ft gemma-it gemma-ft gemma-it

pythia1 (ours) 1.1 1.4 1.3 1.6 0.7 1.7
pythia2 (ours) 0.4 2.6 0.9 1.3 0.8 2.3
gptj (ours) 0.7 8.3 2.0 10.9 0.9 6.4
erase 0.3 19.9 2.3 32.8 0.6 81.4
unk 0.6 97.5 1.8 97.3 1.3 99.8
mask 0.0 94.8 0.5 93.3 0.0 98.5
att-zero 0.1 80.9 0.1 62.6 0 74.1

Table 1: OOD percentage when our counterfactual editor models generate samples, compared to other replacement
methods (erase, unk, mask, and att-zero methods). This represents the percentage of corrupted examples that fall
outside the 99th percentile of the NLL of the original sentences in the SST-2 dataset (lower is better). Scenarios
with very high OOD percentages are highlighted.

Attribution
method

SST-2 IMDB AG-News
pythia1 pythia2 gptj pythia1 pythia2 gptj pythia1 pythia2 gptj

gradnorm1 33.5 34.8 32.2 29.1 30.3 32.4 42.9 45.1 44.0
gradnorm2 33.4 35.6 32.6 31.0 30.5 32.4 42.6 44.4 43.9
gradinp 40.5 41.8 40.8 36.1 36.3 36.5 43.1 44.6 42.2
erasure 35.5 36.6 33.4 32.7 32.7 34.4 42.0 42.7 43.0
IG 45.7 45.8 43.7 43.3 44.3 42.5 43.8 46.7 44.0
KernelSHAP 44.1 45.9 44.9 44.0 43.3 44.2 44.0 46.5 44.3
Random 44.6 46.0 44.3 43.8 42.7 43.2 44.0 46.0 44.0

Table 2: The mean percentage of tokens needed to be masked to achieve flipping Gemma-ft’s label or reaching 50
percent masking in 200 examples from evaluation split of SST-2, IMDB, and AG-News datasets (lower is better).
pythia1, pythia2, and gptj models are used to fill the masks and generate counterfactuals.

technique to measure the percentage of our gen-
erated inputs that are OOD. Prominent OOD de-
tection methods use a threshold, considering any
input with a value higher than this threshold as
OOD (Chen et al., 2023). For each dataset, we cal-
culate the threshold by measuring the negative log-
likelihood (NLL) of 200 original examples using
different predictors (fine-tuned and instruct-tuned)
and consider the 99th percentile of these NLLs as
the OOD threshold. We use NLL to detect OOD
because the type of shift we aim to detect is back-
ground shift. OOD data can be classified as either
semantic or background shift (Arora et al., 2021).
Semantic features have a strong correlation with the
label, and semantic shift occurs when we encounter
unseen classes at test time. In contrast, background
features consist of population-level statistics that
do not depend on the label and focus on the style
of the text.

In evaluating faithfulness by corrupting the input,
we do not introduce new labels or classes; instead,

we change the style of the text. Therefore, we aim
to detect background shift. There are two common
types of OOD detection methods: calibration and
density estimation. Density estimation methods,
such as perplexity (PPL), outperform calibration
methods under background shifts, while the op-
posite is true under semantic shift. We use NLL,
which is closely related to PPL.

An attribution method shows us which tokens
are important, and we replace those tokens in four
ways: (i) using an editor to replace the tokens (our
method), (ii) using tokens that are considered se-
mantically unimportant (the <unk> token and the
<mask> token), (iii) erasing the tokens, and (iv)
zeroing out the attention mask for important tokens
without altering the text itself (att-zero).

The baselines (ii) through (iv) are similar to pre-
vious work (Hase et al., 2021). Table 1 shows
that for both fine-tuned and instruct-tuned predic-
tors, the generated counterfactuals are mostly in-
distribution. Specifically, we present results for
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Attribution
method

SST-2 IMDB AG-News
pythia1 pythia2 gptj pythia1 pythia2 gptj pythia1 pythia2 gptj

gradnorm1 41.4 42.0 40.3 42.1 42.3 44.0 46.6 46.8 40.0
gradnorm2 41.5 42.2 40.6 42.3 42.6 43.6 46.6 46.9 39.9
gradinp 42.9 43.4 43.2 41.2 41.4 42.2 45.8 45.3 39.2
erasure 40.8 41.5 41.0 43.1 42.8 43.8 45.0 45.5 39.5
IG 44.7 44.0 45.4 43.4 43.2 44.0 45.7 45.3 38.6
KernelSHAP 43.6 43.5 44.0 43.7 42.9 43.9 46.1 45.3 37.2
Random 44.8 44.7 44.3 45.4 46.1 45.8 44.9 45.2 39.2

Table 3: The mean percentage of tokens needed to be masked to achieve flipping Gemma-it’s label or reaching 50
percent masking in 200 examples from evaluation split of SST-2, IMDB, and AG-News datasets (lower is better).
pythia1, pythia2, and gptj models are used to fill the masks and generate counterfactuals.

the SST-2 dataset and three attribution methods; re-
sults for other attribution methods and datasets are
shown in Appendix A. Each number in Table 1 rep-
resents the average over five levels of replacement
(10% to 50%) and 200 examples from evaluation
sets.

Chen et al. (2023) demonstrate that fine-tuning
renders a model insensitive to non-semantic shifts.
Their research indicates that fine-tuning eliminates
pre-trained, task-agnostic knowledge about general
linguistic properties, which is crucial for detect-
ing non-semantic shifts. Our findings align with
these observations. When a predictor is fine-tuned
for a specific classification task, such as sentiment
analysis on the SST-2 dataset, it is optimized to as-
sign high probabilities to the correct labels for the
training data. Consequently, this fine-tuned model
becomes less sensitive to input corruptions. In our
experiments, regardless of the replacement method
employed, the resulting inputs tend to remain in-
distribution for the fine-tuned predictors. As evi-
denced in Table 1, under the Gemma-ft columns,
the percentage of out-of-distribution (OOD) exam-
ples approaches zero.

In contrast, Gemma-it, an off-the-shelf model
that is not optimized for a specific dataset, exhibits
different behavior. When subjected to various in-
put modifications—such as replacing important to-
kens with semantically neutral ones (e.g., <unk>
or <mask> tokens), completely removing tokens,
or zeroing out the attention mask for important to-
kens without altering the text itself—the Gemma-it
predictor frequently categorizes these modified in-
puts as OOD. This disparity in behavior between
fine-tuned and off-the-shelf models underscores the
impact of task-specific optimization on a model’s

sensitivity to input perturbations. However, when
the counterfactual generator is used to modify the
inputs, the examples remain in-distribution even
for the instruct-tuned predictor. This observation
demonstrates that when we do not want to change
the predictor model and prefer to use an off-the-
shelf model as our predictor, using a counterfactual
generator is helpful in evaluating the faithfulness
of attribution methods.

To achieve our second goal—demonstrating the
consistency of the faithfulness rankings of attribu-
tion methods when using a counterfactual genera-
tor, and the lack of consistency when another re-
placement method is applied—we use Spearman’s
rank correlation, as in previous works (Rong et al.,
2022). For each example, we rank the attribu-
tion methods based on the percentage of the mask
needed to flip the label. We then compute the cor-
relations among these rankings across all seven
replacement methods (our three editors, Erase,
<unk>, <mask>, and att-zero) and average the re-
sults over 200 examples.

We present this analysis for the SST-2 dataset
in Figure 4. Other datasets yield similar results
and are shown in Appendix B. In the top correla-
tion matrix of Figure 4, these average correlations
are shown for the fine-tuned predictor. For the
fine-tuned predictor, all replacement methods have
high average correlations with each other. The
middle matrix in Figure 4 shows these correla-
tions when the predictor model is an off-the-shelf
instruct-tuned model. For the off-the-shelf predic-
tor, only when a counterfactual generator is used
do the rankings have high correlations with each
other; other replacement methods have low corre-
lations with the counterfactual generators. This is

458



likely because, when using an instruct-tuned predic-
tor, replacement methods other than counterfactual
generators create OOD inputs.

The bottom matrix of Figure 4 displays the
difference between the first and second matri-
ces. It shows that the correlation difference be-
tween fine-tuned and instruct-tuned predictors
is near zero when using editors as the replace-
ment method. However, the difference is sig-
nificant when using other replacement methods
(<unk>/Erase/<mask>/att-zero). This suggests that
when evaluating explanations on an off-the-shelf
instruct-tuned model, it is crucial to avoid using
corrupted OOD text.

5.2 Analysis of Feature Importance Methods

In Tables 2 and 3, we show the average masking
percentage required (the average percentage of to-
kens the counterfactual generator should change)
to flip the label for fine-tuned and instruct-tuned
predictor models, respectively. The masking per-
centage is highly correlated with the flip rate—the
percentage of labels each counterfactual generator
is able to flip by altering the corrupted tokens. In
Appendix C, we show the flip rate for both fine-
tuned and instruct-tuned predictor models. Attri-
bution methods that can flip the labels with less
masking (i.e., fewer changes) are also able to flip
more labels.

For the fine-tuned predictor (Table 2), gradient
norm methods consistently outperform others on
the SST-2 and IMDB datasets. In contrast, for AG-
News, the Erasure method consistently performs
the best or near the best. Our results suggest that
straightforward methods, such as gradnorm1, grad-
norm2, and Erasure, consistently deliver superior
performance regardless of the editor used.

For the instruct-tuned predictor (Table 3), the
Erasure method yields the best results for the SST-
2 dataset, while gradinp demonstrates the best per-
formance on the IMDB dataset. However, no at-
tribution method consistently outperforms random
selection for the AG-News dataset. Overall, these
findings suggest that attribution methods are less
effective when the model is not fine-tuned for the
specific task, indicating the need for cautious appli-
cation of these methods to pretrained and instruct-
tuned language models.

6 Conclusion

In this work, we designed a faithfulness evalua-
tion protocol based on counterfactual generation.
We demonstrated that the efficacy of attribution
methods varies between models fine-tuned on our
specific dataset and off-the-shelf, instruct-tuned
models. We showed that counterfactual generators
are effective for evaluating feature attribution be-
cause they can produce mostly in-distribution text
for the predictor model. This approach allows us
to separate the evaluation of the model from the
evaluation of the attribution method, as the exam-
ples used are mostly in-distribution. We also found
high consistency between different counterfactual
generators and a lack of consistency with other re-
placement methods, highlighting the importance of
being in-distribution, particularly when evaluating
attributions on off-the-shelf models. Finally, we
used our protocol to compare different attribution
methods.

7 Limitations

Our work is limited in several aspects: First, we
rely on generating counterfactuals, which requires
a strong generative model. Generating counterfac-
tuals—especially for long sequences—is compu-
tationally expensive. Second, the counterfactual
generator might unintentionally incorporate the ar-
tifacts and shortcuts used by the predictor to flip
the label, potentially limiting the intended applica-
tion of our approach.Third, we applied our protocol
only to classification tasks; evaluating it on other
tasks, like translation, is left for future work.
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Figure 4: The top matrix presents the average correla-
tion of attribution ranks for the fine-tuned predictor. The
middle matrix shows the average correlation of attribu-
tion ranks when using an off-the-shelf instruct-tuned
predictor. The bottom matrix illustrates the difference
between the fine-tuned and instruct-tuned models, in-
dicating that when editors are used as the replacement
method, the difference in correlation is near zero. In
contrast, using other replacement methods (i.e., <unk>,
erase, <mask>, att-zero) results in significant inconsis-
tencies between the two predictor types, likely due to
the creation of out-of-distribution (OOD) text for the
instruct-tuned model.
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A

Table 4 is the OOD percentages for other attribution
methods in SST-2 dataset that were not in Table 1.
Tables 5 and 6 show OOD percentages in AG-News
dataset.

B

Figures 5 and 6 show the difference of correlations
in IMDB and AG-News datasets respectively.

C

Tables 7 and 8 show flip-rates for fine-tuned and
instruct-tuned predictor models respectively.
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Figure 5: The difference
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Editor gradnorm2 gradinp integrated gradient
gemma-ft gemma-it gemma-ft gemma-it gemma-ft gemma-it

pythia1 (ours) 1.4 1.2 1.3 1.5 1.1 0.7
pythia2 (ours) 0.4 2.6 0.8 1.6 1.0 0.8
gptj (ours) 0.8 8.2 2.4 5.2 0.4 8.7
erase 0.5 21.9 1.1 83.8 1.4 77.4
unk 0.6 98.4 1.6 100.0 3.4 99.3
mask 0.0 95.8 0.2 99.5 0.4 97.8
att-zero 0.1 80.8 0.0 70.6 0 65.8

Table 4: OOD percentage when our counterfactual editor models generate samples, compared to other replacement
methods (erase, unk, mask, and att-zero methods). This is the percentage of corrupted examples that are out of the
99th percentile of the NLL of the original sentences in SST-2 dataset (lower is better). The scenarios with very high
numbers of OODs are highlighted.

Editor gradnorm1 Erasure KernelSHAP
gemma-ft gemma-it gemma-ft gemma-it gemma-ft gemma-it

pythia1 (ours) 2.4 5.0 4.1 4.9 1.6 4.5
pythia2 (ours) 2.4 5.2 3.1 4.9 2.0 6.9
gptj (ours) 1.0 5.0 1.5 4.9 0.9 7.8
erase 3.5 11.5 8.8 46.3 2.3 74.9
unk 1.0 98.2 3.8 99.7 1.3 99.9
mask 0.7 85.7 5.2 96.7 0.5 98.2
att-zero 4.9 79.1 3.2 57.4 0.8 62.6

Table 5: OOD percentage when our counterfactual editor models generate samples, compared to other replacement
methods (erase, unk, mask, and att-zero methods). This is the percentage of corrupted examples that are out of the
99th percentile of the NLL of the original sentences in AG-News dataset (lower is better). The scenarios with very
high numbers of OODs are highlighted.

Editor gradnorm2 gradinp integrated gradient
gemma-ft gemma-it gemma-ft gemma-it gemma-ft gemma-it

pythia1 (ours) 2.2 5.0 1.4 4.5 1.6 4.5
pythia2 (ours) 2.4 5.2 2.3 5.5 1.3 5.9
gptj (ours) 1.2 5.0 2.0 5.1 1.2 6.4
erase 3.3 11.6 2.6 60.3 1.9 55.5
unk 0.9 98.0 1.7 99.3 1.3 99.9
mask 0.8 86.4 1.5 94.1 0.5 98.2
att-zero 5.1 78.9 1.9 58.7 0.6 50.8

Table 6: OOD percentage when our counterfactual editor models generate samples, compared to other replacement
methods (erase, unk, mask, and att-zero methods). This is the percentage of corrupted examples that are out of the
99th percentile of the NLL of the original sentences in AG-News dataset (lower is better). The scenarios with very
high numbers of OODs are highlighted.
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Attribution
method

SST-2 IMDB AG-News
pythia1 pythia2 gptj pythia1 pythia2 gptj pythia1 pythia2 gptj

gradnorm1 67.5 63.5 72.5 78.5 76.5 68.8 22.0 18.5 17.0
gradnorm2 66.5 61.0 71.0 75.5 80.5 67.5 22.0 19.5 17.0
gradinp 32.0 31.0 33.0 54.5 50.5 49.0 21.5 21.0 23.0
erasure 56.5 47.5 56.5 59.0 61.5 55.5 24.5 24.0 23.0
IG 18.5 17.5 23.5 33.5 31.5 41.0 16.5 14.5 21.0
KernelSHAP 22.0 17.5 22.5 30.5 34.0 31.0 18.0 13.5 18.5
Random 22.5 18.5 23.5 33.5 38.5 35.0 18.5 15.5 18.5

Table 7: The mean percentage of success in flipping Gemma-ft’s label in 200 examples of evaluation split in SST-2,
IMDB, and AG-News datasets (higher is better).

Attribution
method

SST-2 IMDB AG-News
pythia1 pythia2 gptj pythia1 pythia2 gptj pythia1 pythia2 gptj

gradnorm1 34.5 31.0 33.5 37.5 36.0 44.0 12.0 10.0 18.0
gradnorm2 34.0 31.5 33.5 37.0 35.0 43.5 12.0 10.0 18.5
gradinp 27.0 25.0 28.0 38.5 36.5 62.0 18.5 18.5 17.0
erasure 29.5 26.5 32.5 29.5 26.5 46.0 17.0 16.0 21.5
IG 23.5 24.5 23.0 37.0 38.0 61.0 17.5 18.5 12.0
KernelSHAP 28.0 26.0 21.5 34.0 36.0 59.5 17.5 18.0 19.0
Random 21.0 23.0 18.5 30.0 30.5 55.5 20.5 19.0 17.0

Table 8: The mean percentage of success in flipping Gemma-it’s label in 200 examples of evaluation split in SST-2,
IMDB, and AG-News datasets (higher is better).
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Figure 6: The difference
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