@inproceedings{nastase-merlo-2024-identifiable,
title = "Are there identifiable structural parts in the sentence embedding whole?",
author = "Nastase, Vivi and
Merlo, Paola",
editor = "Belinkov, Yonatan and
Kim, Najoung and
Jumelet, Jaap and
Mohebbi, Hosein and
Mueller, Aaron and
Chen, Hanjie",
booktitle = "Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP",
month = nov,
year = "2024",
address = "Miami, Florida, US",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.blackboxnlp-1.3",
pages = "23--42",
abstract = "Sentence embeddings from transformer models encode much linguistic information in a fixed-length vector. We investigate whether structural information {--} specifically, information about chunks and their structural and semantic properties {--} can be detected in these representations. We use a dataset consisting of sentences with known chunk structure, and two linguistic intelligence datasets, whose solution relies on detecting chunks and their grammatical number, and respectively, their semantic roles. Through an approach involving indirect supervision, and through analyses of the performance on the tasks and of the internal representations built during learning, we show that information about chunks and their properties can be obtained from sentence embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nastase-merlo-2024-identifiable">
<titleInfo>
<title>Are there identifiable structural parts in the sentence embedding whole?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Najoung</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaap</namePart>
<namePart type="family">Jumelet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hosein</namePart>
<namePart type="family">Mohebbi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanjie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, US</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentence embeddings from transformer models encode much linguistic information in a fixed-length vector. We investigate whether structural information – specifically, information about chunks and their structural and semantic properties – can be detected in these representations. We use a dataset consisting of sentences with known chunk structure, and two linguistic intelligence datasets, whose solution relies on detecting chunks and their grammatical number, and respectively, their semantic roles. Through an approach involving indirect supervision, and through analyses of the performance on the tasks and of the internal representations built during learning, we show that information about chunks and their properties can be obtained from sentence embeddings.</abstract>
<identifier type="citekey">nastase-merlo-2024-identifiable</identifier>
<location>
<url>https://aclanthology.org/2024.blackboxnlp-1.3</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>23</start>
<end>42</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Are there identifiable structural parts in the sentence embedding whole?
%A Nastase, Vivi
%A Merlo, Paola
%Y Belinkov, Yonatan
%Y Kim, Najoung
%Y Jumelet, Jaap
%Y Mohebbi, Hosein
%Y Mueller, Aaron
%Y Chen, Hanjie
%S Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, US
%F nastase-merlo-2024-identifiable
%X Sentence embeddings from transformer models encode much linguistic information in a fixed-length vector. We investigate whether structural information – specifically, information about chunks and their structural and semantic properties – can be detected in these representations. We use a dataset consisting of sentences with known chunk structure, and two linguistic intelligence datasets, whose solution relies on detecting chunks and their grammatical number, and respectively, their semantic roles. Through an approach involving indirect supervision, and through analyses of the performance on the tasks and of the internal representations built during learning, we show that information about chunks and their properties can be obtained from sentence embeddings.
%U https://aclanthology.org/2024.blackboxnlp-1.3
%P 23-42
Markdown (Informal)
[Are there identifiable structural parts in the sentence embedding whole?](https://aclanthology.org/2024.blackboxnlp-1.3) (Nastase & Merlo, BlackboxNLP 2024)
ACL