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Abstract

Sentence embeddings from transformer mod-
els encode much linguistic information in a
fixed-length vector. We investigate whether
structural information – specifically, informa-
tion about chunks and their structural and se-
mantic properties – can be detected in these
representations. We use a dataset consisting of
sentences with known chunk structure, and two
linguistic intelligence datasets, whose solution
relies on detecting chunks and their grammat-
ical number, and respectively, their semantic
roles. Through an approach involving indirect
supervision, and through analyses of the per-
formance on the tasks and of the internal repre-
sentations built during learning, we show that
information about chunks and their properties
can be obtained from sentence embeddings.

1 Introduction

Transformer architectures compress the informa-
tion in a sentence – morphological, grammati-
cal, semantic, pragmatic – into a fixed-length one-
dimensional array of real numbers. Sentence em-
beddings, usually fine-tuned, have proven useful
for a variety of high-level language processing
tasks, such as the GLUE tasks (Clark et al., 2020),
or story continuation (Ippolito et al., 2020)). These
results, however, do not shed light on what kind
of semantic or structural information is encoded in
these representations.

Understanding what kind of information is en-
coded in the sentence embeddings, and how it is
encoded, has multiple benefits. It connects inter-
nal changes in the model parameters and structure
with changes in its outputs. It contributes to veri-
fying the robustness of models and whether or not
they rely on shallow or accidental regularities in
the data. It narrows down the field of search when
a language model produces wrong outputs, and
ultimately it may help maximize the use of train-
ing data for developing more robust models from

smaller textual resources. Investigation, or indeed,
usage, of raw (i.e. not fine-tuned) sentence embed-
dings obtained from a transformer model are rare,
possibly because most transformer models do not
have a strong supervision signal on the sentence em-
bedding. Using PCA analysis, Nikolaev and Padó
(2023c) have shown that the dimensions of BERT
sentence embeddings have much correlation and
redundancy, and encode more shallow information
(length), rather than morphological, syntactic or
semantic features. Analysis of information propa-
gation through the transformer layers seem to show
that specialized information – e.g. POS, syntac-
tic structure – while quite apparent at lower levels,
gets lost towards the highest levels of the models
(Rogers et al., 2020), while there are subnetworks
that encode specific linguistic functions (Csordás
et al., 2021; Conmy et al., 2023).

While previous work has regarded network
nodes or embedding dimensions as the unit of anal-
ysis, Elhage et al. (2022) show that superposition
– whereby each unit, i.e. neuron or embedding
dimension, can be involved in the encoding of mul-
tiple features – occurs in artificial neural networks.
Such features involving overlapping sets of nodes
can be learned from a model using sparse autoen-
coders (e.g. (Cunningham et al., 2023)). Starting
from a similar hypothesis relative to the dimensions
of a sentence embedding, we aim to test whether
specific information, in particular chunks – noun,
verb and prepositional phrases, that may play differ-
ent structural and semantic roles – can be detected
in the sentence representation. We use an encoder-
decoder architecture applied to data with specific
properties, and verify that, through indirect super-
vision, we can distill information about chunks and
their task-relevant properties from sentence embed-
dings from a pre-trained transformer model. Be-
sides being practically useful, as they provide use-
ful shallow structure more easily obtainable than
detailed syntactic analysis (Abney, 1991; Buchholz
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et al., 1999), chunks have psychological plausibil-
ity (Gee and Grosjean, 1983). This motivated us
to test whether they are detectable in sentence em-
beddings, as they would provide syntactically and
semantically useful building blocks for assembling
higher level information about a sentence. The
code and data are available at https://github.
com/CLCL-Geneva/BLM-SNFDisentangling.

2 Related work

How is the information from a textual input en-
coded by transformers? There are three main ap-
proaches to answer this question: (i) tracing spe-
cific information from input to output through the
model’s various layers and components, (ii) isolat-
ing subsets of model parameters that encode spe-
cific linguistic functions and (iii) investigating the
generated embeddings through probes, using pur-
posefully built data for different types of testing.

Tracing information through a transformer
Rogers et al. (2020) have shown that from the
unstructured textual input, BERT (Devlin et al.,
2019) is able to infer POS, structural, entity-related,
syntactic and semantic information at successively
higher layers of the architecture, mirroring the clas-
sical NLP pipeline (Tenney et al., 2019a). Fur-
ther studies have shown that the information is not
sharply separated, information from higher levels
can influence information at lower levels, such as
POS in multilingual models (de Vries et al., 2020),
or subject-verb agreement (Jawahar et al., 2019).
Surface syntactic and semantic information seem
to be distributed throughout BERT’s layers (Niu
et al., 2022; Nikolaev and Padó, 2023c). Attention
is part of the process, as it helps encode various
types of linguistic information (Rogers et al., 2020;
Clark et al., 2019), syntactic dependencies (Htut
et al., 2019), grammatical structure (Luo, 2021),
and can contribute towards semantic role labeling
(Tan et al., 2018; Strubell et al., 2018).

Isolating functional subnetworks of parameters
Deep learning models have billions of parameters.
This makes them not only incomprehensible, but
also expensive to train. The lottery ticket hypoth-
esis (Frankle and Carbin, 2018) posits that large
networks can be reduced to subnetworks that en-
code efficiently the functionality of the entire net-
work. Detecting functional subnetworks can be
done a posteriori, over a pre-learned network to in-
vestigate the functionality of detected subnetworks

(Csordás et al., 2021), the potential composition-
ality of the learned model (Lepori et al., 2023),
or where task-specific skills are encoded in a fine-
tuned model (Panigrahi et al., 2023). Instead of
learning a sparse network over a prelearned model,
Cao et al. (2021) use a pruning-based approach to
finding subnetworks in a pretrained model that per-
forms some linguistic task. Pruning can be done at
several levels of granularity: weights, neurons, lay-
ers. Their analyses confirm previous investigations
of the types of information encoded in different
layers of a transformer (Conneau et al., 2018a).
Conmy et al. (2023) introduce the Automatic Cir-
cuit DisCovery (ACDC) algorithm, which adapts
subnetwork probing and head importance score for
pruning to discover circuits that implement specific
linguistic functions. The model network need not
be separated into disjunct subsets of nodes. Elhage
et al. (2022) show that neural network models en-
code more features than the number of their dimen-
sions, individual nodes contributing to more than
one feature. Such features could be learned in an
unsupervised manner using Sparse AutoEncoders
(Cunningham et al., 2023; Trenton Bricken, 2023;
Gao et al., 2024), and correlated with linguistic
patterns or phenomena.

Word embeddings were shown to encode
sentence-level information (Tenney et al., 2019b),
including syntactic structure (Hewitt and Man-
ning, 2019), even in multilingual models (Chi
et al., 2020). Predicate embeddings contain in-
formation about their semantic roles structure (Co-
nia and Navigli, 2022), embeddings of nouns en-
code subjecthood and objecthood (Papadimitriou
et al., 2021). The averaged token embeddings are
more commonly used as sentence embeddings (e.g.
(Nikolaev and Padó, 2023a)), or the special token
([CLS]/<s>) embeddings are fine-tuned for spe-
cific tasks such as story continuation (Ippolito et al.,
2020), sentence similarity (Reimers and Gurevych,
2019), alignment to semantic features (Opitz and
Frank, 2022). Sentence embeddings as averages
over token embeddings is justifiable as the learn-
ing signal for transformer models is stronger at the
token level, with a much weaker objective at the
sentence level – e.g. next sentence prediction (De-
vlin et al., 2018; Liu et al., 2019), sentence order
prediction (Lan et al., 2019). Electra (Clark et al.,
2020) relies on replaced token detection, which
uses the sentence context to determine whether a
(number of) token(s) in the given sentence were re-
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placed by a generator sample. This training regime
leads to sentence embeddings that perform well
on the General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018) and
Stanford Question Answering (SQuAD) dataset
(Rajpurkar et al., 2016), or detecting verb classes
(Yi et al., 2022). Raw sentence embeddings were
shown to capture shallower information (Nikolaev
and Padó, 2023c), but ? show that raw sentence
embeddings have internal structure that can encode
grammatical sentence properties.

Probing models Analysis of BERT’s inner work-
ings has been done using probing classifiers (Be-
linkov, 2022), or through clustering based on the
representations at the different levels (Jawahar
et al., 2019). Probing has also been used to in-
vestigate the representations obtained from a pre-
trained transformer model (Conneau et al., 2018b).
Elazar et al. (2021) propose amnesic probing to test
both whether some information is encoded, and
whether it is used. VAE-based methods (Kingma
and Welling, 2013; Bowman et al., 2016) have been
used to detect or separate specific information from
input representations. Mercatali and Freitas (2021)
capture discrete properties of sentences encoded
with an LSTM (e.g. number and aspect of verbs)
on the latent layer. Bao et al. (2019) and Chen et al.
(2019) learn to disentangle syntactic and semantic
information. Silva De Carvalho et al. (2023) learn
to disentangle the semantic roles in natural lan-
guage definitions from word embeddings. Probing
can have issues: learning a classifier for a task does
not guarantee that the model uses the targeted infor-
mation (Hewitt and Liang, 2019; Belinkov, 2022;
Lenci, 2023). Michael et al. (2020) introduce latent
subclass learning, where a binary classification task
has a pre-classification multi-class logistic regres-
sion step that helps probe for emergent information.

Data Most approaches use datasets built by se-
lecting, or constructing, sentences with specific
structure and properties: definition sentences with
annotated roles (Silva De Carvalho et al., 2023),
sentences built according to a given template (Niko-
laev and Padó, 2023b), sentences with specific
structures for investigating different tasks, in partic-
ular SentEval (Conneau and Kiela, 2018) (Jawahar
et al., 2019), example sentences from FrameNet
(Conia and Navigli, 2022), a dataset with multi-
level structure inspired by the Raven Progressive
Matrices (RPM) visual intelligence tests (An et al.,
2023).

3 Overview

Our approach is also a kind of probe. It uses in-
direct supervision, though, to avoid the shallow
learning of a classifier and datasets with specific
structure to test for structural information in sen-
tence embeddings.

Our main object of investigation are chunks,
sequence of adjacent words that segment a sen-
tence, as defined initially in Abney (1992); Collins
(1997) and then Tjong Kim Sang and Buchholz
(2000). We use two types of data. We use sen-
tences with known chunk patterns (Section 4.1),
to determine whether chunks and their grammatical
properties are identifiable in sentence embeddings
with indirect supervision (Section 5). We also use
two datasets with multi-level structure built for
linguistic intelligence tests for language models
(Merlo, 2023) (Section 4.2), to determine whether
a system can detect syntactic and semantic struc-
ture and information in sentence embeddings based
on the requirements of a task.

The data, with its repetitive patterns, and the
VAE-based system support an indirect supervision
approach: the system is not given the patterns to
be discovered explicitly, but it needs to find them
based on the contrasting answer sets at both the
sentence and task levels. This indirect supervision
process, together with lexical and structural vari-
ations in the data, helps to avoid, at least partly,
the critiques against probes based on classification,
which can learn a task based on ‘artefacts’ of the
data, regularities different from what is intended
(Belinkov, 2022).

4 Data

We use data consisting of stand-alone sentences
with specific structure, and data consisting of sen-
tences with specific structure and other attributes
in larger contexts, to test whether this regular infor-
mation can be detected.

4.1 Sentences
Sentences are built from a seed file containing noun,
verb and prepositional phrases, including singu-
lar/plural variations. From these chunks, we built
sentences with all (grammatically correct) combi-
nations of np (pp1 (pp2)) vp1. For each chunk
pattern p of the 14 possibilities, all corresponding
sentences are collected into a set Sp.

1We use BNF notation: pp1 and pp2 may be included or
not, pp2 may be included only if pp1 is included
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BLM agreement problem (BLM-AgrF)
CONTEXT TEMPLATE

NP-sg PP1-sg VP-sg
NP-pl PP1-sg VP-pl
NP-sg PP1-pl VP-sg
NP-pl PP1-pl VP-pl
NP-sg PP1-sg PP2-sg VP-sg
NP-pl PP1-sg PP2-sg VP-pl
NP-sg PP1-pl PP2-sg VP-sg

ANSWER SET
NP-pl PP1-pl PP2-sg VP-pl CORRECT
NP-pl PP1-pl et PP2-sg VP-pl Coord
NP-pl PP1-pl VP-pl WNA
NP-pl PP1-sg PP1-sg VP-pl WN1
NP-pl PP1-pl PP2-pl VP-pl WN2
NP-pl PP1-pl PP2-pl VP-sg AEV
NP-pl PP1-sg PP2-pl VP-sg AEN1
NP-pl PP1-pl PP2-sg VP-sg AEN2

BLM verb alternation problem (BLM-s/lE)
CONTEXT TEMPLATE

NP- Agent Verb NP- Loc PP- Theme
NP- Theme VbPass PP- Agent
NP- Theme VbPass PP- Loc PP- Agent
NP- Theme VbPass PP- Loc
NP- Loc VbPass PP- Agent
NP- Loc VbPass PP- Theme PP- Agent
NP- Loc VbPass PP- Theme

ANSWER SET
NP- Agent Verb NP- Theme PP- Loc CORRECT
NP- Agent *VbPass NP- Theme PP- Loc AGENTACT
NP- Agent Verb NP- Theme *NP- Loc ALT1
NP- Agent Verb *PP- Theme PP- Loc ALT2
NP- Agent Verb *[NP- Theme PP- Loc] NOEMB
NP- Agent Verb NP- Theme *PP- Loc LEXPREP
*NP- Theme Verb NP- Agent PP- Loc SSM1
*NP- Loc Verb NP- Agent PP- Theme SSM2
*NP- Theme Verb NP- Loc PP- Agent AASSM

Figure 1: Structure of two BLM problems, in terms of chunks in sentences and sequence structure. For the
agreement (left): (i) sequence errors: WNA= wrong nr. of attractors; WN1= wrong gram. nr. for 1st attractor
noun (N1); WN2= wrong gram. nr. for 2nd attractor noun (N2); (ii) grammatical errors: AEV=agreement
error on the verb; AEN1=agreement error on N1; AEN2=agreement error on N2. For the verb alternation:
AGENTACT,ALT1,ALT2,NOEMB are syntactic errors; LEXPREP is lexical selection error and SSM1, SSM2,
AASSM are syntax-semantic mapping errors.

We generate an instance for each sentence s from
the sets Sp as a triple (in, out+, Out−), where
in = s is the input, out+ is the correct output,
which is a sentence different from s but having the
same chunk pattern. Out− are Nnegs incorrect out-
puts, randomly chosen from the sentences that have
a chunk pattern different from s. The algorithm for
building the data and a sample line and generated
sentences are shown in appendix A.1.

From the generated instances, we sample uni-
formly, based on the pattern of the input sentence,
approximately 4000 instances, randomly split
80:20 into train:test. The train part is further split
80:20 into train:dev, resulting in a 2576:630:798
split for train:dev:test. We use a French and an
English seed file and generate French and English
variations of the dataset, with the same statistics.

4.2 Blackbird Language Matrices

Blackbird Language Matrices (BLMs) (Merlo,
2023) —language versions of the visual Raven Pro-
gressive Matrices (RPMs)— are multiple-choice
problems, where the input is a sequence of sen-
tences built using specific generating rules, and the
answer set consists of a correct answer that con-
tinues the input sequence, and several incorrect
contrastive options, built by violating the underly-
ing generating rules of the sentences. In a BLM
matrix, all sentences share a targeted linguistic phe-
nomenon, but differ in other aspects relevant for the

phenomenon in question. Thus, BLMs, like their
visual counterpart RPMs, require identifying the
entities (the chunks), their relevant attributes (their
morphological or semantic properties) and their
connecting operators, to find the correct answer.

To test the detection of different types of infor-
mation in different languages, we use two BLM
datasets, which encode two different linguistic phe-
nomena, each in a different language: (i) BLM-
AgrF – subject verb agreement in French (An et al.,
2023), and (ii) BLM-s/lE – verb alternations in En-
glish (Samo et al., 2023). The structure of these
datasets – in terms of the sentence chunks and se-
quence structure, as well as the answer sets and the
erroneous answers and their error types – is shown
in Figure 1. Examples are in appendices A.1, A.2.

BLM datasets also have a lexical variation di-
mension, to explore the impact of lexical variation
on detecting relevant structures: type I – minimal
lexical variation for sentences within an instance,
type II – one word difference across the sentences
within an instance, type III – maximal lexical vari-
ation within an instance.

The BLM-s/lE dataset is used as is. We built a
variation of the BLM-AgrF (An et al., 2023) that
separates sequence-based errors (WNA, WN1 and
WN2 in Figure 1 – they have correct agreement,
but do not respect the pattern of the sequence) from
other types of errors, to be able to contrast linguistic
errors from errors in identifying sentence parts and
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Subj.-verb Verb alternations
agr ALT-ATL ATL-ALT

Type I 2000:252 2000:375 2000:375
Type II 2000:4927 2000:1500 2000:1500
Type III 2000:4810 2000:1500 2000:1500

Table 1: Train:Test statistics for the two BLM problems.

understand better how the BLM tasks are solved.
The errors in both BLM tasks allow us to study in
more detail the performance and understand where
the weaknesses are when solving the task.

Datasets statistics Table 1 shows the datasets
statistics for the BLM problems. After splitting
each subset 90:10 into train:test subsets, we ran-
domly sample 2000 instances as train data. 20% of
the train data is used for development.

5 Experiments

We build upon (?), and use as sentence represen-
tations the embedding of the [CLS] special to-
ken from a pretrained Electra model (Clark et al.,
2020)2 reshaped as a two-dimensional array. We
chose Electra because it has a stronger sentence-
level supervision signal as well as strong results
on multiple NLU tasks (see Section 2). In Section
5.1.3, we show how it compares to other pretrained
models.

The BLM tasks have been benchmarked using
FFNN and CNN systems which directly predict the
correct answer based on the input sequence (An
et al., 2023; Samo et al., 2023). Results improve
on both tasks when using a variational encoder-
decoder that compresses the input sequence into a
very small vector on the latent layer (?). This previ-
ous work, and similarity of the BLM tasks with the
visual Raven Progressive Matrices task, have led us
to a two-step investigation process: (i) using sen-
tences and a VAE-based system, we test whether
we can compress sentences into a smaller represen-
tation on the latent layer that captures information
about the chunk structure of the sentence (Section
5.1 below); (ii) to see if the system can detect and
extract the kind of information relevant to a specific
task, we combine the compression of the sentence
representation with the BLM problems, where a
crucial part of the solution lies in identifying the
structures of sentences and their sequence in the
input (Section 5.2 below). This two-step approach
to solving a BLM problem fits with the way hu-

2google/electra-base-discriminator

mans solve the visual RPM problems from which
the BLMs are inspired: (i) identify the relevant ob-
jects and their attributes; (ii) decompose the main
problem into subproblems, based on object and at-
tribute identification, in a way that allows detecting
the global pattern or underlying rules (Carpenter
et al., 1990).

5.1 Parts in sentences

We test whether sentence embeddings contain infor-
mation about the chunk structure of the correspond-
ing sentences by compressing them into a lower
dimensional representation in a VAE-like system.

5.1.1 Experimental set-up

The architecture of the sentence-level VAE is simi-
lar to a previously proposed system (?): the encoder
consists of a CNN layer with a 15x15 kernel, which
is applied to a 32x24-shaped sentence embedding,
followed by a linear layer that compresses the out-
put of the CNN into a latent layer of size 5. The de-
coder mirrors the encoder, and unpacks a sampled
latent vector into a 32x24 sentence representation.

An instance consists of a triple
(in, out+, Out−), where in is an input sentence
with embedding ein and chunk structure p, out+ is
a sentence with embedding eout+ with same chunk
structure p, and Out− = {sk|k = 1, Nnegs} is
a set of Nnegs = 7 sentences with embeddings
esk , each with chunk pattern different from p
(and different from each other). The input ein
is encoded into a latent representation zi, from
which we sample a vector z̃i, which is decoded
into the output êin. We enforce that the latent
encodes the structure of the input sentence by
using a max-margin loss function, to push for a
higher cosine similarity score with the sentence
that has the same chunk pattern as the input (eout+)
than the ones that do not (E− = {esk |esk =
embedding(sk), sk ∈ Out−}).

losssent(ein) = maxM(êin, eout+ , E
−) +

+KL(zi||N (0, 1))

maxM(êin, eout+ , E
−) =

max(0, 1− cos(êin, eout+) +

+

∑
esk

∈E− cos(êin,esk )

Nnegs
)

At prediction time, the sentence from the
{out+} ∪Out− options that has the highest score
relative to the decoded answer is taken as correct.
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5.1.2 Analysis
To assess whether the correct patterns of chunks
are detected, we analyze the results for the exper-
iments described in the previous section in two
ways: (i) analyze the output of the system, in terms
of average F1 score over three runs and confusion
matrices; (ii) analyze the latent layer, to determine
whether chunk patterns are encoded in the latent
vectors (for instance, latent vectors cluster accord-
ing to the pattern of their corresponding sentences).

In a binary evaluation (has the system built a
sentence representation that is closest to the one
that has the same chunk pattern as the input?), the
system achieves an average positive class F1 score
(and standard deviation) over three runs of 0.9992
(0.01) for French, and 0.997 (0.0035) for English.

The pattern-level evaluation for the French data,
presented as a confusion matrix based on the pat-
tern information for out+, Out− at the top of Fig-
ure 2, shows that all patterns are detected with
high accuracy (the results for English are in Ap-
pendix A.4.2). To understand how chunk infor-
mation is encoded on the latent layer, we perform
latent traversals: for each instance in the test data,
after encoding it, we modify the value of each unit
in the latent layer with ten values in its min-max
range, based on the training data, and decode the
answer.

Figure 2: Latent layer encoding of pattern information:
top confusion matrix for pattern-level evaluation; bot-
tom sample of effects of latent traversal in terms of
pattern-level evaluation.

The confusion matrices presented as heatmaps in

the bottom part of Figure 2 (a larger version in Fig-
ure 10 in Appendix A.4) show that specific changes
to the latent vectors decrease the differentiation
among patterns, as expected if chunk pattern infor-
mation were encoded in the latent vectors. Changes
to latent unit 1 cause patterns that differ in the gram-
matical number of pp2 not to be distinguishable
(left matrix). Changes to latent units 2 and 3 lead
to the matrices in the middle and right of the fig-
ure, where patterns that have different subject-verb
grammatical number are indistinguishable.

To confirm that chunk information is present
in the latent layer, we plot the projection of the
latent vectors in two dimensions (Figure 3). The
plot shows a very crisp clustering of latents that
correspond to input sentences with the same chunk
pattern, despite the fact that some patterns differ by
only one attribute (the grammatical number) of one
chunk.

Figure 3: Chunk identification: tSNE projections of the
latent vectors for the French dataset.

5.1.3 Electra vs. BERT and RoBERTa, and
the price of fine-tuning

There are differences in the architectures, training
objectives and training data for transformer-based
models, which lead to differences in how they en-
code information. Fine-tuning further changes the
landscape of the embeddings, and prioritizes dif-
ferent characteristics of the input sentence, often
semantics. We can quantify some of these differ-
ences using the setup described above.

Experiments on the task of reconstructing a sen-
tence with the same chunk structure on BERT3

(Devlin et al., 2019) and RoBERTa4 (Liu et al.,
2019) lead to average F1 score over 3 runs of 0.91
(std=0.0346) for BERT and 0.8926 (std=0.0166)

3https://huggingface.co/google-bert/
bert-base-multilingual-cased

4https://huggingface.co/FacebookAI/
xlm-roberta-base
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for RoBERTa, confirming that Electra’s architec-
ture leads to sentence embeddings that encode more
explicitly structure-related information.

Two sentence transformer models LaBSE
and MPNet5 obtained an average F1 of 0.43
(std=0.0336) and 0.669 (std=0.0407) respectively.
We chose LaBSE and MPNet because they are
tuned differently – LaBSE is trained with bilingual
sentence pairs with high results on a cross-language
sentence retrieval task, MPNet is optimized for sen-
tence similarity – and their representations have the
same dimensionality (768) as the transformer mod-
els we used. The low results on detecting chunk
structure in sentence embeddings after this tuning
indicates that in the quest of optimizing the repre-
sentation of the meaning of a sentence, structural
information is lost.

5.2 Parts in sentences for BLM tasks

We test whether including the sentence compres-
sion step in a system to solve the BLM tasks leads
to latent representations that contain information
about chunk properties relevant to the tasks.

5.2.1 Experimental setup
The BLM problems encode a linguistic phe-
nomenon in a sequence of sentences that have reg-
ular and relevant structure, which serves to em-
phasize and reinforce the encoded phenomenon.
(Carpenter et al., 1990). We model the process of
solving a BLM in a manner similar to how humans
solve RPM visual tasks, by using the two-level in-
tertwined architecture illustrated in Figure 4: one
level for detecting sentence structure, one for de-
tecting the correct answer based on the sentence
structure and their sequence.

Figure 4: A two-level VAE-based system: the sentence
level learns to compress a sentence into a representation
useful to solve the BLM problem on the task level.

An instance for a BLM problem consists of an or-
dered sequence S of sentences, S = {si|i = 1, 7}

5https://huggingface.co/sentence-transformers/
LaBSE,https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

a.) TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts

in the training data, coloured by the chunk pattern.

b.) Average F1 score over 3 runs, grouped by training data on
the x-axis, tested on type I, II, III in different shades.

c.) Sequence vs. agreement errors analysis.

Figure 5: VAE vs 2-level VAE (2xVAE) on the agree-
ment BLM problem

as input, and an answer set A with one correct an-
swer ac, and several incorrect answers aerrj . The
sentences in S are passed as input to the sentence-
level VAE, which is the system described in Section
5.1. The latent representations from this VAE are
used as the representations of the sentences in S.
These representations are passed as input to the
BLM-level VAE, in the same order as S. From
the compressed layer of the BLM-level VAE, the
decoder reconstructs a sentence embedding (eS),
which is compared to the embeddings of the an-
swers.

An instance for the sentence-level VAE
consists of a triple (si, out

+
i , Out−i ). For

our two-level system, we must construct this
triple on the fly from the input BLM instance:
si ∈ S with embedding esi , out+i = si, and
Out−i = {sk|sk ∈ S, sk ̸= si} with embeddings
E−

i = {esk |k = 1, Nnegs}. The loss combines the
loss signal from the two levels:

loss(S) =
∑

si∈S losssent(esi) + losstask(eS)
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a.) TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the pattern of semantic roles.

b.) Average F1 score over 3 runs

Figure 6: VAE vs 2-level VAE (2xVAE) on the verb
alternation BLM problem, Group 1 (Agent-Location-
Theme -> Agent-Theme-Location)

The loss at the sentence level is computed as
described in Section 5.1:

losssent(esi) = maxM(esi , eout+i
, E−

i )

+KL(zi|N (0, 1))

The loss at the task level is computed in a
similar manner, but relative to the answer set A
with the corresponding embeddings set EA, and
the correct answer ac, of the task:

losstask(eS) = maxM(eS , eac , EA \ eac)
+KLseq(zS |N (0, 1)).

5.2.2 Analysis
We run experiments on the BLMs for agreement
(Figure 5) and for verb alternation (Figures 6, 7), to
test a range of syntactic and semantic chunk prop-
erties that should be identified. While the informa-
tion necessary to solve the agreement task is more
structural, solving the verb alternation task requires
both structural information concerning chunks and
semantic information, with syntactically similar
chunks playing different roles in a sentence (see
Figure 1). The results show that the two-level sys-

a.) TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the pattern of semantic roles.

b.) Average F1 score over 3 runs

Figure 7: VAE vs 2-level VAE (2xVAE) on the verb
alternation BLM problem, Group 2 (Agent-Theme-
Location -> Agent-Location-Theme)

tem leads to better results compared to the one-
level process for these structure-based linguistic
problems, thereby providing additional support to
our hypothesis that chunks and their attributes are
detectable in sentence embeddings.

The results in terms of average F1 scores for
the agreement task, and the latent representation
and analysis of the errors made by the system are
shown in Figure 5, and provide several insights.
Detailed results are in the appendix.

First, the latent representation analysis (Figure
5.a) shows that while the sentence representations
on the latent layer are not as crisply separated by
their chunk pattern as for the experiment in Section
5.1, there is a clear separation in terms of the gram-
matical number of the subject and the verb. This
is not surprising as the focus of the task is subject-
verb agreement. However, as shown by the results
in term of F1 (Figure 5.b) and the analysis of the
errors made by the system on the task (Figure 5.c,
and more detailed in Figure 12 in Appendix A.5.3),
there is enough information in these compressed
latent representations to capture the structural reg-
ularities imposed by the patterns of chunks in the
input sequence.

Second, the results in terms of F1 (Figure 5.b)
show that the two-level process generalizes better
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from simpler data – learning on type I and type
II leads to better results on all test data, with the
highest improvement when tested on type III data,
which has the highest lexical variation. Further-
more, the two-level models learned when training
on the lexically simpler data perform better when
tested on the type III data than the models learned
on type III data itself. This result not only indicates
that structure information is more easily detectable
when lexical variation is less of a factor, but more
importantly, that chunk information is separable
from other types of information in the sentence
embedding, as the patterns detecting it can be ap-
plied successfully for data with additional (lexical)
variation.6

The analysis of the errors made by the system
(Figure 5.c) shows that the two-level system has a
lower rate of sequence errors (WNA, WN1, WN2
– see Figure 1), which from the point of view of
the targeted phenomenon are correct (see Section
4.2). The fact that without the sentence compres-
sion step (using the one-level model) the system
makes more sequence-based errors, indicates that
modeling structural information separately is not
only possible, but also beneficial for some tasks.

The results on the verb alternation BLMs are
shown in Figures 6 and 7. In this problem, struc-
turally similar chunks - NPs, PPs – play different se-
mantic roles in the verb alternation data, as shown
in Figure 1. The TSNE projection of the latent
representations on the sentence level (Figures 6.a,
7.a) and the F1 results on the task (Figures 6.b, 7.b)
show that the system is able to detect such syntactic-
semantic information in the sentence embeddings.
The closest latent representations are two that have
the same syntactic pattern: NP VerbPass PP, but
differ semantically: NP-Theme VerbPass PP-Agent
vs. NP-Loc VerbPass PP-Agent, yet they are still
distinguished. Detailed error results are included
in Figure 13 in Appendix A.5.3.

5.3 Discussion

We performed two types of experiments: (i) use
individual sentences, and an indirect supervision
signal about the sentence structure, (ii) incorpo-
rate a sentence representation compression step in
a task-specific setting. We have used two tasks,
one which relies on more structural information
(subject-verb agreement), and one that also relies
on semantic information about the chunks (verb

6Explanation in Appendix A.5.1

alternation).

We investigated each setup by the results on the
task – average F1 scores, and analysis of the type
of errors made by the system (as described in Fig-
ure 1) – and by the compressed sentence represen-
tations on the latent layer of an encoder-decoder
architecture.

By this dual analysis, one can conclude not only
whether a task is solved correctly, but also whether
it is solved using structural, morphological and
semantic information from the sentence. We found
that information about (varying numbers of) chunks
– noun, verb and prepositional phrases – and their
task-relevant attributes, morphological or semantic,
can be detected in sentence embeddings from a
pretrained transformer model.

The use of probes has been questioned, as the
probe itself may assemble the requested infor-
mation without detecting or modeling the phe-
nomenon of interest (Hewitt and Liang, 2019; Be-
linkov, 2022; Lenci, 2023). To partially address
this problem, we have used only indirect supervi-
sion – within the system, there is no direct informa-
tion about what characteristics of the answer (on
the sentence or the task level) are relevant. Despite
the lack of direct supervision, the system is able
to compress the structural information necessary
to solve the task onto the latent layer of the sen-
tence encoder. In future work, we will investigate
whether this information is "hard-coded" – encoded
consistently across languages and tasks – in the em-
beddings, or it relies on shallower features.

6 Conclusions

Sentence embeddings obtained from transformer
models are compact representations, compressing
much knowledge —morphological, grammatical,
semantic—, expressed in text fragments of various
length, into a vector of real numbers of fixed length.
We can separate this representation into different
layers using a convolutional neural network and dis-
tinguish specific information among these layers.
In particular, we have shown that we can detect in-
formation about chunks – noun/verb/prepositional
phrases – and their task-relevant attributes, without
providing direct supervision to the system about the
targeted structures. This brings us one step closer
to understanding and unpacking transformer-based
sentence embeddings.
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Limitations

We have performed experiments on datasets con-
taining sentences with specific structure and prop-
erties to be able to determine whether the type of
information we targeted can be detected in sentence
embeddings. We have used this data to avoid di-
rectly training a classifier, which may learn the task
of distinguishing sentences with different chunk
patterns without actually using such information
from the sentence embeddings. Despite our anal-
yses, there is no guarantee that the information
about chunks and their properties is not assembled
on the fly from more fine-grained information in
the sentence embedding. In future work we plan
to investigate whether this is the case, or whether
what is encoded is something more abstract, akin
to a rule.
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A Appendix

A.1 Sentence data
To build the sentence data, we use a seed file that was used to generate the subject-verb agreement data.
A seed, consisting of noun, prepositional and verb phrases with different grammatical numbers, can be
combined to build sentences consisting of different sequences of such chunks. Table 2 includes a partial
line from the seed file, from which individual sentences and a BLM instance can be constructed. We use
French and English versions of the seed file to build the corresponding datasets.

Subj_sg Subj_pl P1_sg P1_pl P2_sg P2_pl V_sg V_pl
The com-
puter

The com-
puters

with the
program

with the pro-
grams

of the experi-
ment

of the experi-
ments

is broken are broken

Sent. with different chunks

The computer is broken. np-s
vp-s

The computers are broken. np-p
vp-p

The computer with the pro-
gram is broken.

np-s
pp1-s
vp-s

... ...

The computers with the pro-
grams of the experiments are
broken.

np-p
pp1-p
pp2-p
vp-p

a BLM instance
Context:
The computer with the program is broken.
The computers with the program are broken.
The computer with the programs is broken.
The computers with the programs are broken.
The computer with the program of the experiment is broken.
The computers with the program of the experiment are broken.
The computer with the programs of the experiment is broken.
Answer set:
The computers with the programs of the experiment are broken.
The computers with the programs of the experiments are broken.
The computers with the program of the experiment are broken.
The computers with the program of the experiment is broken.
...

Table 2: A line from the seed file on top, and a set of individual sentences built from it, as well as one BLM instance.

The algorithm to produce a dataset from the generated sentences is detailed in Figure 8 below.

Data = []; Nnegs

for patterns p do
for si ∈ Sp do

in = si
for sj ∈ Sp do

out+ = sj
out− = {sk, k ∈ range(Nnegs), sk ∈ S¬p}
Data = Data ∪ [(in, out+, out−)]

end for
end for

end for

Figure 8: Data generation algorithm
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A.2 Example of data for the verb alternation BLM

TYPE I

EXAMPLE OF CONTEXT
The buyer can load the tools in bags.
The tools were loaded by the buyer
The tools were loaded in bags by the buyer
The tools were loaded in bags
Bags were loaded by the buyer
Bags were loaded with the tools by the buyer
Bags were loaded with the tools
???

EXAMPLE OF ANSWERS
The buyer can load bags with the tools
The buyer was loaded bags with the tools
The buyer can load bags the tools
The buyer can load in bags with the tools
The buyer can load bags on sale
The buyer can load bags under the tools
Bags can load the buyer with the tools
The tools can load the buyer in bags
Bags can load the tools in the buyer

Figure 9: Example of Type I context sentences and answer set.

A.3 Experimental details
All systems used a learning rate of 0.001 and Adam optimizer, and batch size 100. The system was trained
for 300 epochs for all experiments.

The experiments were run on an HP PAIR Workstation Z4 G4 MT, with an Intel Xeon W-2255 processor,
64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU.

The sentence-level encoder decoder has 106 603 parameters. It consists of an encoder with a CNN
layer followed by a FFNN layer. The CNN input has shape 32x24. We use a kernel size 15x15 with stride
1x1, and 40 channels. The linearized CNN output has 240 units, which the FFNN compresses into the
latent layer of size 5+5 (mean+std). The decoder is a mirror of the encoder, which expands a sampled
latent of size 5 into a 32x24 representation.

The two-level system consists of the sentence level encoder-decoder described above, and a task-
specific layer. The input to the task layer is a 7x5 input (sequence of 7 sentences, whose representation we
obtain from the latent of the sentence level), which is compressed using a CNN with kernel 4x4 and stride
1x1 and 32 channels into ... units, which are compressed using a FFNN layer into a latent layer of size
5+5 (mean+std). The decoder consists of a FFNN which expands the sampled latent of size 5 into 7200
units, which are then processed through a CNN with kernel size 15x15 and stride 1x1, and produces a
sentence embedding of size 32x24. The two level system has 178 126 parameters.
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A.4 Sentence-level analysis
A.4.1 Sample confusion matrices for altered latent values

Figure 10: Confusion matrices for altered values on units 1 (left matrix), unit 2 (middle matrix) and unit 3 (right
matrix)

Each matrix shows a particular way of conflating different patterns:

• changes to values in unit 1 of the latent lead to patterns that differ in the grammatical number of pp2
to become indistinguishable

• changes to values in units 2 and 3 of the latent lead to the conflation of patterns that have different
subject-verb numbers.
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A.4.2 Sentence-level analysis for English data

Figure 11: Chunk identification results: tSNE projections of the latent vectors for the English dataset, and confusion
matrix of the system output.
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A.5 The BLM tasks
A.5.1 Discussion of errors on the sentence level, when solving the BLM task
It might appear surprising that the two-level approach leads to lower performance on type III data,
particularly when lexical variation had not been an issue for the sentence representation analysis (see
Section 5.1).

The difference comes from the way the instances were formed, on the fly, for the two-level process.
The only input to the system is the input of the task. This input, consisting of a sequence of 7 sentences, is
used to generate an instance – i.e. a (in, out+, Out−) triple – for the sentence level process for each of
these sentences. Because each sentence has a different pattern, and the input and correct output of the
sentence level VAE must have the same pattern, the only possible out+ is the input sentence in itself.
Out− will consist of all the other sentences in the task input sequence.

We hypothesize that the fact that the input and output are identical weakens the (indirect) supervision
signal. In the stand-alone sentence analysis experiment, the lexical variation between the input and correct
answer for the sentence level forces the system to find deeper shared information between the two, and
this is not the case when solving the BLM tasks with the two-level system. For type I and type II data,
because a task instance (and thus the input sequence) has very little lexical variation, the incorrect answers
for the sentence level are very close lexically to the correct answer, and thus the system is guided to
encode on the latent layer other distinctions between the correct and incorrect answers, which are mainly
the chunk patterns. For type III data, with its maximal lexical variation, there is no pressure on the system
to find something other than shallower differences between the answer candidates.

We plan to test this hypothesis in future work using a pre-trained sentence-level VAE.
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A.5.2 Detailed task results

TRAIN ON TEST ON VAE 2 LEVEL VAE

BLM agreement
type_I type_I 0.929 (0) 0.935 (0.0049)
type_I type_II 0.899 (0) 0.908 (0.0059)
type_I type_III 0.662 (0) 0.871 (0.0092)
type_II type_I 0.948 (<e-10) 0.974 (0.0049)
type_II type_II 0.879 (<e-10) 0.904 (0.0021)
type_II type_III 0.713 (0) 0.891 (0.0015)
type_III type_I 0.851 (0.037) 0.611 (0.1268)
type_III type_II 0.815 (0.0308) 0.620 (0.1304)
type_III type_III 0.779 (0.0285) 0.602 (0.1195)

BLM verb alternation group 1
type_I type_I 0.989 (0) 0.995 (<e-10)
type_I type_II 0.907 (0) 0.912 (0.0141)
type_I type_III 0.809 (0) 0.804 (0.0167)
type_II type_I 0.989 (0) 0.996 (0.0013)
type_II type_II 0.979 (<e-10) 0.984 (0.0016)
type_II type_III 0.915 (0) 0.928 (0.0178)
type_III type_I 0.997 (0) 0.999 (0.0013)
type_III type_II 0.977 (0) 0.986 (0.0027)
type_III type_III 0.98 (0) 0.989 (0.0003)

BLM verb alternation group 2
type_I type_I 0.992 (0) 0.987 (0.0033)
type_I type_II 0.911 (0) 0.931 (0.0065)
type_I type_III 0.847 (0) 0.869 (0.0102)
type_II type_I 0.997 (0) 0.993 (0.0025)
type_II type_II 0.978 (<e-10) 0.978 (0.0017)
type_II type_III 0.923 (0) 0.956 (0.0023)
type_III type_I 0.979 (<e-10) 0.981 (0.0022)
type_III type_II 0.972 (0) 0.975 (0.0005)
type_III type_III 0.967 (0) 0.977 (0.0022)

Table 3: Analysis of systems: average F1 (std) scores (over 3 runs) for the VAE and 2xVAE systems. The highest
value for each train/test combination highlighted in bold.
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A.5.3 Detailed error results

Figure 12: Analysis of errors for the agreement task: y-axis is the log of error percentages, the x-axis indicates the
data type the system was trained on. The bars show the errors for testing using the two system variations (one-level
and two-level), and the test data type. We note a decrease in all types of errors for the 2-level system compared to
the one level version, and particularly for the sequence-based errors (WNA, WN1, WN2) which are overall the most
frequent. The reason for the higher number of sequence errors for the system trained on type III data is discussed in
appendix A.5.3.

Analysis of errors for the verb alternation group1 task: y-axis is the log of error percentages, the x-axis indicates the data type
the system was trained on. The bars show the errors for testing using the two system variations (one-level and two-level), and the
test data type. As for the agreement task, we note a decrease in all types of errors when using the 2-level system compared to the
one level version, with a few exceptions – Alt1 (a syntactic error) when training on data type I and testing on types II and III.

Analysis of errors for the verb alternation group2 task: y-axis is the log of error percentages, the x-axis indicates the data type
the system was trained on. The bars show the errors for testing using the two system variations (one-level and two-level), and the
test data type. As for the agreement task, we note a decrease in all types of errors when using the 2-level system compared to the
one level version, with a few exceptions – SSM1 (a syntax-semantic mapping error), and a few combinations of training/test data

types for the syntactic errors Alt1,Alt2.

Figure 13: Error analysis for the verb alternation BLM task.
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