
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 43–57
November 15, 2024 ©2024 Association for Computational Linguistics

Learning, Forgetting, Remembering:
Insights From Tracking LLM Memorization During Training

Danny D. Leybzon
Universitat Pompeu Fabra

danny.leybzon@gmail.com

Corentin Kervadec
Universitat Pompeu Fabra

corentin.kervadec@gmail.com

Abstract
Large language models memorize portions of
their training data verbatim. Our findings indi-
cate that models exhibit higher memorization
rates both early on and at the very end of their
training, with the lowest rates occurring mid-
way through the process. This phenomenon can
be attributed to the models retaining most of the
examples memorized early on, while forgetting
many more examples as training progresses. In-
terestingly, these forgotten examples are some-
times re-memorized later on, often undergoing
cycles of forgetting and re-memorization. No-
tably, examples memorized early in training
are more likely to remain consistently retained,
suggesting that they become more firmly ’crys-
tallized’ in the model’s representation. Based
on these insights, we tentatively recommend
placing data that is more likely to be sensitive
in the middle stages of the training process.

1 Introduction

Large language models (LLMs) can achieve state-
of-the-art results on a variety of NLP tasks (Liang
et al., 2023) but are not without their problems.
One such problem is their propensity to output por-
tions of their training data verbatim, a phenomenon
referred to as “memorization” (Carlini et al., 2019).

Memorization in LLMs is a potentially undesir-
able outcome because it can lead to the uninten-
tional disclosure of private information such as per-
sonal data (including credit card or social security
numbers), trade secrets, passwords, etc. (Carlini
et al., 2019). Training data extraction attacks seek
to extract training examples from a model verbatim
and memorization enables these types of attacks
to succeed (Carlini et al., 2021; Nasr et al., 2023).
By better understanding why memorization occurs,
researchers will be able to minimize the memoriza-
tion of sensitive information and mitigate the risk
of extraction attacks (Huang et al., 2022).

Previous work (Biderman et al., 2023) (dis-
cussed in Section 2) has concluded that LLMs

0% 5% 10%15% 20%25% 30%35% 40%45% 50% 55%60% 65%70% 75%80% 85%90% 95%
100%

Percentage of training completed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f e
xa

m
pl

es

Number of newly memorized and forgotten examples per checkpoint
Memorized
Forgotten

Figure 1: We decompose memorization into newly mem-
orized and forgotten examples at each training check-
point. The blue line represents the number of examples
that are newly memorized compared to the previous
checkpoint, while the red line indicates the number of
previously memorized examples that are forgotten. The
difference between these two lines reflects the overall
change in memorization.

memorize a fixed proportion of their data at each
step and, as a result, has avoided making recom-
mendations about the order in which data is fed to
the model throughout training. We find that:

1. Models tend to memorize a higher proportion
of their training data early on during training

2. Discrepancy in memorization rate is caused
by the number of examples forgotten by the
model at each step, while the number of newly
memorized examples stays nearly constant

3. But forgotten examples get re-memorized
throughout training at a very high frequency

4. This re-memorization occurs even if examples
have been markedly forgotten

5. Examples memorized early on in training are
more likely to remain memorized throughout
the entire training process

As a result, we tentatively recommend model
developers to put the data that is most likely to be
sensitive in the middle of the training process.

43

2 Background

Defining Memorization in Language Modeling
The standard definition of memorization used in
this paper comes from Carlini et al. (2021), which
introduces a quantifiable definition of “k-eidetic
memorization”:
A string s is k-eidetic memorized (for k ≥ 1) by
an LM fθ if s is extractable from fθ and s appears
in at most k examples in the training data X:

|{x ∈ X : s ⊆ x}| ≤ k. (1)

Key to the definition of memorization is “ex-
tractability”, which refers (Carlini et al., 2023) to
the ability to prompt a model to generate a string
given a text prompt of length k which precedes the
target string in the training data. More concretely:
A string s is extractable with k tokens of context
from a model f if there exists a (length-k) string
p, such that the concatenation [p ∥ s] is contained
in the training data for f , and f produces s when
prompted with p using greedy decoding.1

All strings that are extractable in such a way are
counted as memorized. Indeed, extractability acts
as a highly sensitive “canary in the coal mine” for
other, more harmful forms of memorization, like
the ones taken advantage of in training data extrac-
tion attacks (Nasr et al., 2023). If training data is
extractable via prompting the model with training
data extracts, it is possible that other attack vectors
will also allow sensitive training data extraction.

Memorization Training Dynamics Previous
work on the training dynamics of memorization
in language models has primarily been motivated
by preventing memorization or getting early sig-
nals of it during training. Memorization rates have
been found to scale with parameters such as model
size (Carlini et al., 2023; Tirumala et al., 2024; Bi-
derman et al., 2024), the frequency of appearance
of the example in the dataset (Carlini et al., 2023;
Hernandez et al., 2022), the length of the context
k used to prompt the model (Carlini et al., 2023),
and the learning rate (Tirumala et al., 2024).

Previous research on the impact of training order
on memorization found that memorization is well-
modeled by a Poisson distribution, indicating that
memorization is approximately equally likely to
happen at each step in the training process (Bider-
man et al., 2023). Further research found little cor-

1Note that the variable "k" is used differently in these two
definitions.

relation between the examples memorized through-
out the training process, indicating that the model is
forgetting many of the examples it had previously
memorized and then re-learning them seemingly at
random (Biderman et al., 2024). These findings are
in contradiction to the phenomena that we observe
in our analysis.

Forgetting in Language Modeling Few stud-
ies have discussed “forgetting” in the context of
LLM memorization research. Most memorization
research we surveyed is not focused on the training
dynamics of memorization and the ones focused
on training dynamics (Biderman et al., 2023, 2024)
did not discuss forgetting. A notable exception is
(Tirumala et al., 2024), where the authors find a
logarithmic forgetting curve that ultimately comes
to a stable “forgetting baseline”, primarily dictated
by model size.

OLMo Our model of choice in this work is the 7
billion parameter Open Language Model (OLMo)
(Groeneveld et al., 2024) published by the Allen In-
stitute for Artificial Intelligence. OLMo is a frame-
work that consists of trained OLMo models, the
pre-training dataset Dolma (Soldaini et al., 2024),
and various other artifacts. The OLMo models are
decoder-only LLMs that have been trained using
similar practices to the currently available, state-of-
the-art LLMs and are competitive with those LLMs
in many of the OLMo authors’ evaluations. This
makes them an ideal proxy for evaluating mem-
orization and forgetting in those state-of-the-art
LLMs, which we can not evaluate directly because
they do not follow the same open framework as
OLMo. We reproduce all of our experiments with
the Pythia model suite, in Appendix A.

3 Methodology

To study the impact of training order on memo-
rization, we extracted and then deduplicated 64-
token sequences from OLMo’s training dataset. We
then passed the first 32 tokens of these sequences
to evenly-spaced checkpoints throughout OLMo’s
training process and had these checkpoints generate
32 more tokens. We compared these generated to-
kens with the “ground truth” (i.e. the last 32 tokens
in the original extractions) to evaluate whether and
to what extent the sequence had been memorized.

Sequence Extraction The version of OLMo
used in this paper was trained on version
v1_5-sample of the Dolma dataset (Soldaini et al.,

44

2024). This corpus is split into 2,418 files, each
of which contains a list of documents sorted by
their source. For each file, we extracted the first
500 documents that had a length greater than or
equal to 64 tokens and extracted the first 64 to-
kens from each document. We chose to extract
the first 64 to reproduce the work in (Biderman
et al., 2023), where the length 64 is chosen arbi-
trarily and the first tokens are extracted to mini-
mize covariate effects. This resulted in a dataset
of 1,208,000 sequences of length 64, where each
sequence appeared at the beginning of a document
in Dolma. Two files did not have any documents
with lengths greater than 64, which explains the
1,000 sequence discrepancy between our final se-
quence count and the expected final sequence count
of 1,209,000 (2, 418 ∗ 500 = 1, 209, 000).

Deduplication Prior research has shown that re-
peated examples in the training data are more likely
to be memorized (Carlini et al., 2023; Hernandez
et al., 2022; Lee et al., 2022; Kandpal et al., 2022).
Although the Dolma dataset that OLMo was trained
on has been heavily deduplicated, some sequences
repeat in various places in the training data. To
minimize the impacts of often-repeated sequences
on our analysis, we deduplicated our dataset before
performing our analysis.2

Response Generation After deduplicating our
data, we split each sequence into two 32-token
subsequences. We selected 112 checkpoints sep-
arated by 5,000 training steps each, starting from
step0-tokens0B (which represents the randomly
initialized model that has been exposed to no train-
ing data) to step555000-tokens2455B (which rep-
resents the fully-trained model that has been ex-
posed to approximately 2,455,000,000 tokens). We
passed the first 32-token subsequence prompts to
the model and generated 32-token responses using
greedy decoding, following the standard definition
of extractability (Carlini et al., 2023). During gen-
eration, we used the default HuggingFace function
parameters, except for using 16-bit quantized ver-
sions of the checkpoints and running the genera-
tions on our GPUs. We used batches of size 32.

Memorization Evaluation We evaluated
whether a checkpoint had memorized a given
sequence by directly comparing the 32-token
sequence generated by the model against the

2This resulted in a marginal decrease of 0.2%, implying
that the duplication rate in the overall dataset is quite low.

original 32-token response we had extracted from
the training dataset. If the generated sequence
exactly matched the ground truth sequence, we
counted that sequence as a “memorized” example
for that checkpoint.

4 Results

4.1 Descriptive Statistics

Of the 1,2080,000 sequences extracted from
OLMo’s training data in Sequence Extraction,
1,205,572 remained after deduplication. Of these,
44,559 were memorized by at least one of the 112
OLMo checkpoints we considered. Hence, 3.7%
of the sequences have been memorized at least
once during the training. The step0, randomized
model had memorized zero sequences, while the
final model had memorized 26,423 (2.19% of all
sequences)3. There were 1,127 (0.09% of the to-
tal) sequences memorized at every checkpoint we
evaluated, excluding the step0 checkpoint.

The fact that only 0.09% of examples are memo-
rized by every checkpoint demonstrates an impor-
tant insight in this work: LLMs memorize their
training data but then forget parts of it through-
out the training process. As further analysis will
demonstrate (Section 4.2 and 4.5) sometimes ex-
amples are memorized, forgotten, and then re-
memorized again in subsequent checkpoints.

4.2 Memorization Trends at Completion

Model developers and researchers may be particu-
larly interested in understanding the examples that
the final checkpoint (i.e. the model at the end of
the training process) has memorized. This might
be of particular interest because this checkpoint
represents the model that will either be deployed
directly to users or fine-tuned and then deployed.
With that in mind, we start our analysis by looking
at only examples memorized by the final check-
point and seek to understand how and when they
were memorized.

2.19% of the sequences are memorized. Of
the 1,205,572 sequences we tested for the OLMo
model, 44,559 were memorized by at least one
checkpoint, but only 26,423 (2.19%) were memo-
rized at the final checkpoint. These examples were

3The memorization rate is a function of many variables,
including the length of the prompt used to extract a response
(Carlini et al., 2023) and thus we should not extrapolate raw
memorizations rates of LLMs without specifying the corre-
sponding prompt lengths.

45

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f m
em

or
ize

d
ex

am
pl

es
Number of memorized examples per checkpoint

data
logarithmic section
linear section

Figure 2: Number of examples memorized by the final LM that were also memorized at each prior checkpoint:
logarithmic growth, then linear, followed by a spike.

not all memorized for the first time by the final
checkpoint itself; most were memorized earlier and
these examples were accumulated over the course
of the training process. To understand this phe-
nomenon, we start by plotting how many examples
memorized at the final checkpoint were memorized
at each prior checkpoint, as seen in Figure 2.

Growth is logarithmic, then linear, then spikes.
Figure 2 contains three distinct sections, which is
representative of the memorization dynamics of the
final model. The first 20% of the data display what
appears to be logarithmic growth in the number
of memorized examples at each checkpoint. Then,
for the last 80%, there appears to be fixed, linear
growth in the number of memorized examples, with
some noise. At the last checkpoint, there is a large
spike in the number of memorized examples.

Since at each checkpoint, the model is exposed
to a fixed amount of data (22b tokens per 5k train-
ing steps), a higher proportion of data the model is
exposed to gets memorized during the first section
and last step than during most of the training. This
provides early evidence for one of our conclusions:
sensitive data should be put in the second section,
where the memorization rate is the lowest.

4.3 Memorizing and Forgetting

We can further explore the memorization dynamics
by plotting the “memorization delta” at each check-
point, i.e. the difference between the number of
examples memorized at each checkpoint compared
to the previous one. Results are shown in Figure 3.

Figure 3 paints a clear picture: the memorization
rate decays, then stabilizes at a slightly positive
value, and finally spikes at the last checkpoint. In
the first 20%, each checkpoint has an average of
665.86 more examples memorized than the last

0% 5% 10%15% 20% 25%30% 35%40% 45% 50%55% 60%65% 70% 75%80% 85%90% 95%
100%

Percentage of training completed

4000

3000

2000

1000

0

1000

2000

3000

4000

Ne
t c

ha
ng

e
in

 m
em

or
ize

d
ex

am
pl

es

Memorization delta at each checkpoint

0
Mean of the first 20%
Mean of last 80%

Figure 3: Memorization delta at each checkpoint, de-
fined as the difference in the number of examples mem-
orized compared to the previous checkpoint.

checkpoint. Then for the last 80% (excluding the
last step), the memorization delta is only 86.63
examples on average. But at the final checkpoint,
4,177 more examples are memorized than at the
previous checkpoint.4

Memorization rate is nearly constant, but for-
getting is not. We go a step further and decom-
pose the memorization delta at each stage into two
components: the number of “newly memorized”
examples and the number of forgotten examples at
each checkpoint compared to the prior checkpoint.
We calculate the number of “newly memorized” ex-
amples by taking the examples memorized at each
checkpoint and checking whether they were memo-
rized at the previous checkpoint as well. Similarly,
we calculate the number of forgotten examples by
taking the memorized examples at the prior check-

4This increased growth does indicate anything special
about the last checkpoint. The OLMo authors do not specify
that step 555,000 in the training was any different than the
previous steps. And indeed, our results in Section 4.5 show
that if you filter to only examples memorized at any given
checkpoint, it appears that that checkpoint has memorized a
disproportionate number of examples. This phenomenon is
discussed more in that section.

46

point and seeing how many of them are not mem-
orized at the current checkpoint. Subtracting the
number of examples forgotten by each checkpoint
from the number of examples newly memorized
by each checkpoint is equivalent to the memoriza-
tion delta in Figure 3. The result of plotting the
newly memorized and forgotten examples at each
checkpoint is shown in Figure 1.

Figure 1 illustrates what causes the decay in
memorization rate early on in the training process:
it is not that these checkpoints have newly memo-
rized more examples, rather, they have forgotten
fewer examples.5

It is also interesting to notice what appear to be
symmetries in the new memorizations and forget-
ting rates: for many of these checkpoints when
memorization goes up, forgetting goes down, and
vice versa. This is the cause of drops and rebounds
(prominent around 40% of the way through train-
ing) visible in Figure 2, as well as the drops and
spikes visible in Figure 3. More investigation is
needed to understand the mechanisms that cause
these drops and spikes.

The fact that these trends are symmetrical rather
than correlated implies that some checkpoints see a
relatively higher rate of forgetting paired with a rel-
atively lower rate of memorization (and vice versa)
than their neighbors. The fact that rebounds in total
memorization follow drops in leads to tentatively
conclude that temporarily lowered memorization
and raised forgetting make room for rapid consoli-
dation of new memorizations.

4.4 Re-memorization

The definition of “forgetting” used in Figure 1
does not imply that no future checkpoint will re-
memorize the example. Indeed, because for this
plot we filtered to only include examples that are
memorized at the final model, every example that
is “forgotten” at a previous checkpoint has defi-
nitionally been re-memorized later on, or else it
would not be present in this dataset. This implies
the phenomenon we mentioned previously: exam-
ples are generally memorized early, sometimes
forgotten, and often re-memorized later on.

We investigate this phenomenon by plotting
when each example that is memorized by the fi-

5If the high memorization rate early on was caused by
lots of new examples being memorized, we would see the
blue line starting high and then decaying to meet the red line.
Instead, we see the red line starting low and then growing
logarithmically to meet the blue line.

0% 5% 10%15% 20% 25%30% 35%40% 45% 50%55% 60%65% 70% 75%80% 85%90% 95%
100%

Percentage of training completed

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f e
xa

m
pl

es
 fi

rs
t m

em
or

ize
d

Histogram of first memorized checkpoint
50% of examples memorized

Figure 4: The number of examples that are memorized
for the first time at each checkpoint.

nal checkpoint was first memorized, as shown in
Figure 4. There is a significant skew in the distri-
bution of checkpoints at which examples are first
memorized. Of the 26,423 examples memorized
by the final checkpoint, 50% of them were memo-
rized within the first 6% of training. While we can
see a small spike in the number of examples first
memorized by the last checkpoint, the majority of
examples that are memorized by the final model
are actually first memorized very early in the train-
ing process. This is different than the behavior
observed in (Stephenson et al., 2021), which found
that, in computer vision models, memorization oc-
curs more frequently in later in the training.

Model re-memorizes many previously forgotten
examples. Figure 4 shows that a majority of ex-
amples are first memorized early in training but
we know that many of these examples will be for-
gotten throughout the training process and then
re-memorized later. To understand the relation be-
tween these phenomena, we also create a plot that
shows the start of memorization “streaks” which
terminate at the final checkpoint. We define a mem-
orization “streak” for an example as a set of con-
tiguous checkpoints, all of which have memorized
that example. To find the beginnings of streaks that
end at the final checkpoint, we take all of the exam-
ples memorized by the final checkpoint and then
work backward, seeing at which checkpoint each
example was first memorized within that streak.
We then plot the distribution of these streak-start
checkpoints, as shown in Figure 5.

Figure 5 is almost a mirror image of the prior
plot: while there are 1,127 examples that are mem-
orized continuously throughout the entire training
run, the vast majority of examples learned early are
forgotten and then re-memorized later on. More
than 50% of final streaks are started after 90% of

47

0% 5% 10%15% 20% 25%30% 35%40% 45% 50%55% 60%65% 70% 75%80% 85%90% 95%
100%

Percentage of training completed

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f f
in

al
 st

re
ak

s s
ta

rte
d

Bar plot of final streak start counts per checkpoint
50% of final streaks started

Figure 5: The number of "final streaks" that are started
at each checkpoint. See definition in the text.

training is complete, and the final checkpoint alone
accounts for more than 15% of the 26,423 exam-
ples memorized.

Combining the insights from these two visualiza-
tions, we characterize the memorization behavior
of models as such: models memorize a great deal
of the training data they are initially exposed to,
then forget much of it, then re-memorize some of it.
It’s worth noting that, though it might appear that
models re-memorize most of examples close to the
end of training, this is actually a statistical artifact:
since we are only showing examples memorized by
the final checkpoint, there is a bias towards “final
streaks” starting near the final checkpoint. This
motivates our work in Section 4.5.

Forgetting and re-memorization happen very
frequently throughout training. While Figure
5 refers only to final streaks, there are streaks that
end before the final checkpoint. Sometimes, an
example will have multiple such streaks, where the
first streak represents the first time an example was
memorized and each subsequent streak represents
a time that example was re-memorized after having
been forgotten. We plot the distribution of the
number of streaks per example in Figure 6.

0 5 10 15 20 25 30
Streak count

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f e
xa

m
pl

es

Histogram of number of streaks

Figure 6: The distribution of streak count per example.

Per Figure 6, while the plurality of examples
are memorized only once (left-most bar of the his-
togram), the bulk of examples are memorized be-
tween 15 and 20 times. Since we only looked at
112 checkpoints, this implies that there is a huge
amount of forgetting and re-memorization occur-
ring throughout the training process.

Sometimes examples are "forgotten" because of
small changes, while other times they are totally
wiped away. In both cases, re-memorization
can occur. We were curious to understand the
nature of this forgetting and re-memorization. Are
the examples being truly forgotten or is it that the
change of a single token resulted in these exam-
ples being treated as forgotten, even though most
of the semantic information remains intact? Quan-
titative analysis (discussed in Appendix B) pro-
vided no meaningful insight about the nature of
re-memorization, so we also analyzed the forgotten
and re-memorized examples qualitatively.

Our qualitative analysis showed that the model
re-memorized examples that had been only barely
forgotten, but that it also re-memorized examples
that had been totally forgotten. For instance, the
completion ". With this, we have created a trusted
client base, as they are able to easily market their
products and services to their best possible cus-
tomers. Since helps to" was memorized many times
throughout training. It was first memorized in a
streak of length one and then immediately forgot-
ten and replaced by the markedly different " in the
market.Technology Data Services, we help you to
reach the best target audience who will help your
business to grow. We are the leading provider". For
most of the rest of training, the example oscillates
between being fully memorized and other markedly
different generations. Finally, in the last 32 steps of
training, it appears to be "crystallized" (discussed
more in Section 4.6), staying continuously memo-
rized, apart from a brief interruption where it min-
imally changes to ". With this, we have created a
trusted client base, as they are able to easily mar-
ket their products and services across the globe
without spending much.\nBy" (emphasis ours) for
a single checkpoint before being re-memorized.

The example described in the last section illus-
trates the phenomena that we observed through-
out our qualitative analysis: examples may be
markedly forgotten or just barely forgotten, but,
in either case, they may get re-memorized. The
phenomenon that markedly forgotten examples are

48

re-memorized is particularly interesting given the
low rate of repetition (implied by the extensive
deduplication efforts and low rate of duplication
in our analysis) because it is not obvious to these
authors what could cause a model to re-memorize
an example other than being exposed to that ex-
ample again during training. Further research is
needed to understand what causes the phenomenon
of re-memorization described here.

4.5 Intermediate Checkpoint Analysis
Although the previous analysis focused on the “fi-
nal” checkpoint, it is important to note that the
choice of when to end training is somewhat ar-
bitrary. Although heuristics like the Chinchilla
scaling laws (Hoffmann et al., 2022) provide guid-
ance for the compute-optimal amount to train a
model, researchers often decide when to stop train-
ing based on compute or training data constraints.
As such, intermediate checkpoints can be equally
useful to analyze. In fact, they provide an opportu-
nity to study an interesting counterfactual scenario:
what would have happened to the examples memo-
rized by the “final” checkpoint if researchers had
continued to train the model?

Memorization patterns remain the same. We
arbitrarily select the checkpoint by which 75%
training has been completed and filter to only select
examples that are memorized at our intermediate
model. Reproducing Figure 2, we plot how many
of these examples are memorized at each check-
point in Figure 7.

0% 5% 10%15% 20% 25%30% 35%40% 45% 50%55% 60%65% 70% 75%80% 85%90% 95%
100%

Percentage of training completed

0

5000

10000

15000

20000

Nu
m

be
r o

f m
em

or
ize

d
ex

am
pl

es

Number of memorized examples per checkpoint

Figure 7: The number of examples memorized by an
intermediate checkpoint (75% of the training) that are
memorized at each checkpoint.

This plot follows a similar structure to Figure 2,
with the same curving growth turning into linear
growth. The difference is that, rather than having
a spike at the last checkpoint, there is instead a
spike and immediate drop which correspond to the

checkpoint we are analyzing. This indicates that
many of the examples memorized at our check-
point are memorized by that checkpoint (4,722 or
19.12% of the total number of examples memorized
at checkpoint 75%) but that many examples are also
forgotten at the next stage (4,538 or 18.38%).

Newly memorized examples are equally likely
to stay memorized or get forgotten. This raises
an interesting question: are the examples forgotten
at step 75%+1 primarily examples that the model
has just learned at step 75%, or are they examples
that the model learned earlier in training? We de-
compose previous and future states in table 1.

Step 75%
Newly
memorized

Memorized
at -1

Total

Remain mem-
orized at +1

2,409
9.79%

17,740
71.86%

20,149
81.62%

Forgotten at
+1

2,313
9.38%

2,225
9.01%

4,538
18.38%

Total
4,722
19.13%

19,965
80.88%

24,687

Table 1: Previous and future states of examples memo-
rized at 75%. +1/-1 are the next/previous checkpoints.

The vast majority of examples (71.86%) mem-
orized at checkpoint 75% were also memorized
at step 75%-1 and remained memorized at step
75%+1. Of examples that were newly memorized
at 75%, about half remained memorized at 75%+1
(51.02%) and half were forgotten at step 75%+1
(48.98%). Similarly, of examples that were forgot-
ten at 75%+1, about half were newly memorized
at step 75% (50.97%) and about half had also been
memorized at step 75%-1 (49.03%).

Few examples had never been memorized before
and few would remain memorized forever. An-
other underlying trend we can analyze by looking at
the intermediate checkpoint is the novelty of mem-
orization and the permanence of forgetting. Of the
4,722 examples that were newly memorized at step
75%, only 129 (2.73%) had never been memorized
before. Of the 4,538 examples memorized at 75%
that are forgotten at 75%+1, only 102 (2.25%) were
never memorized again. This all reinforces a key
insight of this work: most examples are memorized
early, then periodically forgotten and re-memorized
throughout the training process.

4.6 Crystallization in Early Learning
To further understand how the examples mem-
orized early on are forgotten and re-memorized

49

throughout training, we examine the examples
memorized by an early checkpoint to see how they
fare. The very first checkpoint has no memorized
examples because it has not been exposed to any
training data, so we select the checkpoint after that
to better understand the memorization dynamics
early in training and see which of those examples
remain memorized throughout training (Figure 8).

0% 5% 10%15% 20% 25%30% 35%40% 45% 50%55% 60%65% 70% 75%80% 85%90% 95%
100%

Percentage of training completed

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f m
em

or
ize

d
ex

am
pl

es

Number of memorized examples per checkpoint

Figure 8: Number of examples memorized by the initial
checkpoint that are memorized at each checkpoint.

Early examples are crystallized. By plotting
the number of examples that were memorized at
our initial checkpoint which are also memorized
at other checkpoints, we can see a very strong and
simple trend: in the first steps of training, 3,096
examples are memorized, and over the course of
training, few are forgotten. Notably, very few of
these memorized examples are forgotten at the fi-
nal checkpoint: only 188 (6.07%) of the examples
memorized at the initial checkpoint. This implies
that examples memorized early on crystalize in the
LM’s parameters and are unlikely to be forgotten.

We also illustrate this diminishing crystallization
by taking the examples memorized at each of the
first 10 checkpoints and calculating what propor-
tion of them are continuously memorized for the
last 80% of training. We take this ratio to be indica-
tive of the percentage of memorized examples at
each checkpoint that are “crystallized” and remain
memorized throughout much of training, and plot
the results in Figure 9.

Of the 3,096 examples memorized by the first
checkpoint, 1,503 (48.55%) are memorized con-
tinuously for the last 80% of training. For each
subsequent checkpoint, this percentage decays log-
arithmically, until it reaches a stable forgetting rate
at around 20% of examples memorized.

All of this analysis illustrates that, while many
examples are forgotten and re-memorized through-
out training, the examples memorized early on are

1 2 3 4 5 6 7 8 9 10
Checkpoint

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

Pe
rc

en
ta

ge
 o

f e
xa

m
pl

es

Percentage of examples memorized continuously in the last 80% of training

Figure 9: The percentage of examples memorized at
each checkpoint that are memorized continuously in the
last 80% of training (we call it crystallization).

most likely to stay crystallized throughout all of
training, while examples memorized later are less
likely to be crystallized. This points to the powerful
impact of training order on memorization rate.

5 Conclusion

Memorization in LLMs is a well-documented phe-
nomenon but more work needs to be done to under-
stand how that memorization occurs, what data is
most likely to be memorized, and what can be done
to minimize undesirable memorization. This field
of research is important for making LLMs useful
in commercial applications, as memorization can
result in the model leaking private information.

We have made novel contributions by exploring
previously unresearched dynamics of memoriza-
tion throughout the training process. By analyz-
ing memorization at various checkpoints along the
training of an LLM, we are able to come to some
important conclusions. Most significantly:

1. LMs memorize more earlier on in training

2. LMs forget examples during the training

3. Many forgotten examples are re-memorized

From these conclusions, we tentatively recom-
mend model developers put data which they con-
sider to have a higher likelihood of being sensitive
in the middle stages of the training process. In the
middle stages, data is memorized at the lowest rate
and memorized examples may be forgotten before
the model is done being trained.

However, these recommendations can only be
tentative because the true test of this hypothesis
would be to do controlled experimentation with
sensitive data placed at various points in the train-
ing process. We hope our work motivates future
researchers to perform these experiments to further
understand how LLMs memorize.

50

Limitations

5.1 No Proof of Causality
Ultimately, although our results indicate that there
may be an effect of training order on memorization,
our experiments are insufficient to prove causal-
ity. Because of this, our tentative recommendations
can only be fully confirmed by running random-
ized experiments. For example, although we infer
that model developers should put sensitive training
data in the middle stages of the training process, it
is possible that there are confounding effects that
would actually cause this data to be memorized
at the same rate, regardless of where it was put.
We lack the resources to experiment with training
orders but think that our results are sufficient to
motivate future investigation into this area.

5.2 High Sensitivity
As discussed in Section 2, the method of extracting
memorized sequences used in this research is not
representative of realistic membership inference
attacks. By both prompting the models with exact
samples from their training data and using greedy
decoding, we maximize the probability that a mem-
orized example will be output. In the real world,
attackers are unlikely to have access to the training
data and therefore are unlikely to be able to feed
it verbatim to the LLM. Additionally, if they did
have access to the training data, there would be no
purpose in attempting to extract training data from
the model. Another factor that contributes to the
unrealisticness of this method of attack is that most
commercially available LLM providers do not use
greedy decoding since it produces highly-repetitive
text (Shao et al., 2017).

Although this attack method is unrealistic, we
think this area of research is still useful because
it allows us to understand all information that is
potentially memorized by the model. Since the two
things that make this method unrealistic (prompting
with exact training data and greedy decoding) also
make the model more likely to produce any data
it may have memorized, we view our approach as
highly sensitive, extracting a large portion of all
memorized data, and therefore acting as a canary
in the coal mine.

5.3 Only English-Language Analysis
As OLMo is a model primarily trained on English
text data (Soldaini et al., 2024) and intended for use
in English (Groeneveld et al., 2024), very few of

the memorized examples we encountered in man-
ual analyses were in languages other than English.
There are documented attack vectors that take ad-
vantage of low-resource languages to bypass LLM
safeguards (Upadhayay and Behzadan, 2024) and
it is possible that there are ways to extract training
data from LLMs by using low-resource languages.
It is also possible that different languages have dif-
ferent memorization dynamics, so further research
needs to be performed to understand whether the
phenomena we describe are limited to English or
would apply to other languages as well.

Acknowledgements

Our work was funded by the European Research
Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme
(grant agreement No. 101019291). This paper
reflects the authors’ view only, and the ERC is not
responsible for any use that may be made of the
information it contains.

We would like to thank the ERC for providing
this funding. Additional thanks are owed to Marco
Baroni for allowing these researchers to use the
resources of the Computational Linguistics and
Linguistic Theory research group at the Universi-
tat Pompeu Fabra. And special thanks to Vicenç
Gómez, the coordinator of the Msc. program in In-
telligent Interactive Systems, and Gemma Boleda
Torrent, whose passion for linguistics and dedica-
tion to her students shines through.

References
Stella Biderman, USVSN Sai Prashanth, Lintang

Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raff. 2024. Emer-
gent and predictable memorization in large language
models. In Proceedings of the 37th International
Conference on Neural Information Processing Sys-
tems, NIPS ’23, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar Van Der Wal. 2023. Pythia:
a suite for analyzing large language models across
training and scaling. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.

51

2023. Quantifying memorization across neural lan-
guage models.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neural
networks.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Du-
mas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar
Khot, William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew E.
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma
Strubell, Nishant Subramani, Mitchell Wortsman,
Pradeep Dasigi, Nathan Lambert, Kyle Richardson,
Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. 2024.
Olmo: Accelerating the science of language models.

R. W. Hamming. 1950. Error detecting and error cor-
recting codes. The Bell System Technical Journal,
29(2):147–160.

Danny Hernandez, Tom Brown, Tom Conerly, Nova
DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tris-
tan Hume, Scott Johnston, Ben Mann, Chris Olah,
Catherine Olsson, Dario Amodei, Nicholas Joseph,
Jared Kaplan, and Sam McCandlish. 2022. Scaling
laws and interpretability of learning from repeated
data.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang.
2022. Are large pre-trained language models leaking
your personal information?

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks in
language models.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Vladimir I. Levenshtein. 1965. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
physics. Doklady, 10:707–710.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Lad-
hak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,
Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2023. Holistic eval-
uation of language models.

Peter Liferenko. 2024. Textdistance. https://github.
com/life4/textdistance. Version 4.6.2.

David Maier. 1978. The complexity of some prob-
lems on subsequences and supersequences. J. ACM,
25(2):322–336.

Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A. Feder Cooper, Daphne Ip-
polito, Christopher A. Choquette-Choo, Eric Wal-
lace, Florian Tramèr, and Katherine Lee. 2023. Scal-
able extraction of training data from (production)
language models.

Louis Shao, Stephan Gouws, Denny Britz, Anna Goldie,
Brian Strope, and Ray Kurzweil. 2017. Generating
high-quality and informative conversation responses
with sequence-to-sequence models.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,
Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. 2024. Dolma: an open corpus of
three trillion tokens for language model pretraining
research.

52

http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/2012.07805
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2402.00838
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2205.12628
http://arxiv.org/abs/2205.12628
http://arxiv.org/abs/2202.06539
http://arxiv.org/abs/2202.06539
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
https://pypi.org/project/textdistance/
https://github.com/life4/textdistance
https://github.com/life4/textdistance
https://doi.org/10.1145/322063.322075
https://doi.org/10.1145/322063.322075
http://arxiv.org/abs/2311.17035
http://arxiv.org/abs/2311.17035
http://arxiv.org/abs/2311.17035
http://arxiv.org/abs/1701.03185
http://arxiv.org/abs/1701.03185
http://arxiv.org/abs/1701.03185
http://arxiv.org/abs/2402.00159
http://arxiv.org/abs/2402.00159
http://arxiv.org/abs/2402.00159

Cory Stephenson, suchismita padhy, Abhinav Ganesh,
Yue Hui, Hanlin Tang, and SueYeon Chung. 2021.
On the geometry of generalization and memorization
in deep neural networks. In International Conference
on Learning Representations.

Kushal Tirumala, Aram H. Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2024. Memorization
without overfitting: analyzing the training dynam-
ics of large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems, NIPS ’22, Red Hook, NY, USA.
Curran Associates Inc.

Bibek Upadhayay and Vahid Behzadan. 2024. Sand-
wich attack: Multi-language mixture adaptive attack
on llms.

A Pythia

OLMo models are trained using the frequently-
used policy of learning rate warmup and annealing,
in which the learning rate of an LLM is changed
throughout the training process. Specifically, the
learning rate is warmed up over the first 5,000 steps
and then decayed linearly from there to a tenth of
the peak of the learning rate throughout the rest of
training. Since (Tirumala et al., 2024) showed that
learning rate impacts memorization, we were curi-
ous to what extent our results could be explained
by changes in the learning rate throughout the train-
ing process. As a result, we reproduced our work
in OLMo with a similarly-sized Pythia (Biderman
et al., 2023) model, which has no learning rate
warmup or annealing. We found no significant
differences to the trends we described with OLMo.

There are some notable differences between the
original OLMo work and the Pythia reproduction,
namely:

1. How we sampled the Pythia training dataset
(described in the Methodology subsection)

2. The amount of duplication

3. The percentage of memorizations (described
in the Results subsection)

4. The classification of different memorized ex-
amples (described in the Results subsection)

The fact that, despite all of these differences, the
results remained largely the same is heartening evi-
dence that our results generalize to other models.

A.1 Framework
Pythia models are trained on The Pile (Gao et al.,
2020) and, like OLMo, release not only final model
weights and the training dataset, but also training
methodology and checkpoints. Interestingly, the
Pythia models also release their training data in the
format and order that it is fed to the model during
training, which is not information we were able to
find on the OLMo model. As a result, we use a
different sampling strategy (as described in Sub-
section A.2) to extract samples for evaluation. We
select the 6.9 billion parameter version of Pythia,
since it is the most similar in size to the OLMo
model we used.

A.2 Methodology
Since the authors of Pythia provide the shuffled
version of the dataset that they used to train the
model, we sampled 1,041,873 examples from
evenly-spaced, randomly selected points within the
training run, thus ensuring that we would select rep-
resentative training data. Specifically, we divided
Pythia’s pre-shuffled Pile dataset’s 131,170 itera-
tions into 100 approximately even segments and
then selected 10,500 random 64 token sequences
from within each segment. We then removed any
examples from the same iteration that overlapped
as a result of having starts within 64 tokens from
each other, resulting in our total of 1,041,873 ex-
amples. We then split the 64-token sequences in
half, as with OLMo.

The Pythia model has 144 checkpoints separated
by 1,000 training steps, starting from step0 and
terminating at step143000. We used all of these
checkpoints. There are also log-spaced checkpoints
provided between step0 and step1000 but we chose
not to incorporate these since we wanted evenly-
spaced checkpoints.

A.3 Results
On the whole, we find our results with Pythia to be
nearly identical to our results with OLMo, taking
into account some differences caused by sampling
noise. Notably, the trends we see in OLMo tend to
be less pronounced but still present for Pythia.

We have included Pythia reproductions of all of
the major figures we used for our OLMo analysis
without comment.

53

https://openreview.net/forum?id=V8jrrnwGbuc
https://openreview.net/forum?id=V8jrrnwGbuc
http://arxiv.org/abs/2404.07242
http://arxiv.org/abs/2404.07242
http://arxiv.org/abs/2404.07242

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f m
em

or
ize

d
ex

am
pl

es
Number of memorized examples per checkpoint

data
logarithmic section
linear section

Figure 10: The number of examples memorized by
the final checkpoint that are also memorized at each
previous checkpoint.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

400

200

0

200

400

Ne
t c

ha
ng

e
in

 m
em

or
ize

d
ex

am
pl

es

Memorization delta at each checkpoint

0
Mean of the first 20%
Mean of last 80%

Figure 11: The memorization delta at each checkpoint.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

100

200

300

400

500

600

Nu
m

be
r o

f e
xa

m
pl

es

Number of newly memorized and forgotten examples per checkpoint
Memorized
Forgotten

Figure 12: The number of newly memorized and forgot-
ten examples at each checkpoint.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f e
xa

m
pl

es
 fi

rs
t m

em
or

ize
d

Histogram of first memorized checkpoint
50% of examples memorized

Figure 13: The number of examples that are memorized
for the first time at each checkpoint.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

100

200

300

400

500

600

Nu
m

be
r o

f f
in

al
 st

re
ak

s s
ta

rte
d

Bar plot of final streak start counts per checkpoint
50% of final streaks started

Figure 14: The number of "final streaks" that are started
at each checkpoint.

0 5 10 15 20 25 30 35
Streak count

0

50

100

150

200

250

Nu
m

be
r o

f e
xa

m
pl

es

Histogram of number of streaks

Figure 15: The distribution of streak count per example.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

1000

2000

3000

4000

Nu
m

be
r o

f m
em

or
ize

d
ex

am
pl

es

Number of memorized examples per checkpoint

Figure 16: The number of examples memorized by an
intermediate checkpoint that are memorized at each
checkpoint.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of training completed

0

25

50

75

100

125

150

175

Nu
m

be
r o

f m
em

or
ize

d
ex

am
pl

es

Number of memorized examples per checkpoint

Figure 17: The number of examples memorized by the
initial checkpoint that are memorized at each check-
point.

54

1 2 3 4 5 6 7 8 9 10
Checkpoint

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

Pe
rc

en
ta

ge
 o

f e
xa

m
pl

es

Percentage of examples memorized continuously in the last 80% of training

Figure 18: The percentage of examples memorized at
each checkpoint that are memorized continuously in the
last 80% of training.

55

B Soft Memorization Metrics

All prior work on memorization that we surveyed
used a strict definition of extractability, i.e. check-
ing whether the generated output exactly matched
the continuation of the sequence in the training data.
This is a convenient metric to use because it is reli-
ably easy to evaluate without human intervention.
However, for the goal of evaluating undesirable
semantic memorization, this is an overly strict def-
inition of “memorization”. Therefore, rather than
only evaluate extractability according to the “hard”
definition (previously defined in the Section 2), we
also propose a “soft” definition of extractability: A
string s is d-extractable with k tokens of context
from a model f if there exists a (length-k) string
p, such that the concatenation [p ∥ s] is contained
in the training data for f , and f produces a string
which is at most distance d away from s when
prompted with p using greedy decoding, for some
specified distance measure.

To evaluate whether relaxing the definition of
memorization by using d-extractability changed
our observed memorization dynamics, we calcu-
lated Hamming distance and Levenshtein distance
as well as the longest common subsequence for
each of the generations in the training dataset.

1. Hamming distance: the number of characters
that need to be changed in place to make two
equal-length sequences identical (Hamming,
1950)

2. Levenshtein distance: the number of char-
acters that need to be inserted, deleted, or
substituted to make two sequences identical
(Levenshtein, 1965)

3. Longest common subsequence similarity:
the length of the longest continuous sequence
of characters that two sequences have in com-
mon (Maier, 1978)

We used the Python package “textdistance” (Lif-
erenko, 2024) to efficiently evaluate these similarity
metrics.

Performing the same analysis that we had done
previously required discretizing these continuous
distance metrics, i.e. selecting a value for d. We
decided to select these values based on the distribu-
tion of each distance metric and arbitrarily selected
2.5%, 5%, 10%, 15%, and 25% quantiles for this
cutoff. For example, the 5% quantile represents
a cutoff which will treat 5% of the examples as

memorized. We reproduced Figure 2 for all three
distance measures and all five quantiles in Figure
19.

For all three similarity measures we evaluated,
and for all five quantiles, the shapes of the graphs
were not meaningfully different than the shape we
saw when using the hard definition of memoriza-
tion: a logarithmic increase followed by a linear
increase. When we experimented with different
cutoffs, we found that the same shape was gener-
ally preserved, except for cutoffs that represented
extreme relaxations of the memorization criterion.

We wanted to further investigate whether a differ-
ent cutoff could help us better understand the mem-
orization dynamics. To do this, we calculated the
cutoff values for all 0.01% increments of the cutoff
quantiles, and plotted the cutoff values against the
percentage of examples that would be treated as
“memorized” if we used that cutoff. The results are
in Figure 20.

The lack of meaningful inflection points in the
graph indicates that these metrics are best under-
stood as continuous measures, rather than being
discretized. The first inflection point happens at
2.19%, at which point the cutoff is greater than
0. At a cutoff of 0, the soft memorization metric
is equivalent to the hard memorization metric, be-
cause the generated text has 0 distance from the
expected text. Therefore, this inflection happens
at 2.19% because that is the memorization rate ac-
cording to the hard definition. The other inflection
point happens at the 99% mark, which we do not
find relevant to this analysis because we do not con-
sider a memorization rate of 99% to be meaningful.
Lacking meaningful inflection points indicates to
us that there is no trivial and meaningful definition
of memorization.

A limitation of all of the metrics we examined is
that they do not capture the semantic content of the
generations, only making character-wise compar-
isons. In future work, we hope to further explore
meaningful relationships between the definition
of memorization used and the trends observed in
memorization and forgetting phenomena.

56

0

5000

10000

15000

20000

25000

Hard memorization

0

50000

100000

150000

200000

250000

300000
Hamming distance (less than XX characters, YY% quantile)

6.0 chars; 2.50%
62.0 chars; 5.00%
94.0 chars; 10.00%
107.0 chars; 15.00%
118.0 chars; 25.00%

0

50000

100000

150000

200000

250000

300000
Levenshtein distance (less than XX characters, YY% quantile)

4.0 chars; 2.50%
33.0 chars; 5.00%
68.0 chars; 10.00%
83.0 chars; 15.00%
94.0 chars; 25.00%

0.7

0.8

0.9

1.0

1.1

1.2 1e6
Longest common subsequence (greater than XX characters, YY% quantile)

33.0 chars; 2.50%
39.0 chars; 5.00%
46.0 chars; 10.00%
49.0 chars; 15.00%
54.0 chars; 25.00%

Figure 19: The number of examples that qualify as "memorized" at each checkpoint, using a variety of distance
measures and cutoffs.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
100%

Percentage of examples treated as 'memorized'

0

100

200

300

400

500

600

700

800

900

1,001

Nu
m

be
r o

f c
ha

ra
ct

er
s

 2.19%:
 the 'hard' memorization rate 99%

Cutoff values for Levenshtein distance

Figure 20: For a percentage of examples to be treated as "memorized", this plots the corresponding number of
characters that would be used for a cutoff for Levenshtein distance.

57

