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Abstract
Sentiment is a pervasive feature in natural lan-
guage text, yet it is an open question how sen-
timent is represented within Large Language
Models (LLMs). In this study, we reveal that
across a range of models, sentiment is repre-
sented linearly: a single direction in activation
space mostly captures the feature across a range
of tasks with one extreme for positive and the
other for negative. In a causal analysis, we iso-
late this direction using interventions and show
it is causal in both toy tasks and real world
datasets such as Stanford Sentiment Treebank.

We analyze the mechanisms that involve this
direction and discover a phenomenon which
we term the summarization motif: sentiment is
not just represented on valenced words, but is
also summarized at intermediate positions with-
out inherent sentiment, such as punctuation and
names. We show that in SST classification, ab-
lating the sentiment direction across all tokens
results in a drop in accuracy from 100% to 62%
(vs. 50% random baseline), while ablating the
summarized sentiment direction at comma po-
sitions alone produces close to half this result
(reducing accuracy to 82%).

1 Introduction

Large language models (LLMs) have displayed in-
creasingly impressive capabilities (Brown et al.,
2020; Radford et al., 2019; Bubeck et al., 2023),
but their internal workings remain poorly under-
stood. Nevertheless, recent evidence (Li et al.,
2023) has suggested that LLMs are capable of
forming models of the world, i.e., inferring hid-
den variables of the data generation process rather
than simply modeling surface word co-occurrence
statistics. There is significant interest (Christiano
et al. (2021), Burns et al. (2022)) in deciphering
the latent structure of such representations.

In this work, we investigate how LLMs represent
sentiment, a variable in the data generation process
that is relevant and interesting across a wide variety

of language tasks (Cui et al., 2023). Approaching
our investigations through the frame of causal me-
diation analysis (Vig et al., 2020; Pearl, 2022), we
show that these sentiment features are represented
linearly by the models, are causally significant, and
are utilized by human-interpretable circuits (Olah
et al., 2020; Elhage et al., 2021a).

We find the existence of a single direction scien-
tifically interesting as further evidence for the linear
representation hypothesis (Mikolov et al., 2013; El-
hage et al., 2022; Park et al., 2023; Jiang et al.,
2024), that models tend to extract properties of the
input and internally represent them as directions
in activation space. Understanding the structure of
internal representations is crucial to begin to de-
code them. Linear representations are particularly
amenable to detailed reverse-engineering (Nanda
et al., 2023b) and have seen recent interest in the
context of Sparse Autoencoders (Bricken et al.,
2023). We believe that interpreting internal repre-
sentations in LLMs shows promise for mitigating
problematic behaviours.

We show evidence of a phenomenon which we
have labeled the “summarization motif”1, where
rather than sentiment being directly moved from
valenced tokens to the final token, it is first aggre-
gated on intermediate summarization tokens with-
out inherent valence such as commas, periods and
particular nouns. This can be seen as a naturally
emerging analogue to the explicit classification to-
ken in BERT-like models (Devlin et al., 2018), and
in that context the phenomenon was observed by
Clark et al. (2019). We show that the sentiment
stored on summarization tokens is causally rele-
vant for the final prediction. We find this an intrigu-
ing example of an “information bottleneck”, where
the data generation process is funnelled through a
small subset of tokens used as information stores.

1Crucially, this is not to be confused with the NLP summa-
rization task
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Understanding the existence and location of infor-
mation bottlenecks is a key first step to deciphering
world models. This finding additionally suggests
the models’ ability to create summaries at various
levels of abstraction, in this case at a sentence or
clause rather than a token.

Our contributions are as follows. In Section 3,
we demonstrate that standard methods can find a
linear representation of sentiment using a toy
dataset, and show that this direction correlates with
sentiment information in the wild. We use causal
analysis to show that this linear representation mat-
ters causally in both toy and crowdsourced datasets.
In Section 4, we show through activation patching
(Geiger et al., 2020; Vig et al., 2020) and abla-
tions (techniques defined in Section 2.2) that the
learned sentiment direction is used in summariza-
tion behavior that is causally important to circuits
performing sentiment tasks. We replicate these
findings across GPT2, Pythia, Gemma, Qwen and
StableLM models (Section 2.1). In sum, we pro-
vide a novel, detailed case study of how to analyse
a feature’s representation in activation space.

2 Methods

2.1 Datasets and Models

ToyMovieReview is a templatic dataset of con-
tinuation prompts we generated with the form “I
thought this movie was ADJECTIVE, I VERBed it. Con-
clusion: This movie is” where ADJECTIVE and VERB
are either two positive words (e.g., incredible and
enjoyed) or two negative words (e.g., horrible and
hated) that are sampled from a fixed pool of 85 ad-
jectives (split 55/30 for train/test) and 8 verbs. The
expected completion for a positive review is one
of a set of positive descriptors we selected from
among the most common completions (e.g. great)
and the expected completion for a negative review
is a similar set of negative descriptors (e.g., terri-
ble). This dataset is the simplest toy task we could
imagine to elicit understanding of sentiment in the
smallest models that we tested through a next-token
prediction task, avoiding the need for fine-tuning.

ToyMoodStory is a similar toy dataset which
is multi-subject and character-driven with random
names, e.g. Carl hates parties, and avoids them when-
ever possible. Jack loves parties, and joins them when-
ever possible. One day, they were invited to a grand
gala. Jack feels very [excited/nervous]

Stanford Sentiment Treebank (SST) (Socher
et al., 2013) consists of 10,662 one sentence movie
reviews with human annotated sentiment labels for
every constituent phrase from every review.

Internet Movie Database (IMDB) (Maas et al.,
2011) consists of 25,000 movie reviews taken from
the IMDB website with human-annotated senti-
ment labels for each review.

OpenWebText (Gokaslan and Cohen, 2019) is
the pretraining dataset for GPT-2 which we use as a
source of random text for correlational evaluations.

GPT-2 and Pythia (Radford et al., 2019; Bider-
man et al., 2023) are families of decoder-only trans-
former models with sizes varying from 85M to 2.8b
parameters. We mostly focus on Pythia-2.8b in the
main body of this paper, reducing to Pythia-1.4b or
GPT2-small when appropriate for saving compute,
and leaving demonstrations of consistency across
models to A.6.4 and A.9.2.

2.2 Causal Analysis Methods

Activation patching Activation patching (Geiger
et al., 2020; Vig et al., 2020), we create two sym-
metrical datasets Xorig and Xflipped, where each
prompt xorig and its counterpart prompt xflipped
are of the same length and format but where key
words are changed in order to flip the sentiment;
e.g., “This movie was great” could be paired with
“This movie was terrible”. Let A be the set of all
hidden layer activations of the model. We first
conduct baseline forward passes, capturing the
tensors of all activation values Aorig = F(xorig),
Aflipped = F(xflipped) for intermediate activations
A. We then conduct “patched” forward passes us-
ing xflipped as AC = F(xflipped,Aorig,C) for dif-
ferent model components C ⊂ A representing a
subset of the activations, where at each intermedi-
ate computation I(a) in the forward pass taking a
member i ∈ C as an input, we substitute or “patch”
the alternate activation a 7→ aorig := Aorig[i] and
instead compute I(aorig). We can thus determine
the relative importance of various model compo-
nents C with respect to the task currently being
performed, using some task performance metric
(options discussed in Section 2.3) M : A 7→ R.

Directional activation patching Geiger et al.
(2023b) introduce a variant of activation patching
that we call “directional activation patching”. The
idea is that rather than modifying the standard basis
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directions of a component, we instead only mod-
ify the component along a single direction in the
vector space, represented by unit vector d̂, replac-
ing it during a forward pass with the value from
a different input. That is, the “patch” becomes
MC←Cflipped−Cflipped·d̂+Corig·d̂(xflipped).

Freezing To analyze how the causal effect of a
component C is mediated by another component D,
we perform an activation patch on C while freezing
the activations of D to their initial value from the
forward pass on the flipped prompt. We perform a
forward pass with the flipped input to obtain an in-
tervened model state MC←Corig;D←Dflipped(xflipped).
In particular, we can run patching experiments with
frozen attention, meaning that the attention pattern
is frozen from the original run so that the model
still weights the value vectors in the same way,
helping to isolate V-composition.

Ablations To capture the importance of a com-
ponent, we eliminate its contribution by replacing
it with zeros (zero ablation) or the mean activation
over some dataset (mean ablation). Like activation
patching, ablation is an intervention on a model
component. However, the intervened activations
are all zeros or taken from the mean over some
dataset rather than from a paired forward pass. i.e.
MC←Cablation(x) where Cablation consists of all ze-
ros or a mean value. We also perform directional
ablation, in which a component’s activations are
ablated only along a specific direction.

2.3 Evaluation metrics

Logit difference metric We extend the logit dif-
ference metric used by Wang et al. (2022) to the
setting with 2 classes of next token rather than only
2 valid next tokens. This is useful in situations
where there are many possible choices of positively
or negatively valenced next tokens.

Specifically, we examine the average differ-
ence in logits between sets of positive/negative
next-tokens T pos = {tpos

i : 1 ≤ i ≤ n}
and T neg = {tneg

i : 1 ≤ i ≤ n} in or-
der to get a smooth measure of the model’s
ability to differentiate between sentiment. That
is, we define the logit difference for input x
as 1

n

∑
i

[
logit(M(x); t

pos
i )− logit(M(x); t

neg
i )

]
.

Larger differences indicate more robust separation
of the positive/negative tokens, and zero or inverted
differences indicate zero or inverted sentiment pro-
cessing respectively. When used as a patching

metric, this shows the causal efficacy of various
interventions like activation patching or ablation.

We use this metric often because it is more sensi-
tive than accuracy to small shifts in model behavior,
which is particularly useful for circuit identification
where the effect size is small but real. That is, in
many cases a token of interest might become much
more likely but not cross the threshold to change
accuracy metrics, and in this case logit difference
will detect it. Logit difference is also useful when
trying to measure the model behavior transition be-
tween two different, opposing prompts–in this case,
the logit difference for each of the prompts is used
for lower and upper baselines, and we can measure
the degree to which the logit difference behavior
moves from one pole to the other.

Logit flip metric We also extend the interchange
intervention accuracy metric from Geiger et al.
(2022) to classes of tokens by computing the per-
centage of cases where the logit difference between
T positive and T negative is inverted after an interven-
tion. This is a more discrete measure which is help-
ful for gauging whether the magnitude of the logit
differences is sufficient to flip model predictions.

Accuracy Out of a set of prompts, the percentage
for which the logits for tokens T correct are greater
than T incorrect. Usually each of these sets only has
one member (e.g., “Positive” and “Negative”).

2.4 Finding Directions
Here we defined three methods to find a sentiment
direction in each layer of a language model using
our ToyMovieReview dataset. In each of the fol-
lowing, let P be the set of positive inputs and N be
the set of negative inputs. For some input x ∈ P∪N,
let aL

x and vL
x be the vector in the residual stream

at layer L above the adjective and verb respectively.
We reserve {vL

x } as a hold-out set for testing. Let
the correct next token for P be p and for N be n.

k-means (KM) We fit 2-means to {aL
x : x ∈

P∪N}, obtaining cluster centroids {ci : i ∈ [0, 1]}
and take the direction c1 − c0.

Linear Probing The direction is the normed
weights w

||w|| of a logistic regression (LR) classi-
fier LR(aLx ) =

1
1+exp(−w·aL

x )
trained to distinguish

between x ∈ P and x ∈ N.

Distributed Alignment Search (DAS) We per-
form directional patching (2.2), pairing up inputs
p ∈ P, n ∈ N, then patching as ap 7→ ap − ap ·
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 have complete confidence in 
You brought joy to 
 despite the misery it 
 deemed a hate group 

(a) Nouns

 the Walt Disney World 
 the Brazilian Amazon has 
 presidential nominee Mitt Romney 
 overturn Bashar Assad. 

(b) Proper Nouns

 currently in remission with 
 a speedy recovery to 
 radiation and cancer ( 
 you a migraine. 

(c) Medical

et son bon à rien de mari 
ils étaient parfaitement normaux 
gris et triste et rien dans 
la plus sinistre pour aller 

(d) French

Figure 1: Visualizing the “sentiment activation”
(projection of the residual stream onto the senti-
ment axis) where blue is positive and red is negative.
Examples (1a-1c) show the k-means sentiment di-
rection for the first layer of GPT2-small on samples
from OpenWebText. Example 1d shows the k-means
sentiment direction for the 7th layer of Pythia-1.4b
on the opening of Harry Potter in French.
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Figure 2: Area plot of sentiment labels for OpenWeb-
Text samples by sentiment activation, i.e. the projec-
tion of the first residual stream layer of Pythia-2.8b
at that token onto the sentiment direction. The sen-
timent activation acts as a strong classifier, separat-
ing positive and negative tokens from a real dataset.
Ground truth classification was performed by GPT-4.
Direction was fit using k-means.

θ+ an · θ (and vice versa). The patching metric is
the logit difference

M(θ) =
∑

x∈P
[logitθ(x; p)− logitθ(x;n)] +

∑

x∈N
[logitθ(x;n)− logitθ(x; p)] .

We then determine θ as θ = argmax∥θ∥=1M(θ),
which we approximate using gradient descent.
This generalizes to finding a k-dimensional sub-
space by fitting an orthonormal rotation matrix
R which maximizes M(R), patching only the
first k components in the rotated basis ap 7→
ap + RT ([R(an − ap)]i:i≤k) and then the sub-
space is the span of the first k rows of R.

3 Finding a “Sentiment Direction”

The first question we investigate is whether there
exists a direction in the residual stream in a trans-
former model that represents the sentiment of the
input text, as a special case of the linear represen-
tation hypothesis (Mikolov et al., 2013; Park et al.,
2023; Jiang et al., 2024), that features are repre-
sented linearly as directions in activation space.
We show that the methods discussed above (e.g.
k-means, LR and DAS, see Section 2.4) all arrive
at a similar sentiment direction. We can visualize
the feature being represented by this direction by
projecting the residual stream at a given token/layer
onto it, using some text from the training distribu-
tion. We will call this the “sentiment activation”.

Finding and Comparing the Directions To find
initial directions corresponding with sentiment, we
first fit directions from the residual stream over
the adjective token in the ToyMovieReview dataset
(Section 2.1), using methods from Section 2.4. We
find extremely high cosine similarity (Figure A.1)
between the directions yielded by each of these
methods in Pythia-2.8b (cf. A.7 for other models).
This suggests that these are all noisy approxima-
tions of the same direction, and indeed our results
appear robust to choice of fitting method.

3.1 Correlational Evaluation

To examine the relationship between the directions
we had identified and real-world text, we investi-
gated how these directions correlate with sentiment
in natural text, as evaluated by human readers and
advanced LLMs (GPT-4).

Visualizing The Sentiment Direction By way of
making initial comparisons between the sentiment
direction and real-world text, we show (Figure 1)
a visualisation in the style of Neuroscope (Nanda,
2023b) where the sentiment activation (the projec-
tion of the residual stream onto the sentiment axis)
is represented by color, with red being negative and
blue being positive. It is important to note that the
direction being examined here was produced by
training on just 30 positive and 30 negative English
adjectives in an unsupervised way (using k-means
with k = 2). Notwithstanding, the extreme values
along this direction appear readily interpretable in
the wild, even in diverse text domains such as the
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direction flip percent flip median size

DAS 96% 107%
KM 96% 69%
LR 100% 86%

Figure 3: We created a dataset of 27 negation exam-
ples and compute the change in k-means sentiment
activation (projection of the residual stream onto the
sentiment axis) at the negated token (e.g. “doubt”)
between the 1st and 10th resid-post layers of GPT2-
small. Here “flip percent” is the percentage of the 27
prompts for which the sign of the sentiment activa-
tion has flipped and “flip median size” is the median
size of the flip relative to the size of the initial senti-
ment activation.

L00 You never fail. Don't doubt it. I don't like you. 
L01 You never fail. Don't doubt it. I don't like you. 
L02 You never fail. Don't doubt it. I don't like you. 
L03 You never fail. Don't doubt it. I don't like you. 
L04 You never fail. Don't doubt it. I don't like you. 
L05 You never fail. Don't doubt it. I don't like you. 
L06 You never fail. Don't doubt it. I don't like you. 
L07 You never fail. Don't doubt it. I don't like you. 
L08 You never fail. Don't doubt it. I don't like you. 
L09 You never fail. Don't doubt it. I don't like you. 
L10 You never fail. Don't doubt it. I don't like you. 
L11 You never fail. Don't doubt it. I don't like you. 
L12 You never fail. Don't doubt it. I don't like you. 

Figure 4: Visualizing the sentiment activations
across the layers of GPT2-small for a text where the
sentiment hinges on negations. Color represents sen-
timent activation (projection of the residual stream
onto the sentiment axis) at the given layer and posi-
tion. Red is negative, blue is positive. Each row is a
residual stream layer, first layer is at the top.

opening paragraphs of Harry Potter in French.

Quantifying classification accuracy To rigor-
ously validate this visual check, we binned the
sentiment activations of OpenWebText tokens from
the first residual stream layer of GPT2-small into
20 equal-width buckets and sampled 20 tokens
from each. Then we asked GPT-4 to classify into
Positive/Neutral/Negative.2 In Figure 2, we show
an area plot of the classifications by activation
bin in Pythia-2.8b (cf. Figure A.8 for other mod-
els). Defining a classifier using a threshold of the
top/bottom 0.1% of sentiment activations in GPT2-
small, we can achieve over 90% accuracy as com-
pared to GPT-4 classifications as our ground truth
(Figure A.8a). In the area plot we can see that the
left side area is dominated by the “Negative” la-
bel, whereas the right side area is dominated by
the “Positive” label and the central area is domi-
nated by the “Neutral” label. Hence the tails of the
activations seem highly interpretable as represent-
ing a bipolar sentiment feature. The large space in
the middle of the distribution simply occupied by
neutral words (rather than a more continuous degra-
dation of positive/negative) indicates superposition
of features (Elhage et al., 2022).

Negation Flips the Sentiment Direction in Later
Layers Using the k-means sentiment direction
after the first layer of GPT2-small, we can obtain
a view of how the model updates its view of sen-
timent during the forward pass, analogous to the

2We gave GPT-4 prompts of the form: “Your job is to
classify the sentiment of a given token (i.e. word or word
fragment) into Positive/Somewhat positive/Neutral/Somewhat
negative/Negative. Token: ‘{token}’. Context: ‘{context}’.
Sentiment: ” where the context length was 20 tokens centred
around the sampled token.

“logit lens” technique from nostalgebraist (2020).
The example text that we use here is “You never fail.
Don’t doubt it. I don’t like you”. In Figure 4, we see
how the sentiment activation flips when the context
of the sentiment word denotes that it is negated.
The words ‘fail’ and ‘doubt’ can be seen to flip
from negative in the first couple of layers to be-
ing positive after a few layers of processing. In
contrast, the word ‘like’ flips from positive to neg-
ative. We quantified this result using a toy dataset
of 27 similar examples and computed the flip in
sentiment activation during the forward pass for
different direction finding methods (Figure 3).

3.2 Causal Evaluation

The experiments described so far illustrate only
correlations between our identified directions and
sentiment. In order to demonstrate that these direc-
tions are indeed causal, we used causal mediation
analysis on our toy dataset and validated our find-
ings on two different real world datasets.

Sentiment directions are causally active. We
evaluate the sentiment direction using directional
patching on the adjective and verb token repre-
sentations for each layer (Section 2.2) in Table 1.
These evaluations are performed on prompts with
out-of-sample adjectives and the direction was not
trained on any verbs. We find that patching activa-
tions along a single direction can cause a significant
change in the prediction according to both of our
patching metrics, and the direction found using
DAS is able to completely flip the prediction.

Validation on SST We validate our sentiment di-
rections derived from toy datasets (Section 3.2) on
SST. We collapsed the labels down to a binary “Pos-
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Method ToyMovieReview Treebank

DAS (1 dim.) 109.8% 47.0%
DAS (2 dim.) 110.4% 42.8%
DAS (3 dim.) 110.2% 35.9%
k-means 67.2% 22.1%

LR 71.1% 30.8%
Random 0.4% 0.1%

(a) Logit difference metric: mean % change in logit differ-
ence (100% for one example means the sign of the logit
difference has flipped while the magnitude is unchanged)

Method ToyMovieReview Treebank

DAS (1 dim.) 100.0% 53.5%
DAS (2 dim.) 95.5% 49.0%
DAS (3 dim.) 95.5% 39.4%
k-means 72.7% 14.8%

LR 86.4% 16.8%
Random 0.0% 0.6%

(b) Logit flip metric: the percentage of examples for which
the logit difference changes sign

Table 1: Directional patching results for different methods in Pythia-1.4b (2.8b not shown due to compute time).
We report the best result found across layers. The columns show two evaluation datasets, ToyMovieReview and
Treebank. We present two different evaluation metrics in 1a and 1b.

itive”/“Negative”, took the unique phrases from the
source sentences, restricted to the ‘test’ partition
and took a subset where Pythia-1.4b can achieve
100% zero-shot accuracy, removing 17% of exam-
ples. Then we paired up phrases of an equal number
of tokens3 to make up 460 clean/corrupted pairs.
We used the scaffolding “Review Text: TEXT, Re-
view Sentiment:” and evaluated the logit difference
between “Positive” and “Negative” as our patching
metric. Using the same DAS direction from Sec-
tion 3 trained on just a few examples and flipping
the corresponding sentiment activation between
clean/corrupted in a single layer, we can flip the
model’s prediction 53.5% of the time (Table 1).
The sentiment direction learned from a toy dataset
can control behavior on a crowd-sourced dataset,
which is a remarkable generalization result.

Validation at the document level In order to
verify the applicability of our findings to larger
document-sized prompts, we performed directional
ablation (2.2) on the IMDB dataset, most of which
consists of multiple sentences. Each item of this
dataset was appended with “Review Sentiment:”
in order to prompt a classification completion, and
we selected 1000 examples each from the positive
and negative items that the model was capable of
classifying correctly. We used the sentiment direc-
tions found with DAS to ablate sentiment at every
token at every layer (using Pythia-2.8b). As a re-
sult, classification accuracy dropped from 100% to
57%, suggesting that much of the model’s ability to
complete the task above the 50% random baseline
is mediated by this single direction.

3We did this to maximise the chances of sentiment tokens
occurring at similar positions

4 The Summarization Motif for
Sentiment

Though we do not focus on circuit4 analysis here,
we note that initial patching experiments in the
style of (Wang et al., 2022) revealed patterns which
motivated our definition of the “summarization mo-
tif”: when there is information (e.g. sentiment)
stored at certain ‘placeholder’ or ‘summary’ tokens
(e.g. commas, periods and certain nouns) despite
these tokens not inherently having the information.
Moreover, this information is causally significant
for the model to complete a certain task (e.g. senti-
ment classification). We provide a detailed circuit-
based analysis of this phenomenon in Appendix
A.8. In this section, we focus on verifying this be-
haviour in Pythia-2.8b, and we replicate for other
models in the Appendix (Table 5).

At first, we verify this phenomenon on toy
datasets where we are able to isolate the effect
using activation patching experiments. We find
that in many cases this summarization results in a
partial information bottleneck, in which the summa-
rization points become as important (or sometimes
more important) than the phrases containing the
relevant information for sentiment tasks. Next, we
reproduce these findings on natural text using the
SST dataset (Section 2.1). We performed ablation
experiments (Section 2.2) on comma positions. If
comma representations do not summarize senti-
ment information, then our experiments should not
damage the model’s abilities. However, our results
reveal a clear summarization motif for SST.

4We use the term “circuit” as defined by Wang et al. (2022),
in the sense of a computational subgraph that is responsible
for a significant proportion of the behavior of a neural network
on some predefined task.
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Original prompt Jack loves parties, ...
Jack feels very

Flipped prompt Jack hates parties, ...
Jack feels very

Freezing nodes Attention pattern,
value vectors at commas

Patching nodes Value vectors pre-comma,
e.g. Jack loves parties

Change in -38%
logit difference

(a) Isolating the effect of pre-comma
phrases in ToyMoodStory

Original prompt Jack loves parties, ...
Jack feels very

Flipped prompt Jack hates parties, ...
Jack feels very

Freezing nodes Attention pattern
Patching nodes Value vectors at

commas and periods
Change in -37%

logit difference

(b) Isolating the effect of commas in
ToyMoodStory

Original prompt Jack loves parties, ...
Jack feels very

Flipped prompt Jack hates parties, ...
Jack feels very

Freezing nodes Attention pattern
Patching nodes All value vectors

Change in -75%
logit difference

(c) Accumulating effects of commas
and phrases in ToyMoodStory

Table 2: Patching experiments in ToyMoodStory, Pythia 2.8b. The similar results for 2a and 2b indicate that
summarization information is comparably important as the original semantic information.

Original prompt Jack loves parties.
[irrelevant text...]

Jack feels very
Flipped prompt Jack hates parties.

[irrelevant text...]
Jack feels very

Freezing nodes Attention pattern,
value vectors at periods

Patching nodes Value vectors pre-period,
e.g. Jack loves parties

(a) Isolating the effect of pre-period
phrases in ToyMoodStory

Original prompt Jack loves parties.
[irrelevant text...]

Jack feels very
Flipped prompt Jack hates parties.

[irrelevant text...]
Jack feels very

Freezing nodes Attention pattern
Patching nodes Value vectors at

periods

(b) Isolating the effect of periods in
ToyMoodStory

Count of irrelevant tokens Ratio of LD change
after preference phrase for periods vs. phrases

0 tokens 0.29
10 tokens 0.63
18 tokens 0.92
22 tokens 1.15

(c) Ratio between logit difference change for pe-
riods (3b) vs. pre-period (3a) phrases after patch-
ing values

Table 3: Patching experiments in ToyMoodStory with irrelevant text injection

Summarization information is comparably im-
portant as original semantic information In
order to determine the extent of the information
bottleneck presented by commas in sentiment pro-
cessing, we tested the model’s performance on Toy-
MoodStory (Section 2.1). We performed an activa-
tion patching experiment (Section 2.2) where we
patched the attention value vectors at certain groups
of token positions to flip the sentiment, along with
the modification that we froze the model’s atten-
tion patterns to ensure the model used the informa-
tion from the patched commas in exactly the same
way as it would have used the original information.
Without this step, the model could simply avoid
attending to the commas. Concretely, the three
different interventions were:

1. Patching the value vectors at the pre-comma
phrases (e.g., patching “John hates parties,”
with “John loves parties,”) while freezing the
value vectors at the commas and periods so
they retain their original, unflipped values.
This experiment (Table 2a) was designed to
isolate the effect of the phrases, removing any
reliance on punctuation tokens.

2. Patching the value vectors at the two commas
and two periods alone. This experiment (Ta-
ble 2b) was designed to isolate the effect of

the “summarization motif”.

3. Patching all of the value vectors. This exper-
iment (Table 2c) was designed to determine
how the effects of the pre-comma phrases and
commas accumulate to create the total effect
of flipping the full phrase.

The experimental results (Table 2) show a similar
drop in the logit difference for both the pre-comma
and comma patching, demonstrating that fully half
the effect of these phrases on the final logits for the
correct tokens are mediated through the “summa-
rization” motif. We continue to focus on results
from Pythia-2.8b, but also replicated these findings
across several models (Appendix, Table 5).

Impact of summarization increases with dis-
tance We also observed that reliance on sum-
marization tends to increase with greater distances
between the preference phrases and the final part of
the prompt that would reference them. To test this,
we injected irrelevant text5 of varying sizes after
each of the preference phrases in ToyMoodStory

5E.g. “John loves parties. He has a red hat and wears it
everywhere, especially when he is riding his bicycle through
the city streets. Mark hates parties. He has a purple hat
but only wears it on Sundays, when he takes his weekly walk
around the lake. One day, they were invited to a grand gala.
John feels very”
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Directions DAS sentiment direction
Positions All
Layers All

Ablation type Mean-ablation
Change in −71%

logit difference
Change in −38%
accuracy

(a) Baselining the importance
of the sentiment direction in
SST

Directions Random direction
Positions All
Layers All

Ablation type Mean-ablation
Change in < 1%

logit difference
Change in < 1%
accuracy

(b) Baselining the importance
of random directions in SST

Directions DAS sentiment direction
Positions Commas
Layers All

Ablation type Mean-ablation
Change in −18%

logit difference
Change in −18%
accuracy

(c) Isolating the sentiment axis
information at commas in SST

Directions Full Space
Positions Commas
Layers All

Ablation type Mean-ablation
Change in −17%

logit difference
Change in −19%
accuracy

(d) Isolating the importance of
the full residual stream at com-
mas in SST

Table 4: Ablation experiments in Stanford Sentiment Treebank (Section 2.1)

texts (after “John loves parties.” etc.). We then
computed a similar pair of logit difference metrics
as depicted in 2, comparing the effect of patching
value vectors at either the periods (3b) or the pre-
period phrases (3a). Next we measured the ratio
between these two logit difference changes for the
periods vs. pre-period phrases, with higher values
indicating more reliance on period summaries (3c).
We found that the periods can be up to 15% more
important than the actual phrases as this distance
grows. Although these results are only a first step
in assessing the importance of summarization rela-
tive to prompt length, they suggest this motif may
become more significant as models grow in context
length, and thus merits further study.

4.1 Summarization behavior in real-world
datasets

Data preparation We appended the suffix “Re-
view Sentiment:” to each of the prompts from SST
and evaluated Pythia-2.8b on zero-shot classifica-
tion according to whether positive or negative have
higher probability, filtering to ensure these comple-
tions are in the top 10 tokens predicted. We then
take the subset of examples that Pythia-2.8b classi-
fies correctly that have at least one comma, which
means we start with a baseline of 100% accuracy.

Ablation baselines We performed two baseline
experiments in order to obtain a control for our later
experiments. First to measure the total effect of
the sentiment directions, we performed directional
ablation (as described in 2.2) using the sentiment
directions found with DAS, ablating along a single
axis of the residual stream at every token position
in every layer (4a), resulting in a 71% reduction
in the logit difference and a 38% drop in accuracy
(to 62% , where 50% is random chance). We also
performed directional ablation on all tokens with a
small set of random directions (4b), resulting in a
< 1% change to the same metrics.

Directional ablation at all comma positions We
then performed directional ablation–using the DAS
sentiment direction (2.4) – to every comma in each
prompt (4c), regardless of position, resulting in an
18% drop in the logit difference and an 18% drop
in zero-shot classification accuracy. Comparing
the latter result to the baseline from 4a indicates
that nearly 50% of the model’s sentiment-direction-
mediated ability to perform the task accurately was
mediated via sentiment information at the commas.
We find this particularly significant because we did
not take any special effort to ensure that commas
were placed at the end of sentiment phrases.

Mean-ablation of the full residual stream at all
comma positions Instead of relying on the senti-
ment direction computed using DAS as above, we
also performed mean ablation experiments (2.2) on
the full residual stream at comma positions. Specif-
ically, we replaced each comma residual stream
vector with the mean comma residual stream from
the entire dataset in a layerwise fashion (4d). This
resulted in a 17% drop in logit difference and an
accuracy drop of 19% .

5 Conclusion

The two central novel findings of this research are
the existence of a linear representation of sentiment
and the use of summarization to store sentiment
information. We have seen that the sentiment di-
rection is causal and central to the circuitry of sen-
timent processing. Remarkably, this direction is
so stark in the residual stream space that it can be
found even with the most basic methods and on a
tiny toy dataset, yet generalize to diverse real-world
datasets. Summarization is a motif present in larger
models with longer context lengths and greater pro-
ficiency in zero-shot classification. These sum-
maries present a tantalising glimpse into the world-
modelling behavior of transformers.
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A Appendix

A.1 Related Work
Sentiment Analysis Understanding the emotional valence in text data is one of the first NLP tasks to be
revolutionized by deep learning (Socher et al., 2013) and remains a popular task for benchmarking NLP
models (Rosenthal et al., 2017; Nakov et al., 2016; Potts et al., 2021; Abraham et al., 2022). For a review
of the literature, see (Pang and Lee, 2008; Liu, 2012; Grimes, 2014).

Understanding Internal Representations This research was inspired by the field of Mechanistic
Interpretability, an agenda which aims to reverse-engineer the learned algorithms inside models (Olah
et al., 2020; Elhage et al., 2021b; Nanda et al., 2023a). Exploring representations (Section 3) and world-
modelling behavior inside transformers has garnered significant recent interest. This was studied in the
context of synthetic game-playing models by Li et al. (2023) and evidence of linearity was demonstrated
by Nanda (2023a) in the same context. Other work studying examples of world-modelling inside neural
networks includes Li et al. (2021); Patel and Pavlick (2022); Abdou et al. (2021). Another framing of a
very similar line of inquiry is the search for latent knowledge (Christiano et al., 2021; Burns et al., 2022).
Prior to the transformer, representations of sentiment specifically were studied by Radford et al. (2017),
notably, their finding of a sentiment neuron also implies a linear representation of sentiment.

Causal Analysis of Language Models We approach our experiments from a causal mediation analysis
perspective. Our approach to identifying computational subgraphs that utilize feature representations as
inspired by the ‘circuits analysis’ framework (Stefan Heimersheim, 2023; Varma et al., 2023; Hanna et al.,
2023), especially the tools of mean ablation and activation patching (Vig et al., 2020; Geiger et al., 2021,
2023a; Meng et al., 2023; Wu et al., 2022, 2023; Wang et al., 2022; Conmy et al., 2023; Chan et al., 2023;
Cohen et al., 2023). We use Distributed Alignment Search (Geiger et al., 2023b) in order to apply these
ideas to specific subspaces.

A.2 Limitations
Many of our casual abstractions do not explain 100% of sentiment task performance. There is likely
circuitry we’ve missed, possibly as a result of distributed representations or superposition (Elhage et al.,
2022) across components and layers. This may also be a result of self-repair behavior (Wang et al., 2022;
McGrath et al., 2023). Patching experiments conducted on more diverse sentence structures could help to
better isolate sentiment circuitry from more task-specific machinery.

The use of small datasets versus many hyperparameters and metrics poses a constant risk of gaming our
own measures. Our results on the larger and more diverse SST dataset, and the consistent results across a
range of models help us to be more confident in our conclusions.

Distributed Alignment Search (DAS) outperformed on most of our metrics but presents possible dangers
of overfitting to a particular dataset and taking the activations out of distribution (Lange et al., 2023). We
include simpler tools such as Logistic Regression as a sanity check on our findings. Ideally, we would
love to see a set of best practices to avoid such illusions.

A.3 Implications and future work
The summarization motif emerged naturally during our investigation of sentiment, but we would be very
interested to study it in a broader range of contexts and understand what other factors of a particular model
or task may influence the use of summarization.

When studying the circuitry of sentiment, we focused almost exclusively on attention heads rather
than MLPs. However, early results suggest that further investigation of the role of MLPs and individual
neurons is likely to yield interesting results (A.10).

A.4 Impact Statement
This paper aims to advance the field of Mechanistic Interpretability. We see the long-term goal of this line
of research as being able to help detect dangerous computation in language models such as deception.
Even if the existence of a single “deception direction” in activation space seems a bit naive to postulate,
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Figure A.1: Cosine similarity of directions learned by different methods in Pythia-2.8b’s first layer. Each sentiment
direction was derived from adjective representations in the ToyMovieReview dataset (Section 2.1).

direction accuracy
k-means 86.4%

PCA 82.2%
Mean Diff 85.0%

LR 90.5%
DAS 80.8%

Figure A.2: Accuracy using sentiment activations from the first residual stream layer of Pythia 2.8B to classify
tokens as positive or negative. The threshold taken is the top/bottom 0.1% of activations over OpenWebText.
Classification was performed by GPT-4.

hopefully in the future many of the tools developed here will help to detect representations of deception or
of knowledge that the model is concealing, helping to prevent possible harms from LLMs.

A.5 Further methods for finding directions

Using the same notation as in section 2.4, here are two further methods for computing a ‘sentiment
direction’.

Mean Difference (MD) The direction is computed as 1
|P|

∑
p∈P a

L
p − 1

|N|
∑

n∈N aL
n .

Principal Component Analysis (PCA) The direction is the first component of {aL
x : x ∈ P ∪ N}.

Convergence of five direction-finding methods We find high cosine similarity (Figure A.1) between
the 5 different direction-finding methods. Note that cosine similarity is a potentially misleading metric in
cases where the vectors can share a bias, but this is not a concern for a linear probe direction where there
is no meaningful notion of a shared bias.

A.6 Further evidence for a linear sentiment representation

A.6.1 Clustering
In Section 2.4, we outline just a few of the many possible techniques for determining a direction which
hopefully corresponds to sentiment. Is it overly optimistic to presume the existence of such a direction?
The most basic requirement for such a direction to exist is that the residual stream space is clustered. We
confirm this in two different ways.
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(b) PCA on in-sample adjectives and out-of-sample verbs
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Figure A.3: 2-D PCA visualization of the embedding for a handful of adjectives and verbs (GPT2-small)

First we fit 2-D PCA to the token embeddings for a set of 30 positive and 30 negative adjectives. In
Figure A.3, we see that the positive adjectives (blue dots) are very well clustered compared to the negative
adjectives (red dots). Moreover, we see that sentiment words which are out-of-sample with respect to the
PCA (squares) also fit naturally into their appropriate color. This applies not just for unseen adjectives
(Figure A.3a) but also for verbs, an entirely out-of-distribution class of word (Figure A.3b).

Secondly, we evaluate the accuracy of 2-means trained on the Simple Movie Review Continuation
adjectives (Section 2.1). The fact that we can classify in-sample is not very strong evidence, but we
verify that we can also classify out-of-sample with respect to the k-means fitting process. Indeed, even on
hold-out adjectives and on the verb tokens (which are totally out of distribution), we find that the accuracy
is generally very strong across models. We also evaluate on a fully out of distribution toy dataset (“simple
adverbs”) of the form “The traveller [adverb] walked to their destination. The traveller felt very”. The results can
be found in Figure A.4. This is strongly suggestive that we are stumbling on a genuine representation of
sentiment.

A.6.2 Activation addition

We perform “activation addition” (Turner et al., 2023), i.e. we add a multiple of the sentiment direction to
the first layer residual stream during each forward pass while generating sentence completions. We use
GPT2-small for a single positive simple movie review continuation prompt: “I really enjoyed the movie, in
fact I loved it. I thought the movie was just very...”. We seek to verify that this can flip the generated outputs
from positive to negative. The “steering coefficient” is the multiple of the sentiment direction which we
add to the first layer residual stream.

By adding increasingly negative multiples of the sentiment direction, we find that indeed the completions
become increasingly negative, without completely destroying the coherence of the model’s generated text
(Figure A.5). We are wary of taking the model’s activations out of distribution using this technique, but
we believe that the smoothness of the transition in combination with the knowledge of our findings in the
patching setting give us some confidence that these results are meaningful.

A.6.3 Multi-lingual sentiment

We use the first few paragraphs of Harry Potter in English and French as a standard text (Elhage et al.,
2021b). We find that intermediate layers of Pythia-2.8b demonstrate intuitive sentiment activations for the
French text (Figure A.6). It is important to note that none of the models are very good at French, but this
was the smallest model where we saw hints of generalization to other languages. The representation was
not evident in the first couple of layers, probably due to the poor tokenization of French words.
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kmeans accuracy (gpt2-small)
  

  test_pos ADJ VRB ADV

train_pos train_layer    

ADJ

0 100.0% 83.3% 50.0%

1 100.0% 100.0% 55.3%

2 100.0% 100.0% 60.5%

3 100.0% 100.0% 65.8%

4 100.0% 100.0% 78.9%

5 100.0% 100.0% 57.9%

6 100.0% 100.0% 84.2%

7 100.0% 100.0% 71.1%

8 100.0% 100.0% 65.8%

9 100.0% 100.0% 68.4%

10 91.7% 100.0% 60.5%

11 91.7% 100.0% 60.5%

12 33.3% 58.3% 31.6%

test_set simple_test simple_adverb

train_set

simple_train

(a) GPT-2 Small
kmeans accuracy (gpt2-medium)

  

  test_pos ADJ VRB ADV

train_pos train_layer    

ADJ

0 100.0% 100.0% 50.0%

1 100.0% 83.3% 50.0%

2 100.0% 100.0% 47.4%

3 91.7% 100.0% 47.4%

4 91.7% 100.0% 47.4%

5 100.0% 100.0% 47.4%

6 100.0% 100.0% 68.4%

7 91.7% 100.0% 50.0%

8 91.7% 100.0% 84.2%

9 100.0% 100.0% 86.8%

10 100.0% 100.0% 71.1%

11 100.0% 100.0% 94.7%

12 100.0% 100.0% 65.8%

13 100.0% 100.0% 63.2%

14 100.0% 100.0% 73.7%

15 100.0% 100.0% 60.5%

16 100.0% 100.0% 57.9%

17 100.0% 100.0% 55.3%

18 100.0% 100.0% 55.3%

19 100.0% 100.0% 76.3%

20 100.0% 100.0% 84.2%

21 100.0% 91.7% 65.8%

22 100.0% 100.0% 52.6%

23 100.0% 100.0% 57.9%

24 83.3% 58.3% 50.0%

test_set simple_test simple_adverb

train_set

simple_train

(b) GPT-2 Medium

Figure A.4: 2-means classification accuracy for various GPT-2 sizes, split by layer (showing up to 24 layers)
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Figure A.5: Area plot of sentiment labels for generated outputs by activation steering coefficient, starting from
a single positive movie review continuation prompt. Activation addition (Turner et al., 2023) was performed in
GPT2-small’s first residual stream layer. Classification was performed by GPT-4.
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<|endoftext|> 
    Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly normal, thank
 you very much. They were the last people you'd expect to be involved in anything strange or mysterious,
 because they just didn't hold with such nonsense.  

    Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, beefy man with
 hardly any neck, although he did have a very large mustache. Mrs. Dursley was thin and blonde and had nearly
 twice the usual amount of neck, which came in very useful as she spent so much of her time craning over
 garden fences, spying on the neighbors. The Dursleys had a small son called Dudley and in their opinion there
 was no finer boy anywhere.  

    The Dursleys had everything they wanted, but they also had a secret, and their greatest fear was that
 somebody would discover it. They didn't think they could bear it if anyone found out about the Potters. Mrs.
 Potter was Mrs. Dursley's sister, but they hadn't met for several years; in fact, Mrs. Dursley pretended she didn
't have a sister, because her sister and her good-for-nothing husband were as unDursleyish as it was possible to
 be. The Dursleys shuddered to think what the neighbors would say if the Potters arrived in the street. The Durs
leys knew that the Potters had a small son, too, but they had never even seen him. This boy was another good
 reason for keeping the Potters away; they didn't want Dudley mixing with a child like that.  

    When Mr. and Mrs. Dursley woke up on the dull, gray Tuesday our story starts, there was nothing about the
 cloudy sky outside to suggest that strange and mysterious things would soon be happening all over the country.
 Mr. Dursley hummed as he picked out his most boring tie for work, and Mrs. Dursley gossiped away happily
 as she wrestled a screaming Dudley into his high chair.

(a) First 4 paragraphs of Harry Potter in English

<|endoftext|> 
Mr et Mrs Dursley, qui habitaient au 4, Privet Drive, avaient toujours affirmé avec la plus grande fierté qu'ils é
taient parfaitement normaux, merci pour eux. Jamais quiconque n'aurait imaginé qu'ils puissent se trouver impl
iqués dans quoi que ce soit d'étrange ou de mystérieux. Ils n'avaient pas de temps à perdre avec des sornettes. 
 
Mr Dursley dirigeait la Grunnings, une entreprise qui fabriquait des perceuses. C'était un homme grand et mass
if, qui n'avait pratiquement pas de cou, mais possédait en revanche une moustache de belle taille. Mrs Dursley
, quant à elle, était mince et blonde et disposait d'un cou deux fois plus long que la moyenne, ce qui lui était
 fort utile pour espionner ses voisins en regardant par-dessus les clôtures des jardins. Les Dursley avaient un
 petit garçon prénommé Dudley et c'était à leurs yeux le plus bel enfant du monde. 
 
Les Dursley avaient tout ce qu'ils voulaient. La seule chose indésirable qu'ils possédaient, c'était un secret dont
 ils craignaient plus que tout qu'on le découvre un jour. Si jamais quiconque venait à entendre parler des Potter,
 ils étaient convaincus qu'ils ne s'en remettraient pas. Mrs Potter était la soeur de Mrs Dursley, mais toutes
 deux ne s'étaient plus revues depuis des années. En fait, Mrs Dursley faisait comme si elle était fille unique,
 car sa soeur et son bon à rien de mari étaient aussi éloignés que possible de tout ce qui faisait un Dursley. Les
 Dursley tremblaient d'épouvante à la pensée de ce que diraient les voisins si par malheur les Potter se montra
ient dans leur rue. Ils savaient que les Potter, eux aussi, avaient un petit garçon, mais ils ne l'avaient jamais vu.
 Son existence constituait une raison supplémentaire de tenir les Potter à distance: il n'était pas question que le
 petit Dudley se mette à fréquenter un enfant comme celui-là. 
 
Lorsque Mr et Mrs Dursley s'éveillèrent, au matin du mardi où commence cette histoire, il faisait gris et triste
 et rien dans le ciel nuageux ne laissait prévoir que des choses étranges et mystérieuses allaient bientôt se produ
ire dans tout le pays. Mr Dursley fredonnait un air en nouant sa cravate la plus sinistre pour aller travailler et
 Mrs Dursley racontait d'un ton badin les derniers potins du quartier en s'efforçant d'installer sur sa chaise de b
ébé le jeune Dudley qui braillait de toute la force de ses poumons. 

(b) First 3 paragraphs of Harry Potter in French

Figure A.6: First paragraphs of Harry Potter in different languages. Model: Pythia-2.8b.
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A.6.4 Universality examples
For comparison with Figures A.1, 2 and Table 1, we include Figure A.7a, Figure A.8 and Figure A.7
where we visualise the similarity and classification accuracy of directions found by different methods, this
time for GPT2-small (Section 2.1), StableLM 3B (Tow, 2023), Gemma 2B (Team et al., 2024) and Qwen
1.8B (Bai et al., 2023) instead of Pythia-2.8b.

A.6.5 Generalization at intermediate layers
If the sentiment direction was simply a trivial feature of the token embedding, then one might expect that
directional patching would be most effective in the first or final layer. However, we see in Figure A.9 that
in fact it is in intermediate layers of the model where we see the strongest out-of-distribution performance
on SST. This suggests the speculative hypothesis that the model uses the residual stream to form abstract
concepts in intermediate layers and this is where the latent knowledge of sentiment is most prominent.

A.7 Limitations to our linearity claim
Did we find a truly universal sentiment direction, or merely the first principal component of directions
used across different sentiment tasks? As found by Bricken et al. (2023), we suspect that this feature could
be “split” further into more specific sentiment features. We performed an experiment to help validate
that the common sentiment feature across tasks is one dimensional. DAS can be used not just to find
a causally impactful direction, but a causal subspace of any dimension. Figure A.10 demonstrates that
whilst increasing the DAS dimension improves the patching metric in-sample (A.10a), the metric does not
improve out-of-distribution (A.10b).

Similarly, one might wonder if there is really a single bipolar sentiment direction or if we have simply
found the difference between a “positive” and a “negative” sentiment direction. It turns out that this
distinction is not well-defined, given that we find empirically that there is a direction corresponding to
“valenced words”. Indeed, if x is the valence direction and y is the sentiment direction, then p = x+ y
represents positive sentiment and n = x − y is the negative direction. Conversely, we can reframe as
starting from the positive/negative directions p and n, and then re-derive x = p+n

2 and y := p−n
2 .

A.8 Detailed circuit analysis
In order to build a picture of each circuit, we used the process pioneered in Wang et al. (2022):

• Identify which model components have the greatest impact on the logit difference when path patching
is applied (with the final result of the residual stream set as the receiver).

• Examine the attention patterns (value-weighted, in some cases) and other behaviors of these compo-
nents (in practice, attention heads) in order to get a rough idea of what function they are performing.

• Perform path-patching using these heads (or a distinct cluster of them) as receivers.

• Repeat the process recursively, performing contextual analyses of each “level” of attention heads in
order to understand what they are doing, and continuing to trace the circuit backwards.

In each path-patching experiment, change in logit difference is used as the patching metric. We started
with GPT-2 as an example of a classic LLM displays a wide range of behaviors of interest, and moved to
larger models when necessary for the task we wanted to study (choosing, in each case, the smallest model
that could do the task).

A.8.1 Simple sentiment - GPT-2 small
In this sub-section, we present an overview of circuit findings that give qualitative hints of the summariza-
tion motif, and restrict quantitative analysis of the summarization motif to 4.

We examined the circuit performing the ToyMovie review task, i.e. for the following sentence template:
“I thought this movie was ADJECTIVE, I VERBed it. Conclusion: This movie is”. Mechanistically, this is a binary
classification task, and a naive hypothesis is that attention heads attend directly from the final token
(which we label ‘END’) to the valenced tokens (the adjective token, ADJ, and the verb token VRB) and map
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(b) Gemma-2B

100.0% 58.5% 80.3% 80.3% 3.1%

58.5% 100.0% 68.5% 69.9% 5.0%

80.3% 68.5% 100.0% 100.0% 4.4%

80.3% 69.9% 100.0% 100.0% 4.5%

3.1% 5.0% 4.4% 4.5% 100.0%

DAS
K_means

LR
Mean_diff
Random

	 DAS K_means LR Mean_diff Random

(c) Qwen-1.8B
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(d) StableLM-3B

Figure A.7: Cosine similarity of directions learned by different methods in the first layer residual stream of different
models. Each sentiment direction was derived from adjective representations in the ToyMovieReview dataset
(Section 2.1).
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Figure A.8: Area plot of sentiment labels for OpenWebText samples by sentiment activation, i.e. the projection of
the first residual stream layer at that token onto the sentiment direction (left). Accuracy using sentiment activations
to classify tokens as positive or negative (right). The threshold taken is the top/bottom 0.1% of activations over
OpenWebText. Classification was performed by GPT-4.

78



0 5 10

0

10

20

30

40

50

0 5 10 0 5 10 15 20 0 5 10 15 20

method

das

kmeans

logistic_regression

Out-of-distribution directional patching performance by method and layer

layer layer layer layer

lo
g
it

_
d
iff

 (
%

)
model=gpt2-small model=pythia-160m model=pythia-410m model=pythia-1.4b

(a) Smaller models

0 5 10 15

0

10

20

30

40

50

0 5 10 15 20

method

das

logistic_regression

Out-of-distribution direction patching performance by method and layer

layer layer

lo
g
it

_
d
iff

 (
%

)

model=gemma-2b model=Qwen-1_8B

(b) 2B models

Figure A.9: Patching results for directions trained on toy datasets and evaluated on the Stanford Sentiment Treebank
test partition. We tend to find the best generalization when training and evaluating at a layer near the middle of
the model. We scaffold the prompt using the suffix Overall the movie was very and compute the logit difference
between good and bad. The patching metric (y-axis) is then the % mean change in logit difference.

positive sentiment to positive outputs and vice versa. This does happen but it is not the only mechanism.
Attention head output is causally important at intermediate token positions (in particular, the final ‘movie’
token, SUM), which are then read from when producing output at END. We consider this an instance of
summarization, in which the model aggregates causally-important information relating to an entity at a
particular token for later usage, rather than simply attending back to the original tokens that were the
source of the information.

Using a threshold of 5%-or-greater damage to the logit difference for our patching experiments, we
found that GPT-2 Small contained 4 primary heads contributing to the most proximate level of circuit
function–10.4, 9.2, 10.1, and 8.5 (using “layer.head” notation). Examining their value-weighted attention
patterns, we found that attention to ADJ and VRB in the sentence was most prominent in the first three
heads, but 8.5 attended primarily to the second “movie” token. We also observed that 9.2 attended to this
token as well as to ADJ. We label 8.5 and 9.2 as “summary readers”, and the second “movie” token as the
SUM token (as in “summary”). (Results of activation patching can be seen in Fig. A.12.)

Conducting path-patching with 8.5 and 9.2 as receivers, we identified two heads–7.1 and 7.5–that
primarily attend to ADJ and VRB from the “movie” token. We further determined that the output of these
heads, when path-patched through 9.2 and 8.5 as receivers, was causally important to the circuit (with
patching causing a logit difference shift of 7% and 4% respectively for 7.1 and 7.5). Hence we label 7.1
and 7.5 as “summary writers”. This was not the case for other token positions, which demonstrates that
causally relevant information is indeed being specially written to the SUM token, as suggested by our
choice of label.

Repeating our analysis with lower thresholds yielded more heads with the same behavior but weaker
effect sizes, adding 9.10, 11.9, and 6.4 as summary reader, direct sentiment reader, and sentiment
summarizer respectively. This gives a total of 9 heads making up the circuit.

In summary, these results suggest that there is a circuit made up of 9 attention heads accomplishing the
task as follows:

1. Identify sentiment-laden words in the prompt, at ADJ and VRB.
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(a) Training loss for DAS on adjectives in a toy movie review dataset

(b) Validation loss for DAS on a simple character mood dataset with a varying adverb

Figure A.10: DAS sweep over the subspace dimension (GPT2-small). The runs are labelled with the integer n
where dDAS = 2n−1. Loss is 1 minus the usual patching metric.
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Figure A.11: Primary components of GPT-2 sentiment circuit for the ToyMovieReview dataset. Here we can see
both direct use of sentiment-laden words in predicting sentiment at END as well as an example of the summarization
motif at the SUM position (the final ‘movie’ token). Heads 7.1 and 7.5 write to this position and this information is
causally relevant to the contribution of the summary readers at END.

2. “Summary writer” attention heads write out sentiment information to SUM (the final “movie” token).

3. “Summary reader” attention heads read from ADJ, VRB and SUM and write to END.6

To further validate this circuit and the involvement of the sentiment direction, we patched the entirety
of the circuit at the ADJ and VRB positions along the sentiment direction only, achieving a 58.3% rate of
logit flips and a logit difference drop of 54.8% (in terms of whether a positive or negative next token was
predicted). Patching the circuit at those positions along all directions resulted in flipping 97% of logits
and a logit difference drop of 75%, showing that the sentiment direction is responsible for the majority of
the function of the circuit.

A.8.2 ToyMoodStory circuit - Pythia-2.8b
We next examined the circuit that processes the ToyMoodStory dataset (Section 2.1) in Pythia-2.8b, the
smallest model that could perform this more complex task that requires more summarization. The sentence
template is Carl hates parties, and avoids them whenever possible. Jack loves parties, and joins them whenever
possible. One day, they were invited to a grand gala. Jack feels very [excited/nervous]. We did not attempt to
reverse-engineer the entire circuit, but examined it from the perspective of what matters causally for
sentiment processing–especially determining to what extent summarization occurred.

6We note that our patching experiments indicate that there is no causal dependence on the output of other model components
at the ADJ and VRB positions–only at the SUM position.

7That is, the attention pattern weighted by the norm of the value vector at each position as per Kobayashi et al. (2020). We
favor this over the raw attention pattern as it filters for significant information being moved.
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Figure A.12: Activation patching results for the GPT-2 Small ToyMovieReview circuit, showing how much of the
original logit difference is recaptured when swapping in activations from xorig (when the model is otherwise run on
xflipped). Note that attention output is only important at the SUM position, and that this information is important to
task performance at the residual stream layers (8 and 9) in which the summary-readers reside. Other than this, the
most important residual stream information lies at the ADJ and VRB positions.
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Figure A.13: Value-weighted7averaged attention to commas and comma phrases in Pythia-2.8b from the top
two attention heads writing to the repeated name and “feels” tokens–two key components of the summarization
sub-circuit in the ToyMoodStories task. Note that they attend heavily to the relevant comma from both destination
positions.

Following the same process as with GPT-2 with preference/sentiment-flipped prompts (that is, taking
xorig to be “John hates parties,... Mary loves parties,” and xflipped to be “John loves parties,... Mary hates
parties”), we initially identified 5 key heads that were most causally important to the logit difference at
END: 17.19, 22.5, 14.4, 20.10, and 12.2 (in “layer.head” notation). Examining the value-weighted attention
patterns, we observed that the top token receiving attention from END was always the repeated name
RNAME (e.g., “John” in “John feels very”) or the “feels” token FEEL, indicating that some summarization
may have taken place there.

We also observed that the top token attended to from RNAME and FEEL was in fact the comma at the
end of the queried preference phrase (that is, the comma at the end of “John hates parties”). We designate
this position COMMASUM.

Multi-functional heads Interestingly, we observed that most of these heads were multi-functional: that
is, they both attended to COMMASUM from RNAME and FEEL, and also attended to RNAME and FEEL from
END, producing output in the direction of the logit difference. This is possible because these heads exist
at different layers, and later heads can read the summarized information from previous heads as well as
writing their own summary information.

Direct effect heads Specifically, the direct effect heads were:
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• Head 17.19 did not attend to commas significantly, but did attend to the periods at the end of each
preference sentence in addition to its primary attention to RNAME and FEEL, and did not display
COMMASUM-reading behavior.

• Head 22.5 attended almost exclusively to FEEL, and did not display COMMASUM-reading behavior.

• Other direct effect heads (14.4, 20.10 and 12.2) did show COMMASUM-reading behavior as well as
reading from the near-end tokens to produce output in the direction of the logit difference. In each
case, we verified with path-patching that information from these positions was causally relevant.

Name summary writers We also found important heads (12.17 being by far the most important) that
are only engaged with attending to COMMASUM and producing output at RNAME and FEEL.

Comma summary writers We further investigated what circuitry was causally important to task
performance mediated through the COMMASUM positions, but did not flesh this out in full detail; after
finding initial examples of summarization, we focused on its causal relevance and interaction with the
sentiment direction, leaving deeper investigation to future work.

Overview of heads In summary, the three main attention heads involved in this circuit were as follows.

• “Comma-reading heads”: A set of attention heads attended primarily to the comma following the
preference phrase for the queried subject (e.g. John hates parties,), and secondarily to other words
in the phrase, as seen in Figure A.13. We observed this phenomenon both with regular attention
and value-weighted attention, and found via path patching that these heads relied primarily on the
comma token for their function, as seen in Figure A.15.

• “Name-writing heads”: Heads attending to preference phrases (e.g., the entirety of “John loves parties,”
including the final comma) tended to write to the repeated name token near the end of the sentence
(John) as well as to the feels token–another type of summarization behavior.

• “Name-reading heads”: Later heads attended to the repeated name and feels tokens, affecting the output
logits at END.

A.9 Additional summarization findings
A.9.1 Circuitry for processing commas vs. original phrases is semi-separate
Though there is overlap between the attention heads involved in the circuitry for processing sentiment
from key phrases and that from summarization points, there are also some clear differences, suggesting
that the ability to read summaries could be a specific capability developed by the model (rather than the
model simply attending to high-sentiment tokens).

As can be seen in Figure A.14, there are distinct groups of attention heads that result in damage
to the logit difference in different situations–that is, some react when phrases are patched, some react
disproportionately to comma patching, and one head seems to have a strong response for either patching
case. This is suggestive of semi-separate summary-reading circuitry, and we hope future work will result
in further insights in this direction.

A.9.2 Results from other models
We replicated the ToyMoodStories comma-swapping experiment (as explained in Section 4) in Pythia-6.9b
and Mistral-7b as well as two Gemma and two Qwen models, with results shown in Table 5.

Intervention Pythia-2.8b Pythia-6.9b Mistral-7b Gemma-2b Gemma-7b Qwen-1.8b Qwen-7b
Patching full phrase -75% -152% -155% -152% -120% -181% -145%

values (incl. commas)
Patching pre-comma values -38% -46% -16% -68% -42% -71% -32%

(freezing commas & periods)
Patching comma and period -37% -68% -100% -42% -52% -72% -36%

values only

Table 5: Change in logit difference from patching at commas in ToyMoodStory in three different models
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Figure A.14: Logit difference drops by head when commas or pre-comma phrases are patched. Model: Pythia-2.8b.

We take this as evidence that the comma-summarization phenomenon is not limited exclusively to
Pythia-2.8b.

A.10 Neurons writing to sentiment direction in GPT2-small are interpretable
We observed that the cosine similarities of neuron out-directions with the sentiment direction are extremely
heavy tailed (Figure A.16). Thanks to Neuroscope (Nanda, 2023b), we can quickly see whether these
neurons are interpretable. Indeed, here are a few examples from the tails of that distribution:

• L3N1605 activates on “hesitate” following a negation

• Neuron L6N828 seems to be activating on words like “however” or “on the other hand” if they follow
something negative

• Neuron L5N671 activates on negative words that follow a “not” contraction (e.g. didn’t, doesn’t)

• L6N1237 activates strongly on “but” following “not bad”

We take L3N1605, the “not hesitate” neuron, as an extended example and trace backwards through the
network using Direct Logit Attribution8. We computed the relative effect of different model components on
L3N1605 in the two different cases “I would not hesitate” vs. “I would always hesitate”. The main contributors
to this difference are L1H0, L3H10, L3H11 and MLP2. Expanding out MLP2 into individual neurons we
find that the contributions to L3N1605 are sparse. For example, L2N1154 activates on words like “don’t”,
“not”, “no”, etc. It activates on “not” but not “hesitate” in “I would not hesitate” but activates on “hesitate” in “I
would always hesitate”. Visualizing the attention pattern of L1H0 shows that it attends from “hesitate” to the
previous token if it is “not”, but not if it is “always”.

8This technique decomposes model outputs into the sum of contributions of each component, using the insight from Elhage
et al. (2021b) that components are independent and additive
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Figure A.15: Path-patching commas and comma phrases in Pythia-2.8b, with attention heads L12H2 and L12H17
writing to repeated name and ”feels” as receivers. Patching the paths between the comma positions and the receiver
heads results in the greatest performance drop for these heads.

These anecdotal examples suggest at a complex network of machinery for transmitting sentiment
information across components of the network using a single critical axis of the residual stream as a
communication channel. We think that exploring these neurons further could be a very interesting avenue
of future research, particularly for understanding how the model updates sentiment based on negations
where these neurons seem to play a critical role.

A.11 Glossary

Glossary

ablation A technique where we eliminate the contribution of a particular component to a model’s output
(usually by replacing the component’s output with zeros or the mean over some dataset or a random
sample from some dataset) in order to demonstrate the magnitude of its importance. (See Section
2.2)

activation addition Formerly called “activation steering”, a technique from Turner et al. (2023) where
a vector is added to the residual stream at a certain position (or all positions) and layer during
each forward pass while generating sentence completions. In our case, the vector is the sentiment
direction.

activation patching A technique introduced in Meng et al. (2023), under the name ‘causal tracing’,
which uses an intervention to identify which activations in a model matter for producing some output.
It runs the model on some ‘clean’ input, replaces (patches) an activation with that same activation on
‘flipped’ input, and sees how much that shifts the output from ‘clean’ to ‘flipped’. (See Section 2.2)

activation steering See activation addition.

circuit A computational subgraph of a neural network which performs some human-interpretable task
(Wang et al., 2022).

DAS Distributed Alignment Search (Geiger et al., 2023b) uses gradient descent to train a rotation matrix
representating an orthonormal change of basis to one better aligned with the model’s features. We
mostly focus on a special case of finding a singular critical direction, where we patch along the first
dimension of the rotated basis and then use a smooth patching metric (such as the logit difference
between positive and negative completions) as the objective to be minimised. (See Section 2.4)
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Figure A.16: Cosine similarity of neuron out-directions and the sentiment direction in GPT2-small

directional ablation A form of ablation experiment in which restrict the intervention to a single dimen-
sion. That is, assuming mean ablation, for dimension d and prompt index i out of n, we replace the
residual stream vector ri with ri − ri · d+

∑
j
rj ·d
n . (See Section 2.2)

directional activation patching A variant of activation patching introduced in this paper where we only
patch a single dimension from a counterfactual activation. That is, for prompts xorig and xnew,
direction d, a set of model components C, we run a forward pass on xorig but for each component in
C, we patch/replace the output oorig with oorig − oorig · d+ onew · d. This is equivalent to activation
patching a single neuron, but done in a rotated basis (where d is the first column of the rotation
matrix). (See Section 2.2)

directional patching See directional activation patching.

freezing When performing activation patching experiments, we sometimes choose to avoid patching a
subset of model components with their activations from the flipped prompt, instead freezing the
activations to their initial value from the forward pass on the original prompt. (See Section 2.2)

froze See freezing

frozen attention A type of freezing where the attention pattern is frozen from the original run so that the
model still weights the value vectors in the same way, helping to isolate V-composition. (See Section
2.2)

linear representation hypothesis The idea that high-level concepts or “features” are represented linearly
as directions in some representation space (Mikolov et al., 2013; Elhage et al., 2022; Park et al.,
2023; Jiang et al., 2024).
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logit difference The difference between the logits given to a particular pair of completions. To reduce
noise, we can generalize this to the average difference between two sets of completions. In our case,
the dichotomy of completions generally represent positive vs. negative sentiment. (See Section 2.2)

logit difference metric An evaluation metric, often used as the objective function by DAS and reported
when activation patching, where we normalize the change in logit difference induced by patching
such that 0 is no change and 1 corresponds to a sign change in the logit difference with no change in
magnitude. (See Section 2.2)

logit flip An evaluation metric, ofted used in activation patching, which reports the percentage of examples
where the prediction is flipped, i.e. the sign of the logit difference is flipped. For a single example,
this is a binary value. (See Section 2.2)

mean ablation A type of ablation method, where we seek to eliminate the contribution of a particular
component to demonstrate its importance, where we replace a particular set of activations with their
mean over an appropriate dataset. (See Section 2.2)

patching metric A summary statistic used to quantify the results of an activation patching experiment.
By default here we use the percentage change in logit difference as in Wang et al. (2022). (See
Section 2.2)

path patching A variant of activation patching introduced in Wang et al. (2022) in which only the
activations related to the residual stream paths between two sets of endpoints (senders and receivers)
are patched, but the remainder of the network upstream of the receivers is frozen. Given a set R
of receivers, a sender attention head h, and paths P between h and each of R, activations from the
mirrored dataset are patched into P while keeping the remainder of the network fixed (aside from
everything downstream of R). (See Section 2.2)

sentiment activation The projection of the residual stream at a given token position and layer onto the
sentiment direction. (See the introduction to Section 3)

sentiment direction The direction in the residual stream space associated with the sentiment feature.
(See the introduction to Section 3)

sentiment summarizer An attention head which is a critical component of a sentiment-driven task and
acts via V-composition, writing information to an intermediate token position which is later read by
a direct effect head.

SST Stanford Sentiment Treebank is a labelled sentiment dataset from Socher et al. (2013) described in
Section 2.1.

summarization motif The phenomenon where sentiment is not solely represented on emotionally
charged words, but is additionally summarised at intermediate positions without inherent senti-
ment, such as punctuation and names.

V-composition When the value vectors of a downstream head contain information written by the output
of an upstream attention head (Elhage et al., 2021b).

value-weighted attention The attention pattern weighted by the norm of the value vector at each position
as per Kobayashi et al. (2020). We favor this over the raw attention pattern as it filters for significant
information being moved.

zero ablation A type of ablation method, where we seek to eliminate the contribution of a particular
component to demonstrate its importance, where we replace a particular set of activations with their
mean over an appropriate dataset. (See Section 2.2)
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