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Abstract

Dense retrievers compress source documents
into (possibly lossy) vector representations,
yet there is little analysis of what informa-
tion is lost versus preserved, and how it affects
downstream tasks. We conduct the first anal-
ysis of the information captured by dense re-
trievers compared to the language models they
are based on (e.g., BERT versus Contriever).
We use 25 MultiBert checkpoints as random-
ized initialisations to train MultiContrievers,
a set of 25 contriever models. We test whether
specific pieces of information—such as gender
and occupation—can be extracted from con-
triever vectors of wikipedia-like documents.
We measure this extractability via information
theoretic probing. We then examine the rela-
tionship of extractability to performance and
gender bias, as well as the sensitivity of these
results to many random initialisations and data
shuffles. We find that (1) contriever mod-
els have significantly increased extractabil-
ity, but extractability usually correlates poorly
with benchmark performance 2) gender bias
is present, but is not caused by the contriever
representations 3) there is high sensitivity to
both random initialisation and to data shuffle,
suggesting that future retrieval research should
test across a wider spread of both.1

1 Introduction

Dense retrievers (Karpukhin et al., 2020; Izacard
et al., 2022; Hofstätter et al., 2021) are a standard
component of retrieval augmented Question
Answering (QA) (Lewis et al., 2020a), and other
retrieval systems such as fact-checking (Thorne
et al., 2018), argumentation (Wachsmuth et al.,
2018), and others. Despite their ubiquity, we lack
an understanding of the information recoverable

∗ Work done while interning at FAIR, Meta.
1We release our 25 MultiContrievers (in-

cluding intermediate checkpoints), all code,
and all results, to facilitate further analysis.
https://github.com/facebookresearch/
multicontrievers-analysis
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A) Set of Male Queries
Who was the first male prime

minister of Finland?

Mary Somerville was a
Scottish scientist,

writer, and polymath.
In 1835 she and

Caroline Herschel
were elected as the

first female Honorary
Members of the Royal
Astronomical Society.

Probe
Classifier

Extractability
Gender

Occupation

B) Set of Female Queries
Who was the first female prime

minister of Finland?
Gender Bias: Δ Performance(Set A) - Performance(Set B)

Part 1
Part 2

Figure 1: Part 1: We train 25 Contrievers from the 25
MultiBerts, and compare the information theoretic ex-
tractability of gender and occupation from each of their
representations of documents. Part 2: We then compare
these to metrics of performance and of gender bias to
better understand the properties of dense retrievers.

from dense retriever representations, and how
it affects retrieval system behaviour. This lack
of analytical work is surprising. Retrievers
are widespread, and are used in contexts that
require trust: increasing factuality and decreasing
hallucination (Shuster et al., 2021), and providing
trust and transparency (Lewis et al., 2020b) via
a source document that has provenance and can
be examined. The information a representation
retains from a source document constrains these
abilities. Dense retrievers lossily encode input
documents into N-dimensional representations,
and by doing so necessarily emphasise some
pieces of information over others. A biography of
Mary Somerville will contain many details about
her: her profession (astronomy and mathemat-
ics), her gender (female), her political influence
(women’s suffrage), her country of origin (Scot-
land) and others. Each of these features are
relevant to different kinds of queries. Which ones
will a given retriever represent most recoverably?

Some analysis of this type exists for Masked
Language Models (MLMs) (§2.2), but there is no
such analysis for retrievers, which optimise a con-
trastive loss. Contrastive training is a very differ-
ent objective than MLM, based on (dis)similarity
of paired samples. The choice of pair affects fea-
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ture suppression – what is recoverable and what
is not (Robinson et al., 2021). So we extend this
previous analytical work into the retrieval domain,
by training 25 MultiContrievers initialised from
MultiBert checkpoints (Sellam et al., 2022). This
is the first study that includes variability over a
large number of retriever initialisations, with some
surprising results from this alone. We use in-
formation theoretic probing, also known as min-
imum description length (MDL) probing (Voita
and Titov, 2020), to measure the information in
MultiContriever representations. We evaluate the
models on 14 retrieval datasets from the BEIR
benchmark (Thakur et al., 2021). We test how well
retrievers preserve information in a document, like
gender and occupation, which we refer to as fea-
tures. We adapt the existing datasets to better test
for knowledge of these, by creating a new manu-
ally annotated gender subset of Natural Questions,
NQ-gender. We ultimately test if gender informa-
tion is predictive of gender bias, as it was in pre-
vious MLM work (§2.2).We address the following
four research questions:

Q1 To what extent do retrievers preserve infor-
mation like gender and occupation in an encoded
document? (§4.1)

For both MultiBerts and MultiContrievers, gen-
der is more extractable than occupation, which
can cause a model to rely on gender heuristics (a
source of gender bias). But there are noticeable
differences in the models. Both features are more
extractable in MultiContrievers than MultiBerts,
but there is a lower ratio (less difference) between
gender and occupation. This indicates MultiCon-
trievers are less likely to rely less on gender heuris-
tics (Lovering et al., 2021), but still might.

Q2 How sensitive is this to random initialisation
and data shuffle? (§4.2)

In MultiBerts, extractability is very sensitive
to random initialisation and shuffle, in MultiCon-
trievers it is not. MultiContrievers have a much
smaller variance between the 25 seeds, suggesting
a regularising effect. However, MultiContriever
performance is surprisingly sensitive to both ran-
dom initialisation and to data shuffle. MultiCon-
trievers have a very wide range of performance on
BEIR benchmarks, despite identical loss curves.
But it is not easy to select a ‘best’ model, since
the best and worst model is not consistent across
datasets - the ranking of each model can change,
sometimes drastically.

Q3 Do differences in this information correlate
with performance on retrieval benchmarks? (§4.3)

On partitions of examples that ostensibly re-
quire gender information (NQ-gender), we show
that gender extractability is highly correlated with
retrieval performance. However, overall retrieval
performance on benchmarks like BEIR is poorly
correlated with extractability. This suggests that
while some benchmark examples do reward mod-
els for preserving gender information, most exam-
ples do not require that, so the benchmark as a
whole does not require that capability.
Q4 Is gender information in retrievers predictive
of their gender bias? (§4.4)

Despite the evidence that extractability of gen-
der information is helpful to a model, it is not the
cause of gender bias in the NQ-gender dataset.
When we do a causal analysis by removing gen-
der from MultiContriever representations, gender
bias persists, suggesting that the source of bias is
in the queries or corpus.

Our contributions are: 1) the first information
theoretic analysis of dense retrievers, 2) an anal-
ysis of variability in performance and social bias
across random retriever seeds, 3) the first causal
analysis of sources of social bias in dense retriev-
ers, 4) NQ-gender, an annotated subset of Natural
Questions for queries that constrain gender, and 5)
a suite of 25 MultiContrievers for use in future
work, with all training and evaluation code.

2 Background and Related Work

The below covers dense retrievers, information
theoretic probing for extractability, and what ex-
tractability can tell us about model behaviour.

2.1 What is a retriever?
Retrievers take an input query and return rele-
vance scores for documents from a corpus. We
encode documents D and queries Q separately by
the same model fθ. Given a query qi and docu-
ment di, relevance is the dot product between the
document and query representations.

s(di, qi) = fθ(qi) · fθ(di) (1)

Training fθ is a challenge. Language models
like BERT (Devlin et al., 2019), are not good re-
trievers out-of-the-box, but retrieval training re-
sources are limited and labour intensive to cre-
ate, since they involve matching candidate docu-
ments to a query from a corpus of potentially mil-
lions. So retrievers are either trained on one of the
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few corpora available, such as Natural Questions
(NQ) (Kwiatkowski et al., 2019) or MS MARCO
(Campos et al., 2016) as supervision (Hofstätter
et al., 2021; Karpukhin et al., 2020), or on a self-
supervised proxy for the retrieval task (Izacard
et al., 2022). Both approaches result in a domain
shift between training and later inference, making
retrieval a generalisation task. This motivates our
analysis, as Lovering et al. (2021)’s work shows
that information theoretic probing is predictive of
where a model would generalise and where it re-
lies on simple heuristics and dataset artifacts.

In this work, we focus on the self-supervised
Contriever (Izacard et al., 2022), initialised from
a BERT model and then fine-tuned with a con-
trastive objective.2 For this objective, all docu-
ments in a large corpus are broken into chunks,
where chunks from the same document are pos-
itive pairs and chunks from different documents
are negative pairs. This is a loose proxy for ‘rele-
vance’ in the retrieval sense, so we are interested
in what information this objective encourages con-
triever to emphasise, what to retain, what to lose,
and what this means for the eventual retrieval task.

2.2 What is Information Theoretic (MDL)
probing?

Diagnostic classifiers, or probes, are a powerful
tool for determining what information is in
a model representation (Belinkov and Glass,
2019). Let DS = {(di, yi), ..., dn, yn)} be a
dataset, where d is a document (e.g. a chunk of
a Wikipedia biography about Mary Somerville)
and y is a label from a set of k discrete labels
yi ∈ Y , Y = {1, ...k} for some information in
that document (e.g. mathematics, astronomy if
probing for occupation).

In a probing task, we want to measure how
well fθ(di) encodes yi, for all d1:n, y1:n. We use
Minimum Description Length (MDL) probing
(Voita and Titov, 2020), or information theoretic
probing, in our experiments. This measures
extractability of Y via compression of informa-
tion y1:n from fθ(di:n) via the ratio of uniform
codelength to online codelength.

Compression =
Luniform

Lonline
(2)

2We choose Contriever for societal relevance of
our results, as it has two orders of magnitude more
monthly downloads than other popular models: https:
//huggingface.co/facebook/contriever.

where Luniform(y1:n|fθ(di:n) = n log2 k and
Lonline is calculated by training the probe on
increasing subsets of the dataset, and thus mea-
sures quality of the probe relative to the number
of training examples. Better performance with
less examples will result in a shorter online
codelength, and a higher compression, showing
that Y is more extractable from fθ(di:n).

In this work, we probe for binary gender,
where Y = {m, f} and occupation, where Y =
{lawyer, doctor, ...}

Extractability, as measured by MDL probing,
is predictive of shortcutting; when a model relies
on a heuristic feature to solve a task, which has
sufficient correlation with the actual task to have
high accuracy on the training set, but is not the true
task (Geirhos et al., 2020). Shortcutting causes
failure to generalise; a heuristic that worked on
the training set due to a spurious correlation will
not work after a distributional shift: e.g. relying
on the word ‘not’ to predict negation may work
for one dataset but not all (Gururangan et al.,
2018). Lovering et al. (2021) look at linguistic
information in MLM representations (such as
subject verb agreement) which is necessary for
the task of grammaticality judgments, and find
that spurious features are relied on if they are
very extractable. This is of particular interest to
retrievers, which depend on generalisation, but
which are also contrastively trained, which can
encourage shortcutting (Robinson et al., 2021).

Shortcutting is also often the cause of social
biases. Orgad et al. (2022) find that extractability
of gender in language models is predictive of
gender bias in coreference resolution and biog-
raphy classification. So when some information,
such as gender, is more extractable than other
information, such as anaphora resolution, the
model is risk of using gender as a heuristic, if
the data supports this usage. And thus of both
failing to generalise and of propagating biases.
For instance, for the case of Mary Somerville, if
gender is easier for a model to extract than profes-
sion, then a model might have actually learnt to
identify mathematicians via male, instead of via
maths (the true relationship), since it is both easier
to learn and the error penalty on that is small, as
there are not many female mathematicians.
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Figure 2: Bert and Contriever compression for gender and occupation over all seeds. Y-axes have different scales
(gender is much larger); higher numbers mean more extractability and more regular representations. Contriever has
more uniform compression across seeds, and a lower ratio of gender:occupation, which means less shortcutting.

3 Methodology

We analyse the relationship between information
in different model representations, and their
performance & fairness. This requires at min-
imum a model, a probing dataset (with labels
for information we want to probe for), and a
performance dataset. We need some of the
performance dataset to have gender metadata to
calculate performance difference across gender
demographics (Fig 1) also called gender bias, or
more precisely, allocational fairness.

3.1 Models
For the majority of our experiments, we compare
our 25 MultiContriever models to the 25 Multi-
Berts models (Sellam et al., 2022). We access
the MultiBerts via huggingface3 and train the con-
trievers via modifying the repository released in
Izacard et al. (2022). We use the same contrastive
training data as Izacard et al. (2022), to maximise
comparability. This comprises a 50/50 mix of
Wikipedia and CCNet from 2019. As a result, five
of the fourteen performance datasets involve tem-
poral generalisation, since they postdate both the
MultiContriever and the MultiBert training data.
This most obviously affects the TREC-COVID
dataset (QA), though also four additional datasets:
Touché-2020 (argumentation), SCIDOCS (cita-
tion prediction), and Climate-FEVER and Sci-
fact (fact-checking). Further details on contriever
training and infrastructure are in Appendix G.

We train 25 random seeds as both generalisation
and bias vary greatly by random seed initialisation
(McCoy et al., 2020). MultiContrievers have
no new parameters, so the random seed affects
only their data shuffle. The MultiBerts each

3e.g. https://huggingface.co/google/
MultiBerts-seed_[SEED]

have a different random seed for both weight
initialisation and data shuffle.

3.2 Probing Datasets

We verify that results are not dataset specific, or
the result of dataset artifacts, by using two prob-
ing datasets. First the BiasinBios dataset (De-
Arteaga et al., 2019), which contains biographies
from the web annotated with labels of the sub-
ject’s binary gender (male, female) and biography
topic (lawyer, journalist, etc). We also use the
Wikipedia dataset from md gender (Dinan et al.,
2020), which contains Wikipedia pages about peo-
ple, annotated with binary gender labels.4 For gen-
der labels, BiasinBios is close to balanced, with
55% male and 45% female labels, but Wikipedia is
very imbalanced, with 85% male and 15% female.
For topic labels, BiasinBios has a long-tail zip-
fian distribution over 28 professions, with profes-
sor and physician together as a third of examples
and rapper and personal trainer as 0.7%. Examples
from both datasets can be found in Appendix A.

To verify the quality of each dataset’s labels, we
manually annotated 20 random samples and com-
pared to gold labels. BiasinBios agreement with
our labels was 100%, and Wikipedia’s was 88%.5

We focus on the higher quality BiasinBios dataset
for most of our graphs and analysis, though we
replicate all experiments on Wikipedia.

4This dataset does contain non-binary labels, but there are
few (0.003%, or 1̃80 examples out of 6 million). Uniform
codelength (dataset size ∗ log2(num classes)) affects in-
formation theoretic probing; additional class with very few
examples can significantly affect results. This dataset was
also noisier, making small data subsets less trustworthy.

5We investigated other md gender datasets in the hope of
replicating these results on a different domain such as dia-
logue (e.g. Wizard of Wikipedia), but found the labels to be
of insufficiently high agreement to use.
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3.3 Evaluation Datasets and Metrics

We evaluate on the BEIR benchmark, which
covers retrieval for seven different tasks (fact-
checking, citation prediction, duplicate question
retrieval, argument retrieval, question answering,
bio-medical information retrieval, and entity re-
trieval).6. We initially analysed all standard met-
rics used in BEIR and TREC (e.g. NDCG, Re-
call, MAP, MRR, @10 and @100). We observed
similar trends across all metrics, somewhat to our
surprise, since many retrieval papers focus on the
superiority of a particular metric (Wang et al.,
2013). We thus predominantly report NDCG@10,
but more metrics (NDCG@100, and Recall@100)
are included in Appendix F.

For allocational fairness evaluation, we create
NQ-gender, a subset of Natural Questions (NQ)
about entities, annotated with male, female, and
neutral (no gender). Further details on annotation
in Appendix B. We measure allocational fairness
as the difference between the female and male
query performance. We use the neutral/no gender
entity queries as a control to make sure the system
performs normally on this type of query.

4 Results

We address our four research questions: how does
extractability change (Q1), how sensitive are re-
trievers to random initialisation (Q2), do changes
in extractability correlate with performance (Q3),
and is it predictive of allocational bias (Q4).

4.1 Q1: Information Extractability

Both gender (Fig 2a) and occupation (Fig 2b)
are more extractable in MultiContrievers than
MultiBerts. Gender compression ranges for
MultiContrievers are 4-12 points higher, or a
9-47% increase (depending on seed initialisation),
than the corresponding MultiBerts. Occupation
compression ranges are 1.7-2.12 points higher
for MultiContrievers; as the overall compression
is much lower this is a 19-38% increase over
MultiBerts. Both graphs also show a regular-
isation effect; MultiBerts have a large range
of compression across random seeds, whereas
MultiContrievers have similar values.

Figure 2c shows that though MultiContrievers
have higher extractability for gender and occupa-

6The BEIR benchmark itself contains two additional
tasks, tweet retrieval, and news retrieval, but these datasets
are not publicly available.

tion, the ratio between them decreases. So while
MultiContrievers do represent gender far more
strongly than occupation, this effect is lessened vs.
MultiBerts, which means they should be slightly
less likely to shortcut based on gender.

4.2 Q2: Sensitivity to Random Initialisation

We analysed the distribution of performance by
dataset for 24 seeds, as both generalisation and
fairness are sensitive to initialisation in MLMs
(Sellam et al., 2022).7 Figure 5 shows this data,
broken out by dataset, with a dashed line at previ-
ous reference performance (Izacard et al., 2022).

A few things are notable: first, there is a large
range of benchmark performance across seeds
with for identical contrastive losses. During
training, MultiContrievers converge to the same
accuracy (Appendix G) and (usually) have the
same aggregate BEIR performance reported in
Izacard et al. (2022). However, the range of
scores per dataset is often quite large, and for some
datasets the original reference Contriever is in the
tail of the distribution: e.g in Climate-Fever (row
1 column 2) it performs much worse than all 24
models. It is also worse than almost all models for
Fiqa and Arguana.8 Nothing changed between the
different MultiContrievers except the random seed
for MultiBert initialisation, and the random seed
for the data shuffle for contrastive fine-tuning.9

Second, the potential increase in perfor-
mance across random seeds can exceed the in-
crease in performance from training on super-
vised data (e.g. MSMARCO). We see this ef-
fect for half the datasets in BEIR. The higher per-
forming seeds surpass the performance on all su-
pervised models from Thakur et al. (2021)10 on

7Seed 13 (ominously) is excluded from our analysis be-
cause of extreme outlier behaviour, which was not reported in
(Sellam et al., 2022). We investigated this behaviour, and it is
fascinating, but orthogonal to this work, so we have excluded
the seed from all analysis. Our investigation can be found in
Appendix D and should be of interest to researchers inves-
tigating properties of good representations (e.g. anisotropy)
and of random initialisations.

8For Fiqa 19 models are up to 2.5 points better, for Ar-
guana 20 models are up to 6.3 points better.

9There are a few small differences between the original
released BERT, which Contriever was trained on, and the
MultiBerts, which we trained on, detailed in Sellam et al.
(2022). But not between our 25 MultiBerts.

10The BEIR benchmark reports performance on all
datasets for four dense retrieval systems—DPR(Karpukhin
et al., 2020), ANCE (Xiong et al., 2021), TAS-B (Hofstätter
et al., 2021), and GENQ (their own system)—which all use
supervision of some kind. DPR uses NQ and Trivia QA, as
well as two others, ANCE, GENQ, and TAS-B all use MS-
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Figure 3: Scatterplots of the correlation between x-axis compression (ratio of uniform to online codelength) and
y-axis performance (NDCG@10), for different datasets (NQ, MSMARCO) at left and entity subsets of NQ at right.
Colours are different seeds, and are held constant across graphs.
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Figure 4: Ranking of best performing seed per dataset
(one colour per seed). For legibility, NDCG@10 values
are scaled, and all seeds with middle performance are
not pictured (10 included). One seed is arbitrarily given
a star marker to aid visual interpretation.

three datasets (Fever, Scifact, and Scidocs) and
surpass all but one model (TAS-B) on Climate-
fever. These datasets are the fact-checking and ci-
tation prediction datasets in the benchmark, sug-
gesting that even under mild task shifts from su-
pervision data (which is always QA), random ini-
tialisation can have a greater effect than super-
vision. This effect exists across diverse non-QA
tasks; for four additional datasets the best random
seeds are better than all but one supervised model:
this is true for Arguana and Touché (argumenta-
tion), HotpotQA (multihop QA), and Quora (du-
plicate question retrieval).

Third, the best and worst model across the
BEIR benchmark datasets is not consistent
(Figure 4); not only is the range large across seeds
but the ranking of each seed is very variable. The
best model on average, seed 24, is top-ranked
on only one dataset, and the second-best average

MARCO. Note that the original Contriever underperformed
these other models until supervision was added.

model, seed 2, is best on no individual datasets.
The best or worst model on any given dataset
is almost always the best or worst on only that
dataset and none of the other 14. Sometimes, the
best model on one dataset is worst on another, e.g.
seed 4 is best on NQ and worst on FiQA, seed 5
is best on Scifact and worst on Scidocs.11. Even
seed 10, which is the only model that is worst on
more than 2 datasets (it is worst on 6) is still best
on TREC-Covid.12

Our results show that there is no single best re-
triever, which both supports the motivation of the
BEIR benchmark (to give a more well rounded
view on retriever performance via a combination
of diverse datasets) and shows the need for more
analysis into random initialisation and shuffle.

As an addendum, we note that Sellam et al.
(2022) did extensive experiments with both ran-
dom initialisation and data shuffle, and found ini-
tialisation to matter more. We did our own exper-
iments to this effect where we trained five Mul-
tiContrievers from the same MultiBert initialisa-
tion with different data shuffles, from the best,
worst, and middle performing seeds. This addi-
tional analysis is in Appendix C.

4.3 Q3: Correlation between Extractability
& Performance

We tested for correlations across all datasets and
common metrics, and present a selection here
(Fig 3). Neither NQ (Fig 3a) nor MSMARCO
(Fig 3b) correlate with compression metrics. NQ
and MSMARCO are the most widely used of the
BEIR benchmark datasets, and we hypothesised
them to be most likely to correlate. Both are

11This best-worst flip exists for seeds 8, 18, and 23 also.
12This is to be taken with a grain of salt - that dataset is

interesting for generalisation (as these models are trained on
only pre-Covid data), but it is only 50 datapoints. We note
also that analysis on seed 13 revealed that seed 10 was also
unusual, that analysis can also be found in D.
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Figure 5: Distribution of performance (NDCG@10) for the 24 MultiContrievers, per BEIR dataset, performance
on x-axis, number of models with that value on y-axis. Dashed line indicates reference performance from pre-
vious work. While for some datasets the reference performance sits at or near the mean of the MultiContriever
distribution, for some the reference performance is an outlier. There is sufficiently high variance that performance
improvements from random seed can exceed those from continuing to train on supervised fine-tuning data.

search engine queries (from Google and Bing,
respectively) and contain queries that require
occupation-type information (what is cabaret mu-
sic?, MSMARCO) and that require gender infor-
mation (who is the first foreign born first lady?,
NQ). However, as the dispersed points on the scat-
terplots show (Figures 3a, 3b), neither piece of

information correlates to performance on either
dataset. NQ and MSMARCO are representative;
we include plots for all datasets in Appendix E.

This result was somewhat surprising; since the
contriever training both regularises and increases
extractability of gender and occupation, we might
expect this to be important for the task. But per-
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haps it is relevant for only the contrastive objec-
tive, and not for the retrieval benchmark. Alterna-
tively, it is possible that this information is impor-
tant, but only up to some threshold that MultiCon-
triever models exceed. Finally, it’s possible that
this information doesn’t matter for most queries
in these datasets, and so there is some correla-
tion but it is lost, as these datasets are extremely
large. This is somewhat supported by the excep-
tion cases with correlations being smaller, more
curated datasets (E), and so we investigated this as
the most tractable to implement.

Our NQ-gender subset of gendered queries
(§3.3) does show a strong correlation between
gender extractability and performance (Fig 3c).
And the NQ-gender subset of neutral non-
gendered queries shows no correlation (Fig 3d).
So we find that if we isolate to a topical dataset, as
e here, extractability is predictive of performance,
it just isn’t over a large diverse dataset.

We strengthen this analysis, testing whether
gender information is necessary, rather than sim-
ply correlated. We use Iterative Nullspace Projec-
tion (INLP) (Ravfogel et al., 2020) to remove gen-
der information from MultiContriever representa-
tions. INLP learns a projection matrix W onto the
nullspace of a gender classifier, which we apply
before computing relevance scores between cor-
pus and query. So with INLP, the previous Equa-
tion 1 becomes:

s(di, qi) = Wfθ(qi) · Wfθ(di) (3)

Then we calculate performance of retrieval with
these genderless representations. No drop in per-
formance on the gendered query set with INLP
would mean extractable gender information was
not necessary. A drop in performance on both gen-
der and control queries would support the ‘mini-
mum threshold’ explanation, or mean that the rep-
resentation was sufficiently degraded by the re-
moval of gender that other functions were harmed.

Gender information post-INLP drops to 1.4
(nearly none, as 1 is no compression over uni-
form, Eq 2). Performance on non-gendered en-
tity queries is unaffected, but performance on
gendered entity questions drops significantly (5
points) (Fig 6a). From these two experiments
we conclude that the increased information ex-
tractability was useful for answering specific ques-
tions that require that information. But most
queries in the available benchmarks simply don’t
require that information to answer them.

RQ3 Answer: Is this predictive of allocational bias? 
(No)

(a) NDCG@10 on the neu-
tral vs. gendered NQ entity
subsets. Representations are
raw (blue) vs. INLP (or-
ange) with gender removed.
INLP performance degrades
on only gender constrained
queries: gender is used in
those queries, but is not in
the control.

RQ3 Answer: Is this predictive of allocational bias? 
(No)

(b) Difference in perfor-
mance between male (blue)
and female (orange) entity
queries, for raw (left) and
INLP (right). The perfor-
mance gap is constant even
when gender is removed via
INLP, remains; so the bias is
not due to gender in the rep-
resentations.

Figure 6: INLP experiments

4.4 Q4: Gender Extractability and
Allocational Gender Bias

Orgad et al. (2022) found gender extractability
in representations to be predictive of allocational
gender bias for classification tasks; when gender
information was reduced or removed, bias also re-
duced.13 We found that gender information is used
(§4.3) so now we ask: is it predictive of gender
bias? At least for our dataset, it is not (Fig 6b. This
graph shows that there is allocational bias between
the female and male queries, and also that the bias
remains after we remove gender via INLP. All per-
formance drops, as we saw for the gendered enti-
ties in §4.3. But performance drops by equivalent
amounts for female and male entities. These re-
sults diverge from what we expected based on the
findings of Orgad et al. (2022) for MLMs, who
found gender in representations did matter. Our
findings suggest that in this case the gender bias
comes from the retrieval corpus or the queries, or
from a combination. The corpus could have lower
quality or less informative articles about female
entities (as was found for Wikipedia by Sun and
Peng (2021)), or queries about women could be
structurally harder in some way.

5 Discussion, Future Work, Conclusion

We trained a suite of 25 MultiContrievers, anal-
ysed their performance on the BEIR benchmark,
probed them for gender and occupation informa-
tion, and removed gender information from repre-
sentations to analyse gender bias.

We showed performance to be extremely
13Orgad et al. (2022) use a lexical method to remove gen-

der, but we chose INLP as a more elegant, extensible solution.
We replicated their paper with INLP, showing equivalence.
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variable by random seed initialisation, as was
the performance ranking of different random
initialisations across datasets, despite equal losses
during training. Best seed performances often
exceed the performance of more complex dense
retrievers that use explicit supervision. Future
analysis of retriever loss basins to look for dif-
fering generalisation strategies could be valuable
(Juneja et al., 2023). Our results show that a better
understanding of initialisations may be more valu-
able than developing new models. Our work also
highlights the usefulness of metadata enriched
datasets for analysis, and we were limited by what
was available. Future work could create these
datasets and then probe for additional targeted
information to learn more about retrievers. This
would also enable analysis of demographic biases
beyond binary gender.

Gender and occupation extractability was not
predictive of performance except in subsets of
queries that require gender information. Though
both gender and occupation increase in Multi-
Contrievers, the ratio between them decreases, so
MultiContrievers should be less likely to shortcut
based on gender compared to MultiBerts. We
established that the gender bias that we found was
not caused by the representations, as it persists
when gender is removed. Future work should test
in a pipeline is best to correct bias, and how vari-
ous parts interact. This work also shows the utility
of information removal (INLP, others) for causal-
ity and interpretability, rather than just debiasing.
More availability of test sets for shortcutting could
increase the scope of these preliminary results.

Finally, we have analysed only the retriever
component of a retrieval system. In an even-
tual retrieval augmented generation task, the re-
trieval representation will have to compete with
language model priors. The generation will be
a composition between unconditionally probable
text, and text attested by the retrieved data. Fu-
ture work could investigate the role of informa-
tion extractability in the full system, and how this
bears on vital questions like hallucination in re-
trieval augmented generation. We have done the
first information theoretic analysis of retrieval sys-
tems, and the first causal analysis of the reasons
for allocational gender bias in retrievers. We re-
lease our code and resources for the community
to expand and continue this line of enquiry. This
is particularly important in the current generative

NLP landscape, which is increasingly reliant on
retrievers and where understanding of models lags
so far behind development.

6 Limitations

This work is limited by analysing only one ar-
chitecture of dense retriever; we chose to experi-
ment instead with random initialisations and shuf-
fles rather than different architectures, so we fo-
cused on only the most popular one. So these
results may not generalise to all retriever archi-
tectures. Our analysis covered only English, and
there is work that shows that gender is encoded in
a more complex way in other languages (Gonen
et al., 2022). INLP, the method we used for causal
analysis, is linear, so it might not even work be-
yond English, though there are recent non-linear
extensions of it (Iskander et al., 2023) that could
be used in future work.
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Lewis, Ledell Yu Wu, Sergey Edunov, Danqi Chen,
and Wen tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Conference on
Empirical Methods in Natural Language Process-
ing.

Anja Klasnja, Negar Arabzadeh, Mahbod Mehrvarz,
and Ebrahim Bagheri. 2022. On the characteristics
of ranking-based gender bias measures. In Proceed-
ings of the 14th ACM Web Science Conference 2022,
WebSci ’22, page 245–249, New York, NY, USA.
Association for Computing Machinery.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc V. Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:453–466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih,
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A Probing Datasets

We rely on two datasets. The first is BiasinBios
(De-Arteaga et al., 2019), which is a dataset of
web biographies labelled with binary gender, and
biography profession. We use De-Arteaga et al.
(2019)’s train/dev/test splits of 65:10:25, yield-
ing 255,710 train 39,369 dev, and 98,344 test dat-
apoints. Second is the Wikipedia slice of the
md gender dataset (Dinan et al., 2020). This
has only labels for gender, which we restrict to
be binary since non-binary gender is so small and
would adversely affect this analysis. We filter out
texts below 10 words (words, not tokens) leaving
a dataset of size 10,681,700, split 65:10:25 into
6,943,105 train, 934,649 dev, 2,803,946 test. For
practical reasons, we shard it to 9 shards (650,000
train examples each) and then check the results
on each shard. All shards behaved consistently.
As noted in the text, BiasinBios is nearly bal-
anced with regard to gender labels, but Wikipedia
is severely imbalanced.

For both datasets, we use the train set for prob-
ing, and the test set for measuring accuracy on the
final probe. We investigated using other datasets,
but none were of sufficient quality that they were
usable. We tested usability very simply: each of
the authors labelled a different random sample of
20 examples by hand, and we measured accuracy
of dataset labels against our labels, and only took
datasets with over 80% accuracy, since our prob-
ing task is sensitive to errors in labelling. No other
subsets of md gender nor external datasets that we
surveyed passed this bar. We didn’t multiply anno-
tate as we found no examples to be at ambiguous.

B Annotation of NQ gender subset

To do our experiments we create a subset of Natu-
ral Questions, NQ-gender.

We subsample Natural Questions to entity
queries by filtering automatically for queries
containing any of who, whose, whom,
person, name. We similarly filter this set into
gendered entity queries by using a modified subset
of gender terms from Bolukbasi et al. (2016).
From this we get a set of queries that is just
about entities Who was the first prime minister of
Finland?, and gendered entities (a female query
is Who was the first female prime minister of
Finland? and a male query is Who was the first
male prime minister of Finland?).

This automatic process is low precision/high

recall. It captures queries with gendered terms
in prepositional phrases, (Who starred in
O Brother Where Art Thou?) which are
common false positives in QA datasets, as they are
not about brothers. So we manually filter these
results by annotating with two criteria: gender
of the subject (male, female, or neutral/none (in
cases where the gender term was actually in a ti-
tle or other prepositional phrase as in the exam-
ple), and a binary tag with whether the query ac-
tually constrains the gender of the answer. This
second annotation is somewhat subtle, but very
important. For example, in our dataset there
is the query Who was the actress that
played Bee, which contains a gendered word
(actress) but it is not necessary to answer the ques-
tion; all actors that played Bee are female, and the
question could be as easily answered in the form
Who played Bee?. Whereas in another ex-
ample query, Who plays the sister in
Home Alone 3? the query does constrain the
gender of the answer. We annotated 816 queries
with both of these attributes, of which 51% have
a gender constraint, with a gender breakdown of
59% female and 41% male.

We do this annotation ourselves (two of the au-
thors), and we throw out examples that we don’t
agree on. We are not a representative sample of
people (we are all NLP researchers after all) but
we consider this lack of diversity to be acceptable
since we are not making subjective judgments but
are just providing metadata labels.

It is also worth mentioning that two very dif-
ferent types of gender bias in retriever works do
create artifacts also, but they are unsuitable for
our type of analysis for the following reasons.
Rekabsaz and Schedl (2020) and Klasnja et al.
(2022) release subsets of MSMARCO, which we
did examine and use in initial tests early in this
work. Those works define bias very differently,
as the genderedness of retrieved documents based
on lexical terms, making the implicit normative
statement that lack of bias means equal repre-
sentation of male and female documents in non-
gendered queries. This is essentially an indepen-
dence assertion from fairness literature (Barocas
et al., 2019). This is quite different to our ap-
proach, which looks at performance disparity be-
tween queries that require male and female gender
information to answer. Our approach has more im-
mediate practical utility for a real world retriever,
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and also ties in to the work on information theory
by restricting to queries that require gender infor-
mation. So the lexical document based approach
cannot be adapted for our purpose.

C Data Shuffle Experiments

We wanted to answer the question of If you be-
gin from a worse random initialisation, can you
fix it via data shuffle?. This is of significant prac-
tical utility to researchers, who often cannot re-
train an existing model from scratch before adapt-
ing it to their purpose. Figure 7 shows the best,
worst, and a middle performing seed with five ad-
ditional different data shuffles, and the variance in
performance over the datasets. We can see that
the worst performing seed is characterised by high
variability overall, and the best seed by low vari-
ability. So the overall picture is that, on average,
the different initialisations determine the quality
of the retriever more than the data shuffle. This
is in agreement with the findings of Sellam et al.
(2022) for MLMs. However, variability is suffi-
ciently high enough that you could get lucky and
get the best performance from varying the shuffle,
if that is the option available. It would be valu-
able to extend these to explicit generalisation tasks
and interpretabilty challenge sets to see if the high
performing shuffles of very variable seeds can be
trusted in all settings.
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Figure 7: Performance for 5 random datashuffles for a fixed MultiBERT seed - the worst, the best, and a middling
seed based on previous experiments. This answers the question of how much variance comes from the random
initialisation of parameters, and how much from the data shuffle. It also answers the practical question of ‘if you
are fine-tuning one model, are you doomed based on the state of the initial model?’ The answer is, sort of, but not
entirely.
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D Seed 13

MultiContrievers were trained with seeds 0-24
based on respective MultiBerts 0-24. Seed 13 was
excluded from all analysis as it displayed repeat-
edly anomalous behaviour. During the course of
contriever training it appeared indistinguishable
from other seeds, loss curves looked normal, there
were no signs of overfitting. Performance con-
verged to the same level as other MultiContriev-
ers. However, when applied to the datasets of the
BEIR benchmark it did not perform at all, with
NDCG of between 2 and 20 on each dataset. We
retrained once to replicate the behaviour, and then
twice more with different seeds for data shuffle,
with identical results. We thus exclude it from all
analysis. To aid in future investigations we include
our initial analysis of seed 13 irregularities here.
We follow the method of analysis of representation
spaces from Ethayarajh (2019). We measure the
L2 norm of all representations in the BiasinBios
dataset (272k) as well as average self-similarity of
1000 randomly sampled representations of those
bigraphies, as measured by cosine similarity and
by dot product. The former answers the question
of how much volume the representations occupy,
the latter describes the vector space via how coni-
cal (anisotropic) or spherical it is.

In Figure 8, we observe that the vector space
of MultiContriever 13 is both larger volume and
more obtusely anisotropic (i.e. it occupies a wider
cone) than other MultiContrievers. The more ob-
tuse anisotropy originates from MultiBert 13, as
can be seen in the high variances for both seeds
in cosine similarity. But the larger relative volume
happens during the training of the MultiContriever
and is unique to it. For MultiBert 13, L2 norm is
within normal range, and the anomalous seeds are
seeds 10 and 23, which both have larger norms
and 5x the variance of other seeds. MultiCon-
triever 13, however, has 1.5x the average norms
of all other seeds (which have regularised and be-
come closer in values) and 6x the variance of oth-
ers. Both MultiBert 13 and MultiContriever 13
have very high variance to average cosine similar-
ity, where the effective range of MultiContriever
13 is -0.03 to 0.53, and MultiBert 13 is 0.02 to
0.58, as compared to other models have a range of
0.28-0.32, for both types of models.

We hypothesise that this reveals a limitation of
reliance on the dot product for retrieval, any op-
eration reliant on the dot product loses informa-

tion when there is a chance of a cosine similar-
ity of zero. We leave other investigation – such
as why this would persist from a difference of
only random seed initialisation, or why this issue
would appear in retrieval, but not in any tasks in
the MultiBerts paper, or in the contrastive training
process – to future work.

We also note that seed 10 was anomalous in per-
formance compared to the other seeds on the BEIR
benchmark; not so anomalous as to be excluded,
but it was reliably performing poorly. We can see
the higher variance in L2 norms for 10 and 23 in
MultiBerts, and then for 10 still in MultiContriever
(though nothing noticeable in cosine similarity).
Seeds 10 and 13 were not found to be anoma-
lous by Sellam et al. (2022), but they did find seed
23 to display strange behaviour and be extremely
unbiased (or even anti-biased) on the Winogender
benchmark.

We hope that future work will use our models
and continue this line of analysis.

132



(a) MultiBerts (mean) (b) MultiBerts (var) (c) MultiContriever (mean) (d) MultiContriever (var)

(e) MultiBerts (mean) (f) MultiBerts (var) (g) MultiContriever (mean) (h) MultiContriever (var)

Figure 8: Top row: mean and var of L2 norms of the full BiasinBios dataset for all MultiBert and MultiContriever
seeds. Bottom row: mean and var cosine similarity between 1000 random biographies.
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E Full set of results for correlation
between extractability and
performance

Full set of correlations between gender compres-
sion and performance in Figure 9 and between
profession compression and performance in Fig-
ure 10. The latter (profession correlation) have
misleading regression lines as only three of 24
models had large differences in compression, such
that the line is based off insufficient datapoints. It
is included for completeness but left out of anal-
ysis for that reason. Gender compression num-
bers (Figure 9) are distributed more evenly. There
are four statistically significant correlations (re-
ferred to as by row 1-4, and column a-d, such
that the upper left cell is 1a and the lower right
cell is 4d). Arguana (1a), Scifact (2b), Webis-
Touche (3a), and NQ (4b). All have middling cor-
relation coefficients: Arguana -0.41, Scifact 0.41,
Webis-Touche 0.31, NQ 0.42. There is also little
in common between these datasets, Arguana and
Webis-Touche are argumentation, Scifact is fact-
checking, and NQ is google-search style ques-
tions. As this leaves most datasets with no cor-
relations, we consider the correlation overall to be
weak. We do note that the temporal generalisation
datasets are overrepresented in this set (Webis-
Touche and Scifact), but leave an investigation of
that for future work.

Arguana in particular is unique in having a sig-
nificant negative correlation. We have no answers
as to why this might be. It may be a fluke due to
peculiarities of this dataset: the dataset is small
(less thank 2k datapoints), and is not structured
in the same way with query (input) and passage
(retrieved) but instead uses a full document pas-
sage as the query. It is unclear why this might
cause a deterioration in performance from better
gender or profession encoding (as we observe the
same in profession compression). The Arguana
task should match the unsupervised training much
more closely since they both are matching the rel-
evance of to document chunks. We leave an inves-
tigation into the peculiarities of that dataset also to
future work.

F Additional metrics
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Figure 9: Full set of scatterplots of the correlation between x-axis gender compression (ratio of uniform to online
codelength) and y-axis performance (NDCG@10), for all datasets individually, and for the average of all BEIR
datasets (lower-right). Shaded region is 95% confidence interval.
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Figure 10: Full set of scatterplots of the correlation between x-axis profession compression (ratio of uniform to
online codelength) and y-axis performance (NDCG@10), for all datasets individually, and for the average of all
BEIR datasets (lower-right). Shaded region is 95% confidence interval.
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sampling coefficient 0
pooling average
augmentation delete
probability augmentation 0.1
momentum 0.9995
temperature 0.05
queue size 131072
chunk length 256
warmup steps 20000
total steps 500000
learning rate 0.00005
scheduler linear
optimizer adamw
batch size (per gpu) 64

Table 1: Hyperparameters used for training MultiCon-
trievers.
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G Contriever Training

Each MultiContriever model was initialised
from a MultiBert checkpoint for each of
the 25 seeds from 0 - 24, accessed at
https://huggingface.co/google/
multiberts-seed_X where X is an integer
from 0 - 24. NB: MultiBerts released many
checkpoints to enable study of training dynamics,
we use only the final complete checkpoint.

Hyperparameters and training regime is exactly
matched to the original Contriever work of (Izac-
ard et al., 2022). Hyperparams can be found in
Table 1. Data used was identical to in (Izacard
et al., 2022) (from 2019) and was a 50/50 CCNet
Wikipedia split.

Each MultiContriever was trained across 4
nodes with 8 GPUs per node (32 GPUs total)
for on average 2.5 days. Each MultiContriever
was trained for the full 500,000 steps, and check-
pointed often; but in all but one seed the best per-
forming checkpoint was the final one (so for that
one we use the model at 450,000 steps). This is
excepting seed 13, which was anomalous in many
other ways (see D).

All MultiContrievers have similar loss and ac-
curacy curves, with seeds 12 and 13 excerpted
in Figure 11. All models steeply increase accu-
racy/decrease loss within 10,000 steps, and then
asymptotically approach 69% accuracy by 50,000
steps.
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Figure 11: Loss and accuracy for seeds 12 and 13, steps on x-axis and loss or accuracy on y-axis.
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