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Message from the Organizing Committee

As researchers achieve unprecedented technological breakthroughs in natural language processing, the
need to understand the systems underlying these advances is more pertinent than ever. BlackboxNLP,
now in its seventh iteration, has played an important role in bringing together scholars from a diverse
range of backgrounds in order to rigorously study the behavior, representations, and computations of
“black-box” neural network models. Our workshop showcases original, cutting-edge research on topics
including but not limited to:

* Explanation methods such as saliency, attribution, free-text explanations, or explanations with
structured properties.

* Mechanistic interpretability, reverse engineering approaches to understanding particular properties
of neural models.

* Scaling up analysis methods for large language models (LLMs).

* Probing methods for testing whether models have acquired or represent certain linguistic proper-
ties.

* Analysing context mixing (e.g., token-to-token interactions) in deep learning architectures.

* Adapting and applying analysis techniques from other disciplines (e.g., neuroscience or computer
vision).

* Examining model performance on simplified or formal languages.
* Proposing modifications to neural architectures that increase their interpretability.

* Open-source tools for analysis, visualization, or explanation to democratize access to interpretabi-
lity techniques in NLP.

 Evaluation of explanation methods: how do we know the explanation is faithful to the model?
* Understanding under the hood of memorization in LL.Ms.
* Opinion pieces about the state of explainable NLP.

The seventh BlackboxNLP workshop will be held in Miami, Florida on November 15, 2024, hosted by
the Conference on Empirical Methods in Natural Language Processing (EMNLP). 35 full papers and 18
non-archival extended abstracts were accepted for in-person and online presentations, from a total of 91
submissions. This year’s workshop will also feature papers on interpretability from the Findings of the
ACL: EMNLP 2024, as well as two invited talks and a panel discussion with experts in the field. Bla-
ckboxNLP 2024 would not have been possible without the high-quality peer reviews submitted by our
program committee, as well as the logistical assistance provided by the EMNLP organizing committee.
We gratefully acknowledge financial support from our sponsors, Google and Apple. Our invited spea-
kers, panelists, authors, and presenters have allowed us to put together an outstanding program for all
participants to enjoy. Welcome to BlackboxNLP! We look forward to seeing you in Miami and online.
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Optimal and efficient text counterfactuals using Graph Neural Networks

Dimitris Lymperopoulos, Maria Lymperaiou, Giorgos Filandrianos, Giorgos Stamou
Artificial Intelligence and Learning Systems Laboratory
School of Electrical and Computer Engineering
National Technical University of Athens
jimlibo13@gmail.com, {marialymp, geofila} @islab.ntua.gr, gstam@cs.ntua.gr

Abstract

As NLP models become increasingly integral
to decision-making processes, the need for ex-
plainability and interpretability has become
paramount. In this work, we propose a frame-
work that achieves the aforementioned by gen-
erating semantically edited inputs, known as
counterfactual interventions, which change the
model prediction, thus providing a form of
counterfactual explanations for the model. We
frame the search for optimal counterfactual in-
terventions as a graph assignment problem and
employ a GNN to solve it, thus achieving high
efficiency. We test our framework on two NLP
tasks - binary sentiment classification and topic
classification - and show that the generated ed-
its are contrastive, fluent and minimal, while
the whole process remains significantly faster
than other state-of-the-art counterfactual edi-
tors. !

1 Introduction

Since the introduction of the Transformer (Vaswani
et al., 2017) the field of NLP has enjoyed an abun-
dance of impressive implementations targeting a va-
riety of linguistic tasks. Explainability (Alammar,
2021; Danilevsky et al., 2020) and interpretability
(Madsen et al., 2022) in NLP are topics of increas-
ing popularity, researching biases and spurious cor-
relations which hinder the generalization capabili-
ties of state-of-the-art (SoTA) models. Adversarial
attacks (Zhang et al., 2020) can trigger alternative
outcomes of NLP models unveiling inner work-
ings, therefore providing post-hoc interpetability.
Several prior attempts in creating adversarially per-
turbed inputs, focused on label-flipping scenarios,
have been presented in recent literature (Michel
et al., 2019; Morris et al., 2020; Li et al., 2020;
Ross et al., 2021), while other general-purpose ap-
proaches (Ross et al., 2022; Wu et al., 2021) at-
tempt to generate more generic perturbations.

!Code available at https://github.com/Jimlibo/
GNN-Counterfactual-Editor

These methods though are accompanied with
shortcomings, despite producing promising results
in linguistic terms. One practical constraint is that
they are computationally expensive (Ross et al.,
2021) and relatively slow during inference (i.e.
MiCE requires more than 47 hours to produce edits
for 1000 samples?). Another emerging issue is the
fact that diverging from generalized textual genera-
tion towards interpretability requires a far more con-
trolled generation process, as the opaque behavior
of general-purpose editors (Wu et al., 2021; Ross
et al., 2022) built upon Large Language Models
(LLMs) often leads to sub-optimal substitutions (Fi-
landrianos et al., 2023) (or at least we have no evi-
dence regarding their optimality and why they were
selected). In fact, creating optimal linguistic inter-
ventions is an algorithmically challenging problem,
requiring efficient optimization of the search space
of alternatives (Zang et al., 2020; Wang et al., 2021;
Lymperaiou et al., 2022; Yin and Neubig, 2022).

In this work, we focus on word-level counterfac-
tual interventions to test the behaviour of textual
classifiers when different words are perturbed. Our
proposal revolves around placing all implemented
interventions under a framework which presents the
following characteristics regarding interventions:

* Optimality: Substitutions should be optimal
-or approximately optimal-, respecting a given
notion of semantic distance.

* Controllability: at least one input semantic
should be substituted in each data sample.

 Efficiency: an optimal solution should be
reached using non-exhaustive search tech-
niques among alternative substitutions.

We approach these requirements by viewing
counterfactual interventions as a combinatorial op-
timization problem, solvable via graph assignment

This is concluded through our experimentation.

Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 1-14
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algorithms from graph theory (Yan et al., 2016).
To further enhance our method, we consider the
use of Graph Neural Networks (GNNs) (Wu et al.,
2019) as a faster approximate substitute of these
algorithms (Yow and Luo, 2022). Our proposed
method can be applied to both model-specific and
general purpose scenarios, since there is no strict
reliance on changing the final label. This property
allows for generated edits to be used for differ-
ent tasks apart from label-flipping, such as seman-
tic similarity (Lymperaiou et al., 2022) or untar-
geted generation (Wu et al., 2021); nevertheless,
in this paper, we focus on classification tasks for
direct comparison with prior work. To this end,
we compare our approach with two SoTA editors
(Wu et al., 2021; Ross et al., 2021) using appropri-
ate metrics for label-flipping, fluency and semantic
closeness. Approaches based on Large Language
Models (Chen et al., 2023; Sachdeva et al., 2024)
are not considered in this work, due to their hard-
ware requirements 3. To sum up our contributions
are:

* We impose optimality and controllability of
word interventions translating them in finding
the optimal assignment between graph nodes.

* We accelerate the assignment process by train-
ing GNNs on these deterministic matchings,
ultimately achieving advanced efficiency.

* Our highly efficient black-box counterfactual
editor consistently delivers SoTA performance
compared to existing white-box and black-box
methods on two diverse datasets and across
four distinct metrics. Remarkably, it achieves
these results in less than 2% and 20% of the
time required by its two competitors, demon-
strating both superior efficacy and efficiency.

* The versatility of our proposed editor is
demonstrated in different scenarios, since it is
able to be optimized towards a specific metric
or perform general-purpose fluent edits.

2 Related work

Exposing vulnerabilities present in SoTA mod-
els has been an active area of research (Szegedy
et al., 2014), endorsing the probing of opaque
models through adversarial/counterfactual inputs.

3Quantization of the LLMs used in these works could alle-

viate the problem at the cost of performance. Experimentation
with this claim is left for future work

Granularity of perturbations ranges from character
(Ebrahimi et al., 2018) to word level (Garg and
Ramakrishnan, 2020; Ren et al., 2019) or even sen-
tence level (Jia and Liang, 2017). In our work, we
focus on semantic changes, following the paradigm
of word-level perturbations.

Manual creation of adversarial examples has
been explored (Gardner et al., 2020; Kaushik et al.,
2020; Mozes et al., 2022) with the purpose of
changing the true label. Automatic text genera-
tion initially implemented via paraphrases (Iyyer
et al., 2018), and most recently using masked lan-
guage modelling (Li et al., 2021; Ross et al., 2021;
Li et al., 2020), targets predicted label changes
in binary/multi-label classification or textual en-
tailment setups. Similarity-driven substitutions
based on word embedding distance (Jin et al., 2020;
Zhu et al., 2023) ensure optimality in local level
for classification tasks, while constraint perturba-
tions guarantee controllability of adversarials (Mor-
ris et al., 2020). Those works partially preserve
some desiderata of our approach; however, they are
model-specific and thus constrained. General pur-
pose counterfactual generators fine-tune LLMs to
offer diverse perturbations, applicable in multiple
granularities (Wu et al., 2021; Gilo and Markovitch,
2022; Ross et al., 2022). Prompting on LLMs
opens novel trajectories for textual counterfactu-
als (Chen et al., 2023; Sachdeva et al., 2024), even
though explainability of interventions is completely
sacrificed, due to the unpredictability of LLM
decision-making. Overall, utilizing LLMs is com-
putationally expensive, while produced substitu-
tions may not be optimal as far as word distance is
concerned (Filandrianos et al., 2023). On the other
hand, interventions through the use of graph-related
optimizations (Zang et al., 2020; Lymperaiou et al.,
2022) have recently emerged, showcasing that ad-
vanced performance and explainability of interven-
tions are on par with computational efficiency.

3 Problem formulation

The basis of our work constitutes a graph-based
structure that places words extracted from sen-
tences on nodes, and their in-between substitution
costs on edges. Let’s consider a bipartite graph
G = (V, E), where the edge set E consists of all
the weighted edges in the graph, and the node set V
consists of the source set .S of cardinality |S| = n
and the target set T of cardinality |T'| = m, such
that SUT =V, SNT = (. Finding optimal



connections between nodes of GG has been a long
sought discrete optimization problem of graph the-
ory, where the optimal match for each node s € S
needs to be determined among a predefined candi-
date set of nodes ¢ € T". Assuming that /" denotes
the edge weight set consisting of the weights of
all edges e € E, a min weight matching M C E
searches for a subset of the lightest possible sum
of edge weights > we,w. > 0 € W contain-
ing those edges e € E that cover all nodes of
the min(|S|, |T|) set of G. Therefore, in the case
of |S| < |T1, all nodes in S will be substituted®,
should an outcoming edge es_,; exists from each
s to any t # s, denoting that this substitution is
feasible. Under these requirements, we formulate
the following constraint optimization problem:

min Z We, subjectto s # tifdes—y (1)

A naive solution to this constraint optimization
problem would be the exhaustive search of all pos-
sible (s, t) combinations, by examining all possible
m/! permutations of 7" until the optimal solution of
min »_, w, is reached. This yields an exponential
complexity of O(m™) (proof in App. D), sup-
posing that GG is complete, i.e. each pair of s — ¢
nodes is connected so that E = S x T, |[E| = nm.
Nevertheless, computational efficiency compared
to the naive approach is guaranteed if we view this
constraint optimization problem as a variant of the
rectangular linear assignment problem (RLAP) (Bi-
jsterbosch and Volgenant, 2010): n source nodes
should be assigned to m > n target nodes opti-
mally, so that the total weight of the assignment is
minimized. RLAP also allows multiple matchings
to each source node s thus providing more flexibil-
ity in optimal matchings. Assignment algorithms
borrowed from older literature (Kuhn, 1955; Karp,
1978) are adapted to solve RLAP, achieving best
deterministic complexity of O(mn logn), signifi-
cantly reducing the exponential O(m™).

3.1 Graph neural network for RLAP

Graph Neural Networks (GNNs) (Scarselli et al.,
2009) have emerged as a powerful tool for learning
representations of graph-structured data, making
them particularly well-suited for applications in
which relationships between entities can be natu-
rally expressed as graphs. In the context of linear
assignment problems (Burkard and Cela, 1999),

“These guarantees are explained in Section 4.2

Convolution
Module NO Output
—
Input —> Encoder — lEl:ode -
onv. K=K+1
Edge
Conv. YES Decoder

Figure 1: The architecture of the proposed GNN model.
In the node convolution layer, node attributes are up-
dated for a total of S > 2 iterations.

a GNN is employed to solve the linear sum as-
signment problem (LSAP), where n agents need
to be assigned to n jobs under one-to-one match-
ing constraints, while the cumulative cost remains
minimal (Liu et al., 2024). Inspired by this ap-
proach, we adopt and slightly modify the proposed
framework by harnessing a Graph Convolutional
Network (GCN) (Kipf and Welling, 2017) to ac-
commodate RLAP; to the best of our knowledge,
no prior work has leveraged GNN modules to solve
RLAP. The described GCN model consists of three
modules: the encoder, the convolution module and
the decoder (Figure 1).

3.1.1 Encoder/Decoder

Given the bipartite graph G, the encoder module
applies a Multi-Layer Perceptron (MLP) to each
edge to transform the attributes of the constructed
graph into latent representations, thus forming the
embedding features. Note that initially the attribute
of each edge is simply its weight so that e;; =
wjj, where e;; denotes the attributes of the edge
connecting nodes 7 and j and w;; is the weight of
this edge. Also, the raw attributes of the nodes are
initialized as zero-valued vectors. The transformed
graph is then passed to the convolutional module as
input to update its state. The decoder coupled with
the encoder reads out the edge attributes from the
output graph and predicts each edge label through
an update function. Similarly, the update function
is designed as an MLP and mapped to each edge to
form edge labels through a sigmoid activation.

3.1.2 The convolution module

The convolution module is comprised of a node
convolution layer and an edge convolution layer.
For the i*" node in the graph, the node convolu-
tion layer collects the information from adjacent
edges and its 1% order neighboring nodes by adap-
tive aggregation weights and updates its attributes.
For each edge, the edge convolution layer aggre-
gates the attribute vectors of the two nodes that



the edge connects, and updates the edge attribute
vector. Although the reception field of the convolu-
tion module regards 1%‘-order neighborhoods, the
messages on each node can reach all other nodes
after two iterations of convolution, since the graph
is bipartite consisting of two node sets (see Section
3), and each node from one set connects with all
other nodes of the other set. As a result, the recep-
tion field of the convolution module can cover the
whole graph after the 2 iteration.

The edge convolution layer first collects infor-
mation about each edge based on its two adjacent
nodes using the aggregation function:

€ij = [vi®c",v; O c" ey O] (2)

where e;; denotes the attributes of the edge con-
necting node ¢ and node j, v; and v; the attributes
of i and i"" nodes and ® indicates the element-
wise multiplication of two vectors. The operator
[-, -, -] concatenates its input vectors channel-wise,
while the vectors ¢* and c® are the node and edge
channel attention vectors with the same dimensions
as node attributes and edge attributes respectively.
We must also clarify that €;; is an intermediate vec-
tor representing the concatenated features the edge
© — 7 and not the updated edge attribute vector.
After the aggregation function, an update function
p°¢ designed as an MLP takes the concatenated fea-
tures as input and outputs the updated feature, so
that: €ij < pe(éij).

The node convolution layer collects information
from adjacent edges and 1%t-order neighborhoods
for each node. Specifically, for the i*” node in the
bipartite graph G we apply the following function:

N.

_ 1 21: v e U

ViT N, 2 191([%‘ © ¢ wij(v; © ), G)
]:

eij € & and v € Vi

where p{ denotes the function to transform its in-
put to an embedding feature. &; denotes the at-
tribute set of all edges associated with node v; in
G, and V; represents the attribute set of 1t-order
adjacent nodes to node v;. For node v;, w;; is
the weight measuring the contribution of its ad-
jacent node v; during feature aggregation, and is
computed as w;; = 7([v;, v;]). The collected em-
bedding features are then concatenated with the
current attributes of node v; and are passed to
another transformation function that outputs the
updated attributes for node v; using the formula

v; < p4([vi,vi]). Functions py, p4 and 7 are all
specified as MLP modules, each of them with a
different architecture and parameters>.

4 Counterfactual generation overview

The workflow of our method (Figure 2) comprises
of three stages. A textual dataset D serves as the
input to our workflow. In the first stage, words are
extracted from D, based on their part of speech
(POS), and used as the source node set S. The
target set 71" is either a copy of .5, or else produced
from an external lexical source such as WordNet
(Miller, 1995), containing all possible candidate
substitutions of the source words (nodes). The S
and T sets form a bipartite graph G (described in
Section 3), with their in-between edge weights re-
flecting word similarity. In the second stage, we
pass the constructed G as input to the trained GCN
which outputs an approximate RLAP solution, in
the form of a list of candidate word pairs. Each
word pair, consists of the source word s; € .S and
its computed substitution ¢; € T'. In the third and
final stage, we harness beam search to define the fi-
nal changes. Beam search uses a heuristic function
to choose the most suitable substitutions from those
returned by the GNN. The selected words from S
are then substituted with their respective pair from
T, producing a counterfactual dataset D*.

4.1 Graph creation

When constructing the bipartite G, words are ex-
tracted from the original D based on their POS. To
test how well our framework generalizes, we use
both POS-specific and POS-agnostic word extrac-
tion. The former means that we only select to poten-
tially change words that belong to a specific POS
(i.e. adjectives, nouns, verbs, etc.), while the latter
means that we regard all words, irrespective of their
POS. For the edge weights, we employ two differ-
ent approaches, each varying in transparency. For
the first one, we adopt a fully transparent approach
by calculating the distances using a lexical hierar-
chy: the weight of an edge connecting two words
is determined by their similarity value as defined in
WordNet.® In the second case, we apply different
LLMs to generate word embeddings, namely An-
glE7 (Li and Li, 2023; Sean et al., 2024), GISTEm-

SFor more information refer to Liu et al. (2024), where
they explain in-depth the model architecture and parameters.

Spath_similarity function between synsets corresponding
to the words (https://www.nltk.org/howto/wordnet.html).

"mixedbread-ai/mxbai-embed-large-v1
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Figure 2: The pipeline of our method. In the first stage, we construct a bipartite graph using words as nodes, and in
the second stage we utilize a GNN to get feasible substitutions that approximately solve the RLAP. In the final stage,
we use beam search to change appropriate words of the original dataset, thus getting a new counterfactual dataset.

bed® (Solatorio, 2024), JinaAI’ (Mohr et al., 2024)
and MUG'?; then, we set the edge weight equal to
the cosine similarity of the two word embedding
vectors. Since lower similarity is associated with
lighter edges, i.e. more suitable candidates for M,
the selected words to be substituted will form con-
trastive word pairs. In order to preserve syntax
and human readability in the POS-agnostic case,
we force substitutions between same-POS words
exclusively: thus, we experiment with an edge fil-
tering mechanism, which sets a predefined large
weight to edges, ~10 times bigger than the nor-
mal edge weights as instructed from WordNet path
similarity or cosine similarity of embeddings. This
way, we avoid cases where a POS is substituted
with a word of different POS, since a significantly
heavier edge cannot be selected to participate in
M. In the POS-specific case, this mechanism is
redundant since all words are of the same POS.

4.2 Substitution pairs computation

For appropriate substitution pairs we need to solve
RLAP on the constructed graph G. As previously
discussed (Section 3), traditional deterministic ap-
proaches achieve this in O(mn logn). While these
methods provide the optimal solution, they lack
speed as the dataset size, and therefore graph size
grows larger. In an attempt to produce substitution
pairs in stable time regardless dataset size, we use a
GNN model (Section 3.1), which approximates the
optimal solution found by deterministic algorithms,
while significantly speeding up the process. This
way, efficiency is guaranteed. By solving the prob-
lem with the constraint of minimum ) w,, we find
all most dissimilar s — t pairs, achieving approxi-
mate optimality of concept substitution within G

8avsolatorio/GIST-Embedding-v0
*https://jina.ai/embeddings/
""Labib11/MUG-B-1.6

and ultimately producing contrastive substitution
pairs. At the same time, controllability is par-
tially ensured since the graph G is dense (therefore
there are no disconnected s nodes) and |S| < |17,
since T is either a copy of S or produced based on
S using antonyms from WordNet (more than one
antonym may correspond to each word). Note here,
that we use the word “partially” as there is a trade-
off between controllability and minimality '' (see
App. A), which stems from using beam search dur-
ing counterfactual generation. In practice, there are
also a few exceptions in controllability, if a source
concept cannot be mapped on WordNet.

4.3 Counterfactual Generation

As aresult of solving RLAP, a matching M C F
is returned, indicating the optimal substitutions to
n source concepts. We denote as WM C W the
total weight of M that contains n source concepts.
Given this matching, beam search selects which
conceptual substitutions from M will actually be
performed on D. This selection process is neces-
sary since we desire changes to be minimal in terms
of number of words altered per instance, perturbing
only small portions of input, a property which has
been argued to make explanations more intelligible
(Alvarez-Melis et al., 2019; Miller, 2019). In this
context, we also set an upper limit of substitutions
on each text instance, experimenting with both a
fixed and a dynamically set number. In the second
case, for each instance, the upper limit is equal to
the 20% of the total number of words it contains.
We stop the search when the model’s prediction
is flipped or when the upper limit is reached, thus
keeping the number of edits low.

""Minimality here refers to the number of words changed.
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5 Experiments

In this section, we present our experiments along
with the results, which showcase that our frame-
work produces fluent, minimal edits with high label-
flipping percentage in a short amount of time com-
pared to the other editors. All experiments were
run on the same system consisting of a /6 GB GPU,
an Intel i7 CPU and 16 GB RAM.

5.1 Experimental Setup

Datasets We evaluate our framework and compare
it with other editors from literature, on two English-
language datasets: IMDB, which contains movie
reviews and is used for binary sentiment classifica-
tion (Maas et al., 2011) and a 6-class version of the
20 Newsgroups used for topic classification (Lang,
1995). Due to the high computational demands of
the compared methods, we sampled 1K instances
from each dataset for evaluation. Running MiCE
on just 1K samples required over 47 hours (see
Table 1), making full dataset experiments impracti-
cal. We chose twice the sample size used in similar
studies comparing the same methods on the same
datasets (Filandrianos et al., 2023).

Predictors We test our edits using the same pre-
dictor models with MiCE (Ross et al., 2021)
in each dataset. These models are based on
RoBERTay 4rar (Liu et al., 2019) and boast a
test accuracy of 95.9% and 85.3% for IMDB and
Newsgroups respectively.

Editors We compare our framework with two
SoTA editors, MiCE (Ross et al.,, 2021) and
Polyjuice (Wu et al.,, 2021). MiCE produces
minimal edits optimized for label-flipping, while
Polyjuice is a general purpose editor, whose edits
are not restricted to a specific task. In regard to our
framework, we use the approach of the determinis-
tic RLAP solution as a baseline, and we compare
it with the GNN RLAP optimization. To test the
generalization properties of our work, we also use
POS-restricted and POS-unrestricted substitutions.
Metrics To assess the performance of the differ-
ent editors, we draw inspiration from MiCE and
measure the following properties: (1) flip-rate: the
percentage of instances for which an edit results in
different model prediction (label-flipping); (2) min-
imality: the "size" of the edit as measured by word-
level Levenshtein distance between the original and
edited input. We adopt a normalized version of this
metric with a range of [0, 1] — the Levenshtein
distance divided by the number of words in the

original input; (3) closeness: the semantic similar-
ity between the original and edited input, measured
by BERTscore (Zhang et al., 2019); (4) fluency: a
measure of how similarly distributed the edited in-
put is compared to the original. To evaluate fluency,
we first take a pretrained T5-BASE model (Raffel
et al., 2020) and compute the loss value for both the
edited and original input. Afterwards, we report
their loss_ratio - i.e., edited / original. Since we
aim for a value of 1.0, which indicates equivalent
losses for the original and edited texts, the final
measure of fluency is defined as |1 — loss_ratio|.

5.2 Results

The results of our experiments are shown in Table
1, including both IMDB and Newsgroups datasets.
More analysis can be found in App. A, B.

Our proposed editors—deterministic and GNN-
powered—outperform both MiCE and Polyjuice
across the three of the four metrics namely mini-
mality, fluency and closeness. Regarding flip-rate,
MiCE achieves the highest results (99% - 100%,
across the two datasets), followed by our approach:
our best editor reaches values slightly above 90%
(specifically 94.4% for IMDB and 92% for News-
groups). However, this is expected, since MiCE
is the only editor that has white-box access to the
classifier and it is able to strategically construct
edits that affect the classifier the most, regardless
of the input text.

Results also show that our edits tend to be more
minimal when graph construction is based on em-
beddings models instead of WordNet (approxi-
mately 10% of the original tokens are changed
when WordNet is employed, while with embedding
models only 1% of the said tokens change). We
believe this is due to the fact that SOTA embedding
models are able to better depict concept distance
compared to WordNet, and therefore substitutions
based on them are of higher quality, leading to more
contrastive pairs. This means that for the same im-
pact on the classifier’s output, less embedding sub-
stitutions are required compared to WordNet-based
ones. On the other hand, using embedding models
reduces the overall transparency of the method. De-
spite minor discrepancies, all our framework vari-
ants consistently outperform previous techniques
across every metric for Polyjuice and three met-
rics for MiCE. Moreover, even the general-purpose
variation of our framework, which lacks access to
the classifier, yields better results compared to the
white-box MiCE, in just 2% of the time.



IMDB

Editor Fluency | Closeness T Flip Rate t Minimality | Runtime |

Deterministic w. fluency 0.14 0.969 0.892 0.08 4:09:41

GNN w. fluency 0.07 0.986 0.861 0.12 3:17:51

WordNet GNN w. fluency & dynamic thresh 0.057 0.986 0.851 0.146 4:18:34
GNN w. fluency & POS_filter 0.08 0.992 0.862 0.123 0:32:05

GNN w. fluency & edge filter 0.105 0.993 0.845 0.149 3:00:38

GNN w. fluency_contrastive 0.112 0.999 0914 0.014 2:12:06

GNN w. contrastive 0.048 0.996 0.927 0.01 2:00:15

GNN w. AnglE & contrastive 0.063 0.995 0.944 0.011 0:45:38

Embeddings GNN w. GIST & contrastiye 0.037 0.995 0.882 0.016 0:58:14
GNN w. JinaAl & contrastive 0.047 0.995 0.928 0.017 1:00:56

GNN w. MUG & contrastive 0.036 0.996 0.889 0.013 0:52:19

Polyjuice 0.394 0.787 0.782 0.705 5:01:58
MiCE 0.201 0.949 1.000 0.173 48:37:56

Newsgroups
Editor Fluency | Closeness T Flip Rate t Minimality | Runtime |

Deterministic w. fluency 0.182 0.951 0.870 0.135 4:20:52

GNN w. fluency 0.074 0.985 0.826 0.151 3:48:37

WordNet GNN w. fluency & dynamic thresh 0.043 0.984 0.823 0.148 4:47:14
GNN w. fluency & POS filter 0.044 0.989 0.841 0.143 1:19:57

GNN w. fluency & edge filter 0.12 0.989 0.834 0.151 3:05:08

GNN w. fluency_contrastive 0.088 0.979 0.875 0.033 2:45:31

GNN w. contrastive 0.033 0.989 0.920 0.033 2:02:34

GNN w. AnglE & contrastive 0.005 0.995 0.904 0.027 1:09:13

Embeddings GNN w. QIST & contrastiye 0.001 0.995 0.898 0.02 1:02:55
GNN w. JinaAl & contrastive 0.013 0.993 0.882 0.025 0:57:31

GNN w. MUG & contrastive 0.005 0.996 0.900 0.016 0:53:04

Polyjuice 1.153 0.667 0.8 0.997 6:00:10

MiCE 0.152 0.922 0.992 0.261 47:23:35

Table 1: Experimental results of counterfactual generation. We evaluate different versions of our framework using
the metrics described on subsection 5.1, and we compare it with MiCE and Polyjuice. For each metric (column) the
best value is highlighted in bold. Reported runtimes refer to inference.

As far as runtime is concerned, our editors show
a remarkable improvement in speed compared to
MiCE and Polyjuice. Our deterministic editor,
which is used as a baseline, requires approximately
4 hours for each dataset, while editors that use the
GNN discussed in Section 3.1 achieve faster exe-
cution on average (2-4 hours). Runtime is further
improved with the use of embedding models, where
execution requires less than an hour (52 minutes - 1
hour for IMDB, 53 minutes - 1 hour and 9 minutes
for Newsgroups). This significant speed improve-
ment is one of the main advantages of our frame-
work compared to the two SoTA editors, where
we observed approximately 97% and 83% speed
improvement compared with MiCE and Polyjuice
respectively.

Static vs. Dynamic Threshold To keep the num-
ber of edits relatively low, a way to limit the number
of substitutions per data instance is required, ac-
cepting a potential drop in flip-rate. For this reason,
we use two different approaches. In the first one,
we enforce a static number of maximum substitu-

tions allowed for each textual input, regardless of
its length; after experimentation, the best number
was found to be 10. In the second approach, we
dynamically compute the optimal upper limit (or
threshold) of substitutions based on the total num-
ber of words in the text. After different attempts,
we end up defining that limit as 20% of the total
number of words. Results however, show insignifi-
cant improvement in metrics when using dynamic
threshold, while the runtime is increased (approxi-
mately by 1 hour per dataset). This slow-down is
expected since dynamic threshold introduces an ex-
tra linear complexity for each text instance, in place
of the O(1) complexity of the static case. Static is
our default approach unless stated otherwise.

POS-restricted vs. Unrestricted Substitutions
In an attempt to evaluate our editor’s ability to dis-
tinguish which POS is more influential to a specific
dataset when related words are substituted, we im-
pose restrictions regarding which POS should be
candidates for substitutions, and compare the re-
sults with a POS-unrestricted version of our frame-



work. The IMDB dataset is used for sentiment
classification, and therefore adjectives and adverbs
are presumed to mainly dictate the label (sentiment)
for each instance (Benamara et al., 2005). With that
in mind, we limit our editor to change only those
two POS. Newsgroups is a dataset which belongs
to the topic classification category. Since a topic
is deduced by examining the nouns in a text, we
instruct the editor to take into account only those.
As we observe from Table 1, both editors, with and
without POS filtering, achieve very similar results.
This holds true for both IMDB and Newsgroups
datasets, showing that the observed similarity is
not due to a specific POS restriction. The only
significant difference is seen in runtime (32 - 60
minutes for restricted editors, 2 - 4 hours for unre-
stricted ones), which is to be expected since when
we only consider certain POS at a time, we also
limit the amount of words that will be considered
as candidates for substitution. This means that the
graph nodes and edges of G will be significantly
reduced, thus decreasing the time needed for graph
construction and GNN inference.

Edge Filtering In order to preserve the POS in
each substitution, we apply a penalty mechanism
(filtering) when computing edge weights of the
graph. This mechanism assigns a weight approx-
imately 10x bigger than the normal weights (as
defined from WordNet path similarity or embed-
ding cosine similarity), to each edge that connects
different-POS words. This way, since our frame-
work is trying to find a minimum weight matching,
edges with large weights are almost impossible to
be chosen and therefore substitutions involving dif-
ferent POS have a low occurrence probability. By
examining the results with and without the use of
edge filtering we observe that they are quite similar.
This leads us to assume that such a mechanism is
redundant and its functionality is covered by the
GNN solution to our graph assignment problem.

Contrastive vs fluent contrastive edits Since
the selection of eligible substitutions is a general-
purpose process (only defined by the graph), we ex-
amine the behaviour of our editor when optimized
for label-flipping scenarios. This optimization is
done by altering the heuristic function of beam
search in the last stage of our framework (see Fig-
ure 2). For general-purpose edits, this function
is the metric for fluency discussed in Subsection
5.1, which assists the production of fluent edits.
For label flipping, we use contrastive probability,

which regards the change to the model prediction
for the original label, to determine the best edits
(see GNN w. contrastive in Table 1). Finally, we
also use the average of fluency and contrastive prob-
ability as the heuristic function, which results in
fluent edits with high flip-rate (see GNN w. flu-
ency_contrastive in Table 1). While the general-
purpose edits achieve the lowest flip-rate, they re-
main better in all metrics compared to Polyjuice,
another general-purpose editor. This shows that our
framework can also be used as a general, untargeted
editor with high-quality edits (regarding discussed
metrics); extensive experimentation on this claim is
left for future work. The label-flipping optimized
edits, achieve better results in fluency, closeness
and minimality compared to MiCE, a SoTA white-
box editor optimized for label-flipping. Therefore,
in terms of flip-rate, MiCE demonstrates superior
performance, exceeding ours by 7%, accepting a
significant 20x slowdown in execution.

WordNet vs. Embeddings We investigate the
effect of using cosine similarity of embeddings
in place of WordNet path similarity between two
words, when computing the weight of a specific
edge in the bipartite graph G. On the one hand, de-
terministc hierarchies provide more explainable
relationships between concepts, fully justifying
causal pathways of substitutions. On the other
hand, recently-emerged embedding models can
better capture the relationship and similarity of
two words, compared to WordNet. To keep our
framework relatively lightweight, we deploy the
top four best performing models that participated
in an embedding benchmark competition (Muen-
nighoff et al., 2023) and whose size does not exceed
1.25 GB. Models with that size occupied the top
spots in the competition and any increase in model
size did not result in significant improvements in
performance. Results justify our assumptions, with
our variants that leverage the embedding models
achieving better results in all metrics compared
to our WordNet-based variants. Regarding GPU
inference, the embedding models also outperform
WordNet in terms of speed, since the latter requires
API calls for each word/graph node of V', which
greatly slow down the graph creation process.

6 Conclusion

In this work, we present a framework for generat-
ing optimal and controllable word-level counter-
factuals via graph-based substitutions, which we



evaluate on two classification tasks. We introduce
a GNN approach that enhances our proposed base-
line deterministic graph assignment algorithm and
significantly speeds up the process overall. We
compare our results with two SoTA editors, and
show that we surpass them in most metrics, while
being considerably faster. As future work, we con-
sider integrating more external lexical sources (e.g.
ConceptNet) to enhance the possible substitution
candidates, as well as improving the performance
of the GNN model used to solve RLAP to fur-
ther approximate deterministic optimal solutions.
Other future directions include comparison with
LLM-based counterfactual editors and evaluation
on other NLP tasks apart from classification.

Broader Impacts and Ethics

Our framework is intended to aid the interpretation
of NLP models. As a model-agnostic explanation
method by design (not optimized towards a cer-
tain metric in the default case), it has the potential
to impact NLP system development across a wide
range of models and tasks. In particular, our edits
can assist developers working on the NLP field in
facilitating, debugging and exposing model vulner-
abilities. The framework can also assist in data
augmentation which results in less biased and more
robust systems. As a consequence, downstream
users of NLP models can also be benefited by gain-
ing access to those systems.

While our work focuses on interpreting NLP
models, it could be misused in other contexts. For
instance, malicious users might generate adversar-
ial examples, such as slightly altered hate speech,
to bypass toxic language detectors. Additionally,
using these editors for data augmentation could
inadvertently lead to less robust and more biased
models, as the edits are designed to expose model
weaknesses. To avoid reinforcing existing biases,
researchers should carefully consider how they se-
lect and label edited instances when using them for
training. However, such threats are applicable to
any text editor in NLP literature and are not tailored
on our work.

Limitations

Our framework comes with its challenges. One of
them is that it requires a strong enough GPU (at
least 8GB based on our experiments) to run the
GNN and the embedding models. Such hardware
may not be available to any researcher that wishes

to reproduce our experiments. Another one, is the
dependence of word existence in WordNet, in cases
it serves as a knowledge base for T construction,
or as a means for calculating path similarity. For
example, if a word from the original input does
not exist in the WordNet hierarchy, then we are
unable to find its antonyms and therefore a substi-
tution on that word may not occur. The usage of
other knowledge sources, which could potentially
resolve this limitation, is left for future work. The
usage of embeddings for concept distance defini-
tion partially resolves the WordNet limitation, even
though it results in a slight decrease in explainabil-
ity of edits: the WordNet structure is well-defined
and deterministic, while the model mapping words
onto an embedding space does not come with inher-
ent guarantees of its functionality. Explainability
is also decreased when using the GNN module in
place of the deterministic min weight matching
algorithm for solving RLAP (Kuhn, 1955; Karp,
1978), since the reason why an edge (and therefore
a candidate substitution pair) is selected becomes
less transparent, as a result of a black-box proce-
dure performed by the GNN. Finally, while not
being a direct limitation, the general-purpose appli-
cability of our framework has not been presented
experimentally in the current paper, despite being a
natural consequence stemming from the optimiza-
tion performed on the graph.

Acknowledgments

The research work was supported by the Hellenic
Foundation for Research and Innovation (HFRI)
under the 3rd Call for HFRI PhD Fellowships (Fel-
lowship Number 5537).

References

J Alammar. 2021. Ecco: An open source library for the
explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 249-257,
Online. Association for Computational Linguistics.

David Alvarez-Melis, Hal Daumé III, Jennifer Wort-
man Vaughan, and Hanna Wallach. 2019. Weight of
evidence as a basis for human-oriented explanations.
In Workshop on Human-Centric Machine Learning at
the 33rd Conference on Neural Information Process-
ing Systems (NeurlPS 2019), Vancouver, Canada.

Farah Benamara, Carmine Cesarano, Antonio Picariello,
Diego Reforgiato Recupero, and Vs Subrahmanian.


https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2021.acl-demo.30
https://www.microsoft.com/en-us/research/publication/weight-of-evidence-as-a-basis-for-human-oriented-explanations/
https://www.microsoft.com/en-us/research/publication/weight-of-evidence-as-a-basis-for-human-oriented-explanations/

2005. Sentiment analysis: Adjectives and adverbs
are better than adjectives alone. ICWSM.

Jeroen Bijsterbosch and Ton Volgenant. 2010. Solving
the rectangular assignment problem and applications.
Annals OR, 181:443-462.

Rainer Ernst Burkard and Eranda Cela. 1999. Linear
assignment problems and extensions, 1 edition, pages
75-149. Supplement Volume A. Kluwer Academic
Publishers, Netherlands.

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish
Sabharwal, and Kyle Richardson. 2023. DISCO:
Distilling counterfactuals with large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5514-5528, Toronto, Canada.
Association for Computational Linguistics.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis
Katsis, Ban Kawas, and Prithviraj Sen. 2020. A sur-
vey of the state of explainable ai for natural language
processing. In AACL.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31-36,
Melbourne, Australia. Association for Computational
Linguistics.

George Filandrianos, Edmund Dervakos, Orfeas Me-
nis Mastromichalakis, Chrysoula Zerva, and Giorgos
Stamou. 2023. Counterfactuals of counterfactuals: a
back-translation-inspired approach to analyse coun-
terfactual editors. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 9507—
9525, Toronto, Canada. Association for Computa-
tional Linguistics.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307-1323, Online. Association for Computational
Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6174-6181, Online. Association for
Computational Linguistics.

Daniel Gilo and Shaul Markovitch. 2022. A general
search-based framework for generating textual coun-
terfactual explanations. In AAAI Conference on Arti-
ficial Intelligence.

10

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875-1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021-2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Preprint, arXiv:1907.11932.

R.M. Karp. 1978. An algorithm to solve the mxn assign-
ment problem in expected time o (mn log n). Tech-
nical Report UCB/ERL M78/67, EECS Department,
University of California, Berkeley.

Divyansh Kaushik, Eduard Hovy, and Zachary C. Lip-
ton. 2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. Preprint,
arXiv:1909.12434.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

H. W. Kuhn. 1955. The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly,
2(1-2):83-97.

Ken Lang. 1995. Newsweeder: learning to filter net-
news. In Proceedings of the Twelfth International
Conference on International Conference on Machine
Learning, ICML’95, page 331-339, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Diangi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021. Con-
textualized perturbation for textual adversarial attack.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5053-5069, Online. Association for Computa-
tional Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Ad-
versarial attack against bert using bert. Preprint,
arXiv:2004.09984.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

He Liu, Tao Wang, Congyan Lang, Songhe Feng, Yi Jin,
and Yidong Li. 2024. Glan: A graph-based linear as-
signment network. Pattern Recognition, 155:110694.


https://doi.org/10.1007/s10479-010-0757-3
https://doi.org/10.1007/s10479-010-0757-3
https://doi.org/10.18653/v1/2023.acl-long.302
https://doi.org/10.18653/v1/2023.acl-long.302
https://api.semanticscholar.org/CorpusID:222125099
https://api.semanticscholar.org/CorpusID:222125099
https://api.semanticscholar.org/CorpusID:222125099
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/2023.findings-acl.606
https://doi.org/10.18653/v1/2023.findings-acl.606
https://doi.org/10.18653/v1/2023.findings-acl.606
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://api.semanticscholar.org/CorpusID:253244493
https://api.semanticscholar.org/CorpusID:253244493
https://api.semanticscholar.org/CorpusID:253244493
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://arxiv.org/abs/1907.11932
https://arxiv.org/abs/1907.11932
https://arxiv.org/abs/1907.11932
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1978/29160.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1978/29160.html
https://arxiv.org/abs/1909.12434
https://arxiv.org/abs/1909.12434
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://arxiv.org/abs/2004.09984
https://arxiv.org/abs/2004.09984
https://doi.org/10.1016/j.patcog.2024.110694
https://doi.org/10.1016/j.patcog.2024.110694

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Maria Lymperaiou, George Manoliadis, Orfeas Me-
nis Mastromichalakis, Edmund G. Dervakos, and
Giorgos Stamou. 2022. Towards explainable evalu-
ation of language models on the semantic similarity
of visual concepts. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3639-3658, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—-150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Andreas Madsen, Siva Reddy, and Sarath Chandar. 2022.
Post-hoc interpretability for neural nlp: A survey.
ACM Comput. Surv., 55(8).

Paul Michel, Xian Li, Graham Neubig, and Juan Miguel
Pino. 2019. On evaluation of adversarial perturba-
tions for sequence-to-sequence models. Preprint,
arXiv:1903.06620.

George A. Miller. 1995. Wordnet: a lexical database for
english. Commun. ACM, 38(11):39-41.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelli-
gence, 267:1-38.

Isabelle Mohr, Markus Krimmel, Saba Sturua, Moham-
mad Kalim Akram, Andreas Koukounas, Michael
Giinther, Georgios Mastrapas, Vinit Ravishankar,
Joan Fontanals Martinez, Feng Wang, et al.
2024. Multi-task contrastive learning for 8192-
token bilingual text embeddings. arXiv preprint
arXiv:2402.17016.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake
Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack:
A framework for adversarial attacks, data augmen-
tation, and adversarial training in nlp. Preprint,
arXiv:2005.05909.

Maximilian Mozes, Bennett Kleinberg, and Lewis D.
Griffin. 2022. Identifying human strategies for gener-
ating word-level adversarial examples. In Conference
on Empirical Methods in Natural Language Process-

ing.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. Mteb: Massive text embedding
benchmark. Preprint, arXiv:2210.07316.

11

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085—
1097, Florence, Italy. Association for Computational
Linguistics.

Alexis Ross, Ana Marasovi¢, and Matthew Peters. 2021.
Explaining NLP models via minimal contrastive edit-
ing (MiCE). In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3840-3852, Online. Association for Computational
Linguistics.

Alexis Ross, Tongshuang Wu, Hao Peng, Matthew Pe-
ters, and Matt Gardner. 2022. Tailor: Generating and
perturbing text with semantic controls. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 3194-3213, Dublin, Ireland. Association
for Computational Linguistics.

Rachneet Sachdeva, Martin Tutek, and Iryna Gurevych.
2024. CATfOOD: Counterfactual augmented train-
ing for improving out-of-domain performance and
calibration. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1876-1898, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61-80.

Lee Sean, Shakir Aamir, Koenig Darius, and Lipp Julius.
2024. Open source strikes bread - new fluffy embed-
dings model.

Aivin V. Solatorio. 2024. Gistembed: Guided in-sample
selection of training negatives for text embedding
fine-tuning. arXiv preprint arXiv:2402.16829.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. Preprint, arXiv:1312.6199.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xiaosen Wang, Yifeng Xiong, and Kun He. 2021. De-
tecting textual adversarial examples through random-
ized substitution and vote. In Conference on Uncer-
tainty in Artificial Intelligence.


https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.coling-1.321
https://aclanthology.org/2022.coling-1.321
https://aclanthology.org/2022.coling-1.321
https://aclanthology.org/P11-1015
https://doi.org/10.1145/3546577
https://arxiv.org/abs/1903.06620
https://arxiv.org/abs/1903.06620
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2005.05909
https://api.semanticscholar.org/CorpusID:253080411
https://api.semanticscholar.org/CorpusID:253080411
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2022.acl-long.228
https://doi.org/10.18653/v1/2022.acl-long.228
https://aclanthology.org/2024.eacl-long.113
https://aclanthology.org/2024.eacl-long.113
https://aclanthology.org/2024.eacl-long.113
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusID:250698870
https://api.semanticscholar.org/CorpusID:250698870
https://api.semanticscholar.org/CorpusID:250698870

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel Weld. 2021. Polyjuice: Generating counter-
factuals for explaining, evaluating, and improving
models. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6707-6723, Online. Association for Computa-
tional Linguistics.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. 2019. A
comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 32:4-24.

Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng,
Hongyuan Zha, and Xiaokang Yang. 2016. A short
survey of recent advances in graph matching. In
Proceedings of the 2016 ACM on International Con-
ference on Multimedia Retrieval, ICMR ’16, page
167-174, New York, NY, USA. Association for Com-
puting Machinery.

Kayo Yin and Graham Neubig. 2022. Interpreting lan-
guage models with contrastive explanations. In Con-
ference on Empirical Methods in Natural Language
Processing.

Kai Siong Yow and Siqiang Luo. 2022. Learning-based
approaches for graph problems: A survey.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combi-
natorial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066—6080, Online. Association
for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore:
Evaluating text generation with bert.  ArXiv,
abs/1904.09675.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on deep-
learning models in natural language processing: a
survey. ACM Transactions on Intelligent Systems
and Technology, 11(3):1-41.

Hai Zhu, Qingyang Zhao, and Yuren Wu. 2023. Bea-
mattack: Generating high-quality textual adversarial
examples through beam search and mixed semantic
spaces. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining.

A Trade-offs

Since our editor is a highly customizable one, there
are many trade-offs which must be considered dur-
ing counterfactual generation.
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Controllability vs. Minimality Controllable in-
terventions involve changing any semantic that can
be changed in order to observe an outcome; to this
end, we could potentially alter as many words as
possible in order to reach a goal, e.g. label-flipping.
However, in our case, in order to produce minimal
edits, we set a maximum number of substitutions
per textual input and leverage beam search to select
the most appropriate changes. As a consequence,
the default controllability requirement is partially
sacrificed, since it is not guaranteed that all words
that can be substituted will be indeed substituted.
Nevertheless, our framework still produces edits for
each input, meaning that it will change the original
text, although not entirely; this is why we impose
as controllability to modify at least one word of the
original data sample. In our experiments (see Table
1) we have accepted this trade-off since our inter-
est lies more heavily with minimality compared to
controllability. Despite that, it is possible to fully
ensure controllability by arsing the limitations men-
tioned above (i.e. max number of substitutions and
beam search), although such an approach would
results in worse performance regarding minimality.

Optimality vs. Execution Speed In our frame-
work, we use both a deterministic (see Determin-
istic w. fluency from Table 1) and a GNN ap-
proach (see GNN w. fluency from Table 1) to solve
RLAP. With the deterministic approach, optimality
is ensured, since traditional graph matching algo-
rithms have been proved to find the optimal solu-
tion (Kuhn, 1955; Karp, 1978). However, the com-
plexity of those algorithms, which is O(mnlogn),
results to slower runtimes as graph size increases
(which is analogous to the number of words to be
substituted and therefore depends on the dataset
size). By replacing the deterministic algorithms
with the trained GNN (see Section 3.1), our frame-
work becomes significantly faster at the cost of
optimality. This is due to the fact that the solu-
tion given by the GNN is an approximation of the
optimal one.

Explainability vs. Execution Speed In our
work, we utilize WordNet as the default way of
computing edge weights between nodes, where
each edge weight is based on the path that connects
a source word s with target word ¢ in WordNet. By
mapping each concept to WordNet synsets, a deter-
ministic concept position is assigned to each word,
providing a fully transparent concept mapping to
a well-crafted lexical structure. The utilization of
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word embeddings casts a shadow on word map-
ping, since we transit to a vector representation
of an uninterpretable multi-dimensional space via
black-box models. Similarity in the embedding
space translates to semantic similarity of physical
concepts, acting as our guarantee towards employ-
ing embedding models.

In combination with the deterministic solution
to RLAP, WordNet mapping guarantees explain-
ability of edits, since all paths s — ¢ are tractable,
and the choice of edges is fully transparent due to
the deterministic selection process of graph match-
ing algorithms (Bijsterbosch and Volgenant, 2010).
By obtaining the resulting matching M we gain
full access to the set of edits to perform S — T
transition. A sacrifice in explainability is imposed
when using the GNN instead of the deterministic
graph assignment algorithms: the GNN introduces
an uncertainty to the edge selection, since we can-
not be entirely sure why a specific edge was cho-
sen. Although we have trained the GNN to output
the RLAP solution, the model itself still remains
a black-box structure that hides the exact criteria
which decide whether an edge will be selected or
not. Still, in some applications the speedup offered
by the GNN outweighs this drop in explainabil-
ity, while the opposite may hold in cases where
trustworthiness is of utmost importance.

Overall, as observed from our experiments (see
Table 1), leveraging embedding models to compute
edge weights and the GNN to solve RLAP show-
cases major improvements in fluency, flip-rate and
minimality, while also being considerably faster.
Someone could argue that this approach is clearly
better that the fully deterministic one, since it pro-
duces higher quality edits. Despite that, we need
to point out that these improvements come at a
significant cost on explainability, since, due to the
GNN, the edge selection process is no longer trans-
parent and edge weight computation depends on
black-box embedding models.

B Edits Comparison Between Editors

Qualitative comparisons with Polyjuice and MiCE
are presented in this Section to demonstrate the
capabilities of our framework regarding minimal-
ity and flip-rate. For that purpose, we choose an
instance of the IMDB dataset which is originally
classified as ’positive’ and acquire the edited in-
stances from our framework and the two editors
mentioned above. Specifically for Polyjuice, since
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its goal is to change the prediction from positive to
negative, we use the control code [negation], which
guides the editor to generate an edit that is the nega-
tion of the original text. The original along with
the edited inputs (red words denote changes made
by each editor) are shown in Figure 3.

This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
Jennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.

The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, a better than average romantic drama, 7/10.

Original:

MiCE: This movie will likely be too harsh for many conservative, conservative audiences.

Personally | enjoyed this film thanks mostly to the brilliant acting of William Powell,
both of whom have the dazzling beauty of Jennifer Jones. There are some truly
heartwarming scenes between the pair and the talent of these two actors enhances
what in less than average hands could've been trite lines. The beautiful performance
of Hong Kong from the onset of filming is another highlight of this movie. Allin all, a
better than average romantic drama, 4/10.

Polyjuice: This movie will likely be too sentimental for many viewers, especially contemporary

audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-sarth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
Jennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, of.

Ours: This movie will likely be too sentimental for many viewers, especially contemporary

audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
Jennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, a better than average shameful drama, 7/10.

Figure 3: Original input and edited inputs from different
editors. The changes that each editor performed are
highlighted in red color.

As we can see, MiCE performs the highest num-
ber of interventions on the original input, with
two of those changes being semantically incorrect
("conservative, conservative" and "both of whom
have"). We also notice that its changes are not en-
tirely word-level, which further deteriorates the ed-
itor’s performance regarding minimality. Polyjuice
on the other hand, makes only one change at the
end of the text, which however has no semantic
meaning; such edits may betray the presence of
a counterfactual editor or a neural model in gen-
eral, coming in contrast with the requirement of
“imperceptible edits” that commonly involves coun-
terfactual interventions. Our editor presents the
best performance out of the three, changing only
one word, while being semantically correct and
very close to the original instance.

Numeric results of Figure 3 instances regarding
minimality and label-flipping are reported in Table
2. Since we only have one textual instance, instead
of flip-rate we use the term prediction flipped to
denote whether the edited input is able to change
the original prediction of the classifier. Note that
Polyjuice is unable to flip the prediction, while both



Edits \ Minimality |  Prediction Flipped
Polyjuice 0.078 False

MiCE 0.256 True

Ours 0.011 True

Table 2: Metric results of the edits presented in Figure 3.
For each property (column) the best value is highlighted
in bold.

MiCE and our framework succeed. Also, our editor
is the best as far as minimality is concerned, with
Polyjuice being second and MiCE being the worst
out of the three.

C GNN Training

For training the GNN incorporated in our frame-
work, we commence from the trained model de-
scribed in Liu et al. (2024) and fine-tune it to our
specific problem, which is RLAP. The process we
follow is almost identical to the one reported by the
authors, with a small difference regarding the loss
function being used. Initially, a synthetic dataset
that consists of M samples'? is created. Each sam-
ple is composed of a cost matrix C in which the
elements are generated from a uniform distribution
on (0, 1) and the corresponding optimal assignment
solution which is obtained by the Hungarian algo-
rithm (Kuhn, 1955). We consider the RLAP as a
binary classification task and divide the elements
in the ground-truth assignment matrix Y'9¢ 13 into
positive labels and negative ones. Since for each
node, there is at most one positive edge among its
adjacent edges and the rest are negative ones, we
use the Balanced Cross Entropy as the loss func-
tion, to avoid the negative labels dominating the
training:

n m

L==> "> (wxydlogyy) + (1 —w)x
i=1 j=1

4)
(1 =) log(1l — yiy))

where y;; is the predicted label for edge ¢ — j
which connects source node ¢ and target node j, yff
is the corresponding ground-truth vector element
indicating the edge as positive or negative, and w
is the weight which balances the loss to avoid the
negative labels dominating the training. Parameters

12Each sample represents a weighted bipartite graph.

PY 9" is a matrix where element y; is 1 if the edge con-
necting nodes ¢ and j belongs to the minimum matching, else
itis -1.

14

n, m denote the cardinality of source and target
nodes sets, so that |S| = n,|T| = m.

As in Liu et al. (2024), training takes 20 epochs
in total, where the learning rate is set as 0.003
initially and declined by 5% after every 5 epochs.

D Proof of naive graph matching
complexity

We will prove the exponential O(|T'|!°!) complex-
ity of the naive solution to the constraint op-
timization problem of adversarial s — ¢ match-
ings. Given the example graph of Figure 4
with S = {A, B,C} of cardinality |S| = 3 and
T = {1,2,3,4} of cardinality |T'| = 4, the follow-
ing node combinations occur:

Source node A can take |T'| = 4 values: A-
1, A-2, A-3, A-4. Node B can independently of
A take |T'| = 4 values: B-1, B-2, B-3, B-4. Fi-
nally, C independently of A and B can also take
|T'| = 4 values: C-1, C-2, C-3, C-4. Therefore,
all combinations for the |S| = 3 source nodes are
4x4x4=43=T|I5

Figure 4: Example graph
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Abstract

Language Models (LMs) recently incorporate
mixture-of-experts layers consisting of a router
and a collection of experts to scale up their pa-
rameter count given a fixed computational bud-
get. Building on previous efforts indicating that
token-expert assignments are predominantly in-
fluenced by token identities and positions, we
trace routing decisions of similarity-annotated
text pairs to evaluate the context sensitivity of
learned token-expert assignments. We observe
that routing in encoder layers mainly depends
on (semantic) associations, but contextual cues
provide an additional layer of refinement. Con-
versely, routing in decoder layers is more vari-
able and markedly less sensitive to context.

1 Introduction

Language Models (LMs) have demonstrated excep-
tional capabilities in capturing linguistic nuances
(Devlin et al., 2019) and generating coherent text
(Radford et al., 2019; Brown et al., 2020). How-
ever, the dense nature of their architectures, where
each token is processed by the total number of pa-
rameters, inherently limits their scalability, which
is considered the predominant driver for their ad-
vanced expressiveness (Kaplan et al., 2020).
Sparsely-gated Mixture-of-Experts (MoE) mod-
els as developed by Shazeer et al. (2017) and more
recently integrated into the transformer architecture
(Vaswani et al., 2017) by Lepikhin et al. (2020) and
Fedus et al. (2022), emerged as a promising tech-
nique to scale up the parameter count of densely-
connected language models (Brown et al., 2020).
Beyond language models, this design paradigm was
successfully applied to vision models (Riquelme
et al., 2021) and vision-language models (Shen
et al., 2023; Lin et al., 2024), showcasing its versa-
tility and effectiveness across various tasks.
Unlike applying the same parameters to every
token as in dense transformers, the guiding design
principle of sparse transformers is to selectively
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activate a subset of parameters for each token (Ben-
gio et al., 2013). Specifically, mixture-of-experts
layers operate by incorporating routers and making
them learn to dynamically direct tokens to specific
parameters, referred to as experts (Jacobs et al.,
1991). This sparsity routing addresses the scaling
issues of dense transformers while maintaining a
constant number of computational operations.
Since routing is central to the mixture-of-experts
paradigm, most ongoing research is dedicated to
identifying and relieving various challenges asso-
ciated with unstable gates (Nie et al., 2021; Dai
et al., 2022) and representation collapse (Chi et al.,
2022; Liu et al., 2022; Do et al., 2023). Other
research examined routing patterns (Zoph et al.,
2022; Jiang et al., 2024; Xue et al., 2024) to assess
how effectively a sparse transformer can leverage
its diverse set of experts. By tracing routing deci-
sions across expert layers, Zoph et al. (2022) dis-
covered that expert assignments are less uniform
among encoder layers than decoder layers and that
meaningful specialization manifests primarily in
syntactic properties rather than high-level seman-
tics. Xue et al. (2024) further corroborated that
routing is predominantly based on token identities
and positions, regardless of context. This finding
was termed context-independent expert specializa-
tion and justified by two observations: (1) tokens
are routed to only a few fixed experts, and (2) con-
secutive token positions prefer similar experts.

Contribution. Given the presumption of context-
independent routing, we systematically investigate
the context sensitivity of learned token-to-expert
assignments by exploiting annotated pairs of text
from WordSim (Finkelstein et al., 2001), SimLex
(Hill et al., 2015), SCWS (Huang et al., 2012), and
WiC (Pilehvar and Camacho-Collados, 2019). We
find evidence that routing is responsive to contex-
tual cues, as words in similar contexts are more
consistently assigned to the same experts compared
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to words from different contexts. However, we also
observe notable differences among the model com-
ponents and configurations: (1) context sensitivity
is more pronounced in the encoder than the decoder
(in line with Zoph et al., 2022), and (2) context sen-
sitivity increases with the total number of experts.

2 Background

Mixture-of-Experts (MoE) has a long history in ma-
chine learning, dating back to the principle of adap-
tive mixtures of local experts (Jacobs et al., 1991).
Shazeer et al. (2017) recently introduced sparsely-
gated layers by extending the mixture-of-experts
paradigm with techniques for conditional computa-
tion (Bengio et al., 2013). By taking advantage of
conditional computation, mixture-of-experts layers
enable to scale up the number of trainable parame-
ters while maintaining computational costs.

Building on transformer models (Vaswani et al.,
2017), sparse mixture-of-experts layers can be in-
terleaved with dense layers (Fedus et al., 2022) or
upcycled from dense layers (Komatsuzaki et al.,
2022). Sparse layers typically consists of a router
and a fixed number of experts that are structurally
identical to standard feed-forward neural networks.
The router is responsible for assigning inputs to
experts. Each input is projected from its hidden
state to the set of experts by multiplication with
the router weights, which are learned jointly with
the other network parameters. To produce a gradi-
ent for the router, the output of the computation is
weighted by the corresponding probability of the
assignment, since this probability is differentiable.
This experts-as-a-layer approach dynamically ac-
tivates a fixed subset of experts, ensuring that the
number of floating-point operations remain con-
stant, regardless of the total number of experts.

To receive sufficient gradients for learning the
router weights, Shazeer et al. (2017) conjectured
that sparse mixture-of-experts layers require top-2
routing. As such, most implementations of sparse
layers rely on two-way routing (Lepikhin et al.,
2020; Du et al., 2022). However, this assumption is
challenged by stable modifications for top-1 (Fedus
et al., 2022; Yang et al., 2021) and adaptive top-
k routing (Li et al., 2023), which allows variable
expert assignment based on token complexity.

To promote a balanced distribution of workload,
Lepikhin et al. (2020) defined a fixed expert capac-
ity, which limits the number of tokens each expert
can be assigned. The expert capacity is typically
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specified in the form of a hyperparameter, which
acts as a multiplier factor for the expected number
of tokens that would be assigned to each expert
under a perfect uniform distribution. If the number
of tokens assigned to an expert is not enough to fill
its capacity, its set of tokens is padded to fill the
remaining slots. If the number of tokens assigned
to an expert overflows its capacity, the extra tokens
are dropped. Gale et al. (2023) addressed the token
dropout issue by reformulating the computation
in terms of block-sparse operations that efficiently
handle the dynamism present in sparse layers.

Since routing determines the token-expert assign-
ments and thus dictates how effectively a model
can leverage its set of experts, it is of central impor-
tance for the mixture-of-experts paradigm. There
are two common classes of assignment algorithms
for sparse layers: foken choice in which tokens are
dispatched to top-ranked experts and expert choice
in which experts select the top-ranked tokens.

Token Choice. The most common routing strat-
egy is token choice (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022), in which routing
decisions are made by greedily selecting the top-
scoring experts for each token after projecting their
hidden states to the number of experts.

However, the greedy nature of this routing strat-
egy suffers from notorious load imbalance issues
that may cause the routers to collapse because ex-
perts that are assigned zero tokens no longer receive
gradient updates (Zhou et al., 2022). To encour-
age routers to make balanced token-expert assign-
ments, additional adjustments such as noisy gating
(Shazeer et al., 2017) and imposing an auxiliary
load balancing loss (Fedus et al., 2022) are re-
quired. Puigcerver et al. (2024) developed a soft
routing strategy with full differentiability that fills
the capacity of experts using a weighted average
of tokens. This provides a balanced and dropless
mechanism for token-expert assignment.

Compared to the learning-to-route paradigm for
routers (Shazeer et al., 2017; Fedus et al., 2022),
an alternative strategy is to reformulate the rout-
ing algorithm as a linear assignment problem that
maximizes token-expert affinity (Lewis et al., 2021;
Clark et al., 2022) or to eliminate the necessity for
routers: stochastic routing (Zuo et al., 2021) lever-
ages a consistency regularized loss for stochastic
assignment, whereas deterministic hashing (Roller
et al., 2021) employs a parameter-free assignment
algorithm that routes tokens by hashing.



Expert Choice. Rather than directing tokens to
top-scoring experts, expert choice as proposed by
Zhou et al. (2022) has experts independently select-
ing top-scoring tokens, which guarantees perfect
load balancing and allows for flexible allocation.

3 Methodology

To illuminate the dynamics of routing with respect
to context, we need to detail a sparsely-gated lan-
guage model and the measurement to assess the
degree of sensitivity within the sparse layers.

We employ the Switch (Fedus et al., 2022) trans-
former model, a sparsely-gated variant of the T5
(Raffel et al., 2020) sequence-to-sequence model,
trained on a span corruption objective. This objec-
tive involves recovering variable-length contiguous
segments masked in text, promoting a deeper under-
standing of contextual information compared to au-
toregressive models with dense layers (Brown et al.,
2020; Touvron et al., 2023) and sparse layers (Du
et al., 2022; Jiang et al., 2024). The architecture
of the Switch transformer consists of an encoder
and a decoder, each comprising six sparse layers
that alternate between dense and sparse configura-
tions. Each sparse layer contains a variable number
of total experts in {8, 16, 32, 64, 128}, with a sin-
gle active expert, where its assignment is managed
through token choice routing combined with a load
balancing loss. The choice of the Switch trans-
former model is driven by its variable configura-
tions of experts and its simple routing strategy. By
tracing token-expert assignments in the sparsely-
gated layers !, we can examine the sensitivity of the
routing to similarity and the surrounding context.

Measurements for Similarity. To ablate whether
routing is adaptive to similarity, we leverage the
WordSim (Finkelstein et al., 2001) and SimLex (Hill
et al., 2015) datasets. These datasets contain word
pairs with human judgment on their similarity on
a scale of [0, 10]. While WordSim captures broader
relatedness in terms of associations, SimLex strictly
annotates semantic similarity. For each word pair,
we calculate the (layer-wise) Jensen-Shannon Simi-
larity (JSS) between the routing probabilities and
correlate it with the corresponding similarity anno-
tation using the Spearman correlation.

'We extract softmaxed router logits of word pairs. Since
the Switch transformer model uses a variant of byte-pair tok-
enization (Kudo and Richardson, 2018), we aggregate words
by mean pooling over subword components.
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Measurements for Context. To examine the in-
fluence of contextualization on routing decisions,
we adopt the SCWS (Huang et al., 2012) dataset. Un-
like WordSim and SimLex, containing word pairs in
isolation, SCWS provides human judgments on the
similarity of word pairs associated with a context.
The inclusion of contextual cues for each word pair
makes SCWS particularly suitable for measuring the
extent to which context influences token-expert as-
signments in sparsely-gated language models. We
correlate the similarity of the routing decisions for
word pairs in SCWS with and without context against
the provided similarity annotations.

Since most pairs of words in SCWS have dissim-
ilar words, we further exploit the WiC (Pilehvar
and Camacho-Collados, 2019) dataset 2. Framed
for binary classification, WiC is composed of a tar-
get word for which two contexts are provided that
were carefully designed to trigger a specific mean-
ing. The goal is to identify if the occurrences of the
word within the contexts correspond to the same
intended meaning. By comparing the routing acti-
vations separate for words from identical and differ-
ent contexts, we can examine the context sensitivity
of routers and identify words which are routed dif-
ferently based on its contextual usage. This allows
us to disentangle the effects of context from asso-
ciative relationships and provide a more nuanced
understanding of how routing in sparsely-gated lan-
guage models is influenced by context.

4 Findings

To examine how consistently sparsely-gated trans-
formers route words based on context, we calculate
the similarity between the distributions of experts
for word pairs and correlate them with human judg-
ments. We interpret strong correlation coefficients
as context sensitivity. Unless otherwise noted, we
average the routing similarity across sparse layers.

4.1 Correlation with Similarity

We commence with the adaptability of routing de-
cisions to associations in terms of relatedness and
semantic similarity. Table 1 presents the correlation
coefficients grouped by encoder and decoder.

For the encoder, the averaged correlation values
are 0.3078 and 0.1883, respectively. These correla-
tions indicate that the routing in sparsely-gated lan-

2Only 8% of the pairs of word in SCWS are identical and
their assigned scores are substantially higher than those with
different word pairs, i.e., 6.8 compared to 3.6 on a scale from
[0, 10] (Pilehvar and Camacho-Collados, 2019).



Table 1: Correlation of routing probabilities with annotations
of association and semantic similarity. Annotations for asso-
ciation were derived from WordSim, whereas annotations for
semantic similarity were derived from SimLex.

g Encoder Decoder

[}? Association  Similarity ~Association ~Similarity
8 0.2804 0.1679 0.0699 0.0510
16 0.3339 0.2070 0.1266 0.1179
32 0.4333 0.2706 0.1879 0.1127
64 0.3513 0.1485 0.2435 0.1788
128 0.1403 0.1474 0.0690 0.1317
Avg. 0.3078 0.1883 0.1394 0.1184

Table 2: Correlation of routing probabilities of word pairs
with and without contextual cues to annotations of SCWS.

g Encoder Decoder

&

5 w/o Context w/ Context w/o Context w/ Context

8 0.2439 0.3183 0.1497 0.1531
16 0.3493 0.4050 0.1981 0.2118
32 0.3873 0.4634 0.2997 0.1519
64 0.2562 0.3980 0.2827 0.3761
128 0.1500 0.3079 0.1382 0.2560

Avg. 0.2773 0.3785 0.2137 0.2298

guage models depend more on common concepts
than by strict meaning, as evident by correlations
for WordSim being consistently higher than corre-
lations for SimLex across most numbers of experts.
We further notice diminishing returns in routing
similarities concerning the total number of experts,
as evident by growing scores between 8 and 32 ex-
perts and a significant drop at 64 and 128 experts.
This implies certain fluctuations (Dai et al., 2022)
when a large number of experts is set.

For the decoder, the average correlation values
are 0.1394 and 0.1184, respectively. Compared
to routing in the encoder, the consistent yet rel-
atively low correlations in the decoder across all
configurations imply that the decoder is generally
less adapted for similarity. This is particularly evi-
dent from the more modest peaks and the lack of a
significant drop-off in correlation values, which in-
dicates less pronounced expert specialization. This
observation is consistent with the finding of Zoph
et al. (2022) that routing is uniformly distributed.

4.2 Correlation with Context

We continue with the response of routing decisions
to context. Table 2 presents correlation coefficients
for both encoder and decoder components with and
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Figure 1: Density estimates for routing similarities of am-
biguous words given different and identical contexts. Routing
decisions are aggregated across expert configurations.

without contextual embedding.

For the encoder, the correlation coefficients with-
out context range from 0.1500 to 0.3873, with an
average value of 0.2773. This indicates a modest
correlation, confirming that even without contex-
tual cues, the routing decisions are influenced to
some extent by similarity. When context is added,
the correlation coefficients range from 0.3079 to
0.4634, with an average value of 0.3785. This sig-
nificant increase in average correlation indicates
that contextual cues enhance routing decisions, al-
lowing the language model to capture similarities
among words more effectively.

Although the average correlation in the decoder
increases only slightly from of 0.2137 to 0.2298
with context, this apparent insensitivity to context
is caused by notable variations in the expert config-
uration. With few experts, such as 8 and 16, routing
decisions are hardly influenced by contextual cues.
However, a larger number of experts, specifically
64 and 128, demonstrates that context can substan-
tially inform routing decisions. This contrasts with
the recent findings of Xue et al. (2024), claiming
that routing in decoder layers mainly depends on
token identities and positions.

Figure 1 illustrates the Kernel Density Estimates
(KDE) for the routing similarities, distinguishing
between word pairs stemming from identical con-
texts and those from different contexts of WiC. Note
that the density estimates are calculated across ex-
pert configurations in {8, 16, 32, 64, 128}.

The density curves are shaped similarly with
a bimodal distribution, with density peaks at low
and high values for the routing similarities visibly
distinguishable. The density peak at high values
indicates that, for many word pairs in identical
contexts, the routing probabilities are quite simi-
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Figure 2: Layer-wise effect sizes using Cohen’s d on the
routing similarities of ambiguous words given some context.
Routing decisions are aggregated across expert configurations.

lar, reflecting a commendable level of consistency
in routing. The density peak at lower values sug-
gests diverse routing patterns for many word pairs
from different contexts, as desired when the context
differs significantly. However, the overlap in the
density curves implies that some word pairs receive
similar routing despite having dissimilar meanings,
which may occur in texts where the contexts are
not substantially distinct, or the context differences
are not clearly delineated by the language model.
Figure 2 provides a layered investigation of the
effect sizes of context sensitivity in the encoder
and decoder layers. We measured the effect size
using Cohen’s d by comparing the difference in
routing similarities of words from identical and
different contexts of WiC. We find that context is
consistently significant for the routers in the en-
coder layers, whereas the routers in the decoder
layers maintain a relatively stable and considerably
lower effect sizes to context. Specifically, context
integrates progressively in the early layers, peaks
in the middle layers, and then slightly diminishes in
the rear layers. This pattern can be attributed to late
routers being specialized for span reconstruction.

4.3 Correlation with Ambiguity

Since words can have multiple, potentially un-
related, meanings depending on the context, we
are interested if routing decisions for ambiguous
words vary with the number of meanings. Figure 3
plots differences in routing similarities against the
number of word meanings derived from WordNet
(Miller, 1995) 3. Although the trend line indicates
that the context sensitivity of words correlates (in-

3WordNet provides sets of synonyms that share a common
meaning. To measure the number of meanings of a word, we
counted the occurrence of a word in distinct synsets.
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Figure 3: Differences in routing similarities for a set of
ambiguous words given some context, as a function of the
number of unique meanings derived from WordNet.

significantly) with the number of distinct meanings,
there is considerable variability, particularly for
words with few meanings. This variability suggests
that factors besides the number of meanings, such
as word frequency, may determine the consistency
of token-expert assignments in learned routers.

5 Conclusion

Given the claims surrounding the factors influenc-
ing routing decisions in sparsely-gated mixture-of-
experts language models (Zoph et al., 2022; Xue
et al., 2024), we provide valuable insights into the
influence of similarity and context. While similar-
ity, encapsulated by token identities, form a stable
basis for routing decisions, contextual cues pro-
vide an additional layer of refinement. However,
the varying impact of context on the encoder and
decoder reveals different sensitivities within the
model components. The encoder demonstrates a
strong ability to assign words in similar contexts
consistently, revealing a high sensitivity to contex-
tual cues, especially for configurations with many
experts per sparse layer. The response of the de-
coder to context is poorer and more variable. This
variability indicates instabilities in the utilization
of context with respect to the number of experts.

Since our study demonstrates that context plays
a significant role in routing, we hope that our ap-
proach sparks research on other linguistic proper-
ties and their influence on routing decisions, e.g.,
the influence of (affixal) negation (van Son et al.,
2016) or the consistency of routing for multi-word
expressions (Kochmar et al., 2020).



Limitation. Challenging current claims about the
context sensitivity of sparsely-gated language mod-
els, this study is limited by its focus on the Switch
transformer model with its encoder-decoder archi-
tecture. Therefore, our findings may not be directly
applicable to other types of transformer architec-
tures, such as purely autoregressive models opti-
mized with next-word prediction. We thus advocate
for endeavors that expand the scope of analysis to
cover a broader range of transformer architectures
and develop more refined routing mechanisms to
better integrate contextual cues, particularly for
words with high polysemy.
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Abstract

Sentence embeddings from transformer mod-
els encode much linguistic information in a
fixed-length vector. We investigate whether
structural information — specifically, informa-
tion about chunks and their structural and se-
mantic properties — can be detected in these
representations. We use a dataset consisting of
sentences with known chunk structure, and two
linguistic intelligence datasets, whose solution
relies on detecting chunks and their grammat-
ical number, and respectively, their semantic
roles. Through an approach involving indirect
supervision, and through analyses of the per-
formance on the tasks and of the internal repre-
sentations built during learning, we show that
information about chunks and their properties
can be obtained from sentence embeddings.

1 Introduction

Transformer architectures compress the informa-
tion in a sentence — morphological, grammati-
cal, semantic, pragmatic — into a fixed-length one-
dimensional array of real numbers. Sentence em-
beddings, usually fine-tuned, have proven useful
for a variety of high-level language processing
tasks, such as the GLUE tasks (Clark et al., 2020),
or story continuation (Ippolito et al., 2020)). These
results, however, do not shed light on what kind
of semantic or structural information is encoded in
these representations.

Understanding what kind of information is en-
coded in the sentence embeddings, and how it is
encoded, has multiple benefits. It connects inter-
nal changes in the model parameters and structure
with changes in its outputs. It contributes to veri-
fying the robustness of models and whether or not
they rely on shallow or accidental regularities in
the data. It narrows down the field of search when
a language model produces wrong outputs, and
ultimately it may help maximize the use of train-
ing data for developing more robust models from
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smaller textual resources. Investigation, or indeed,
usage, of raw (i.e. not fine-tuned) sentence embed-
dings obtained from a transformer model are rare,
possibly because most transformer models do not
have a strong supervision signal on the sentence em-
bedding. Using PCA analysis, Nikolaev and Padé
(2023c¢) have shown that the dimensions of BERT
sentence embeddings have much correlation and
redundancy, and encode more shallow information
(length), rather than morphological, syntactic or
semantic features. Analysis of information propa-
gation through the transformer layers seem to show
that specialized information — e.g. POS, syntac-
tic structure — while quite apparent at lower levels,
gets lost towards the highest levels of the models
(Rogers et al., 2020), while there are subnetworks
that encode specific linguistic functions (Csordas
et al., 2021; Conmy et al., 2023).

While previous work has regarded network
nodes or embedding dimensions as the unit of anal-
ysis, Elhage et al. (2022) show that superposition
— whereby each unit, i.e. neuron or embedding
dimension, can be involved in the encoding of mul-
tiple features — occurs in artificial neural networks.
Such features involving overlapping sets of nodes
can be learned from a model using sparse autoen-
coders (e.g. (Cunningham et al., 2023)). Starting
from a similar hypothesis relative to the dimensions
of a sentence embedding, we aim to test whether
specific information, in particular chunks — noun,
verb and prepositional phrases, that may play differ-
ent structural and semantic roles — can be detected
in the sentence representation. We use an encoder-
decoder architecture applied to data with specific
properties, and verify that, through indirect super-
vision, we can distill information about chunks and
their task-relevant properties from sentence embed-
dings from a pre-trained transformer model. Be-
sides being practically useful, as they provide use-
ful shallow structure more easily obtainable than
detailed syntactic analysis (Abney, 1991; Buchholz
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etal., 1999), chunks have psychological plausibil-
ity (Gee and Grosjean, 1983). This motivated us
to test whether they are detectable in sentence em-
beddings, as they would provide syntactically and
semantically useful building blocks for assembling
higher level information about a sentence. The
code and data are available at https://github.
com/CLCL-Geneva/BLM-SNFDisentangling.

2 Related work

How is the information from a textual input en-
coded by transformers? There are three main ap-
proaches to answer this question: (i) tracing spe-
cific information from input to output through the
model’s various layers and components, (ii) isolat-
ing subsets of model parameters that encode spe-
cific linguistic functions and (iii) investigating the
generated embeddings through probes, using pur-
posefully built data for different types of testing.

Tracing information through a transformer
Rogers et al. (2020) have shown that from the
unstructured textual input, BERT (Devlin et al.,
2019) is able to infer POS, structural, entity-related,
syntactic and semantic information at successively
higher layers of the architecture, mirroring the clas-
sical NLP pipeline (Tenney et al., 2019a). Fur-
ther studies have shown that the information is not
sharply separated, information from higher levels
can influence information at lower levels, such as
POS in multilingual models (de Vries et al., 2020),
or subject-verb agreement (Jawahar et al., 2019).
Surface syntactic and semantic information seem
to be distributed throughout BERT’s layers (Niu
et al., 2022; Nikolaev and Pado, 2023c). Attention
is part of the process, as it helps encode various
types of linguistic information (Rogers et al., 2020;
Clark et al., 2019), syntactic dependencies (Htut
et al., 2019), grammatical structure (Luo, 2021),
and can contribute towards semantic role labeling
(Tan et al., 2018; Strubell et al., 2018).

Isolating functional subnetworks of parameters
Deep learning models have billions of parameters.
This makes them not only incomprehensible, but
also expensive to train. The lottery ticket hypoth-
esis (Frankle and Carbin, 2018) posits that large
networks can be reduced to subnetworks that en-
code efficiently the functionality of the entire net-
work. Detecting functional subnetworks can be
done a posteriori, over a pre-learned network to in-
vestigate the functionality of detected subnetworks
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(Csordas et al., 2021), the potential composition-
ality of the learned model (Lepori et al., 2023),
or where task-specific skills are encoded in a fine-
tuned model (Panigrahi et al., 2023). Instead of
learning a sparse network over a prelearned model,
Cao et al. (2021) use a pruning-based approach to
finding subnetworks in a pretrained model that per-
forms some linguistic task. Pruning can be done at
several levels of granularity: weights, neurons, lay-
ers. Their analyses confirm previous investigations
of the types of information encoded in different
layers of a transformer (Conneau et al., 2018a).
Conmy et al. (2023) introduce the Automatic Cir-
cuit DisCovery (ACDC) algorithm, which adapts
subnetwork probing and head importance score for
pruning to discover circuits that implement specific
linguistic functions. The model network need not
be separated into disjunct subsets of nodes. Elhage
et al. (2022) show that neural network models en-
code more features than the number of their dimen-
sions, individual nodes contributing to more than
one feature. Such features could be learned in an
unsupervised manner using Sparse AutoEncoders
(Cunningham et al., 2023; Trenton Bricken, 2023;
Gao et al., 2024), and correlated with linguistic
patterns or phenomena.

Word embeddings were shown to encode
sentence-level information (Tenney et al., 2019b),
including syntactic structure (Hewitt and Man-
ning, 2019), even in multilingual models (Chi
et al., 2020). Predicate embeddings contain in-
formation about their semantic roles structure (Co-
nia and Navigli, 2022), embeddings of nouns en-
code subjecthood and objecthood (Papadimitriou
et al., 2021). The averaged token embeddings are
more commonly used as sentence embeddings (e.g.
(Nikolaev and Padd, 2023a)), or the special token
([CLS]/<s>) embeddings are fine-tuned for spe-
cific tasks such as story continuation (Ippolito et al.,
2020), sentence similarity (Reimers and Gurevych,
2019), alignment to semantic features (Opitz and
Frank, 2022). Sentence embeddings as averages
over token embeddings is justifiable as the learn-
ing signal for transformer models is stronger at the
token level, with a much weaker objective at the
sentence level — e.g. next sentence prediction (De-
vlin et al., 2018; Liu et al., 2019), sentence order
prediction (Lan et al., 2019). Electra (Clark et al.,
2020) relies on replaced token detection, which
uses the sentence context to determine whether a
(number of) token(s) in the given sentence were re-
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placed by a generator sample. This training regime
leads to sentence embeddings that perform well
on the General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018) and
Stanford Question Answering (SQuAD) dataset
(Rajpurkar et al., 2016), or detecting verb classes
(Yietal., 2022). Raw sentence embeddings were
shown to capture shallower information (Nikolaev
and Pado, 2023c¢), but ? show that raw sentence
embeddings have internal structure that can encode
grammatical sentence properties.

Probing models Analysis of BERT’s inner work-
ings has been done using probing classifiers (Be-
linkov, 2022), or through clustering based on the
representations at the different levels (Jawahar
et al., 2019). Probing has also been used to in-
vestigate the representations obtained from a pre-
trained transformer model (Conneau et al., 2018b).
Elazar et al. (2021) propose amnesic probing to test
both whether some information is encoded, and
whether it is used. VAE-based methods (Kingma
and Welling, 2013; Bowman et al., 2016) have been
used to detect or separate specific information from
input representations. Mercatali and Freitas (2021)
capture discrete properties of sentences encoded
with an LSTM (e.g. number and aspect of verbs)
on the latent layer. Bao et al. (2019) and Chen et al.
(2019) learn to disentangle syntactic and semantic
information. Silva De Carvalho et al. (2023) learn
to disentangle the semantic roles in natural lan-
guage definitions from word embeddings. Probing
can have issues: learning a classifier for a task does
not guarantee that the model uses the targeted infor-
mation (Hewitt and Liang, 2019; Belinkov, 2022;
Lenci, 2023). Michael et al. (2020) introduce latent
subclass learning, where a binary classification task
has a pre-classification multi-class logistic regres-
sion step that helps probe for emergent information.

Data Most approaches use datasets built by se-
lecting, or constructing, sentences with specific
structure and properties: definition sentences with
annotated roles (Silva De Carvalho et al., 2023),
sentences built according to a given template (Niko-
laev and Pado6, 2023b), sentences with specific
structures for investigating different tasks, in partic-
ular SentEval (Conneau and Kiela, 2018) (Jawahar
et al., 2019), example sentences from FrameNet
(Conia and Navigli, 2022), a dataset with multi-
level structure inspired by the Raven Progressive
Matrices (RPM) visual intelligence tests (An et al.,
2023).
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3 Overview

Our approach is also a kind of probe. It uses in-
direct supervision, though, to avoid the shallow
learning of a classifier and datasets with specific
structure to test for structural information in sen-
tence embeddings.

Our main object of investigation are chunks,
sequence of adjacent words that segment a sen-
tence, as defined initially in Abney (1992); Collins
(1997) and then Tjong Kim Sang and Buchholz
(2000). We use two types of data. We use sen-
tences with known chunk patterns (Section 4.1),
to determine whether chunks and their grammatical
properties are identifiable in sentence embeddings
with indirect supervision (Section 5). We also use
two datasets with multi-level structure built for
linguistic intelligence tests for language models
(Merlo, 2023) (Section 4.2), to determine whether
a system can detect syntactic and semantic struc-
ture and information in sentence embeddings based
on the requirements of a task.

The data, with its repetitive patterns, and the
VAE-based system support an indirect supervision
approach: the system is not given the patterns to
be discovered explicitly, but it needs to find them
based on the contrasting answer sets at both the
sentence and task levels. This indirect supervision
process, together with lexical and structural vari-
ations in the data, helps to avoid, at least partly,
the critiques against probes based on classification,
which can learn a task based on ‘artefacts’ of the
data, regularities different from what is intended
(Belinkov, 2022).

4 Data

We use data consisting of stand-alone sentences
with specific structure, and data consisting of sen-
tences with specific structure and other attributes
in larger contexts, to test whether this regular infor-
mation can be detected.

4.1 Sentences

Sentences are built from a seed file containing noun,
verb and prepositional phrases, including singu-
lar/plural variations. From these chunks, we built
sentences with all (grammatically correct) combi-
nations of np (pp1 (pp2)) vp'. For each chunk
pattern p of the 14 possibilities, all corresponding
sentences are collected into a set .S),.

'We use BNF notation: pp; and pp2 may be included or
not, pp2 may be included only if ppl is included



BLM verb alternation problem (BLM-s/IE)

BLM agreement problem (BLM-AgrF)

CONTEXT TEMPLATE

CONTEXT TEMPLATE

NP- Agent Verb NP- Loc - Theme
EE‘S% EE}'Sg xg's% NP- Tl%eme VbPass PP- Agent
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NP-pl PPl-sg  PP2-sg  VP-pl NP-Loc  VbPass PP- Theme
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NP—pl PPI-S PP2-pl VP-qg AEN1 *NP- Theme Verb NP- Agent - Loc SSM1
NP—p] P _‘515 PPZ—P VP—‘ g AEND *NP- Loc Verb NP- Agent - Theme SSM2
p P Sg S& *NP- Theme Verb NP- Loc - Agent AASSM

Figure 1: Structure of two BLM problems, in terms of chunks in sentences and sequence structure. For the
agreement (left): (i) sequence errors: WNA= wrong nr. of attractors; WN1= wrong gram. nr. for 1% attractor
noun (N1); WN2= wrong gram. nr. for 2"¢ attractor noun (N2); (ii) grammatical errors: AEV=agreement
error on the verb; AENI=agreement error on N1; AEN2=agreement error on N2. For the verb alternation:
AGENTACT,ALT1,ALT2,NOEMB are syntactic errors; LEXPREP is lexical selection error and SSM1, SSM2,

AASSM are syntax-semantic mapping errors.

We generate an instance for each sentence s from
the sets S, as a triple (in,out™, Out™), where
mn s is the input, out™ is the correct output,
which is a sentence different from s but having the
same chunk pattern. Qut™ are Ny, incorrect out-
puts, randomly chosen from the sentences that have
a chunk pattern different from s. The algorithm for
building the data and a sample line and generated
sentences are shown in appendix A.1.

From the generated instances, we sample uni-
formly, based on the pattern of the input sentence,
approximately 4000 instances, randomly split
80:20 into train:test. The train part is further split
80:20 into train:dev, resulting in a 2576:630:798
split for train:dev:test. We use a French and an
English seed file and generate French and English
variations of the dataset, with the same statistics.

4.2 Blackbird Language Matrices

Blackbird Language Matrices (BLMs) (Merlo,
2023) —language versions of the visual Raven Pro-
gressive Matrices (RPMs)— are multiple-choice
problems, where the input is a sequence of sen-
tences built using specific generating rules, and the
answer set consists of a correct answer that con-
tinues the input sequence, and several incorrect
contrastive options, built by violating the underly-
ing generating rules of the sentences. In a BLM
matrix, all sentences share a targeted linguistic phe-
nomenon, but differ in other aspects relevant for the
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phenomenon in question. Thus, BLMs, like their
visual counterpart RPMs, require identifying the
entities (the chunks), their relevant attributes (their
morphological or semantic properties) and their
connecting operators, to find the correct answer.

To test the detection of different types of infor-
mation in different languages, we use two BLM
datasets, which encode two different linguistic phe-
nomena, each in a different language: (i) BLM-
AgrF — subject verb agreement in French (An et al.,
2023), and (i1) BLM-s/IE — verb alternations in En-
glish (Samo et al., 2023). The structure of these
datasets — in terms of the sentence chunks and se-
quence structure, as well as the answer sets and the
erroneous answers and their error types — is shown
in Figure 1. Examples are in appendices A.1, A.2.

BLM datasets also have a lexical variation di-
mension, to explore the impact of lexical variation
on detecting relevant structures: type I — minimal
lexical variation for sentences within an instance,
type II — one word difference across the sentences
within an instance, type III — maximal lexical vari-
ation within an instance.

The BLM-s/IE dataset is used as is. We built a
variation of the BLM-AgrF (An et al., 2023) that
separates sequence-based errors (WNA, WN1 and
WN2 in Figure 1 — they have correct agreement,
but do not respect the pattern of the sequence) from
other types of errors, to be able to contrast linguistic
errors from errors in identifying sentence parts and



Subj.-verb Verb alternations
agr | ALT-ATL  ATL-ALT
Type I 2000:252 | 2000:375  2000:375
Type I | 2000:4927 | 2000:1500 2000:1500
Type III | 2000:4810 | 2000:1500 2000:1500

Table 1: Train:Test statistics for the two BLM problems.

understand better how the BLM tasks are solved.
The errors in both BLM tasks allow us to study in
more detail the performance and understand where
the weaknesses are when solving the task.

Datasets statistics Table 1 shows the datasets
statistics for the BLM problems. After splitting
each subset 90:10 into train:test subsets, we ran-
domly sample 2000 instances as train data. 20% of
the train data is used for development.

5 Experiments

We build upon (?), and use as sentence represen-
tations the embedding of the [C'LS] special to-
ken from a pretrained Electra model (Clark et al.,
2020)? reshaped as a two-dimensional array. We
chose Electra because it has a stronger sentence-
level supervision signal as well as strong results
on multiple NLU tasks (see Section 2). In Section
5.1.3, we show how it compares to other pretrained
models.

The BLM tasks have been benchmarked using
FFNN and CNN systems which directly predict the
correct answer based on the input sequence (An
et al., 2023; Samo et al., 2023). Results improve
on both tasks when using a variational encoder-
decoder that compresses the input sequence into a
very small vector on the latent layer (?). This previ-
ous work, and similarity of the BLM tasks with the
visual Raven Progressive Matrices task, have led us
to a two-step investigation process: (i) using sen-
tences and a VAE-based system, we test whether
we can compress sentences into a smaller represen-
tation on the latent layer that captures information
about the chunk structure of the sentence (Section
5.1 below); (ii) to see if the system can detect and
extract the kind of information relevant to a specific
task, we combine the compression of the sentence
representation with the BLM problems, where a
crucial part of the solution lies in identifying the
structures of sentences and their sequence in the
input (Section 5.2 below). This two-step approach
to solving a BLM problem fits with the way hu-
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mans solve the visual RPM problems from which
the BLMs are inspired: (i) identify the relevant ob-
jects and their attributes; (ii) decompose the main
problem into subproblems, based on object and at-
tribute identification, in a way that allows detecting
the global pattern or underlying rules (Carpenter
et al., 1990).

5.1 Parts in sentences

We test whether sentence embeddings contain infor-
mation about the chunk structure of the correspond-
ing sentences by compressing them into a lower
dimensional representation in a VAE-like system.

5.1.1 Experimental set-up

The architecture of the sentence-level VAE is simi-
lar to a previously proposed system (?): the encoder
consists of a CNN layer with a 15x15 kernel, which
is applied to a 32x24-shaped sentence embedding,
followed by a linear layer that compresses the out-
put of the CNN into a latent layer of size 5. The de-
coder mirrors the encoder, and unpacks a sampled
latent vector into a 32x24 sentence representation.

An instance consists of a triple
(in,out™, Out ™), where in is an input sentence
with embedding e;,, and chunk structure p, out™ is
a sentence with embedding e,,;+ with same chunk
structure p, and Out™ = {sg|k = 1, Nypegs} is
a set of NV,eqs = 7 sentences with embeddings
€s,» €ach with chunk pattern different from p
(and different from each other). The input e;y,
is encoded into a latent representation z;, from
which we sample a vector z;, which is decoded
into the output é;,. We enforce that the latent
encodes the structure of the input sentence by
using a max-margin loss function, to push for a
higher cosine similarity score with the sentence
that has the same chunk pattern as the input (e,,,;+)
than the ones that do not (E~ = {eg |es, =
embedding(sy), sy € Out™}).

losssent(€in) = maxM (Ein, eoui+, B~ ) +

+ K L(z]||N(0,1))

maxM (Ein, €+, E7) =
maz (0,1 — cos(éin, €out ) +
g— cos(éin,es;,)
+ Nocgs

esp €

At prediction time, the sentence from the
{out™} U Out™ options that has the highest score
relative to the decoded answer is taken as correct.


google/electra-base-discriminator

5.1.2 Analysis

To assess whether the correct patterns of chunks
are detected, we analyze the results for the exper-
iments described in the previous section in two
ways: (i) analyze the output of the system, in terms
of average F1 score over three runs and confusion
matrices; (ii) analyze the latent layer, to determine
whether chunk patterns are encoded in the latent
vectors (for instance, latent vectors cluster accord-
ing to the pattern of their corresponding sentences).

In a binary evaluation (has the system built a
sentence representation that is closest to the one
that has the same chunk pattern as the input?), the
system achieves an average positive class F1 score
(and standard deviation) over three runs of 0.9992
(0.01) for French, and 0.997 (0.0035) for English.

The pattern-level evaluation for the French data,
presented as a confusion matrix based on the pat-
tern information for out™, Out ™~ at the top of Fig-
ure 2, shows that all patterns are detected with
high accuracy (the results for English are in Ap-
pendix A.4.2). To understand how chunk infor-
mation is encoded on the latent layer, we perform
latent traversals: for each instance in the test data,
after encoding it, we modify the value of each unit
in the latent layer with ten values in its min-max
range, based on the training data, and decode the
answer.

. -! ] -::. | .:- ||
.I u g B I-.

Figure 2: Latent layer encoding of pattern information:
top confusion matrix for pattern-level evaluation; bot-
tom sample of effects of latent traversal in terms of
pattern-level evaluation.

The confusion matrices presented as heatmaps in
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the bottom part of Figure 2 (a larger version in Fig-
ure 10 in Appendix A.4) show that specific changes
to the latent vectors decrease the differentiation
among patterns, as expected if chunk pattern infor-
mation were encoded in the latent vectors. Changes
to latent unit 1 cause patterns that differ in the gram-
matical number of pp2 not to be distinguishable
(left matrix). Changes to latent units 2 and 3 lead
to the matrices in the middle and right of the fig-
ure, where patterns that have different subject-verb
grammatical number are indistinguishable.

To confirm that chunk information is present
in the latent layer, we plot the projection of the
latent vectors in two dimensions (Figure 3). The
plot shows a very crisp clustering of latents that
correspond to input sentences with the same chunk
pattern, despite the fact that some patterns differ by
only one attribute (the grammatical number) of one
chunk.

75 25 1 25 50 75

—rpp ppLp P2 VPP
= ppL-p P2 VPP
= pp1D VPR

= pp ppLs pp2p VPP ppupp
PP pPLS RS Ve 9’5 ppL-p pp2-p V'S
PP ppLS VP p's pPLp pp2-5 vps

nps pplp vp's = pplis vps
PpSpPlspp2pvps W npsps
P pp1's pP2's Vs

Figure 3: Chunk identification: tSNE projections of the
latent vectors for the French dataset.

5.1.3 Electra vs. BERT and RoBERTa, and
the price of fine-tuning

There are differences in the architectures, training
objectives and training data for transformer-based
models, which lead to differences in how they en-
code information. Fine-tuning further changes the
landscape of the embeddings, and prioritizes dif-
ferent characteristics of the input sentence, often
semantics. We can quantify some of these differ-
ences using the setup described above.
Experiments on the task of reconstructing a sen-
tence with the same chunk structure on BERT?
(Devlin et al., 2019) and RoBERTa* (Liu et al.,
2019) lead to average F1 score over 3 runs of 0.91
(std=0.0346) for BERT and 0.8926 (std=0.0166)

3https://huggingface.co/google-bert/
bert-base-multilingual-cased

4https://huggingface.co/FacebookAI/
x1m-roberta-base
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https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base

for RoBERTa, confirming that Electra’s architec-
ture leads to sentence embeddings that encode more
explicitly structure-related information.

Two sentence transformer models LaBSE
and MPNet® obtained an average F1 of 0.43
(std=0.0336) and 0.669 (std=0.0407) respectively.
We chose LaBSE and MPNet because they are
tuned differently — LaBSE is trained with bilingual
sentence pairs with high results on a cross-language
sentence retrieval task, MPNet is optimized for sen-
tence similarity — and their representations have the
same dimensionality (768) as the transformer mod-
els we used. The low results on detecting chunk
structure in sentence embeddings after this tuning
indicates that in the quest of optimizing the repre-
sentation of the meaning of a sentence, structural
information is lost.

5.2 Parts in sentences for BLM tasks

We test whether including the sentence compres-
sion step in a system to solve the BLM tasks leads
to latent representations that contain information
about chunk properties relevant to the tasks.

5.2.1 Experimental setup

The BLM problems encode a linguistic phe-
nomenon in a sequence of sentences that have reg-
ular and relevant structure, which serves to em-
phasize and reinforce the encoded phenomenon.
(Carpenter et al., 1990). We model the process of
solving a BLM in a manner similar to how humans
solve RPM visual tasks, by using the two-level in-
tertwined architecture illustrated in Figure 4: one
level for detecting sentence structure, one for de-
tecting the correct answer based on the sentence
structure and their sequence.

.
task level
[ peen encoder sentence
(answer)
2
sentence 1

Figure 4: A two-level VAE-based system: the sentence
level learns to compress a sentence into a representation
useful to solve the BLM problem on the task level.

decoder
(senl )

encoder
(sent.)

- =

sentence level

decoder
(answer)

An instance for a BLM problem consists of an or-
dered sequence S of sentences, S = {s;|i = 1,7}

Shttps://huggingface.co/sentence-transformers/
LaBSE, https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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a.) TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the chunk pattern.

30.94
093 0.90.91

type.l type il
Train on
VAE test type I

NN 2XVAE test type Il

type_il

VAE test type |
N\ 2XVAE test type |

b.) Average F1 score over 3 runs, grouped by training data on
the x-axis, tested on type L, I, III in different shades.

B VAE test type il
BN 2XVAE test type Il

err. perc. (log)

c¢.) Sequence vs. agreement errors analysis.

Figure 5: VAE vs 2-level VAE (2xVAE) on the agree-
ment BLM problem

as input, and an answer set A with one correct an-
swer a., and several incorrect answers derr;. The
sentences in .S are passed as input to the sentence-
level VAE, which is the system described in Section
5.1. The latent representations from this VAE are
used as the representations of the sentences in S.
These representations are passed as input to the
BLM-level VAE, in the same order as S. From
the compressed layer of the BLM-level VAE, the
decoder reconstructs a sentence embedding (eg),
which is compared to the embeddings of the an-
SWers.

An instance for the sentence-level VAE
consists of a ftriple (s;,out;,Out;).  For
our two-level system, we must construct this
triple on the fly from the input BLM instance:
s; € S with embedding e, out;r si, and
Out; = {sg|sk € S, sy # s;} with embeddings

. = {es, |k =1, Npegs}. The loss combines the
loss signal from the two levels:

lOSS(S) = ZSZ'ES losssent<esi) + lOSStaSk(es)


https://huggingface.co/sentence-transformers/LaBSE, https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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a.) TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the pattern of semantic roles.
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b.) Average F1 score over 3 runs

Figure 6: VAE vs 2-level VAE (2xVAE) on the verb
alternation BLM problem, Group 1 (Agent-Location-
Theme -> Agent-Theme-Location)

The loss at the sentence level is computed as
described in Section 5.1:

losssent(‘gsi) = mamM(eSU Cout >
+ K L(2|N(0, 1))

E7)

The loss at the task level is computed in a
similar manner, but relative to the answer set A
with the corresponding embeddings set £ 4, and
the correct answer a., of the task:

losstask(es) = maxM(eg,eq,, Eq\ €q,)
+ K Lgeq(25|N(0,1)).

5.2.2 Analysis

We run experiments on the BLMs for agreement
(Figure 5) and for verb alternation (Figures 6, 7), to
test a range of syntactic and semantic chunk prop-
erties that should be identified. While the informa-
tion necessary to solve the agreement task is more
structural, solving the verb alternation task requires
both structural information concerning chunks and
semantic information, with syntactically similar
chunks playing different roles in a sentence (see
Figure 1). The results show that the two-level sys-
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a.) TSNE projection of latent representations from the latent
layer of the sentence level for the sentences in BLM contexts
in the training data, coloured by the pattern of semantic roles.
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Figure 7: VAE vs 2-level VAE (2xVAE) on the verb
alternation BLM problem, Group 2 (Agent-Theme-
Location -> Agent-Location-Theme)

tem leads to better results compared to the one-
level process for these structure-based linguistic
problems, thereby providing additional support to
our hypothesis that chunks and their attributes are
detectable in sentence embeddings.

The results in terms of average F1 scores for
the agreement task, and the latent representation
and analysis of the errors made by the system are
shown in Figure 5, and provide several insights.
Detailed results are in the appendix.

First, the latent representation analysis (Figure
5.a) shows that while the sentence representations
on the latent layer are not as crisply separated by
their chunk pattern as for the experiment in Section
5.1, there is a clear separation in terms of the gram-
matical number of the subject and the verb. This
is not surprising as the focus of the task is subject-
verb agreement. However, as shown by the results
in term of F1 (Figure 5.b) and the analysis of the
errors made by the system on the task (Figure 5.c,
and more detailed in Figure 12 in Appendix A.5.3),
there is enough information in these compressed
latent representations to capture the structural reg-
ularities imposed by the patterns of chunks in the
input sequence.

Second, the results in terms of F1 (Figure 5.b)
show that the two-level process generalizes better



from simpler data — learning on type I and type
II leads to better results on all test data, with the
highest improvement when tested on type III data,
which has the highest lexical variation. Further-
more, the two-level models learned when training
on the lexically simpler data perform better when
tested on the type III data than the models learned
on type III data itself. This result not only indicates
that structure information is more easily detectable
when lexical variation is less of a factor, but more
importantly, that chunk information is separable
from other types of information in the sentence
embedding, as the patterns detecting it can be ap-
plied successfully for data with additional (lexical)
variation.5

The analysis of the errors made by the system
(Figure 5.c) shows that the two-level system has a
lower rate of sequence errors (WNA, WN1, WN2
— see Figure 1), which from the point of view of
the targeted phenomenon are correct (see Section
4.2). The fact that without the sentence compres-
sion step (using the one-level model) the system
makes more sequence-based errors, indicates that
modeling structural information separately is not
only possible, but also beneficial for some tasks.

The results on the verb alternation BLMs are
shown in Figures 6 and 7. In this problem, struc-
turally similar chunks - NPs, PPs — play different se-
mantic roles in the verb alternation data, as shown
in Figure 1. The TSNE projection of the latent
representations on the sentence level (Figures 6.a,
7.a) and the F1 results on the task (Figures 6.b, 7.b)
show that the system is able to detect such syntactic-
semantic information in the sentence embeddings.
The closest latent representations are two that have
the same syntactic pattern: NP VerbPass PP, but
differ semantically: NP-Theme VerbPass PP-Agent
vs. NP-Loc VerbPass PP-Agent, yet they are still
distinguished. Detailed error results are included
in Figure 13 in Appendix A.5.3.

5.3 Discussion

We performed two types of experiments: (i) use
individual sentences, and an indirect supervision
signal about the sentence structure, (ii) incorpo-
rate a sentence representation compression step in
a task-specific setting. We have used two tasks,
one which relies on more structural information
(subject-verb agreement), and one that also relies
on semantic information about the chunks (verb

®Explanation in Appendix A.5.1
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alternation).

We investigated each setup by the results on the
task — average F1 scores, and analysis of the type
of errors made by the system (as described in Fig-
ure 1) — and by the compressed sentence represen-
tations on the latent layer of an encoder-decoder
architecture.

By this dual analysis, one can conclude not only
whether a task is solved correctly, but also whether
it is solved using structural, morphological and
semantic information from the sentence. We found
that information about (varying numbers of) chunks
— noun, verb and prepositional phrases — and their
task-relevant attributes, morphological or semantic,
can be detected in sentence embeddings from a
pretrained transformer model.

The use of probes has been questioned, as the
probe itself may assemble the requested infor-
mation without detecting or modeling the phe-
nomenon of interest (Hewitt and Liang, 2019; Be-
linkov, 2022; Lenci, 2023). To partially address
this problem, we have used only indirect supervi-
sion — within the system, there is no direct informa-
tion about what characteristics of the answer (on
the sentence or the task level) are relevant. Despite
the lack of direct supervision, the system is able
to compress the structural information necessary
to solve the task onto the latent layer of the sen-
tence encoder. In future work, we will investigate
whether this information is "hard-coded" — encoded
consistently across languages and tasks — in the em-
beddings, or it relies on shallower features.

6 Conclusions

Sentence embeddings obtained from transformer
models are compact representations, compressing
much knowledge —morphological, grammatical,
semantic—, expressed in text fragments of various
length, into a vector of real numbers of fixed length.
We can separate this representation into different
layers using a convolutional neural network and dis-
tinguish specific information among these layers.
In particular, we have shown that we can detect in-
formation about chunks — noun/verb/prepositional
phrases — and their task-relevant attributes, without
providing direct supervision to the system about the
targeted structures. This brings us one step closer
to understanding and unpacking transformer-based
sentence embeddings.



Limitations

We have performed experiments on datasets con-
taining sentences with specific structure and prop-
erties to be able to determine whether the type of
information we targeted can be detected in sentence
embeddings. We have used this data to avoid di-
rectly training a classifier, which may learn the task
of distinguishing sentences with different chunk
patterns without actually using such information
from the sentence embeddings. Despite our anal-
yses, there is no guarantee that the information
about chunks and their properties is not assembled
on the fly from more fine-grained information in
the sentence embedding. In future work we plan
to investigate whether this is the case, or whether
what is encoded is something more abstract, akin
to a rule.
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A Appendix
A.1 Sentence data

To build the sentence data, we use a seed file that was used to generate the subject-verb agreement data.
A seed, consisting of noun, prepositional and verb phrases with different grammatical numbers, can be
combined to build sentences consisting of different sequences of such chunks. Table 2 includes a partial
line from the seed file, from which individual sentences and a BLM instance can be constructed. We use
French and English versions of the seed file to build the corresponding datasets.

Subj_sg Subj_pl P1_sg P1_pl P2_sg P2_pl V_sg V_pl
The com- The com- with  the with the pro- of the experi- of the experi- is broken are broken
puter puters program grams ment ments

a BLM instance

Context:

Sent. with different chunks

The computer with the program is broken.

The computer is broken. np-s The computers with the program are broken.

VP-$ The computer with the programs is broken.
The computers are broken.  np-p The computers with the programs are broken.

vp-p The computer with the program of the experiment is broken.
The computer with the pro- np-s The computers with the program of the experiment are broken.
gram is broken. ppl-s The computer with the programs of the experiment is broken.

vps Answer set:

The computers with the programs of the experiment are broken.

The computers with the pro- np-p The computers with the programs of the experiments are broken.
grams of the experiments are ppl-p The computers with the program of the experiment are broken.
broken. pp2-p The computers with the program of the experiment is broken.

Vp-p

Table 2: A line from the seed file on top, and a set of individual sentences built from it, as well as one BLM instance.

The algorithm to produce a dataset from the generated sentences is detailed in Figure 8 below.

Data = []; Nnegs
for patterns p do
for s; € S, do

in=s;
for s; € Sy, do
out™ =,

out™ = {sk, k € range(Nnegs), Sk € S—p}
Data = Data U [(in, out™, out™)]
end for
end for
end for

Figure 8: Data generation algorithm
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A.2 Example of data for the verb alternation BLM

TYPE I

EXAMPLE OF CONTEXT

The buyer can load the tools in bags.

The tools were loaded by the buyer

The tools were loaded in bags by the buyer
The tools were loaded in bags

Bags were loaded by the buyer

Bags were loaded with the tools by the buyer

Bags were loaded with the tools
7?

EXAMPLE OF ANSWERS

The buyer can load bags with the tools
The buyer was loaded bags with the tools
The buyer can load bags the tools

The buyer can load in bags with the tools
The buyer can load bags on sale

The buyer can load bags under the tools
Bags can load the buyer with the tools
The tools can load the buyer in bags
Bags can load the tools in the buyer

Figure 9: Example of Type I context sentences and answer set.

A.3 Experimental details

All systems used a learning rate of 0.001 and Adam optimizer, and batch size 100. The system was trained
for 300 epochs for all experiments.

The experiments were run on an HP PAIR Workstation Z4 G4 MT, with an Intel Xeon W-2255 processor,
64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU.

The sentence-level encoder decoder has 106 603 parameters. It consists of an encoder with a CNN
layer followed by a FFNN layer. The CNN input has shape 32x24. We use a kernel size 15x15 with stride
1x1, and 40 channels. The linearized CNN output has 240 units, which the FFNN compresses into the
latent layer of size 5+5 (mean+std). The decoder is a mirror of the encoder, which expands a sampled
latent of size 5 into a 32x24 representation.

The two-level system consists of the sentence level encoder-decoder described above, and a task-
specific layer. The input to the task layer is a 7x5 input (sequence of 7 sentences, whose representation we
obtain from the latent of the sentence level), which is compressed using a CNN with kernel 4x4 and stride
1x1 and 32 channels into ... units, which are compressed using a FFNN layer into a latent layer of size
5+5 (mean+std). The decoder consists of a FFNN which expands the sampled latent of size 5 into 7200
units, which are then processed through a CNN with kernel size 15x15 and stride 1x1, and produces a
sentence embedding of size 32x24. The two level system has 178 126 parameters.
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A.4 Sentence-level analysis

A.4.1 Sample confusion matrices for altered latent values
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Figure 10: Confusion matrices for altered values on units 1 (left matrix), unit 2 (middle matrix) and unit 3 (right
matrix)

Each matrix shows a particular way of conflating different patterns:

* changes to values in unit 1 of the latent lead to patterns that differ in the grammatical number of pp2
to become indistinguishable

* changes to values in units 2 and 3 of the latent lead to the conflation of patterns that have different
subject-verb numbers.
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A.4.2 Sentence-level analysis for English data
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Figure 11: Chunk identification results: tSNE projections of the latent vectors for the English dataset, and confusion
matrix of the system output.

39



A.5 The BLM tasks

A.5.1 Discussion of errors on the sentence level, when solving the BLM task

It might appear surprising that the two-level approach leads to lower performance on type III data,
particularly when lexical variation had not been an issue for the sentence representation analysis (see
Section 5.1).

The difference comes from the way the instances were formed, on the fly, for the two-level process.
The only input to the system is the input of the task. This input, consisting of a sequence of 7 sentences, is
used to generate an instance —i.e. a (in, out™, Out ™) triple — for the sentence level process for each of
these sentences. Because each sentence has a different pattern, and the input and correct output of the
sentence level VAE must have the same pattern, the only possible out_ is the input sentence in itself.
Ouwut~ will consist of all the other sentences in the task input sequence.

We hypothesize that the fact that the input and output are identical weakens the (indirect) supervision
signal. In the stand-alone sentence analysis experiment, the lexical variation between the input and correct
answer for the sentence level forces the system to find deeper shared information between the two, and
this is not the case when solving the BLM tasks with the two-level system. For type I and type II data,
because a task instance (and thus the input sequence) has very little lexical variation, the incorrect answers
for the sentence level are very close lexically to the correct answer, and thus the system is guided to
encode on the latent layer other distinctions between the correct and incorrect answers, which are mainly
the chunk patterns. For type III data, with its maximal lexical variation, there is no pressure on the system
to find something other than shallower differences between the answer candidates.

We plan to test this hypothesis in future work using a pre-trained sentence-level VAE.
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A.5.2 Detailed task results

TRAIN ON TEST ON VAE 2 LEVEL VAE
BLM agreement

type_I type_I 0.929 (0) 0.935 (0.0049)
type_l type_II  0.899 (0) 0.908 (0.0059)
type_I type_III  0.662 (0) 0.871 (0.0092)
type_II type_l 0.948 (<e-10)  0.974 (0.0049)
type_II type_II 0.879 (<e-10)  0.904 (0.0021)
type_II type_III  0.713 (0) 0.891 (0.0015)
type_III type_I 0.851 (0.037)  0.611 (0.1268)
type_III type_II  0.815(0.0308) 0.620 (0.1304)
type_III type_ Il 0.779 (0.0285) 0.602 (0.1195)

BLM verb alternation group 1

type_I type_l 0.989 (0) 0.995 (<e-10)
type_I type_II 0.907 (0) 0.912 (0.0141)
type_I type_III  0.809 (0) 0.804 (0.0167)
type_II type_I 0.989 (0) 0.996 (0.0013)
type_II type_II  0.979 (<e-10) 0.984 (0.0016)
type_II type_III  0.915 (0) 0.928 (0.0178)
type_III type_I 0.997 (0) 0.999 (0.0013)
type_III type_II 0.977 (0) 0.986 (0.0027)
type_III type_III  0.98 (0) 0.989 (0.0003)

BLM verb alternation group 2

type_I type_I 0.992 (0) 0.987 (0.0033)
type_I type_II ~ 0.911 (0) 0.931 (0.0065)
type_I type_III  0.847 (0) 0.869 (0.0102)
type_II type_I 0.997 (0) 0.993 (0.0025)
type_II type_II 0.978 (<e-10)  0.978 (0.0017)
type_II type_IIT  0.923 (0) 0.956 (0.0023)
type_III type_l 0.979 (<e-10)  0.981 (0.0022)
type_III type_Il  0.972 (0) 0.975 (0.0005)
type_III type_III  0.967 (0) 0.977 (0.0022)

Table 3: Analysis of systems: average F1 (std) scores (over 3 runs) for the VAE and 2xVAE systems. The highest

value for each train/test combination highlighted in bold.
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A.5.3 Detailed error results

err. perc. (log)

RAINDN >t 3] [ T 3] ] [ 3] ] [ 3] ] ) ] ] [

ERR TYPE > AENL oord WwNL w2 WNA

% VAEtestontl N\ 2xVAEtestontl| i VAEtestontl EEM 2XVAEtestontll == VAEtest-ontlll Il 2xVAE test-on t il

Figure 12: Analysis of errors for the agreement task: y-axis is the log of error percentages, the x-axis indicates the
data type the system was trained on. The bars show the errors for testing using the two system variations (one-level
and two-level), and the test data type. We note a decrease in all types of errors for the 2-level system compared to
the one level version, and particularly for the sequence-based errors (WNA, WN1, WN2) which are overall the most
frequent. The reason for the higher number of sequence errors for the system trained on type III data is discussed in
appendix A.5.3.
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Analysis of errors for the verb alternation groupl task: y-axis is the log of error percentages, the x-axis indicates the data type
the system was trained on. The bars show the errors for testing using the two system variations (one-level and two-level), and the
test data type. As for the agreement task, we note a decrease in all types of errors when using the 2-level system compared to the

one level version, with a few exceptions — Alt1 (a syntactic error) when training on data type I and testing on types II and III.
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Analysis of errors for the verb alternation group?2 task: y-axis is the log of error percentages, the x-axis indicates the data type

the system was trained on. The bars show the errors for testing using the two system variations (one-level and two-level), and the

test data type. As for the agreement task, we note a decrease in all types of errors when using the 2-level system compared to the

one level version, with a few exceptions — SSM1 (a syntax-semantic mapping error), and a few combinations of training/test data
types for the syntactic errors Altl,Alt2.

Figure 13: Error analysis for the verb alternation BLM task.
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Abstract

Large language models memorize portions of
their training data verbatim. Our findings indi-
cate that models exhibit higher memorization
rates both early on and at the very end of their
training, with the lowest rates occurring mid-
way through the process. This phenomenon can
be attributed to the models retaining most of the
examples memorized early on, while forgetting
many more examples as training progresses. In-
terestingly, these forgotten examples are some-
times re-memorized later on, often undergoing
cycles of forgetting and re-memorization. No-
tably, examples memorized early in training
are more likely to remain consistently retained,
suggesting that they become more firmly ’crys-
tallized’ in the model’s representation. Based
on these insights, we tentatively recommend
placing data that is more likely to be sensitive
in the middle stages of the training process.

1 Introduction

Large language models (LLLMs) can achieve state-
of-the-art results on a variety of NLP tasks (Liang
et al., 2023) but are not without their problems.
One such problem is their propensity to output por-
tions of their training data verbatim, a phenomenon
referred to as “memorization” (Carlini et al., 2019).
Memorization in LLMs is a potentially undesir-
able outcome because it can lead to the uninten-
tional disclosure of private information such as per-
sonal data (including credit card or social security
numbers), trade secrets, passwords, etc. (Carlini
et al., 2019). Training data extraction attacks seek
to extract training examples from a model verbatim
and memorization enables these types of attacks
to succeed (Carlini et al., 2021; Nasr et al., 2023).
By better understanding why memorization occurs,
researchers will be able to minimize the memoriza-
tion of sensitive information and mitigate the risk
of extraction attacks (Huang et al., 2022).
Previous work (Biderman et al., 2023) (dis-
cussed in Section 2) has concluded that LLMs
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Universitat Pompeu Fabra
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Figure 1: We decompose memorization into newly mem-
orized and forgotten examples at each training check-
point. The blue line represents the number of examples
that are newly memorized compared to the previous
checkpoint, while the red line indicates the number of
previously memorized examples that are forgotten. The
difference between these two lines reflects the overall
change in memorization.

memorize a fixed proportion of their data at each
step and, as a result, has avoided making recom-
mendations about the order in which data is fed to
the model throughout training. We find that:

1. Models tend to memorize a higher proportion
of their training data early on during training

2. Discrepancy in memorization rate is caused
by the number of examples forgotten by the
model at each step, while the number of newly
memorized examples stays nearly constant

3. But forgotten examples get re-memorized
throughout training at a very high frequency

4. This re-memorization occurs even if examples
have been markedly forgotten

5. Examples memorized early on in training are
more likely to remain memorized throughout
the entire training process

As a result, we tentatively recommend model
developers to put the data that is most likely to be
sensitive in the middle of the training process.
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2 Background

Defining Memorization in Language Modeling
The standard definition of memorization used in
this paper comes from Carlini et al. (2021), which
introduces a quantifiable definition of “k-eidetic
memorization™:

A string s is k-eidetic memorized (for £ > 1) by
an LM fy if s is extractable from fy and s appears
in at most k£ examples in the training data X:

Hre X :sCua}| <k (1)
Key to the definition of memorization is “ex-
tractability”, which refers (Carlini et al., 2023) to
the ability to prompt a model to generate a string
given a text prompt of length k which precedes the
target string in the training data. More concretely:
A string s is extractable with k tokens of context
from a model f if there exists a (length-k) string
p, such that the concatenation [p || s] is contained
in the training data for f, and f produces s when
prompted with p using greedy decoding.'

All strings that are extractable in such a way are
counted as memorized. Indeed, extractability acts
as a highly sensitive “canary in the coal mine” for
other, more harmful forms of memorization, like
the ones taken advantage of in training data extrac-
tion attacks (Nasr et al., 2023). If training data is
extractable via prompting the model with training
data extracts, it is possible that other attack vectors
will also allow sensitive training data extraction.

Memorization Training Dynamics Previous
work on the training dynamics of memorization
in language models has primarily been motivated
by preventing memorization or getting early sig-
nals of it during training. Memorization rates have
been found to scale with parameters such as model
size (Carlini et al., 2023; Tirumala et al., 2024; Bi-
derman et al., 2024), the frequency of appearance
of the example in the dataset (Carlini et al., 2023;
Hernandez et al., 2022), the length of the context
k used to prompt the model (Carlini et al., 2023),
and the learning rate (Tirumala et al., 2024).
Previous research on the impact of training order
on memorization found that memorization is well-
modeled by a Poisson distribution, indicating that
memorization is approximately equally likely to
happen at each step in the training process (Bider-
man et al., 2023). Further research found little cor-

"Note that the variable "k" is used differently in these two
definitions.
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relation between the examples memorized through-
out the training process, indicating that the model is
forgetting many of the examples it had previously
memorized and then re-learning them seemingly at
random (Biderman et al., 2024). These findings are
in contradiction to the phenomena that we observe
in our analysis.

Forgetting in Language Modeling Few stud-
ies have discussed “forgetting” in the context of
LLM memorization research. Most memorization
research we surveyed is not focused on the training
dynamics of memorization and the ones focused
on training dynamics (Biderman et al., 2023, 2024)
did not discuss forgetting. A notable exception is
(Tirumala et al., 2024), where the authors find a
logarithmic forgetting curve that ultimately comes
to a stable “forgetting baseline”, primarily dictated
by model size.

OLMo Our model of choice in this work is the 7
billion parameter Open Language Model (OLMo)
(Groeneveld et al., 2024) published by the Allen In-
stitute for Artificial Intelligence. OLMo is a frame-
work that consists of trained OLMo models, the
pre-training dataset Dolma (Soldaini et al., 2024),
and various other artifacts. The OLMo models are
decoder-only LLMs that have been trained using
similar practices to the currently available, state-of-
the-art LLLMs and are competitive with those LLMs
in many of the OLMo authors’ evaluations. This
makes them an ideal proxy for evaluating mem-
orization and forgetting in those state-of-the-art
LLMs, which we can not evaluate directly because
they do not follow the same open framework as
OLMo. We reproduce all of our experiments with
the Pythia model suite, in Appendix A.

3 Methodology

To study the impact of training order on memo-
rization, we extracted and then deduplicated 64-
token sequences from OLMo’s training dataset. We
then passed the first 32 tokens of these sequences
to evenly-spaced checkpoints throughout OLMo’s
training process and had these checkpoints generate
32 more tokens. We compared these generated to-
kens with the “ground truth” (i.e. the last 32 tokens
in the original extractions) to evaluate whether and
to what extent the sequence had been memorized.

Sequence Extraction The version of OLMo
used in this paper was trained on version
v1_5-sample of the Dolma dataset (Soldaini et al.,



2024). This corpus is split into 2,418 files, each
of which contains a list of documents sorted by
their source. For each file, we extracted the first
500 documents that had a length greater than or
equal to 64 tokens and extracted the first 64 to-
kens from each document. We chose to extract
the first 64 to reproduce the work in (Biderman
et al., 2023), where the length 64 is chosen arbi-
trarily and the first tokens are extracted to mini-
mize covariate effects. This resulted in a dataset
of 1,208,000 sequences of length 64, where each
sequence appeared at the beginning of a document
in Dolma. Two files did not have any documents
with lengths greater than 64, which explains the
1,000 sequence discrepancy between our final se-
quence count and the expected final sequence count
of 1,209,000 (2,418 x 500 = 1, 209, 000).

Deduplication Prior research has shown that re-
peated examples in the training data are more likely
to be memorized (Carlini et al., 2023; Hernandez
et al., 2022; Lee et al., 2022; Kandpal et al., 2022).
Although the Dolma dataset that OLMo was trained
on has been heavily deduplicated, some sequences
repeat in various places in the training data. To
minimize the impacts of often-repeated sequences
on our analysis, we deduplicated our dataset before
performing our analysis.’

Response Generation After deduplicating our
data, we split each sequence into two 32-token
subsequences. We selected 112 checkpoints sep-
arated by 5,000 training steps each, starting from
stepO-tokensOB (which represents the randomly
initialized model that has been exposed to no train-
ing data) to step555000-tokens2455B (which rep-
resents the fully-trained model that has been ex-
posed to approximately 2,455,000,000 tokens). We
passed the first 32-token subsequence prompts to
the model and generated 32-token responses using
greedy decoding, following the standard definition
of extractability (Carlini et al., 2023). During gen-
eration, we used the default HuggingFace function
parameters, except for using 16-bit quantized ver-
sions of the checkpoints and running the genera-
tions on our GPUs. We used batches of size 32.

Memorization Evaluation We evaluated
whether a checkpoint had memorized a given
sequence by directly comparing the 32-token
sequence generated by the model against the

*This resulted in a marginal decrease of 0.2%, implying
that the duplication rate in the overall dataset is quite low.
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original 32-token response we had extracted from
the training dataset. If the generated sequence
exactly matched the ground truth sequence, we
counted that sequence as a “memorized” example
for that checkpoint.

4 Results

4.1 Descriptive Statistics

Of the 1,2080,000 sequences extracted from
OLMo’s training data in Sequence Extraction,
1,205,572 remained after deduplication. Of these,
44,559 were memorized by at least one of the 112
OLMo checkpoints we considered. Hence, 3.7 %
of the sequences have been memorized at least
once during the training. The step0, randomized
model had memorized zero sequences, while the
final model had memorized 26,423 (2.19% of all
sequences)3. There were 1,127 (0.09% of the to-
tal) sequences memorized at every checkpoint we
evaluated, excluding the stepO checkpoint.

The fact that only 0.09% of examples are memo-
rized by every checkpoint demonstrates an impor-
tant insight in this work: LLMs memorize their
training data but then forget parts of it through-
out the training process. As further analysis will
demonstrate (Section 4.2 and 4.5) sometimes ex-
amples are memorized, forgotten, and then re-
memorized again in subsequent checkpoints.

4.2 Memorization Trends at Completion

Model developers and researchers may be particu-
larly interested in understanding the examples that
the final checkpoint (i.e. the model at the end of
the training process) has memorized. This might
be of particular interest because this checkpoint
represents the model that will either be deployed
directly to users or fine-tuned and then deployed.
With that in mind, we start our analysis by looking
at only examples memorized by the final check-
point and seek to understand how and when they
were memorized.

2.19% of the sequences are memorized. Of
the 1,205,572 sequences we tested for the OLMo
model, 44,559 were memorized by at least one
checkpoint, but only 26,423 (2.19%) were memo-
rized at the final checkpoint. These examples were

3The memorization rate is a function of many variables,
including the length of the prompt used to extract a response
(Carlini et al., 2023) and thus we should not extrapolate raw
memorizations rates of LLMs without specifying the corre-
sponding prompt lengths.
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Figure 2: Number of examples memorized by the final LM that were also memorized at each prior checkpoint:
logarithmic growth, then linear, followed by a spike.

not all memorized for the first time by the final Memarization delta at each checkpoint

checkpoint itself; most were memorized earlier and
these examples were accumulated over the course
of the training process. To understand this phe-
nomenon, we start by plotting how many examples
memorized at the final checkpoint were memorized
at each prior checkpoint, as seen in Figure 2.
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Figure 2 contains three distinct sections, which is
representative of the memorization dynamics of the ~ Figure 3: Memorization delta at each checkpoint, de-
final model. The first 20% of the data display what  fined as the difference in the number of examples mem-
appears to be logarithmic growth in the number orized compared to the previous checkpoint.

of memorized examples at each checkpoint. Then,

for the last 80%, there appears to be fixed, linear  ¢heckpoint. Then for the last 80% (excluding the
growth in the number of memorized examples, with |t step), the memorization delta is only 86.63
some noise. At the last checkpoint, there is a large examples on average. But at the final checkpoint,
spike in the number of memorized examples. 4,177 more examples are memorized than at the
Since at each checkpoint, the model is exposed  previous checkpoint.*

to a fixed amount of data (22b tokens per 5k train-
ing steps), a higher proportion of data the model is
exposed to gets memorized during the first section
and last step than during most of the training. This
provides early evidence for one of our conclusions:
sensitive data should be put in the second section,
where the memorization rate is the lowest.

Memorization rate is nearly constant, but for-
getting is not. We go a step further and decom-
pose the memorization delta at each stage into two
components: the number of “newly memorized”
examples and the number of forgotten examples at
each checkpoint compared to the prior checkpoint.
We calculate the number of “newly memorized” ex-
4.3 Memorizing and Forgetting amples by taking the examples memorized at each
checkpoint and checking whether they were memo-
rized at the previous checkpoint as well. Similarly,
we calculate the number of forgotten examples by
taking the memorized examples at the prior check-

We can further explore the memorization dynamics
by plotting the “memorization delta” at each check-
point, i.e. the difference between the number of
examples memorized at each checkpoint compared

to the previous one. Results are shown in Figure 3. *This increased growth does indicate anything special
Ficure 3 paints a clear picture: the memorization about the last checkpoint. The OLMo authors do not specify
g p p ’ that step 555,000 in the training was any different than the

rate decays, then stabilizes at a slightly positive  previous steps. And indeed, our results in Section 4.5 show
value, and finally spikes at the last checkpoint. In  that if you filter to only examples memorized at any given

. checkpoint, it appears that that checkpoint has memorized a
the first 20%, each checkpoint has an average of disproportionate number of examples. This phenomenon is
665.86 more examples memorized than the last  discussed more in that section.

46



point and seeing how many of them are not mem-
orized at the current checkpoint. Subtracting the
number of examples forgotten by each checkpoint
from the number of examples newly memorized
by each checkpoint is equivalent to the memoriza-
tion delta in Figure 3. The result of plotting the
newly memorized and forgotten examples at each
checkpoint is shown in Figure 1.

Figure 1 illustrates what causes the decay in
memorization rate early on in the training process:
it is not that these checkpoints have newly memo-
rized more examples, rather, they have forgotten
fewer examples.’

It is also interesting to notice what appear to be
symmetries in the new memorizations and forget-
ting rates: for many of these checkpoints when
memorization goes up, forgetting goes down, and
vice versa. This is the cause of drops and rebounds
(prominent around 40% of the way through train-
ing) visible in Figure 2, as well as the drops and
spikes visible in Figure 3. More investigation is
needed to understand the mechanisms that cause
these drops and spikes.

The fact that these trends are symmetrical rather
than correlated implies that some checkpoints see a
relatively higher rate of forgetting paired with a rel-
atively lower rate of memorization (and vice versa)
than their neighbors. The fact that rebounds in total
memorization follow drops in leads to tentatively
conclude that temporarily lowered memorization
and raised forgetting make room for rapid consoli-
dation of new memorizations.

4.4 Re-memorization

The definition of “forgetting” used in Figure 1
does not imply that no future checkpoint will re-
memorize the example. Indeed, because for this
plot we filtered to only include examples that are
memorized at the final model, every example that
is “forgotten” at a previous checkpoint has defi-
nitionally been re-memorized later on, or else it
would not be present in this dataset. This implies
the phenomenon we mentioned previously: exam-
ples are generally memorized early, sometimes
forgotten, and often re-memorized later on.

We investigate this phenomenon by plotting
when each example that is memorized by the fi-

5If the high memorization rate early on was caused by
lots of new examples being memorized, we would see the
blue line starting high and then decaying to meet the red line.
Instead, we see the red line starting low and then growing
logarithmically to meet the blue line.
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Figure 4: The number of examples that are memorized
for the first time at each checkpoint.

nal checkpoint was first memorized, as shown in
Figure 4. There is a significant skew in the distri-
bution of checkpoints at which examples are first
memorized. Of the 26,423 examples memorized
by the final checkpoint, 50% of them were memo-
rized within the first 6% of training. While we can
see a small spike in the number of examples first
memorized by the last checkpoint, the majority of
examples that are memorized by the final model
are actually first memorized very early in the train-
ing process. This is different than the behavior
observed in (Stephenson et al., 2021), which found
that, in computer vision models, memorization oc-
curs more frequently in later in the training.

Model re-memorizes many previously forgotten
examples. Figure 4 shows that a majority of ex-
amples are first memorized early in training but
we know that many of these examples will be for-
gotten throughout the training process and then
re-memorized later. To understand the relation be-
tween these phenomena, we also create a plot that
shows the start of memorization “streaks” which
terminate at the final checkpoint. We define a mem-
orization “streak” for an example as a set of con-
tiguous checkpoints, all of which have memorized
that example. To find the beginnings of streaks that
end at the final checkpoint, we take all of the exam-
ples memorized by the final checkpoint and then
work backward, seeing at which checkpoint each
example was first memorized within that streak.
We then plot the distribution of these streak-start
checkpoints, as shown in Figure 5.

Figure 5 is almost a mirror image of the prior
plot: while there are 1,127 examples that are mem-
orized continuously throughout the entire training
run, the vast majority of examples learned early are
forgotten and then re-memorized later on. More
than 50% of final streaks are started after 90% of



Bar plot of final streak start counts per checkpoint
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Figure 5: The number of "final streaks" that are started
at each checkpoint. See definition in the text.

training is complete, and the final checkpoint alone
accounts for more than 15% of the 26,423 exam-
ples memorized.

Combining the insights from these two visualiza-
tions, we characterize the memorization behavior
of models as such: models memorize a great deal
of the training data they are initially exposed to,
then forget much of it, then re-memorize some of it.
It’s worth noting that, though it might appear that
models re-memorize most of examples close to the
end of training, this is actually a statistical artifact:
since we are only showing examples memorized by
the final checkpoint, there is a bias towards “final
streaks” starting near the final checkpoint. This
motivates our work in Section 4.5.

Forgetting and re-memorization happen very
frequently throughout training. While Figure
5 refers only to final streaks, there are streaks that
end before the final checkpoint. Sometimes, an
example will have multiple such streaks, where the
first streak represents the first time an example was
memorized and each subsequent streak represents
a time that example was re-memorized after having
been forgotten. We plot the distribution of the
number of streaks per example in Figure 6.
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Figure 6: The distribution of streak count per example.
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Per Figure 6, while the plurality of examples
are memorized only once (left-most bar of the his-
togram), the bulk of examples are memorized be-
tween 15 and 20 times. Since we only looked at
112 checkpoints, this implies that there is a huge
amount of forgetting and re-memorization occur-
ring throughout the training process.

Sometimes examples are ''forgotten'' because of
small changes, while other times they are totally
wiped away. In both cases, re-memorization
can occur. We were curious to understand the
nature of this forgetting and re-memorization. Are
the examples being truly forgotten or is it that the
change of a single token resulted in these exam-
ples being treated as forgotten, even though most
of the semantic information remains intact? Quan-
titative analysis (discussed in Appendix B) pro-
vided no meaningful insight about the nature of
re-memorization, so we also analyzed the forgotten
and re-memorized examples qualitatively.

Our qualitative analysis showed that the model
re-memorized examples that had been only barely
forgotten, but that it also re-memorized examples
that had been totally forgotten. For instance, the
completion ". With this, we have created a trusted
client base, as they are able to easily market their
products and services to their best possible cus-
tomers. Since helps to" was memorized many times
throughout training. It was first memorized in a
streak of length one and then immediately forgot-
ten and replaced by the markedly different " in the
market.Technology Data Services, we help you to
reach the best target audience who will help your
business to grow. We are the leading provider". For
most of the rest of training, the example oscillates
between being fully memorized and other markedly
different generations. Finally, in the last 32 steps of
training, it appears to be "crystallized" (discussed
more in Section 4.6), staying continuously memo-
rized, apart from a brief interruption where it min-
imally changes to ". With this, we have created a
trusted client base, as they are able to easily mar-
ket their products and services across the globe
without spending much.\nBy" (emphasis ours) for
a single checkpoint before being re-memorized.

The example described in the last section illus-
trates the phenomena that we observed through-
out our qualitative analysis: examples may be
markedly forgotten or just barely forgotten, but,
in either case, they may get re-memorized. The
phenomenon that markedly forgotten examples are



re-memorized is particularly interesting given the
low rate of repetition (implied by the extensive
deduplication efforts and low rate of duplication
in our analysis) because it is not obvious to these
authors what could cause a model to re-memorize
an example other than being exposed to that ex-
ample again during training. Further research is
needed to understand what causes the phenomenon
of re-memorization described here.

4.5 Intermediate Checkpoint Analysis

Although the previous analysis focused on the “fi-
nal” checkpoint, it is important to note that the
choice of when to end training is somewhat ar-
bitrary. Although heuristics like the Chinchilla
scaling laws (Hoffmann et al., 2022) provide guid-
ance for the compute-optimal amount to train a
model, researchers often decide when to stop train-
ing based on compute or training data constraints.
As such, intermediate checkpoints can be equally
useful to analyze. In fact, they provide an opportu-
nity to study an interesting counterfactual scenario:
what would have happened to the examples memo-
rized by the “final” checkpoint if researchers had
continued to train the model?

Memorization patterns remain the same. We
arbitrarily select the checkpoint by which 75%
training has been completed and filter to only select
examples that are memorized at our intermediate
model. Reproducing Figure 2, we plot how many
of these examples are memorized at each check-
point in Figure 7.
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Figure 7: The number of examples memorized by an
intermediate checkpoint (75% of the training) that are
memorized at each checkpoint.

This plot follows a similar structure to Figure 2,
with the same curving growth turning into linear
growth. The difference is that, rather than having
a spike at the last checkpoint, there is instead a
spike and immediate drop which correspond to the
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checkpoint we are analyzing. This indicates that
many of the examples memorized at our check-
point are memorized by that checkpoint (4,722 or
19.12% of the total number of examples memorized
at checkpoint 75%) but that many examples are also
forgotten at the next stage (4,538 or 18.38%).

Newly memorized examples are equally likely
to stay memorized or get forgotten. This raises
an interesting question: are the examples forgotten
at step 75%+1 primarily examples that the model
has just learned at step 75%, or are they examples
that the model learned earlier in training? We de-
compose previous and future states in table 1.

Newly Memorized | Total
Step 75% memorized | at-1
Remain mem- | 2,409 17,740 20,149
orized at +1 9.79% 71.86% 81.62%
Forgotten at | 2,313 2,225 4,538
+1 9.38% 9.01% 18.38%
4,722 19,965 24,687
Total 19.13% 80.88%

Table 1: Previous and future states of examples memo-
rized at 75%. +1/-1 are the next/previous checkpoints.

The vast majority of examples (71.86%) mem-
orized at checkpoint 75% were also memorized
at step 75%-1 and remained memorized at step
75%+1. Of examples that were newly memorized
at 75%, about half remained memorized at 75%+1
(51.02%) and half were forgotten at step 75%+1
(48.98%). Similarly, of examples that were forgot-
ten at 75%+1, about half were newly memorized
at step 75% (50.97%) and about half had also been
memorized at step 75%-1 (49.03%).

Few examples had never been memorized before
and few would remain memorized forever. An-
other underlying trend we can analyze by looking at
the intermediate checkpoint is the novelty of mem-
orization and the permanence of forgetting. Of the
4,722 examples that were newly memorized at step
75%, only 129 (2.73%) had never been memorized
before. Of the 4,538 examples memorized at 75%
that are forgotten at 75%+1, only 102 (2.25%) were
never memorized again. This all reinforces a key
insight of this work: most examples are memorized
early, then periodically forgotten and re-memorized
throughout the training process.

4.6 Crystallization in Early Learning

To further understand how the examples mem-
orized early on are forgotten and re-memorized



throughout training, we examine the examples
memorized by an early checkpoint to see how they
fare. The very first checkpoint has no memorized
examples because it has not been exposed to any
training data, so we select the checkpoint after that
to better understand the memorization dynamics
early in training and see which of those examples
remain memorized throughout training (Figure 8).
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Figure 8: Number of examples memorized by the initial
checkpoint that are memorized at each checkpoint.

Early examples are crystallized. By plotting
the number of examples that were memorized at
our initial checkpoint which are also memorized
at other checkpoints, we can see a very strong and
simple trend: in the first steps of training, 3,096
examples are memorized, and over the course of
training, few are forgotten. Notably, very few of
these memorized examples are forgotten at the fi-
nal checkpoint: only 188 (6.07%) of the examples
memorized at the initial checkpoint. This implies
that examples memorized early on crystalize in the
LM’s parameters and are unlikely to be forgotten.

We also illustrate this diminishing crystallization
by taking the examples memorized at each of the
first 10 checkpoints and calculating what propor-
tion of them are continuously memorized for the
last 80% of training. We take this ratio to be indica-
tive of the percentage of memorized examples at
each checkpoint that are “crystallized” and remain
memorized throughout much of training, and plot
the results in Figure 9.

Of the 3,096 examples memorized by the first
checkpoint, 1,503 (48.55%) are memorized con-
tinuously for the last 80% of training. For each
subsequent checkpoint, this percentage decays log-
arithmically, until it reaches a stable forgetting rate
at around 20% of examples memorized.

All of this analysis illustrates that, while many
examples are forgotten and re-memorized through-
out training, the examples memorized early on are
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Figure 9: The percentage of examples memorized at
each checkpoint that are memorized continuously in the
last 80% of training (we call it crystallization).

most likely to stay crystallized throughout all of
training, while examples memorized later are less
likely to be crystallized. This points to the powerful
impact of training order on memorization rate.

5 Conclusion

Memorization in LLMs is a well-documented phe-
nomenon but more work needs to be done to under-
stand how that memorization occurs, what data is
most likely to be memorized, and what can be done
to minimize undesirable memorization. This field
of research is important for making LLMs useful
in commercial applications, as memorization can
result in the model leaking private information.
We have made novel contributions by exploring
previously unresearched dynamics of memoriza-
tion throughout the training process. By analyz-
ing memorization at various checkpoints along the
training of an LLM, we are able to come to some
important conclusions. Most significantly:

1. LMs memorize more earlier on in training
2. LMs forget examples during the training

3. Many forgotten examples are re-memorized

From these conclusions, we tentatively recom-
mend model developers put data which they con-
sider to have a higher likelihood of being sensitive
in the middle stages of the training process. In the
middle stages, data is memorized at the lowest rate
and memorized examples may be forgotten before
the model is done being trained.

However, these recommendations can only be
tentative because the true test of this hypothesis
would be to do controlled experimentation with
sensitive data placed at various points in the train-
ing process. We hope our work motivates future
researchers to perform these experiments to further
understand how LLMs memorize.



Limitations

5.1 No Proof of Causality

Ultimately, although our results indicate that there
may be an effect of training order on memorization,
our experiments are insufficient to prove causal-
ity. Because of this, our tentative recommendations
can only be fully confirmed by running random-
ized experiments. For example, although we infer
that model developers should put sensitive training
data in the middle stages of the training process, it
is possible that there are confounding effects that
would actually cause this data to be memorized
at the same rate, regardless of where it was put.
We lack the resources to experiment with training
orders but think that our results are sufficient to
motivate future investigation into this area.

5.2 High Sensitivity

As discussed in Section 2, the method of extracting
memorized sequences used in this research is not
representative of realistic membership inference
attacks. By both prompting the models with exact
samples from their training data and using greedy
decoding, we maximize the probability that a mem-
orized example will be output. In the real world,
attackers are unlikely to have access to the training
data and therefore are unlikely to be able to feed
it verbatim to the LLM. Additionally, if they did
have access to the training data, there would be no
purpose in attempting to extract training data from
the model. Another factor that contributes to the
unrealisticness of this method of attack is that most
commercially available LLM providers do not use
greedy decoding since it produces highly-repetitive
text (Shao et al., 2017).

Although this attack method is unrealistic, we
think this area of research is still useful because
it allows us to understand all information that is
potentially memorized by the model. Since the two
things that make this method unrealistic (prompting
with exact training data and greedy decoding) also
make the model more likely to produce any data
it may have memorized, we view our approach as
highly sensitive, extracting a large portion of all
memorized data, and therefore acting as a canary
in the coal mine.

5.3 Only English-Language Analysis

As OLMo is a model primarily trained on English
text data (Soldaini et al., 2024) and intended for use
in English (Groeneveld et al., 2024), very few of

the memorized examples we encountered in man-
ual analyses were in languages other than English.
There are documented attack vectors that take ad-
vantage of low-resource languages to bypass LLM
safeguards (Upadhayay and Behzadan, 2024) and
it is possible that there are ways to extract training
data from LLMs by using low-resource languages.
It is also possible that different languages have dif-
ferent memorization dynamics, so further research
needs to be performed to understand whether the
phenomena we describe are limited to English or
would apply to other languages as well.
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A Pythia

OLMo models are trained using the frequently-
used policy of learning rate warmup and annealing,
in which the learning rate of an LLM is changed
throughout the training process. Specifically, the
learning rate is warmed up over the first 5,000 steps
and then decayed linearly from there to a tenth of
the peak of the learning rate throughout the rest of
training. Since (Tirumala et al., 2024) showed that
learning rate impacts memorization, we were curi-
ous to what extent our results could be explained
by changes in the learning rate throughout the train-
ing process. As a result, we reproduced our work
in OLMo with a similarly-sized Pythia (Biderman
et al., 2023) model, which has no learning rate
warmup or annealing. We found no significant
differences to the trends we described with OLMo.

There are some notable differences between the
original OLMo work and the Pythia reproduction,
namely:

. How we sampled the Pythia training dataset
(described in the Methodology subsection)

The amount of duplication

The percentage of memorizations (described
in the Results subsection)

The classification of different memorized ex-
amples (described in the Results subsection)

The fact that, despite all of these differences, the
results remained largely the same is heartening evi-
dence that our results generalize to other models.
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A.1 Framework

Pythia models are trained on The Pile (Gao et al.,
2020) and, like OLMo, release not only final model
weights and the training dataset, but also training
methodology and checkpoints. Interestingly, the
Pythia models also release their training data in the
format and order that it is fed to the model during
training, which is not information we were able to
find on the OLMo model. As a result, we use a
different sampling strategy (as described in Sub-
section A.2) to extract samples for evaluation. We
select the 6.9 billion parameter version of Pythia,
since it is the most similar in size to the OLMo
model we used.

A.2 Methodology

Since the authors of Pythia provide the shuffled
version of the dataset that they used to train the
model, we sampled 1,041,873 examples from
evenly-spaced, randomly selected points within the
training run, thus ensuring that we would select rep-
resentative training data. Specifically, we divided
Pythia’s pre-shuffled Pile dataset’s 131,170 itera-
tions into 100 approximately even segments and
then selected 10,500 random 64 token sequences
from within each segment. We then removed any
examples from the same iteration that overlapped
as a result of having starts within 64 tokens from
each other, resulting in our total of 1,041,873 ex-
amples. We then split the 64-token sequences in
half, as with OLMo.

The Pythia model has 144 checkpoints separated
by 1,000 training steps, starting from step0 and
terminating at step143000. We used all of these
checkpoints. There are also log-spaced checkpoints
provided between stepO and step1000 but we chose
not to incorporate these since we wanted evenly-
spaced checkpoints.

A.3 Results

On the whole, we find our results with Pythia to be
nearly identical to our results with OLMo, taking
into account some differences caused by sampling
noise. Notably, the trends we see in OLMo tend to
be less pronounced but still present for Pythia.

We have included Pythia reproductions of all of
the major figures we used for our OLMo analysis
without comment.
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Figure 10: The number of examples memorized by
the final checkpoint that are also memorized at each
previous checkpoint.
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Figure 11: The memorization delta at each checkpoint.
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Figure 12: The number of newly memorized and forgot-
ten examples at each checkpoint.
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Figure 13: The number of examples that are memorized
for the first time at each checkpoint.
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Figure 14: The number of "final streaks" that are started
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B Soft Memorization Metrics

All prior work on memorization that we surveyed
used a strict definition of extractability, i.e. check-
ing whether the generated output exactly matched
the continuation of the sequence in the training data.
This is a convenient metric to use because it is reli-
ably easy to evaluate without human intervention.
However, for the goal of evaluating undesirable
semantic memorization, this is an overly strict def-
inition of “memorization”. Therefore, rather than
only evaluate extractability according to the “hard”
definition (previously defined in the Section 2), we
also propose a “soft” definition of extractability: A
string s is d-extractable with k tokens of context
from a model f if there exists a (length-k) string
p, such that the concatenation [p || s] is contained
in the training data for f, and f produces a string
which is at most distance d away from s when
prompted with p using greedy decoding, for some
specified distance measure.

To evaluate whether relaxing the definition of
memorization by using d-extractability changed
our observed memorization dynamics, we calcu-
lated Hamming distance and Levenshtein distance
as well as the longest common subsequence for
each of the generations in the training dataset.

1. Hamming distance: the number of characters
that need to be changed in place to make two
equal-length sequences identical (Hamming,
1950)

Levenshtein distance: the number of char-
acters that need to be inserted, deleted, or
substituted to make two sequences identical
(Levenshtein, 1965)

Longest common subsequence similarity:
the length of the longest continuous sequence
of characters that two sequences have in com-
mon (Maier, 1978)

We used the Python package “textdistance” (Lif-
erenko, 2024) to efficiently evaluate these similarity
metrics.

Performing the same analysis that we had done
previously required discretizing these continuous
distance metrics, i.e. selecting a value for d. We
decided to select these values based on the distribu-
tion of each distance metric and arbitrarily selected
2.5%, 5%, 10%, 15%, and 25% quantiles for this
cutoff. For example, the 5% quantile represents
a cutoff which will treat 5% of the examples as
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memorized. We reproduced Figure 2 for all three
distance measures and all five quantiles in Figure
19.

For all three similarity measures we evaluated,
and for all five quantiles, the shapes of the graphs
were not meaningfully different than the shape we
saw when using the hard definition of memoriza-
tion: a logarithmic increase followed by a linear
increase. When we experimented with different
cutoffs, we found that the same shape was gener-
ally preserved, except for cutoffs that represented
extreme relaxations of the memorization criterion.

We wanted to further investigate whether a differ-
ent cutoff could help us better understand the mem-
orization dynamics. To do this, we calculated the
cutoff values for all 0.01% increments of the cutoff
quantiles, and plotted the cutoff values against the
percentage of examples that would be treated as
“memorized” if we used that cutoff. The results are
in Figure 20.

The lack of meaningful inflection points in the
graph indicates that these metrics are best under-
stood as continuous measures, rather than being
discretized. The first inflection point happens at
2.19%, at which point the cutoff is greater than
0. At a cutoff of 0, the soft memorization metric
is equivalent to the hard memorization metric, be-
cause the generated text has 0 distance from the
expected text. Therefore, this inflection happens
at 2.19% because that is the memorization rate ac-
cording to the hard definition. The other inflection
point happens at the 99% mark, which we do not
find relevant to this analysis because we do not con-
sider a memorization rate of 99% to be meaningful.
Lacking meaningful inflection points indicates to
us that there is no trivial and meaningful definition
of memorization.

A limitation of all of the metrics we examined is
that they do not capture the semantic content of the
generations, only making character-wise compar-
isons. In future work, we hope to further explore
meaningful relationships between the definition
of memorization used and the trends observed in
memorization and forgetting phenomena.
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Abstract

Sentiment is a pervasive feature in natural lan-
guage text, yet it is an open question how sen-
timent is represented within Large Language
Models (LLMs). In this study, we reveal that
across a range of models, sentiment is repre-
sented linearly: a single direction in activation
space mostly captures the feature across a range
of tasks with one extreme for positive and the
other for negative. In a causal analysis, we iso-
late this direction using interventions and show
it is causal in both toy tasks and real world
datasets such as Stanford Sentiment Treebank.
We analyze the mechanisms that involve this
direction and discover a phenomenon which
we term the summarization motif: sentiment is
not just represented on valenced words, but is
also summarized at intermediate positions with-
out inherent sentiment, such as punctuation and
names. We show that in SST classification, ab-
lating the sentiment direction across all tokens
results in a drop in accuracy from 100% to 62%
(vs. 50% random baseline), while ablating the
summarized sentiment direction at comma po-
sitions alone produces close to half this result
(reducing accuracy to 82%).

1 Introduction

Large language models (LLMs) have displayed in-
creasingly impressive capabilities (Brown et al.,
2020; Radford et al., 2019; Bubeck et al., 2023),
but their internal workings remain poorly under-
stood. Nevertheless, recent evidence (Li et al.,
2023) has suggested that LLMs are capable of
forming models of the world, i.e., inferring hid-
den variables of the data generation process rather
than simply modeling surface word co-occurrence
statistics. There is significant interest (Christiano
et al. (2021), Burns et al. (2022)) in deciphering
the latent structure of such representations.

In this work, we investigate how LLMs represent
sentiment, a variable in the data generation process
that is relevant and interesting across a wide variety
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of language tasks (Cui et al., 2023). Approaching
our investigations through the frame of causal me-
diation analysis (Vig et al., 2020; Pearl, 2022), we
show that these sentiment features are represented
linearly by the models, are causally significant, and
are utilized by human-interpretable circuits (Olah
et al., 2020; Elhage et al., 2021a).

We find the existence of a single direction scien-
tifically interesting as further evidence for the linear
representation hypothesis (Mikolov et al., 2013; El-
hage et al., 2022; Park et al., 2023; Jiang et al.,
2024), that models tend to extract properties of the
input and internally represent them as directions
in activation space. Understanding the structure of
internal representations is crucial to begin to de-
code them. Linear representations are particularly
amenable to detailed reverse-engineering (Nanda
et al., 2023b) and have seen recent interest in the
context of Sparse Autoencoders (Bricken et al.,
2023). We believe that interpreting internal repre-
sentations in LLLMs shows promise for mitigating
problematic behaviours.

We show evidence of a phenomenon which we
have labeled the “summarization motif”!, where
rather than sentiment being directly moved from
valenced tokens to the final token, it is first aggre-
gated on intermediate summarization tokens with-
out inherent valence such as commas, periods and
particular nouns. This can be seen as a naturally
emerging analogue to the explicit classification to-
ken in BERT-like models (Devlin et al., 2018), and
in that context the phenomenon was observed by
Clark et al. (2019). We show that the sentiment
stored on summarization tokens is causally rele-
vant for the final prediction. We find this an intrigu-
ing example of an “information bottleneck”, where
the data generation process is funnelled through a
small subset of tokens used as information stores.

ICrucially, this is not to be confused with the NLP summa-
rization task
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Understanding the existence and location of infor-
mation bottlenecks is a key first step to deciphering
world models. This finding additionally suggests
the models’ ability to create summaries at various
levels of abstraction, in this case at a sentence or
clause rather than a token.

Our contributions are as follows. In Section 3,
we demonstrate that standard methods can find a
linear representation of sentiment using a toy
dataset, and show that this direction correlates with
sentiment information in the wild. We use causal
analysis to show that this linear representation mat-
ters causally in both toy and crowdsourced datasets.
In Section 4, we show through activation patching
(Geiger et al., 2020; Vig et al., 2020) and abla-
tions (techniques defined in Section 2.2) that the
learned sentiment direction is used in summariza-
tion behavior that is causally important to circuits
performing sentiment tasks. We replicate these
findings across GPT2, Pythia, Gemma, Qwen and
StableLM models (Section 2.1). In sum, we pro-
vide a novel, detailed case study of how to analyse
a feature’s representation in activation space.

2 Methods

2.1 Datasets and Models

ToyMovieReview is a templatic dataset of con-
tinuation prompts we generated with the form “I
thought this movie was ADJECTIVE, | VERBed it. Con-
clusion: This movie is” where ADJECTIVE and VERB
are either two positive words (e.g., incredible and
enjoyed) or two negative words (e.g., horrible and
hated) that are sampled from a fixed pool of 85 ad-
jectives (split 55/30 for train/test) and 8 verbs. The
expected completion for a positive review is one
of a set of positive descriptors we selected from
among the most common completions (e.g. great)
and the expected completion for a negative review
is a similar set of negative descriptors (e.g., terri-
ble). This dataset is the simplest toy task we could
imagine to elicit understanding of sentiment in the
smallest models that we tested through a next-token
prediction task, avoiding the need for fine-tuning.

ToyMoodStory is a similar toy dataset which
is multi-subject and character-driven with random
names, e.g. Carl hates parties, and avoids them when-
ever possible. Jack loves parties, and joins them when-
ever possible. One day, they were invited to a grand
gala. Jack feels very [excited/nervous]
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Stanford Sentiment Treebank (SST) (Socher
et al., 2013) consists of 10,662 one sentence movie
reviews with human annotated sentiment labels for
every constituent phrase from every review.

Internet Movie Database IMDB) (Maas et al.,
2011) consists of 25,000 movie reviews taken from
the IMDB website with human-annotated senti-
ment labels for each review.

OpenWebText (Gokaslan and Cohen, 2019) is
the pretraining dataset for GPT-2 which we use as a
source of random text for correlational evaluations.

GPT-2 and Pythia (Radford et al., 2019; Bider-
man et al., 2023) are families of decoder-only trans-
former models with sizes varying from 85M to 2.8b
parameters. We mostly focus on Pythia-2.8b in the
main body of this paper, reducing to Pythia-1.4b or
GPT2-small when appropriate for saving compute,
and leaving demonstrations of consistency across
models to A.6.4 and A.9.2.

2.2 Causal Analysis Methods

Activation patching Activation patching (Geiger
et al., 2020; Vig et al., 2020), we create two sym-
metrical datasets X, and Xgipped, Where each
prompt @, and its counterpart prompt Zgipped
are of the same length and format but where key
words are changed in order to flip the sentiment;
e.g., “This movie was great” could be paired with
“This movie was terrible”. Let A be the set of all
hidden layer activations of the model. We first
conduct baseline forward passes, capturing the
tensors of all activation values Agrig = F(Torig)»
Afipped = F (Trippea) for intermediate activations
A. We then conduct “patched” forward passes us-
ing Tflipped A8 A(C = f(wﬂipped, Aorig, C) for dif-
ferent model components C C A representing a
subset of the activations, where at each intermedi-
ate computation /(a) in the forward pass taking a
member ¢ € C as an input, we substitute or “patch”
the alternate activation @ — @orig := Aorig[] and
instead compute /(@orig). We can thus determine
the relative importance of various model compo-
nents C with respect to the task currently being
performed, using some task performance metric
(options discussed in Section 2.3) M : A — R.

Directional activation patching Geiger et al.
(2023b) introduce a variant of activation patching
that we call “directional activation patching”. The
idea is that rather than modifying the standard basis



directions of a component, we instead only mod-
ify the component along a single direction in the
vector space, represented by unit vector d, replac-
ing it during a forward pass with the value from
a different input. That is, the “patch” becomes

M (C<_cﬂipped _cﬂipped Ci+ Corig : d (mﬁipped ) '

Freezing To analyze how the causal effect of a
component C is mediated by another component D,
we perform an activation patch on C while freezing
the activations of DD to their initial value from the
forward pass on the flipped prompt. We perform a
forward pass with the flipped input to obtain an in-
tervened model state Mc. ¢, D¢ Dyipped (ZAipped)-
In particular, we can run patching experiments with
frozen attention, meaning that the attention pattern
is frozen from the original run so that the model
still weights the value vectors in the same way,
helping to isolate V-composition.

Ablations To capture the importance of a com-
ponent, we eliminate its contribution by replacing
it with zeros (zero ablation) or the mean activation
over some dataset (mean ablation). Like activation
patching, ablation is an intervention on a model
component. However, the intervened activations
are all zeros or taken from the mean over some
dataset rather than from a paired forward pass. i.e.
M gataion () Where CPlaton ¢onsists of all ze-
ros or a mean value. We also perform directional
ablation, in which a component’s activations are
ablated only along a specific direction.

2.3 Evaluation metrics

Logit difference metric We extend the logit dif-
ference metric used by Wang et al. (2022) to the
setting with 2 classes of next token rather than only
2 valid next tokens. This is useful in situations
where there are many possible choices of positively
or negatively valenced next tokens.

Specifically, we examine the average differ-
ence in logits between sets of positive/negative
next-tokens 7P = {’* 1 < i < n}
and T¢ = {¢® 1 < i < n}in or-
der to get a smooth measure of the model’s
ability to differentiate between sentiment. That
is, we define the logit difference for input =
as =3 [logit(M(z); %) — logit (M (z); £;°%)].
Larger differences indicate more robust separation
of the positive/negative tokens, and zero or inverted
differences indicate zero or inverted sentiment pro-
cessing respectively. When used as a patching
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metric, this shows the causal efficacy of various
interventions like activation patching or ablation.

We use this metric often because it is more sensi-
tive than accuracy to small shifts in model behavior,
which is particularly useful for circuit identification
where the effect size is small but real. That is, in
many cases a token of interest might become much
more likely but not cross the threshold to change
accuracy metrics, and in this case logit difference
will detect it. Logit difference is also useful when
trying to measure the model behavior transition be-
tween two different, opposing prompts—in this case,
the logit difference for each of the prompts is used
for lower and upper baselines, and we can measure
the degree to which the logit difference behavior
moves from one pole to the other.

Logit flip metric We also extend the interchange
intervention accuracy metric from Geiger et al.
(2022) to classes of tokens by computing the per-
centage of cases where the logit difference between
TPositive and Tmegative jg inverted after an interven-
tion. This is a more discrete measure which is help-
ful for gauging whether the magnitude of the logit
differences is sufficient to flip model predictions.

Accuracy Out of a set of prompts, the percentage
for which the logits for tokens 7°°°"! are greater
than 7""c°™ect Usually each of these sets only has
one member (e.g., “Positive” and “Negative”).

2.4 Finding Directions

Here we defined three methods to find a sentiment
direction in each layer of a language model using
our ToyMovieReview dataset. In each of the fol-
lowing, let IP be the set of positive inputs and N be
the set of negative inputs. For some input z € PUN,
let aZ and v’ be the vector in the residual stream
at layer L above the adjective and verb respectively.
We reserve {vX} as a hold-out set for testing. Let
the correct next token for IP be p and for N be n.

k-means (KM) We fit 2-means to {a’ : = €
PUN}, obtaining cluster centroids {c; : i € [0, 1]}
and take the direction ¢; — cg.

Linear Probing The direction is the normed

weights ﬁ of a logistic regression (LR) classi-
fier LR(ak) = m trained to distinguish

between x € Pand x € N.

Distributed Alignment Search (DAS) We per-
form directional patching (2.2), pairing up inputs
p € P,n € N, then patching as a, — a, — a, -
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Figure 1: Visualizing the “sentiment activation’
(projection of the residual stream onto the senti-
ment axis) where blue is positive and red is negative.
Examples (1a-1c) show the k-means sentiment di-
rection for the first layer of GPT2-small on samples
from OpenWebText. Example 1d shows the k-means
sentiment direction for the 7th layer of Pythia-1.4b
on the opening of Harry Potter in French.

0 + a,, - 0 (and vice versa). The patching metric is
the logit difference

M(0) = [logity(x: p) — logity(;n)] +
zelP

Z [logity(x; n) — logity (z; p)] -
zeN

We then determine 6 as 6 = arg max)g—; M(6),
which we approximate using gradient descent.
This generalizes to finding a k-dimensional sub-
space by fitting an orthonormal rotation matrix
R which maximizes M(R), patching only the
first k& components in the rotated basis a, —
a, + RT ([R(a,, — ap))ii<k) and then the sub-
space is the span of the first & rows of R.

3 Finding a ‘““‘Sentiment Direction”

The first question we investigate is whether there
exists a direction in the residual stream in a trans-
former model that represents the sentiment of the
input text, as a special case of the linear represen-
tation hypothesis (Mikolov et al., 2013; Park et al.,
2023; Jiang et al., 2024), that features are repre-
sented linearly as directions in activation space.
We show that the methods discussed above (e.g.
k-means, LR and DAS, see Section 2.4) all arrive
at a similar sentiment direction. We can visualize
the feature being represented by this direction by
projecting the residual stream at a given token/layer
onto it, using some text from the training distribu-
tion. We will call this the “sentiment activation”.

S 1
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g} o .
3 0.8 Negaltlve
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o
a 0.6
S o4
©
—
- 0.2
€
S

-0.5 -0.4 -0.3 -0.2

Sentiment Activation

Figure 2: Area plot of sentiment labels for OpenWeb-
Text samples by sentiment activation, i.e. the projec-
tion of the first residual stream layer of Pythia-2.8b
at that token onto the sentiment direction. The sen-
timent activation acts as a strong classifier, separat-
ing positive and negative tokens from a real dataset.
Ground truth classification was performed by GPT-4.
Direction was fit using k-means.
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Finding and Comparing the Directions To find
initial directions corresponding with sentiment, we
first fit directions from the residual stream over
the adjective token in the ToyMovieReview dataset
(Section 2.1), using methods from Section 2.4. We
find extremely high cosine similarity (Figure A.1)
between the directions yielded by each of these
methods in Pythia-2.8b (cf. A.7 for other models).
This suggests that these are all noisy approxima-
tions of the same direction, and indeed our results
appear robust to choice of fitting method.

3.1 Correlational Evaluation

To examine the relationship between the directions
we had identified and real-world text, we investi-
gated how these directions correlate with sentiment
in natural text, as evaluated by human readers and
advanced LLMs (GPT-4).

Visualizing The Sentiment Direction By way of
making initial comparisons between the sentiment
direction and real-world text, we show (Figure 1)
a visualisation in the style of Neuroscope (Nanda,
2023b) where the sentiment activation (the projec-
tion of the residual stream onto the sentiment axis)
is represented by color, with red being negative and
blue being positive. It is important to note that the
direction being examined here was produced by
training on just 30 positive and 30 negative English
adjectives in an unsupervised way (using k-means
with k£ = 2). Notwithstanding, the extreme values
along this direction appear readily interpretable in
the wild, even in diverse text domains such as the



direction flip percent flip median size

DAS 96% 107%
KM 96% 69%
LR 100% 86%

Figure 3: We created a dataset of 27 negation exam-
ples and compute the change in k-means sentiment
activation (projection of the residual stream onto the
sentiment axis) at the negated token (e.g. “doubt™)
between the 1st and 10th resid-post layers of GPT2-
small. Here “flip percent” is the percentage of the 27
prompts for which the sign of the sentiment activa-
tion has flipped and “flip median size” is the median
size of the flip relative to the size of the initial senti-
ment activation.

opening paragraphs of Harry Potter in French.

Quantifying classification accuracy To rigor-
ously validate this visual check, we binned the
sentiment activations of OpenWebText tokens from
the first residual stream layer of GPT2-small into
20 equal-width buckets and sampled 20 tokens
from each. Then we asked GPT-4 to classify into
Positive/Neutral/Negative.? In Figure 2, we show
an area plot of the classifications by activation
bin in Pythia-2.8b (cf. Figure A.8 for other mod-
els). Defining a classifier using a threshold of the
top/bottom 0.1% of sentiment activations in GPT2-
small, we can achieve over 90% accuracy as com-
pared to GPT-4 classifications as our ground truth
(Figure A.8a). In the area plot we can see that the
left side area is dominated by the “Negative” la-
bel, whereas the right side area is dominated by
the “Positive” label and the central area is domi-
nated by the “Neutral” label. Hence the tails of the
activations seem highly interpretable as represent-
ing a bipolar sentiment feature. The large space in
the middle of the distribution simply occupied by
neutral words (rather than a more continuous degra-
dation of positive/negative) indicates superposition
of features (Elhage et al., 2022).

Negation Flips the Sentiment Direction in Later
Layers Using the k-means sentiment direction
after the first layer of GPT2-small, we can obtain
a view of how the model updates its view of sen-
timent during the forward pass, analogous to the

>We gave GPT-4 prompts of the form: “Your job is to
classify the sentiment of a given token (i.e. word or word
fragment) into Positive/Somewhat positive/Neutral/Somewhat
negative/Negative. Token: ‘{token}’. Context: ‘{context}’.
Sentiment: ~” where the context length was 20 tokens centred
around the sampled token.
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LO1 You never . Don't doubt it
L02 You neverf&ill. Don't doubt it
L03 You never fail. Don't doubt it
L04 You never fail. Don't doubt it
LO05 You never fail. Don't doubt it
L06 You never fail. Don'tfe6ils]i

. I don't like you.
. I don't like you.
. I don't like you.
. I'don't like you.
. I'don't like you.

. I'don't like you.

Figure 4: Visualizing the sentiment activations
across the layers of GPT2-small for a text where the
sentiment hinges on negations. Color represents sen-
timent activation (projection of the residual stream
onto the sentiment axis) at the given layer and posi-
tion. Red is negative, blue is positive. Each row is a
residual stream layer, first layer is at the top.

“logit lens” technique from nostalgebraist (2020).
The example text that we use here is “You never fail.
Don’t doubt it. | don't like you”. In Figure 4, we see
how the sentiment activation flips when the context
of the sentiment word denotes that it is negated.
The words ‘fail” and ‘doubt’ can be seen to flip
from negative in the first couple of layers to be-
ing positive after a few layers of processing. In
contrast, the word ‘like’ flips from positive to neg-
ative. We quantified this result using a toy dataset
of 27 similar examples and computed the flip in
sentiment activation during the forward pass for
different direction finding methods (Figure 3).

3.2 Causal Evaluation

The experiments described so far illustrate only
correlations between our identified directions and
sentiment. In order to demonstrate that these direc-
tions are indeed causal, we used causal mediation
analysis on our toy dataset and validated our find-
ings on two different real world datasets.

Sentiment directions are causally active. We
evaluate the sentiment direction using directional
patching on the adjective and verb token repre-
sentations for each layer (Section 2.2) in Table 1.
These evaluations are performed on prompts with
out-of-sample adjectives and the direction was not
trained on any verbs. We find that patching activa-
tions along a single direction can cause a significant
change in the prediction according to both of our
patching metrics, and the direction found using
DAS is able to completely flip the prediction.

Validation on SST We validate our sentiment di-
rections derived from toy datasets (Section 3.2) on
SST. We collapsed the labels down to a binary “Pos-



Method ToyMovieReview Treebank
DAS (1 dim.) 109.8% 47.0%
DAS (2 dim.) 110.4% 42.8%
DAS (3 dim.) 110.2% 35.9%

k-means 67.2% 22.1%

LR 71.1% 30.8%

Random 0.4% 0.1%

(a) Logit difference metric: mean % change in logit differ-
ence (100% for one example means the sign of the logit
difference has flipped while the magnitude is unchanged)

Method ToyMovieReview Treebank
DAS (1 dim.) 100.0% 53.5%
DAS (2 dim.) 95.5% 49.0%
DAS (3 dim.) 95.5% 39.4%

k-means 72.7% 14.8%

LR 86.4% 16.8%

Random 0.0% 0.6%

(b) Logit flip metric: the percentage of examples for which
the logit difference changes sign

Table 1: Directional patching results for different methods in Pythia-1.4b (2.8b not shown due to compute time).
We report the best result found across layers. The columns show two evaluation datasets, ToyMovieReview and
Treebank. We present two different evaluation metrics in 1a and 1b.

itive”/“Negative”, took the unique phrases from the
source sentences, restricted to the ‘test’ partition
and took a subset where Pythia-1.4b can achieve
100% zero-shot accuracy, removing 17% of exam-
ples. Then we paired up phrases of an equal number
of tokens® to make up 460 clean/corrupted pairs.
We used the scaffolding “Review Text: TEXT, Re-
view Sentiment:” and evaluated the logit difference
between “Positive” and “Negative” as our patching
metric. Using the same DAS direction from Sec-
tion 3 trained on just a few examples and flipping
the corresponding sentiment activation between
clean/corrupted in a single layer, we can flip the
model’s prediction 53.5% of the time (Table 1).
The sentiment direction learned from a toy dataset
can control behavior on a crowd-sourced dataset,
which is a remarkable generalization result.

Validation at the document level In order to
verify the applicability of our findings to larger
document-sized prompts, we performed directional
ablation (2.2) on the IMDB dataset, most of which
consists of multiple sentences. Each item of this
dataset was appended with “Review Sentiment:”
in order to prompt a classification completion, and
we selected 1000 examples each from the positive
and negative items that the model was capable of
classifying correctly. We used the sentiment direc-
tions found with DAS to ablate sentiment at every
token at every layer (using Pythia-2.8b). As a re-
sult, classification accuracy dropped from 100% to
57%, suggesting that much of the model’s ability to
complete the task above the 50% random baseline
is mediated by this single direction.

3We did this to maximise the chances of sentiment tokens
occurring at similar positions
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4 The Summarization Motif for
Sentiment

Though we do not focus on circuit* analysis here,
we note that initial patching experiments in the
style of (Wang et al., 2022) revealed patterns which
motivated our definition of the “summarization mo-
tif””: when there is information (e.g. sentiment)
stored at certain ‘placeholder’ or ‘summary’ tokens
(e.g. commas, periods and certain nouns) despite
these tokens not inherently having the information.
Moreover, this information is causally significant
for the model to complete a certain task (e.g. senti-
ment classification). We provide a detailed circuit-
based analysis of this phenomenon in Appendix
A.8. In this section, we focus on verifying this be-
haviour in Pythia-2.8b, and we replicate for other
models in the Appendix (Table 5).

At first, we verify this phenomenon on toy
datasets where we are able to isolate the effect
using activation patching experiments. We find
that in many cases this summarization results in a
partial information bottleneck, in which the summa-
rization points become as important (or sometimes
more important) than the phrases containing the
relevant information for sentiment tasks. Next, we
reproduce these findings on natural text using the
SST dataset (Section 2.1). We performed ablation
experiments (Section 2.2) on comma positions. If
comma representations do not summarize senti-
ment information, then our experiments should not
damage the model’s abilities. However, our results
reveal a clear summarization motif for SST.

*We use the term “circuit” as defined by Wang et al. (2022),
in the sense of a computational subgraph that is responsible
for a significant proportion of the behavior of a neural network
on some predefined task.



Original prompt Jack loves parties, ... Original prompt

Jack feels very

Jack loves parties, ...

Flipped prompt Jack hates parties, ...

Jack feels very

Flipped prompt

Jack feels very Original prompt | Jack Joves parties, ...
Jack hates parties, ... Jack feels very
Jack feels very Flipped prompt | Jack hates parties, ...

Freezing nodes Attention pattern,

Freezing nodes
value vectors at commas

Attention pattern Jack feels very

Patching nodes

Patching nodes | Value vectors pre-comma,

e.g. Jack loves parties

commas and periods

Attention pattern
All value vectors

Freezing nodes
Patching nodes

Value vectors at

Change in
logit difference

Change in -38%

logit difference

-37% Change in -75%

logit difference

(a) Isolating the effect of pre-comma

phrases in ToyMoodStory ToyMoodStory

(b) Isolating the effect of commas in

(c) Accumulating effects of commas
and phrases in ToyMoodStory

Table 2: Patching experiments in ToyMoodStory, Pythia 2.8b. The similar results for 2a and 2b indicate that
summarization information is comparably important as the original semantic information.

Original prompt | Jack loves parties.
Original prompt Jack loves parties. g P P irel P
[irrelevant text...] [irrelevant text...]
Jack feels ver
< Jack feels Ver_y N .y Count of irrelevant tokens Ratio of LD change
Flipped prompt Jack hates parties. Flipped prompt | Jack hates parties. .
. . after preference phrase for periods vs. phrases
[irrelevant text...] [irrelevant text...] 0 tokens 039
Jack feels very Jack feels very ; — -
Freezing nodes Attention pattern, F < d Attent it 0 tokens 0.63
value vectors at periods reezEng nodes ention pattern 18 tokens 0.92
Patching nodes | Value vectors pre-period, Patching nodes | Value vectors at 22 tokens 1.15
e.g. Jack loves parties periods

(c) Ratio between logit difference change for pe-

(a) Isolating the effect of pre-period (b) Isolating the effect of periods in riods (3b) vs. pre-period (3a) phrases after patch-

phrases in ToyMoodStory ToyMoodStory

ing values

Table 3: Patching experiments in ToyMoodStory with irrelevant text injection

Summarization information is comparably im-
portant as original semantic information In
order to determine the extent of the information
bottleneck presented by commas in sentiment pro-
cessing, we tested the model’s performance on Toy-
MoodStory (Section 2.1). We performed an activa-
tion patching experiment (Section 2.2) where we
patched the attention value vectors at certain groups
of token positions to flip the sentiment, along with
the modification that we froze the model’s atten-
tion patterns to ensure the model used the informa-
tion from the patched commas in exactly the same
way as it would have used the original information.
Without this step, the model could simply avoid
attending to the commas. Concretely, the three
different interventions were:

1. Patching the value vectors at the pre-comma
phrases (e.g., patching “John hates parties,”
with “John loves parties,”) while freezing the
value vectors at the commas and periods so
they retain their original, unflipped values.
This experiment (Table 2a) was designed to
isolate the effect of the phrases, removing any
reliance on punctuation tokens.

2. Patching the value vectors at the two commas
and two periods alone. This experiment (Ta-
ble 2b) was designed to isolate the effect of

the “summarization motif™.

3. Patching all of the value vectors. This exper-
iment (Table 2c¢) was designed to determine
how the effects of the pre-comma phrases and
commas accumulate to create the total effect
of flipping the full phrase.

The experimental results (Table 2) show a similar
drop in the logit difference for both the pre-comma
and comma patching, demonstrating that fully half
the effect of these phrases on the final logits for the
correct tokens are mediated through the “summa-
rization” motif. We continue to focus on results
from Pythia-2.8b, but also replicated these findings
across several models (Appendix, Table 5).

Impact of summarization increases with dis-
tance We also observed that reliance on sum-
marization tends to increase with greater distances
between the preference phrases and the final part of
the prompt that would reference them. To test this,
we injected irrelevant text> of varying sizes after
each of the preference phrases in ToyMoodStory

SE.g. “John loves parties. He has a red hat and wears it
everywhere, especially when he is riding his bicycle through
the city streets. Mark hates parties. He has a purple hat
but only wears it on Sundays, when he takes his weekly walk
around the lake. One day, they were invited to a grand gala.
John feels very”
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Directions DAS sentiment direction Directions Random direction
Positions All Positions All
Layers All
Ablation type Mean-ablation La,yers All -
Change in 1% Ablation type Mean-ablation
logit difference Change in < 1%
Change in —38% logit difference
accuracy Change in <1%
accuracy

Directions Full Space
Positions Commas
Layers All
Directions DAS sentiment direction Ablation type | Mean-ablation
Positions Commas - _
Layers All Change in —17%
Ablation type Mean-ablation logit difference
Change in —18% Change in —19%
logit difference accuracy
Change in —18%
accuracy

(a) Baselining the importance

(d) Isolating the importance of

of the sentiment direction in (b) Baselining the importance (c) Isolating the sentiment axis the full residual stream at com-
information at commas in SST mas in SST

SST of random directions in SST

Table 4: Ablation experiments in Stanford Sentiment Treebank (Section 2.1)

texts (after “John loves parties.” etc.). We then
computed a similar pair of logit difference metrics
as depicted in 2, comparing the effect of patching
value vectors at either the periods (3b) or the pre-
period phrases (3a). Next we measured the ratio
between these two logit difference changes for the
periods vs. pre-period phrases, with higher values
indicating more reliance on period summaries (3c).
We found that the periods can be up to 15% more
important than the actual phrases as this distance
grows. Although these results are only a first step
in assessing the importance of summarization rela-
tive to prompt length, they suggest this motif may
become more significant as models grow in context
length, and thus merits further study.

4.1 Summarization behavior in real-world
datasets

Data preparation We appended the suffix “Re-
view Sentiment:” to each of the prompts from SST
and evaluated Pythia-2.8b on zero-shot classifica-
tion according to whether positive or negative have
higher probability, filtering to ensure these comple-
tions are in the top 10 tokens predicted. We then
take the subset of examples that Pythia-2.8b classi-
fies correctly that have at least one comma, which
means we start with a baseline of 100% accuracy.

Ablation baselines We performed two baseline
experiments in order to obtain a control for our later
experiments. First to measure the total effect of
the sentiment directions, we performed directional
ablation (as described in 2.2) using the sentiment
directions found with DAS, ablating along a single
axis of the residual stream at every token position
in every layer (4a), resulting in a 71% reduction
in the logit difference and a 38% drop in accuracy
(to 62% , where 50% is random chance). We also
performed directional ablation on all tokens with a
small set of random directions (4b), resulting in a
< 1% change to the same metrics.
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Directional ablation at all comma positions We
then performed directional ablation—using the DAS
sentiment direction (2.4) — to every comma in each
prompt (4c), regardless of position, resulting in an
18% drop in the logit difference and an 18% drop
in zero-shot classification accuracy. Comparing
the latter result to the baseline from 4a indicates
that nearly 50% of the model’s sentiment-direction-
mediated ability to perform the task accurately was
mediated via sentiment information at the commas.
We find this particularly significant because we did
not take any special effort to ensure that commas
were placed at the end of sentiment phrases.

Mean-ablation of the full residual stream at all
comma positions Instead of relying on the senti-
ment direction computed using DAS as above, we
also performed mean ablation experiments (2.2) on
the full residual stream at comma positions. Specif-
ically, we replaced each comma residual stream
vector with the mean comma residual stream from
the entire dataset in a layerwise fashion (4d). This
resulted in a 17% drop in logit difference and an
accuracy drop of 19% .

5 Conclusion

The two central novel findings of this research are
the existence of a linear representation of sentiment
and the use of summarization to store sentiment
information. We have seen that the sentiment di-
rection is causal and central to the circuitry of sen-
timent processing. Remarkably, this direction is
so stark in the residual stream space that it can be
found even with the most basic methods and on a
tiny toy dataset, yet generalize to diverse real-world
datasets. Summarization is a motif present in larger
models with longer context lengths and greater pro-
ficiency in zero-shot classification. These sum-
maries present a tantalising glimpse into the world-
modelling behavior of transformers.
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A Appendix
A.1 Related Work

Sentiment Analysis Understanding the emotional valence in text data is one of the first NLP tasks to be
revolutionized by deep learning (Socher et al., 2013) and remains a popular task for benchmarking NLP
models (Rosenthal et al., 2017; Nakov et al., 2016; Potts et al., 2021; Abraham et al., 2022). For a review
of the literature, see (Pang and Lee, 2008; Liu, 2012; Grimes, 2014).

Understanding Internal Representations This research was inspired by the field of Mechanistic
Interpretability, an agenda which aims to reverse-engineer the learned algorithms inside models (Olah
et al., 2020; Elhage et al., 2021b; Nanda et al., 2023a). Exploring representations (Section 3) and world-
modelling behavior inside transformers has garnered significant recent interest. This was studied in the
context of synthetic game-playing models by Li et al. (2023) and evidence of linearity was demonstrated
by Nanda (2023a) in the same context. Other work studying examples of world-modelling inside neural
networks includes Li et al. (2021); Patel and Pavlick (2022); Abdou et al. (2021). Another framing of a
very similar line of inquiry is the search for latent knowledge (Christiano et al., 2021; Burns et al., 2022).
Prior to the transformer, representations of sentiment specifically were studied by Radford et al. (2017),
notably, their finding of a sentiment neuron also implies a linear representation of sentiment.

Causal Analysis of Language Models We approach our experiments from a causal mediation analysis
perspective. Our approach to identifying computational subgraphs that utilize feature representations as
inspired by the ‘circuits analysis’ framework (Stefan Heimersheim, 2023; Varma et al., 2023; Hanna et al.,
2023), especially the tools of mean ablation and activation patching (Vig et al., 2020; Geiger et al., 2021,
2023a; Meng et al., 2023; Wu et al., 2022, 2023; Wang et al., 2022; Conmy et al., 2023; Chan et al., 2023;
Cohen et al., 2023). We use Distributed Alignment Search (Geiger et al., 2023b) in order to apply these
ideas to specific subspaces.

A.2 Limitations

Many of our casual abstractions do not explain 100% of sentiment task performance. There is likely
circuitry we’ve missed, possibly as a result of distributed representations or superposition (Elhage et al.,
2022) across components and layers. This may also be a result of self-repair behavior (Wang et al., 2022;
McGrath et al., 2023). Patching experiments conducted on more diverse sentence structures could help to
better isolate sentiment circuitry from more task-specific machinery.

The use of small datasets versus many hyperparameters and metrics poses a constant risk of gaming our
own measures. Our results on the larger and more diverse SST dataset, and the consistent results across a
range of models help us to be more confident in our conclusions.

Distributed Alignment Search (DAS) outperformed on most of our metrics but presents possible dangers
of overfitting to a particular dataset and taking the activations out of distribution (Lange et al., 2023). We
include simpler tools such as Logistic Regression as a sanity check on our findings. Ideally, we would
love to see a set of best practices to avoid such illusions.

A.3 Implications and future work

The summarization motif emerged naturally during our investigation of sentiment, but we would be very
interested to study it in a broader range of contexts and understand what other factors of a particular model
or task may influence the use of summarization.

When studying the circuitry of sentiment, we focused almost exclusively on attention heads rather
than MLPs. However, early results suggest that further investigation of the role of MLPs and individual
neurons is likely to yield interesting results (A.10).

A.4 Impact Statement

This paper aims to advance the field of Mechanistic Interpretability. We see the long-term goal of this line
of research as being able to help detect dangerous computation in language models such as deception.
Even if the existence of a single “deception direction” in activation space seems a bit naive to postulate,
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Figure A.1: Cosine similarity of directions learned by different methods in Pythia-2.8b’s first layer. Each sentiment
direction was derived from adjective representations in the ToyMovieReview dataset (Section 2.1).

direction | accuracy
k-means 86.4%
PCA 82.2%
Mean Diff | 85.0%
LR 90.5%
DAS 80.8%

Figure A.2: Accuracy using sentiment activations from the first residual stream layer of Pythia 2.8B to classify
tokens as positive or negative. The threshold taken is the top/bottom 0.1% of activations over OpenWebText.
Classification was performed by GPT-4.

hopefully in the future many of the tools developed here will help to detect representations of deception or
of knowledge that the model is concealing, helping to prevent possible harms from LLM:s.

A.5 Further methods for finding directions
Using the same notation as in section 2.4, here are two further methods for computing a ‘sentiment
direction’.

Mean Difference (MD) The direction is computed as ﬁ > peP a£ - ﬁ > nen @k

Principal Component Analysis (PCA) The direction is the first component of {a% : x € P UN}.

Convergence of five direction-finding methods We find high cosine similarity (Figure A.1) between
the 5 different direction-finding methods. Note that cosine similarity is a potentially misleading metric in
cases where the vectors can share a bias, but this is not a concern for a linear probe direction where there
is no meaningful notion of a shared bias.

A.6 Further evidence for a linear sentiment representation

A.6.1 Clustering

In Section 2.4, we outline just a few of the many possible techniques for determining a direction which
hopefully corresponds to sentiment. Is it overly optimistic to presume the existence of such a direction?
The most basic requirement for such a direction to exist is that the residual stream space is clustered. We
confirm this in two different ways.
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(a) PCA on adjectives in and out of sample (b) PCA on in-sample adjectives and out-of-sample verbs
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Figure A.3: 2-D PCA visualization of the embedding for a handful of adjectives and verbs (GPT2-small)

First we fit 2-D PCA to the token embeddings for a set of 30 positive and 30 negative adjectives. In
Figure A.3, we see that the positive adjectives (blue dots) are very well clustered compared to the negative
adjectives (red dots). Moreover, we see that sentiment words which are out-of-sample with respect to the
PCA (squares) also fit naturally into their appropriate color. This applies not just for unseen adjectives
(Figure A.3a) but also for verbs, an entirely out-of-distribution class of word (Figure A.3b).

Secondly, we evaluate the accuracy of 2-means trained on the Simple Movie Review Continuation
adjectives (Section 2.1). The fact that we can classify in-sample is not very strong evidence, but we
verify that we can also classify out-of-sample with respect to the k-means fitting process. Indeed, even on
hold-out adjectives and on the verb tokens (which are totally out of distribution), we find that the accuracy
is generally very strong across models. We also evaluate on a fully out of distribution toy dataset (“simple
adverbs™) of the form “The traveller [adverb] walked to their destination. The traveller felt very”. The results can
be found in Figure A.4. This is strongly suggestive that we are stumbling on a genuine representation of
sentiment.

A.6.2 Activation addition

We perform “activation addition” (Turner et al., 2023), i.e. we add a multiple of the sentiment direction to
the first layer residual stream during each forward pass while generating sentence completions. We use
GPT2-small for a single positive simple movie review continuation prompt: “I really enjoyed the movie, in
fact | loved it. | thought the movie was just very...”. We seek to verify that this can flip the generated outputs
from positive to negative. The “steering coefficient” is the multiple of the sentiment direction which we
add to the first layer residual stream.

By adding increasingly negative multiples of the sentiment direction, we find that indeed the completions
become increasingly negative, without completely destroying the coherence of the model’s generated text
(Figure A.5). We are wary of taking the model’s activations out of distribution using this technique, but
we believe that the smoothness of the transition in combination with the knowledge of our findings in the
patching setting give us some confidence that these results are meaningful.

A.6.3 Multi-lingual sentiment

We use the first few paragraphs of Harry Potter in English and French as a standard text (Elhage et al.,
2021b). We find that intermediate layers of Pythia-2.8b demonstrate intuitive sentiment activations for the
French text (Figure A.6). It is important to note that none of the models are very good at French, but this
was the smallest model where we saw hints of generalization to other languages. The representation was
not evident in the first couple of layers, probably due to the poor tokenization of French words.
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Figure A.4: 2-means classification accuracy for various GPT-2 sizes, split by layer (showing up to 24 layers)

73



Proportion of Sentiment by Steering Coefficient

7 Somewhat Positive
== Somewhat Negative
=== Positive

== Neutral

== Negative

Cum. Label proportion

coef

Figure A.5: Area plot of sentiment labels for generated outputs by activation steering coefficient, starting from
a single positive movie review continuation prompt. Activation addition (Turner et al., 2023) was performed in
GPT2-small’s first residual stream layer. Classification was performed by GPT-4.
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|endoftext|
.Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly normal, thank

you very much. They were the last people you'd expect to be involved in anything strange or,
because they just didn't hold with such nonsense.

.Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, beefy man with
hardly any neck, although he did have a very large mustache. Mrs. Dursley was thin and blonde and had nearly
twice the usual amount of neck, which came in very useful as she spent/so much of her time craning over

garden fences, spying on the neighbors. The Dursleys had a small son called Dudley and in their opinion there
was no finer boy anywhere.

The Dursleys had everything they wanted, but they also had a secret, and their greatest was that
somebody would discover it. They didn't think they could bear it if anyone found out about the Potters. Mrs.
Potter was Mrs. Dursley's sister, but they hadn't met for several years; in fact, Mrs. Dursley pretended she didn
't have a sister, because her sister and her-lnothing husband were as unDursleyish as it was possible to
be. The Dursleys shudw to think what the neighbors would say if the Potters arrived in the street. The Durs

leys knew that the Potters had a small son, too, but they had never even seen him. This boy was another
reason for keeping the Potters away; they didn't want Dudley mixing with a child like that.

When Mr. and Mrs. Dursley woke up on the dull, gray Tuesday our story starts, was nothing about the
cloudy sky outside to suggest that strange and things would soon be happening all over the country.
Mr. Dursley hummed as he picked out his most|/boring tie for work, and Mrs. Dursley gossiped happily
as she wrestled a Dudley into his high chair.

(a) First 4 paragraphs of Harry Potter in English

<|endoftext]|
Mr et Mrs Dursley, qui habitaient au 4, Privet Drive, avaient toujours affirmé avec la plus grande fierté qu'ils é
taient parfaitement normaux, merci pour eux. Jamais quiconque n'aurait imaginé qu'ils puissent se trouver impl

iqués dans quoi que ce soit/d'étrange ou de mystérieux. Ils n'avaient pas de temps a perdre avec des sornettes.

Mr Dursley dirigeait la Grunnings, une entreprise qui fabriquait des perceuses. C'était un homme grand et mass
if, qui n'avait pratiquement pas de cou, mais possédait en revanche une moustache de belle taille. Mrs Dursley
, a elle, était mince et blonde et disposait d'un cou deux fois plus long que la mf)jenne, ce qui lui était
fort utile pour espionner ses voisins en regardant par;dessus les clotures des jardins. Les Dursley avaient un

petit gargon prénommé Dudley et c!était a leurs yeux le plus bel enfant du monde.

Les Dursley avaient tout ce qu'ils voulaient. La seule chose indésirable qu'ils possédaient, c!était un secret dont
ils craignaient plus que tout qu'on le découvre un jour. Si jamaisiconque venait a entendre parler des Potter,
ils étaient convaincus qu'ils ne s'a remettraient pas. Mrs Potter était la soeur de Mrs Dursley, mais toutes
deux ne s'étaient plus revues depuis des années. En fait, Mrs Dursley faisait comme si elle était fille unique,
car sa soeur et son/bon a rien de mari étaient aussi ¢loignés que possible de tout ce qui faisait un Dursley. Les
Dursley tremblaient d'épouvante a la pensée de ce que diraient les voisins si par malheur les Potter se montra
ient dans leur rue. Ils savaient que les Potter, eux aussi, avaient un petit gargon, mais ils ne l!avaient jamais vu.
Son existence constituait une raison supplémentaire de tenir les Potter a distance: il n!était pas question que le

petit Dudley se mette a fréquenter un enfant comme celui=/a.

Lorsque Mr et Mrs Dursley s'éveillérent, au matin du mardi ou commence cette histoire, il faisait gris et tr
et rien dans le ciel nuageux ne laissait prévoir que des choses étranges et mystéricuses allaient bient6t se produ
ire dans tout le pays. Mr Dursley fredonnait un air en nouant sa cravate la plus sinist{s pour aller travailler et
Mrs Dursley racontait d'un ton badin les derniers potins du quartier en s'efforgant d'installer sur sa chaise de b

éé le jeune Dudley qui braillait de toute la force de ses poumons.

(b) First 3 paragraphs of Harry Potter in French

Figure A.6: First paragraphs of Harry Potter in different languages. Model: Pythia-2.8b.
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A.6.4 Universality examples

For comparison with Figures A.1, 2 and Table 1, we include Figure A.7a, Figure A.8 and Figure A.7
where we visualise the similarity and classification accuracy of directions found by different methods, this
time for GPT2-small (Section 2.1), StableLM 3B (Tow, 2023), Gemma 2B (Team et al., 2024) and Qwen
1.8B (Bai et al., 2023) instead of Pythia-2.8b.

A.6.5 Generalization at intermediate layers

If the sentiment direction was simply a trivial feature of the token embedding, then one might expect that
directional patching would be most effective in the first or final layer. However, we see in Figure A.9 that
in fact it is in intermediate layers of the model where we see the strongest out-of-distribution performance
on SST. This suggests the speculative hypothesis that the model uses the residual stream to form abstract
concepts in intermediate layers and this is where the latent knowledge of sentiment is most prominent.

A.7 Limitations to our linearity claim

Did we find a truly universal sentiment direction, or merely the first principal component of directions
used across different sentiment tasks? As found by Bricken et al. (2023), we suspect that this feature could
be “split” further into more specific sentiment features. We performed an experiment to help validate
that the common sentiment feature across tasks is one dimensional. DAS can be used not just to find
a causally impactful direction, but a causal subspace of any dimension. Figure A.10 demonstrates that
whilst increasing the DAS dimension improves the patching metric in-sample (A.10a), the metric does not
improve out-of-distribution (A.10b).

Similarly, one might wonder if there is really a single bipolar sentiment direction or if we have simply
found the difference between a “positive” and a “negative” sentiment direction. It turns out that this
distinction is not well-defined, given that we find empirically that there is a direction corresponding to
“valenced words”. Indeed, if « is the valence direction and y is the sentiment direction, then p = x + y
represents positive sentiment and n = x — y is the negative direction. Conversely, we can reframe as

starting from the positive/negative directions p and n, and then re-derive z = E3™ and y := B3,

A.8 Detailed circuit analysis

In order to build a picture of each circuit, we used the process pioneered in Wang et al. (2022):

¢ Identify which model components have the greatest impact on the logit difference when path patching
is applied (with the final result of the residual stream set as the receiver).

» Examine the attention patterns (value-weighted, in some cases) and other behaviors of these compo-
nents (in practice, attention heads) in order to get a rough idea of what function they are performing.

* Perform path-patching using these heads (or a distinct cluster of them) as receivers.

» Repeat the process recursively, performing contextual analyses of each “level” of attention heads in
order to understand what they are doing, and continuing to trace the circuit backwards.

In each path-patching experiment, change in logit difference is used as the patching metric. We started
with GPT-2 as an example of a classic LLM displays a wide range of behaviors of interest, and moved to
larger models when necessary for the task we wanted to study (choosing, in each case, the smallest model
that could do the task).

A.8.1 Simple sentiment - GPT-2 small

In this sub-section, we present an overview of circuit findings that give qualitative hints of the summariza-
tion motif, and restrict quantitative analysis of the summarization motif to 4.

We examined the circuit performing the ToyMovie review task, i.e. for the following sentence template:
“I thought this movie was ADJECTIVE, | VERBed it. Conclusion: This movie is”. Mechanistically, this is a binary
classification task, and a naive hypothesis is that attention heads attend directly from the final token
(which we label ‘END’) to the valenced tokens (the adjective token, ADJ, and the verb token VRB) and map
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DAS R

Random 2.4% 1.7% 0.5% 0.5% 1.2% 100.0%

(a) GPT2-small

K _means LR Mean_diff Random

DAS
DAS 51.1% | 63.0% 2.4%
K_means 45.8% | 84.9% 0.9%
LR 100.0% | 81.4% 2.2%
Mean_diff 81.4% | 100.0% [ENAN
Random  2.4%  0.9%  2.2% 0.7%

(b) Gemma-2B

K _means LR Mean_diff Random

DAS
DAS 80.3% | 80.3% 3.1%
K_means 68.5% | 69.9% 5.0%
LR 100.0% | 100.0% [EFWLA
Mean_diff 100.0% | 100.0% [P
Random 3.1%  5.0%  4.4% 4.5%

(c) Qwen-1.8B

DAS K _means LR Mean_diff PCA Random
DAS IVXZ  29.5% 68.8% 68.7% 54.6% 1.3%
K means 29.5% 100.0% [S4E6% 49.5% 79.7% 2.0%

LR 68.8% 47.6% 100.0% 99.9% 78.6% 1.8%
Mean_diff BERAS 49.5% 99.9% 100.0% 80.8% 1.8%
PCA 54.6% 79.7% 78.6% 80.8% 100.0% 1.6%

Random 1.3% 2.0% 1.8% 1.8% 1.6% 100.0%

(d) StableLM-3B

Figure A.7: Cosine similarity of directions learned by different methods in the first layer residual stream of different
models. Each sentiment direction was derived from adjective representations in the ToyMovieReview dataset
(Section 2.1).
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(b) Gemma-2B

Proportion of Sentiment by Activation (kmeans, stablelm-base-alpha-3b)
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DAS 83.6%

(c) StableLM-3B

Figure A.8: Area plot of sentiment labels for OpenWebText samples by sentiment activation, i.e. the projection of
the first residual stream layer at that token onto the sentiment direction (left). Accuracy using sentiment activations
to classify tokens as positive or negative (right). The threshold taken is the top/bottom 0.1% of activations over
OpenWebText. Classification was performed by GPT-4.
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Figure A.9: Patching results for directions trained on toy datasets and evaluated on the Stanford Sentiment Treebank
test partition. We tend to find the best generalization when training and evaluating at a layer near the middle of
the model. We scaffold the prompt using the suffix Overall the movie was very and compute the logit difference
between good and bad. The patching metric (y-axis) is then the % mean change in logit difference.

positive sentiment to positive outputs and vice versa. This does happen but it is not the only mechanism.
Attention head output is causally important at intermediate token positions (in particular, the final ‘movie’
token, SUM), which are then read from when producing output at END. We consider this an instance of
summarization, in which the model aggregates causally-important information relating to an entity at a
particular token for later usage, rather than simply attending back to the original tokens that were the
source of the information.

Using a threshold of 5%-or-greater damage to the logit difference for our patching experiments, we
found that GPT-2 Small contained 4 primary heads contributing to the most proximate level of circuit
function—10.4, 9.2, 10.1, and 8.5 (using “layer.head” notation). Examining their value-weighted attention
patterns, we found that attention to ADJ and VRB in the sentence was most prominent in the first three
heads, but 8.5 attended primarily to the second “movie” token. We also observed that 9.2 attended to this
token as well as to ADJ. We label 8.5 and 9.2 as “summary readers”, and the second “movie” token as the
SUM token (as in “summary”). (Results of activation patching can be seen in Fig. A.12.)

Conducting path-patching with 8.5 and 9.2 as receivers, we identified two heads—7.1 and 7.5—that
primarily attend to ADJ and VRB from the “movie” token. We further determined that the output of these
heads, when path-patched through 9.2 and 8.5 as receivers, was causally important to the circuit (with
patching causing a logit difference shift of 7% and 4% respectively for 7.1 and 7.5). Hence we label 7.1
and 7.5 as “summary writers”. This was not the case for other token positions, which demonstrates that
causally relevant information is indeed being specially written to the SUM token, as suggested by our
choice of label.

Repeating our analysis with lower thresholds yielded more heads with the same behavior but weaker
effect sizes, adding 9.10, 11.9, and 6.4 as summary reader, direct sentiment reader, and sentiment
summarizer respectively. This gives a total of 9 heads making up the circuit.

In summary, these results suggest that there is a circuit made up of 9 attention heads accomplishing the
task as follows:

1. Identify sentiment-laden words in the prompt, at ADJ and VRB.
79



epoch_training_loss
= wandering-sweep-5 = expert-sweep-4 = snowy-sweep-3
= clear-sweep-2 = vague-sweep-1

1

0.5

0

0.5

-1

1.5

-2

10 20 30 40 50 60
(a) Training loss for DAS on adjectives in a toy movie review dataset
epoch_validation_loss
= wandering-sweep-5 = expert-sweep-4 = snowy-sweep-3
= clear-sweep-2 = vague-sweep-1
0.8
e _-_-_______'
0.6
0.4
0.2
Ste
0 P
10 20 30 40 a0 60

(b) Validation loss for DAS on a simple character mood dataset with a varying adverb

Figure A.10: DAS sweep over the subspace dimension (GPT2-small). The runs are labelled with the integer n
where dpas = 2" 1. Loss is 1 minus the usual patching metric.
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Figure A.11: Primary components of GPT-2 sentiment circuit for the ToyMovieReview dataset. Here we can see
both direct use of sentiment-laden words in predicting sentiment at END as well as an example of the summarization
motif at the SUM position (the final ‘movie’ token). Heads 7.1 and 7.5 write to this position and this information is
causally relevant to the contribution of the summary readers at END.

2. “Summary writer” attention heads write out sentiment information to SUM (the final “movie” token).
3. “Summary reader” attention heads read from ADJ, VRB and SUM and write to END.°

To further validate this circuit and the involvement of the sentiment direction, we patched the entirety
of the circuit at the ADJ and VRB positions along the sentiment direction only, achieving a 58.3% rate of
logit flips and a logit difference drop of 54.8% (in terms of whether a positive or negative next token was
predicted). Patching the circuit at those positions along all directions resulted in flipping 97% of logits
and a logit difference drop of 75%, showing that the sentiment direction is responsible for the majority of
the function of the circuit.

A.8.2 ToyMoodStory circuit - Pythia-2.8b

We next examined the circuit that processes the ToyMoodStory dataset (Section 2.1) in Pythia-2.8b, the
smallest model that could perform this more complex task that requires more summarization. The sentence
template is Carl hates parties, and avoids them whenever possible. Jack loves parties, and joins them whenever
possible. One day, they were invited to a grand gala. Jack feels very [excited/nervous]. We did not attempt to
reverse-engineer the entire circuit, but examined it from the perspective of what matters causally for
sentiment processing—especially determining to what extent summarization occurred.

We note that our patching experiments indicate that there is no causal dependence on the output of other model components
at the ADJ and VRB positions—only at the SUM position.

"That is, the attention pattern weighted by the norm of the value vector at each position as per Kobayashi et al. (2020). We
favor this over the raw attention pattern as it filters for significant information being moved.
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Figure A.12: Activation patching results for the GPT-2 Small ToyMovieReview circuit, showing how much of the
original logit difference is recaptured when swapping in activations from z,,;4, (When the model is otherwise run on
Z f1ipped)- Note that attention output is only important at the SUM position, and that this information is important to
task performance at the residual stream layers (8 and 9) in which the summary-readers reside. Other than this, the
most important residual stream information lies at the ADJ and VRB positions.
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Figure A.13: Value-weighted’averaged attention to commas and comma phrases in Pythia-2.8b from the top
two attention heads writing to the repeated name and “feels” tokens—two key components of the summarization
sub-circuit in the ToyMoodStories task. Note that they attend heavily to the relevant comma from both destination
positions.

Following the same process as with GPT-2 with preference/sentiment-flipped prompts (that is, taking
Torig t0 be “John hates parties,... Mary loves parties,” and  fi;ppeq t0 be “John loves parties,... Mary hates
parties””), we initially identified 5 key heads that were most causally important to the logit difference at
END: 17.19, 22.5, 14.4, 20.10, and 12.2 (in “layer.head” notation). Examining the value-weighted attention
patterns, we observed that the top token receiving attention from END was always the repeated name
RNAME (e.g., “John” in “John feels very”) or the “feels” token FEEL, indicating that some summarization
may have taken place there.

We also observed that the top token attended to from RNAME and FEEL was in fact the comma at the

end of the queried preference phrase (that is, the comma at the end of “John hates parties”). We designate
this position COMMASUM.

Multi-functional heads Interestingly, we observed that most of these heads were multi-functional: that
is, they both attended to COMMASUM from RNAME and FEEL, and also attended to RNAME and FEEL from
END, producing output in the direction of the logit difference. This is possible because these heads exist
at different layers, and later heads can read the summarized information from previous heads as well as
writing their own summary information.

Direct effect heads Specifically, the direct effect heads were:
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* Head 17.19 did not attend to commas significantly, but did attend to the periods at the end of each
preference sentence in addition to its primary attention to RNAME and FEEL, and did not display
COMMASUM-reading behavior.

» Head 22.5 attended almost exclusively to FEEL, and did not display COMMASUM-reading behavior.

* Other direct effect heads (14.4, 20.10 and 12.2) did show COMMASUM-reading behavior as well as
reading from the near-end tokens to produce output in the direction of the logit difference. In each
case, we verified with path-patching that information from these positions was causally relevant.

Name summary writers We also found important heads (12.17 being by far the most important) that
are only engaged with attending to COMMASUM and producing output at RNAME and FEEL.

Comma summary writers We further investigated what circuitry was causally important to task
performance mediated through the COMMASUM positions, but did not flesh this out in full detail; after
finding initial examples of summarization, we focused on its causal relevance and interaction with the
sentiment direction, leaving deeper investigation to future work.

Overview of heads In summary, the three main attention heads involved in this circuit were as follows.

* “Comma-reading heads”: A set of attention heads attended primarily to the comma following the
preference phrase for the queried subject (e.g. John hates parties,), and secondarily to other words
in the phrase, as seen in Figure A.13. We observed this phenomenon both with regular attention
and value-weighted attention, and found via path patching that these heads relied primarily on the
comma token for their function, as seen in Figure A.15.

» “Name-writing heads”: Heads attending to preference phrases (e.g., the entirety of “John loves parties,”
including the final comma) tended to write to the repeated name token near the end of the sentence
(John) as well as to the feels token—another type of summarization behavior.

» “Name-reading heads”: Later heads attended to the repeated name and feels tokens, affecting the output
logits at END.

A.9 Additional summarization findings

A.9.1 Circuitry for processing commas vs. original phrases is semi-separate

Though there is overlap between the attention heads involved in the circuitry for processing sentiment
from key phrases and that from summarization points, there are also some clear differences, suggesting
that the ability to read summaries could be a specific capability developed by the model (rather than the
model simply attending to high-sentiment tokens).

As can be seen in Figure A.14, there are distinct groups of attention heads that result in damage
to the logit difference in different situations—that is, some react when phrases are patched, some react
disproportionately to comma patching, and one head seems to have a strong response for either patching
case. This is suggestive of semi-separate summary-reading circuitry, and we hope future work will result
in further insights in this direction.

A.9.2 Results from other models

We replicated the ToyMoodStories comma-swapping experiment (as explained in Section 4) in Pythia-6.9b
and Mistral-7b as well as two Gemma and two Qwen models, with results shown in Table 5.

Intervention Pythia-2.8b Pythia-6.9b Mistral-7b Gemma-2b Gemma-7b Qwen-1.8b Qwen-7b
Patching full phrase -75% -152% -155% -152% -120% -181% -145%
values (incl. commas)
Patching pre-comma values -38% -46% -16% -68% -42% -11% -32%
(freezing commas & periods)
Patching comma and period -37% -68% -100% -42% -52% -12% -36%
values only

Table 5: Change in logit difference from patching at commas in ToyMoodStory in three different models
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Figure A.14: Logit difference drops by head when commas or pre-comma phrases are patched. Model: Pythia-2.8b.

We take this as evidence that the comma-summarization phenomenon is not limited exclusively to
Pythia-2.8b.

A.10 Neurons writing to sentiment direction in GPT2-small are interpretable

We observed that the cosine similarities of neuron out-directions with the sentiment direction are extremely
heavy tailed (Figure A.16). Thanks to Neuroscope (Nanda, 2023b), we can quickly see whether these
neurons are interpretable. Indeed, here are a few examples from the tails of that distribution:

* L3N1605 activates on “hesitate” following a negation

* Neuron L6N828 seems to be activating on words like “however” or “on the other hand” if they follow
something negative

* Neuron L5N671 activates on negative words that follow a “not” contraction (e.g. didn’t, doesn’t)
* L6N1237 activates strongly on “but” following “not bad”

We take L3N1605, the “not hesitate” neuron, as an extended example and trace backwards through the
network using Direct Logit Attribution®. We computed the relative effect of different model components on
L3N1605 in the two different cases “I would not hesitate” vs. “l would always hesitate”. The main contributors
to this difference are L1IHO, L3H10, L3H11 and MLP2. Expanding out MLP2 into individual neurons we
find that the contributions to L3N1605 are sparse. For example, L2N1154 activates on words like “don't”,
“not”, “no”, etc. It activates on “not” but not “hesitate” in “I would not hesitate” but activates on “hesitate” in “|
would always hesitate”. Visualizing the attention pattern of L1HO shows that it attends from “hesitate” to the
previous token if it is “not”, but not if it is “always”.

8This technique decomposes model outputs into the sum of contributions of each component, using the insight from Elhage
et al. (2021b) that components are independent and additive
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https://neuroscope.io/gpt2-small/3/1605.html
https://neuroscope.io/gpt2-small/6/828.html
https://neuroscope.io/gpt2-small/5/671.html
https://neuroscope.io/gpt2-small/6/1237.html
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Figure A.15: Path-patching commas and comma phrases in Pythia-2.8b, with attention heads L12H2 and L12H17
writing to repeated name and “feels” as receivers. Patching the paths between the comma positions and the receiver
heads results in the greatest performance drop for these heads.

These anecdotal examples suggest at a complex network of machinery for transmitting sentiment
information across components of the network using a single critical axis of the residual stream as a
communication channel. We think that exploring these neurons further could be a very interesting avenue
of future research, particularly for understanding how the model updates sentiment based on negations
where these neurons seem to play a critical role.

A.11 Glossary
Glossary

ablation A technique where we eliminate the contribution of a particular component to a model’s output
(usually by replacing the component’s output with zeros or the mean over some dataset or a random
sample from some dataset) in order to demonstrate the magnitude of its importance. (See Section
2.2)

activation addition Formerly called “activation steering”, a technique from Turner et al. (2023) where
a vector is added to the residual stream at a certain position (or all positions) and layer during
each forward pass while generating sentence completions. In our case, the vector is the sentiment
direction.

activation patching A technique introduced in Meng et al. (2023), under the name ‘causal tracing’,
which uses an intervention to identify which activations in a model matter for producing some output.
It runs the model on some ‘clean’ input, replaces (patches) an activation with that same activation on
‘flipped’ input, and sees how much that shifts the output from ‘clean’ to ‘flipped’. (See Section 2.2)

activation steering See activation addition.

circuit A computational subgraph of a neural network which performs some human-interpretable task
(Wang et al., 2022).

DAS Distributed Alignment Search (Geiger et al., 2023b) uses gradient descent to train a rotation matrix
representating an orthonormal change of basis to one better aligned with the model’s features. We
mostly focus on a special case of finding a singular critical direction, where we patch along the first
dimension of the rotated basis and then use a smooth patching metric (such as the logit difference
between positive and negative completions) as the objective to be minimised. (See Section 2.4)
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Similarity of Neuron Out Directions to Sentiment Direction
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Figure A.16: Cosine similarity of neuron out-directions and the sentiment direction in GPT2-small

directional ablation A form of ablation experiment in which restrict the intervention to a single dimen-
sion. That is, assuming mean ablation, for dimension d and prompt index ¢ out of n, we replace the
residual stream vector 7; with r; — r; - d + > j r#d (See Section 2.2)

directional activation patching A variant of activation patching introduced in this paper where we only
patch a single dimension from a counterfactual activation. That is, for prompts Zorig and Zpew,
direction d, a set of model components C, we run a forward pass on Zg but for each component in
C, we patch/replace the output Ourig With Oorig — Oorig - d + Opew - d. This is equivalent to activation
patching a single neuron, but done in a rotated basis (where d is the first column of the rotation
matrix). (See Section 2.2)

directional patching See directional activation patching.

freezing When performing activation patching experiments, we sometimes choose to avoid patching a
subset of model components with their activations from the flipped prompt, instead freezing the
activations to their initial value from the forward pass on the original prompt. (See Section 2.2)

froze See freezing

frozen attention A type of freezing where the attention pattern is frozen from the original run so that the
model still weights the value vectors in the same way, helping to isolate V-composition. (See Section
2.2)

linear representation hypothesis The idea that high-level concepts or “features” are represented linearly
as directions in some representation space (Mikolov et al., 2013; Elhage et al., 2022; Park et al.,
2023; Jiang et al., 2024).
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logit difference The difference between the logits given to a particular pair of completions. To reduce
noise, we can generalize this to the average difference between two sets of completions. In our case,
the dichotomy of completions generally represent positive vs. negative sentiment. (See Section 2.2)

logit difference metric An evaluation metric, often used as the objective function by DAS and reported
when activation patching, where we normalize the change in logit difference induced by patching
such that 0 is no change and 1 corresponds to a sign change in the logit difference with no change in
magnitude. (See Section 2.2)

logit flip An evaluation metric, ofted used in activation patching, which reports the percentage of examples
where the prediction is flipped, i.e. the sign of the logit difference is flipped. For a single example,
this is a binary value. (See Section 2.2)

mean ablation A type of ablation method, where we seek to eliminate the contribution of a particular
component to demonstrate its importance, where we replace a particular set of activations with their
mean over an appropriate dataset. (See Section 2.2)

patching metric A summary statistic used to quantify the results of an activation patching experiment.
By default here we use the percentage change in logit difference as in Wang et al. (2022). (See
Section 2.2)

path patching A variant of activation patching introduced in Wang et al. (2022) in which only the
activations related to the residual stream paths between two sets of endpoints (senders and receivers)
are patched, but the remainder of the network upstream of the receivers is frozen. Given a set R
of receivers, a sender attention head h, and paths P between h and each of R, activations from the
mirrored dataset are patched into PP while keeping the remainder of the network fixed (aside from
everything downstream of R). (See Section 2.2)

sentiment activation The projection of the residual stream at a given token position and layer onto the
sentiment direction. (See the introduction to Section 3)

sentiment direction The direction in the residual stream space associated with the sentiment feature.
(See the introduction to Section 3)

sentiment summarizer An attention head which is a critical component of a sentiment-driven task and
acts via V-composition, writing information to an intermediate token position which is later read by
a direct effect head.

SST Stanford Sentiment Treebank is a labelled sentiment dataset from Socher et al. (2013) described in
Section 2.1.

summarization motif The phenomenon where sentiment is not solely represented on emotionally
charged words, but is additionally summarised at intermediate positions without inherent senti-
ment, such as punctuation and names.

V-composition When the value vectors of a downstream head contain information written by the output
of an upstream attention head (Elhage et al., 2021b).

value-weighted attention The attention pattern weighted by the norm of the value vector at each position
as per Kobayashi et al. (2020). We favor this over the raw attention pattern as it filters for significant
information being moved.

zero ablation A type of ablation method, where we seek to eliminate the contribution of a particular
component to demonstrate its importance, where we replace a particular set of activations with their
mean over an appropriate dataset. (See Section 2.2)

87



LLM Internal States Reveal Hallucination Risk Faced With a Query
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Abstract

The hallucination problem of Large Language
Models (LLMs) significantly limits their relia-
bility and trustworthiness. Humans have a self-
awareness process that allows us to recognize
what we don’t know when faced with queries.
Inspired by this, our paper investigates whether
LLMs can estimate their own hallucination risk
before response generation. We analyze the
internal mechanisms of LLMs broadly both in
terms of training data sources and across 15
diverse Natural Language Generation (NLG)
tasks, spanning over 700 datasets. Our empiri-
cal analysis reveals two key insights: (1) LLM
internal states indicate whether they have seen
the query in training data or not; and (2) LLM
internal states show they are likely to hallu-
cinate or not regarding the query. Our study
explores particular neurons, activation layers,
and tokens that play a crucial role in the LLM
perception of uncertainty and hallucination risk.
By a probing estimator, we leverage LLM self-
assessment, achieving an average hallucination
estimation accuracy of 84.32% at run time.'

1 Introduction

Humans have an awareness of the scope and limit
of their own knowledge (Fleming and Dolan, 2012;
Koriat, 1997; Hart, 1965), as illustrated in Fig. 1.
This cognitive self-awareness ability in humans
introduces hesitation in us before we respond
to queries or make decisions in scenarios where
we know we don’t know (Yeung and Summer-
field, 2012; Nelson, 1990; Bland and Schaefer,
2012). However, LLM-based Al assistants lack this
cognitive uncertainty estimation. Consequently,
they tend to be overconfident and may produce
plausible-sounding but unfaithful or nonsensical
contents called hallucination or confabulation (Ji
et al., 2022; Xiao and Wang, 2021; Bang et al.,
2023; Xiong et al., 2023). This problem limits their

!The source code can be obtained from https: //github.
com/ziweiji/Internal_States_Reveal_Hallucination
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Figure 1: Humans have self-awareness and recognize
uncertainties when confronted with unknown questions.
LLM internal states reveal uncertainty even before re-
sponding. Pink dots are the internal LLM states asso-

ciated with hallucinated responses, whereas Blue dots
are those of faithful responses. The queries leading to
those LLM responses are colored accordingly.

applications in numerous real-world scenarios and
undermines user trustworthiness.

Previous research (Bricken et al., 2023; Tem-
pleton et al., 2024; Bills et al., 2023; Wu et al.,
2024) have explored the internal states of language
models that capture contextual and semantic infor-
mation learned from training data (Liu et al., 2023;
Chen et al., 2024; Gurnee and Tegmark, 2023).
Nevertheless, internal states of language models
sometimes exhibit limited generalization on unseen
data and their representation effectiveness can be
undermined by flawed training data or modeling is-
sues (Wang et al., 2022a; Belinkov and Glass, 2019;
Meng et al., 2021; Xie et al., 2022; Carlini et al.,
2021; Yin et al., 2023a). Notably, recent works
have shown that the LLM’s internal states can po-
tentially detect hallucinations in texts (Azaria and
Mitchell, 2023; Chen et al., 2024; Su et al., 2024).
However, these works examine texts not exclu-
sively produced by the same LL.Ms whose internal
states are analyzed, highlighting the necessity for
further investigation into the LLM self-awareness
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and how their internal states correlate with their
uncertainty and own hallucination occurrence.

Our work takes a step further by investigating
whether LLM internal states have some indi-
cation of hallucination risk given queries and
whether it can be reliably estimated even before
the actual response generation (Fig. 1). We con-
duct a comprehensive analysis of LLMs internal
mechanisms in terms of training data sources and
across 15 diverse NLG tasks that extend beyond
the QA task (Snyder et al., 2023; Slobodkin et al.,
2023) and span over 700 datasets. We explore par-
ticular neurons, different activation layers, and to-
kens that play a crucial role in the LLM perception
of uncertainty and hallucination risk. Employing a
probing estimator (Belinkov, 2022) on the internal
states associated with the queries, we validate their
self-awareness and ability to indicate uncertainty
in two aspects: (1) Whether they have seen the
query in training data, achieving an accuracy of
80.28%. (2) Whether they are likely to hallucinate
regarding the query, achieving an average estima-
tion accuracy of 84.32% across 15 NLG tasks. We
propose that understanding these representations
could offer a proactive approach to estimating un-
certainty, potentially serving as an early indicator
for the necessity of retrieval augmentation (Wang
et al., 2023) or as an early warning system.

2 Hallucination and Training 