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Abstract

Unsupervised word embeddings, pre-trained on vast monolingual text corpora, have driven the neural revolution in
Natural Language Processing (NLP). Initially developed for English, these embeddings soon expanded to other
languages, spurring efforts to align embedding spaces for cross-lingual NLP applications. Unsupervised cross-lingual
alignment of embeddings (UCAE) is particularly appealing due to its minimal data requirements and competitive
performance against supervised and semi-supervised approaches. In this work, we scrutinize prevalent UCAE
methods and discover their objectives inherently resemble the Wasserstein-Procrustes problem. Consequently,
we propose a direct solution for Wasserstein-Procrustes, enhancing popular UCAE techniques such as iterative
closest point (ICP), multilingual unsupervised and supervised embeddings (MUSE), and supervised Procrustes
methods. Evaluation on benchmark datasets demonstrates significant improvements over existing approaches. Our
reexamination of the Wasserstein-Procrustes problem fosters further research, paving the way for more effective
algorithms to align word embeddings across languages.
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1. Introduction

Pre-trained word embeddings, which map words
to dense vectors of low dimensionality, have been
the key enabler of the ongoing neural revolution,
and today they serve as the basic building blocks
of contemporary Natural Language Processing
(NLP) models. While initially introduced for En-
glish (Mikolov et al., 2013a; Pennington et al., 2014;
Bojanowski et al., 2017; Joulin et al., 2017), pre-
trained embeddings quickly emerged for a number
of other languages (Heinzerling and Strube, 2018),
and the idea of cross-language embedding spaces
was born. In a cross-language embedding space,
two semantically similar (or dissimilar) words would
be close to (or far from) each other regardless of
whether they are from the same or from different
languages. Using such a space is attractive, as for
a number of NLP tasks, it enables the application
of an NLP model trained for one language on input
from another language.

Ideally, such spaces could be trained on parallel
bilingual datasets, but such resources are of limited
size, e.g., compared to the large-scale monolingual
resources typically used to pre-train monolingual
word embeddings. Thus, it has been more attrac-
tive to train monolingual word embeddings for dif-
ferent languages independently, and then to try to
align the corresponding embedding spaces in what
is commonly known as bilingual lexicon induction.
This has been attempted in a supervised (Mikolov
et al., 2013b; Irvine and Callison-Burch, 2013), in
a semi-supervised (Artetxe et al., 2017), and in an
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unsupervised setting (Lample et al. (2017); Lample
and Conneau (2019); Alipour et al. (2022); Feng
et al. (2022); Tian et al. (2022); Liang et al. (2023);
Li et al. (2023); Liu and Piccardi (2023); Ghayoomi
(2023); Ghazvininejad et al. (2023)).

Initial space alignment efforts used word trans-
lation pairs as anchors, inferring transformations
between languages in a supervised setup (Mikolov
et al., 2013b). The alignment employs an orthogo-
nal transformation minimizing the Frobenius norm
in the Procrustes problem, with a closed-form so-
lution obtainable via SVD. For the translation of
word embeddings, W is taken to be an orthogo-
nal matrix due to a self-similarity argument (Smith
et al., 2017). The convenience of using an orthog-
onal matrix has also been supported empirically
(Xing et al., 2015; Zhang et al., 2016; Artetxe et al.,
2016). The orthogonal Procrustes problem has a
closed-form solution W = UV ⊤, where UΣV ⊤ is
the singular value decomposition (SVD) of X⊤Y
as shown by Schönemann (1966).

Procrustes Given two ordered clouds of points
X, Y ∈ RN×d, each with N points of dimension d,
the orthogonal Procrustes problem finds the orthog-
onal matrix W ∈ Rd×d that minimizes the following
Frobenius norm:

argmin
W∈O(d)

∥XW − Y ∥22 (1)

A popular unsupervised formulation of the prob-
lem is known as the Wasserstein-Procrustes (Grave
et al., 2019; Alaux et al., 2019), which is more chal-
lenging as it needs to optimize a generalization
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of the Procrustes objective. One-to-one maps are
encouraged through a permutation matrix P .

The convenience of one-to-one maps is justified
for different reasons. First, the hubness problem
(Dinu and Baroni, 2014) occurs in high-dimensional
vector spaces where certain vectors are the near-
est neighbor to a disproportionate number of other
vectors, thus reducing the quality of the embedding
space (Radovanovic et al., 2010). Second, one-to-
one maps can be linked to Wasserstein distance
and computational optimal transport.

Wasserstein-Procrustes Given two clouds of
points X, Y ∈ RN×d, each with N points of dimen-
sion d, the Wasserstein-Procrustes problem finds
an orthogonal matrix W ∈ Rd×d and a permuta-
tion matrix P ∈ RN×N that minimize the Frobenius
norm:

argmin
P∈π(N),W∈O(d)

∥XW − PY ∥22 (2)

where π(N) is the set of N -dimensional permuta-
tion matrices and O(d) is the set of d-dimensional
orthogonal matrices.

In practice, most approaches modify the objec-
tive yet achieve good accuracy in synthetic dic-
tionary induction tasks. We ask: Can we find ap-
proximate Wasserstein-Procrustes solutions (Equa-
tion 2) with high accuracy in dictionary tasks? Can
we enhance existing methods using refinements to
optimize Equation 2? Can we identify scenarios
with good solutions? We address these questions
by analyzing different objective functions in the lit-
erature, adhering to Artetxe et al. (2020)’s call for
fair model comparison.

2. Background: Towards a Unifying
Framework

There have been attempts to compare different
methods proposed for the Unsupervised Cross-
Lingual Alignment of Embeddings, or UCAE (Hart-
mann et al., 2019), and there have been papers that
have tried to generalise the different possibilities
one approach could possibly have. Artetxe et al.
(2018a) proposed a framework based on different
steps and showed how existent methods would fit
in it. Ruder et al. (2019) described the most general
framework for UCAE. However, we are not aware of
a unified description of the existing methods from
the point of view of what is being optimized, namely
the loss function. We start by analyzing methods
based on optimal transport methods, as they are
most relevant to our approach.

2.1. Optimal Transport Methods
There have been some approaches framing the
problem of unsupervised dictionary induction as an

optimal transport problem, and this is the approach
we will adopt in the following sections. Haghighi
et al. (2008) proposed a self-learning method for
bilingual lexicon induction, representing words with
orthographic and contextual features and using the
Hungarian algorithm (Tomizawa, 1971) to find an
optimal one-to-one matching.

With the emergence of word embed-
dings (Mikolov et al., 2013a), words were
interpreted as vectors in high-dimensional spaces,
and concepts such as distance between words
started to gain attention. Ruder et al. (2018)
presented Viterbi EM, where words were mapped
following a one-to-one map between subsets
X ′ and Y ′ of X and Y , respectively, and the
isometry was induced by an orthogonal matrix.
They deviated from the Wasserstein-Procrustes
objective by including a penalization term for
unmatched words Y ′

⊥ = Y − Y ′. They did not
consider all possible matches, instead imposing
a restriction on the k nearest neighbors when
running the Jonker-Volgenant algorithm for optimal
transport (Jonker and Volgenant, 1987).

Zhang et al. (2017) proposed two different meth-
ods: WGAN (an adversarial network that optimizes
the Wasserstein distance) and EMDOT (an iterative
procedure that uses Procrustes and solves a lin-
ear transport problem). Both methods are inspired
by the Earth Mover’s Distance (EMD), which de-
fines a distance between probability distributions,
which they applied to frequencies of words. They
found that, although EMDOT could converge to
bad local minima, it improved the results when
used as a refinement tool after first optimizing with
WGAN. Alvarez-Melis and Jaakkola (2018) used
the concept of Gromov-Wasserstein distance to
provide an alternative to Wasserstein-Procrustes.
This distance does not operate on points but on
pairs of points, turning the problem of finding opti-
mal matching Γ∗ from a linear into a quadratic one.
This new loss function can be optimized efficiently
with first-order methods, whereby each iteration
involves solving a traditional optimal transport prob-
lem. Artetxe et al. (2018b) achieved better results
by combining this idea with a refinement method
called stochastic dictionary induction, i.e., randomly
dropping dimensions out of the similarity matrix
when extracting a seed dictionary for the next itera-
tion of the Procrustes analysis.

2.2. Other Methods
Wasserstein-Procrustes is one of the recurring loss
functions in the literature, but there have been also
deviations from the original problem. Grave et al.
(2019) suggested an iterative procedure whose
initial condition minimizes the convex relaxation∥∥X⊤PY

∥∥2
2

instead of the original problem. This
relaxation is known as the Gold-Rangarajan relax-
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ation and can be solved using the Frank-Wolfe al-
gorithm (Gold and Rangarajan, 1996; Frank and
Wolfe, 1956). The solution to this relaxation is then
used as the initial condition for a gradient-based
iterative procedure that stochastically samples dif-
ferent subsets of words for which there is not nec-
essarily a direct translation.

This deviates strongly from Objective 2: not
only the initial condition does not optimize the
Wasserstein-Procrustes objective, but also the iter-
ative procedure does not optimize it, as it translates
words that are not necessarily the optimal matches.
Alaux et al. (2019) were also inspired by Objec-
tive 2 for aligning multiple languages in a common
vector space. However, they minimized a loss func-
tion based on the CSLS metric from Lample et al.
(2018). In a similar fashion, the entropy regulariza-
tion of the Gromov-Wasserstein problem (Mémoli,
2011) has been used for bilingual lexicon induction.

Generative Adversarial Network (GAN) optimiza-
tion was first introduced for bilingual lexicon induc-
tion by Barone (2016), but its canonical implemen-
tation was given by Lample et al. (2018), who pre-
sented multilingual unsupervised and supervised
embeddings (MUSE), an adversarial method in
which the transformation matrix W is considered as
a generator, and thus is trained by a generative ad-
versarial network, so that the mapped word embed-
dings XW cannot be distinguished from the set Y
via a discriminator (Goodfellow et al., 2014). How-
ever, a simple thought experiment can convince
us that this approach does not minimize distances.
We elaborate on that experiment in the Appendix.

Hoshen and Wolf (2018) were inspired by the It-
erative Closest Point (ICP) method used in 3D point
cloud alignment. Although their transformation ma-
trix is not necessarily orthogonal, this property is
enforced using the regularization L(X,Y,W ;λ) :=
λ∥XWW⊤−X∥22+λ∥YW⊤W −Y ∥22. Another fun-
damental difference to Objective 2 is that they do
not use a one-to-one mapping for P .

This list is not exhaustive, as there have been
successful methods that do not rely on loss func-
tions, and such that go beyond the geometry of the
trained word embeddings. For example, Artetxe
et al. (2019) used both the word embeddings and
the monolingual corpus used to train them.

To sum up, in Table 1, we list the relevant objec-
tives from above using our formalism from Equa-
tion 2. In the table, Γ∗ is the optimal Gromov-
Wasserstein matching, X ′ and Y ′ are subsets of
the corresponding X and Y , Y ′

⊥ is the complement
of Y ′ in Y , and Y ′

⊥ is the average of the comple-
ments.

3. Properties of the
Wasserstein-Procrustes Problem

We begin by simplifying Objective 2 to arrive at
some essential properties, described below.
Proposition 1 (Grave et al. (2019)) The
Wasserstein-Procrustes problem is equivalent to
maximizing the trace norm on the permutation
matrix X⊤PY over P , described as follows:

argmin
P∈π(N),W∈O(d)

∥XW − PY ∥22 = argmax
P∈π(N)

∥∥X⊤PY
∥∥
∗

(3)
where ∥·∥∗ denotes the nuclear norm and W is
selected, so that it fulfills that U⊤WV = Id, where
both U(P ) and V (P ) are evaluated at a matrix P ∗

that achieves the optimum of Equation 3.

Hungarian algorithm Given two clouds of points
X, Y ∈ RN×d, each with N points of d dimensions,
the Hungarian algorithm finds the permutation ma-
trix P that gives the correspondence between the
different points by solving the following problem:

argmin
P∈π(N)

∥X − PY ∥22. (4)

Replacing W in Proposition 1 with the identity ma-
trix Id and noting that ⟨Id, X⊤PY ⟩2 = Tr

(
X⊤PY

)
holds for the Frobenius inner product, we obtain
the following:
Corollary 1 Problem 4 is equivalent to maximizing
the trace of X⊤PY over P :

argmin
P∈π(N)

∥X − PY ∥22 = argmax
P∈π(N)

Tr
(
X⊤PY

)
, (5)

which is the maximum weight matching problem.
The latter can be solved using the Hungarian algo-
rithm, which has a complexity of O(N3) (Tomizawa,
1971).

Even though the Hungarian algorithm has cubic
complexity, we could still run it feasibly for N =
45, 000. In principle, our refinement methods work
well by using a subset of the full vocabulary, which
typically has N = 200, 000 words. Speedups of the
Hungarian algorithm and approximations could be
pursued in future work.

Equivalent problems One useful property of the
trace norm is that ∥UA∥∗ = ∥AV ∥∗ = ∥A∥∗, where
U and V are orthogonal matrices. Knowing this,
and writing UXΣXV ⊤

X and UY ΣY V
⊤
Y as the SVD

decompositions for X and Y , respectively, we ob-
tain the following:

∥∥X⊤PY
∥∥
∗ =

∥∥VXΣXU⊤
XPUY ΣY V

⊤
Y

∥∥
∗ (6)
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Method Objective

Grave et al. (2019) and Ours minW∈O(d),P∈π(N) ∥XW − PY ∥22
Alvarez-Melis and Jaakkola (2018) minΓ∗ best coupling,W∈O(N) ∥XΓ∗ −WY ∥22
Hoshen and Wolf (2018) minW∈O(d) ∥XW − Y ∥22 + ∥YW⊤ −X∥22 + L(X,Y,W ;λ)

Ruder et al. (2018) minW∈O(d),P ′∈π(N′) ∥X ′W − P ′Y ′∥22 +
∥∥∥Y ′

⊥ − Y ′
⊥

∥∥∥2

2

Lample et al. (2017) minW maxθD PθD (source|WX)PθD (target|Y )

Zhang et al. (2017) minW∈O(d),P∈π(N)

∑N,N
i=1,j=1 Pi,j

(
(XiW )j − Yi

)2

Table 1: Objective functions of relevant existing methods in the language of our formalism.

which yields
argmax
P∈π(N)

∥∥ΣXU⊤
XPUY ΣY

∥∥
∗. (7)

Let us define X̃ = UXΣX and Ỹ = UY ΣY . Then,
the optimal solution P would be the same for trans-
lations involving all of the following pairs of word
embeddings: (X, Y ), (X̃, Y ), (X, Ỹ ) and (X̃, Ỹ ).
However, the optimal transformation matrix W ∗ will
be different for each of these problems. There is
a different, yet interesting way of looking at this: if
we follow the iterative procedure that starts from
an initial transformation matrix X0 = XW0 (where
W0 is our initial approximation to the transformation
matrix), and then we want to solve Problem (5),
the equivalent problems will induce a set of natural
initializations of the transformation W , which we
formalize below:

Given the iterative procedure that tries to
minimize the Wasserstein-Procrustes ob-
jective by first obtaining the permutation
matrix Pn = argminP∈π(N) Tr(X

⊤
n PYn)

and then the transformation matrix
Wn = argminW∈RN×N ∥XnW − PnYn∥22,
the procedure aims for the same so-
lution P as the problems with initial
conditions X0 = XW0, X0 = XVXW0,
X0 = XW0V

⊤
Y , X0 = XVXW0V

⊤
Y .

The significance of the different natural initializa-
tion is that it gives us a starting point for different
problems that have the same solution P . It must be
noted, however, that these transformations of X0

are not the unique ones that will have the same orig-
inal solution, as the trace norm is invariant to any
orthogonal transformation; however, they help to
avoid bad local minima as we will show in Section 5
below. Another way of looking at these initialization
is that we are performing PCA to the embedding ma-
trices without a dimensionality reduction. Hoshen
and Wolf (2018) proposed using PCA in a similar
context.

4. Approach

Below, we present a general iterative algorithm to
solve the Wasserstein-Procrustes problem.

Joint optimization on W and P . For the
Wasserstein-Procrustes problem from Equation 2,
a joint iterative procedure involving the Procrustes
problem and the Hungarian algorithm (see Algo-
rithm 1) has been dismissed due to its compu-
tational cost and convergence to bad local min-
ima (Zhang et al., 2017). However, as we will show
below, there are a number of situations where such
an approach can be extremely beneficial if we ap-
ply some improvements based on the discussion
in the previous section.
Algorithm 1 Cut Iterative Hungarian (CIH) Algo-
rithm

1. We initialize as follows: X ← XW0.

2. We find P ← Hungarian (X,Y ) and W ←
Procrustes (X,PY ) .

3. If the trace norm has increased, update
XNEW ← XW and YNEW ← PY , repeat
Step 2.

Variants of the natural initializations. The first
improvement is to consider the different equiva-
lent problems or the natural initialization transfor-
mations, mentioned in the previous section. We
observe empirically that apart from the four prob-
lems that share the same optimal P , it is possible to
improve the results by considering the opposite op-
timization problem: instead of maximizing the costs
for the two clouds of points (X,Y ), sometimes mini-
mizing the costs yields a solution with a higher trace
norm, and thus the algorithm eventually converges
to a better solution. The matrix X⊤PY is generally
not symmetric with non-negative eigenvalues, and
thus the trace norm and the trace are not the same.
The minimization is achieved by simply considering
the cloud −X instead of X. Algorithm 2 is the most
general iterative procedure that we consider here,
and it serves as the backbone for our experiments
below:

Algorithm 2 Iterative Hungarian (IH) Algorithm. It
is the same as Algorithm 1, but in Step 2 we also
consider the solutions for four natural initializations:
X0 = XW0, X0 = XVXW0, X0 = XW0V

⊤
Y , X0 =
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XVXW0V
⊤
Y , also considering the cloud −X for the

four different initializations.

Supervised translation. Although the scope of
this paper is the unsupervised cross-lingual align-
ment of embeddings, we also decided to run
some experiments that involve minimal supervi-
sion. There are different ways of doing this, but
the procedure that converges the fastest is to fix
n pairs of words when calculating the Hungarian
map, where typically n ≪ N . We also consider
similar approaches, e.g., deciding how to update
Algorithm 2, taking into account the accuracy of
the maps on a small subset of the data. Choos-
ing among these methods could be motivated by
how trustworthy the initial dictionary is. By trustwor-
thy here we mean how many of the corresponding
cloud points are correctly matched.

We use a fast implementation of the Hungarian
algorithm1 for dense matrices based on shortest
path augmentation (Edmonds and Karp, 1972). Re-
laxations of the original problem can achieve higher
speed ups. Cuturi (2013) showed how smoothing
the classical optimal transport problem with an en-
tropic regularization term results in a problem that
can be solved using the Sinkhorn-Knopp’s matrix
scaling algorithm (Sinkhorn and Knopp, 1967) at a
speed that is orders of magnitude faster than that
of transportation solvers.

Mapping. Although our method finds a permuta-
tion matrix P , this is not necessarily the best possi-
ble mapping as the set of word-to-word translations
does not have to represent a one-to-one mapping.
Nearest neighbor approaches can be used, but
they suffer from the so-called hubness problem: in
high-dimensional vector spaces, certain vectors are
universal nearest neighbors (Radovanovic et al.,
2010), and this is a common problem for word-
embedding-based bilingual lexicon induction (Dinu
and Baroni, 2014). Lample et al. (2018) presented
cross-domain similarity local scaling (CSLS), which
is a method intended to reduce the influence of
hubs by expanding high-density areas and con-
densing low-density ones.

Given a source vector xs, the mean similarity
of its transformation Wxs to its k target nearest
neighbors N k

T (Wxs) is defined as

µk
T (Wxs) =

1

k

∑
yt∈Nk

T (Wxs)

cos (Wxs, yt).

Likewise is defined µk
S(yt), i.e., the mean similarity

of a target word yt to its neighborhood of source
mapped vectors. Then, the CSLS similarity be-
tween a mapped source vector xs and a target vec-
tor yt is calculated as follows: CSLS(Wxs, yt) =

1http://github.com/cheind/py-lapsolver

2 cos (Wxs, yt)−µk
T (Wxs)−µk

S(yt). Intuitively, this
mapping increases the similarity associated with
isolated word vectors, and it decreases the one for
vectors lying in dense areas. In the following exper-
iments, we use the mapping induced by CSLS with
k = 10.

5. Experiments

Below, we describe our experiments. In our first
set of experiments, we deploy our method on top of
well-known methods for cross-lingual alignment of
embeddings and we show that it improves their ac-
curacy, meaning that it can be used as a refinement
tool. In the second set of experiments, we recreate
the benchmarks from (Grave et al., 2019), and we
show that our method can align word embedding
spaces without a good initialization matrix.

5.1. The Iterative Hungarian Algorithm as
a Refinement Tool

The experiments in this section use the Iterative
Hungarian (IH) algorithm starting with the initial
condition W0 produced from the following methods:

• The adversarial approach by Lample et al.
(2017). This combines the adversarial training
described in Section 2 with a refinement step,
which consists of creating a dictionary from the
best matches and then running the supervised
Procrustes algorithm using that dictionary.

• The supervised Procrustes approach.

• The Iterative Closest Point (ICP) method by
Hoshen and Wolf (2018).

We used the word embeddings, the dictionar-
ies and the evaluation methods from Lample et al.
(2018). We trained the transformation matrix ob-
tained from MUSE (Lample et al., 2018) on 200,000
words. Then we ran the Iterative Hungarian algo-
rithm on a subsample of 45,000 words. Finally, we
refined the new transformation matrix following the
procedure in Lample et al. (2018). Also, inspired
by their work, we induced mappings using CSLS
with k = 10 nearest neighbors.

We ran the Iterative Hungarian algorithm after
normalizing the word embeddings (divide them by
their Euclidean norm), which we found to converge
faster. It must be noted that, since the adversarial
part does not normalize the word embeddings, the
W0 matrices do not match exactly and thus not nor-
malizing them should yield better results at a higher
computational cost. Hartmann et al. (2019) showed
that unit-length normalization makes GAN-based
methods more unstable and also deteriorates their
performance, but supervised alignments or Pro-
crustes refinement are not affected by this.

http://github.com/cheind/py-lapsolver
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Method en-es es-en en-fr fr-en en-it it-en en-de de-en en-ru ru-en mean
MUSE (1) 82.6 83.7 82.5 82.0 76.8 77.6 75.1 72.5 42.5 60.1 73.5
MUSE (1) + IH 82.5 84.1 82.7 82.4 78.3 77.9 74.9 73.3 44.5 60.7 74.1
MUSE (2) 81.9 83.2 82.1 82.4 77.5 77.5 74.7 72.9 37.0 61.9 73.1
MUSE (2) + IH 82.5 84.1 82.7 82.4 77.3 78.1 74.7 73.3 42.3 62.5 74.0
MUSE (3) 82.1 84.0 82.1 82.3 77.9 77.7 74.8 69.9 37.1 60.1 72.8
MUSE (3) + IH 82.3 83.9 82.6 82.4 77.8 77.8 75.1 72.9 38.9 62.1 73.6
Procrustes 81.7 83.3 82.1 81.9 77.3 77.0 73.7 72.7 49.9 60.8 74.0
Procrustes + IH 82.5 84.2 82.2 82.6 78.1 78.0 75.0 73.5 47.9 63.9 74.8
ICP (1) 81.9 82.7 81.9 81.5 76.0 75.5 72.3 72.3 46.4 56.6 72.7
ICP (1) + IH 82.5 84.1 82.1 82.7 78.1 78.0 76.6 72.7 46.2 63.2 74.6
ICP (2) 80.8 82.5 81.3 80.4 76.3 76.3 72.3 72.4 46.5 57.5 72.6
ICP (2) + IH 82.2 84.1 82.4 82.3 78.2 77.9 76.4 73.3 46.6 63.1 74.7
ICP (3) 82.0 82.6 82.0 81.8 75.7 76.6 73.1 72.6 45.1 56.2 72.8
ICP (3) + IH 82.5 84.2 82.0 82.4 77.7 77.7 76.9 73.5 45.2 63.1 74.5

Table 2: The Iterative Hungarian (IH) Algorithm starts with a transformation matrix W from MUSE,
Procrustes or ICP and then refines it. The numbers 1, 2 and 3 represent runs over different seeds for
non-deterministic methods (MUSE and ICP).

The results can be seen in Table 2. We can see
that our Iterative Hungarian algorithm improves the
accuracy when used as a refinement tool. We be-
lieve that this is because the other methods do not
try to optimize the Wasserstein-Procrustes objec-
tive directly, even though they achieve very good
translations without relying on it. In the Appendix
we report the performance of our algorithm on more
language pairs.

We also tried Zhang et al. (2019)’s Iterative Nor-
malization: before applying IH, we subtracted the
mean of the word embeddings, and we normalized
them. We repeated this process three times, and
then we applied IH. The results appear in Table 3:
although this method improved the initialization pro-
duced by MUSE, better results were obtained by
simply normalizing the word embeddings (as shown
in Table 2).

5.2. Aligning Word Embeddings from the
Same Data

The second set of experiments justify that the sim-
ple iterative procedure displayed in Algorithm 2
works and we explain under what circumstances it
can be relaxed or needs some help in the form of
either supervision or a natural initialization matrix
W0. For the following controlled experiments, we
set the initialization matrix to be the identity. We
experiment with the following four approaches:

• Hungarian. Run the Hungarian algorithm for
only one iteration, and then taking the permu-
tation matrix P as the map.

• Cut Iterative Hungarian (CIH). Run the Hun-

garian algorithm to update Y ← PY and
X ← XW (see Algorithm 1).

• Iterative Hungarian (IH). Run the previous iter-
ative procedure but considering the different
natural initializations (see Algorithm 2).

• Supervised Iterative Hungarian (SIH). Learn
the correct mapping from a random 5% sub-
sample of the words, and then we run the IH
algorithm for the remaining words.

The experiments from this subsection recreate
those by Grave et al. (2019); the idea is that En-
glish word embeddings are trained after changing
some parameters, and the different spaces of word
embeddings are rotated in order to match. We use
fastText (Bojanowski et al., 2017; Joulin et al., 2017)
to train word embeddings on 100M English tokens
from the 2007 News Crawl corpus.2

The different experiments in this section consist
of changing the different training conditions and
correctly mapping the results. We train the mod-
els using Skipgram (Mikolov et al., 2013c) unless
stated otherwise, using the standard parameters
of fastText.3 We perform four experiments:

• Seed. We only change the seed used to gener-
ate the word embeddings in our fastText runs.
The source and the target are word embed-
dings trained using the same parameters.

2http://statmt.org/wmt14/
translation-task.html

3https://github.com/facebookresearch/
fastText

http://statmt.org/wmt14/translation-task.html
http://statmt.org/wmt14/translation-task.html
https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
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Method en-es es-en en-fr fr-en en-it it-en en-ru ru-en mean
MUSE 81.7 83.5 82.5 81.9 77.5 77.7 45.3 61.0 73.9
MUSE + IH 82.3 84.0 82.3 82.5 77.9 77.9 44.9 61.9 74.2

Table 3: The Iterative Hungarian (IH) Algorithm starts with a transformation matrix W from MUSE, applies
the iterative normalization from (Zhang et al., 2019) and then it refines the mapping.

Method Seed Window Algorithm Data
Hungar. 99% 7% 7% 1%
CIH 100% 100% 100% 0%
IH 100% 100% 100% 0%
SIH 100% 100% 100% 100%

Table 4: Our method correctly aligns the word em-
beddings. Hungar. is short for Hungarian.

• Window. We use window sizes of 2 and 10,
respectively. The source and the target cor-
respond to word embeddings trained on the
same data but with different window sizes.

• Algorithm. We train the first algorithm with
Skipgram and the second one with CBOW
(Mikolov et al., 2013c). The source and the
target correspond to word embeddings trained
on the same data but using a different method.

• Data. We separate the dataset in two different
parts of the same length. We train correspond-
ing word embeddings from the two separate
parts. The source and the target correspond
to word embeddings trained with the same pa-
rameters but on different data.

We run the above algorithms on the 10,000 most
frequent words. Table 4 shows the results for the
different algorithms. We perform the final mapping
using the nearest neighbor for CSLS with k = 10,
and the reported score is the percentage of words
correctly mapped. Notice, that since we are trans-
lating English to English, the correct map is trivial.
Some observations follow:

• The supervised approach works well with very
little supervision, but all other attempts failed
when facing the problem of mapping data from
different datasets. This is probably because,
by adding some supervision, we improve the
initial W0. This effect may be similar (although
with less impact) to the help introduced in the
IH algorithm with the equivalent problems or
the natural initial transformations.

• The first three experiments converged in three
iterations or less. The SIH algorithm took
around twenty iterations to converge for the
Data experiment.

Method Seed Window Algorithm Data
I 9.49 12.59 12.45 14.11
VX 14.13 14.14 14.18 14.19
V ⊤
Y 14.15 14.18 14.18 14.14

VXV ⊤
Y 13.95 14.10 14.09 14.16

Table 5: Distance between the natural initialization
and the optimal solution for the four experiments.

• The Hungarian algorithm, which was not de-
signed for the Wasserstein-Procrustes method,
correctly finds the mapping for the seed exper-
iment, whereas some other reported iterative
experiments failed to achieve good results in
this experiment (Grave et al., 2019).

The proposed iterative procedures do converge,
but they usually need good initial conditions or the
help of supervision to converge to a good minimum.
This suggests that Algorithm 1 could work well as
long as we start from an initial transformation matrix
W0 close enough to the true solution. The impor-
tance of the initial condition can be shown by the
natural initial conditions. The solution of the four dif-
ferent equivalent problems induce different optimal
transformation matrices W ∗. In the first iteration
of the IH algorithm, a branch among these four
is chosen. Table 5 shows the Euclidean distance
between each of the four natural initializations (as-
suming W0 = I) and their respective optimal solu-
tion W ∗ for the four experiments. These distances
are different for the four branches, and to choose
the best one (the one minimizing this distance) is
key for convergence.

The distances that are too big do not converge to
a good solution. For the Seed experiment, such a
small distance explains why a single iteration of the
Hungarian algorithm was enough for a strong result.
The Window and the Algorithm do not converge
when running on a branch different from the first
one—also the one that has the smallest distance—
and when they run on the first branch, they con-
verge in a few iterations. Hence, being able to
provide a good initial transformation matrix W0 and
to correctly discriminate what the best branches
are is essential for this approach.

In the Appendix we present further experiments
on English to Spanish that test whether our method
can be used without a good initialization, but with
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little supervision. We found that our method works
well when little supervision is given.

6. Conclusion and Future Work

We have underlined some mathematical proper-
ties of the Wasserstein-Procrustes problem and
hence used the concept of the different natural ini-
tialization transformations in an iterative algorithm
to achieve improved results for mapping word em-
beddings between different languages. In partic-
ular, we have shown that it is possible to use our
algorithm as a refinement tool for UCAE and we
have demonstrated improved results after using
the transformation of Lample et al. (2018) as the
initialization matrix W0. We hope that our rethink-
ing of the Wasserstein-Procrustes problem would
enable further research and would eventually help
develop better algorithms for aligning word embed-
dings across languages, especially taking into ac-
count that most unsupervised approaches try to
minimize loss functions different from Objective 2.

In future work, we plan to study other loss func-
tions. We are further interested to see how well the
objectives in Table 1 correlate with CSLS. Finally,
we plan combinations with other existing methods.

7. Limitations

While our work provides valuable insights and im-
provements for unsupervised cross-lingual align-
ment of embeddings, there are some limitations to
consider:

• Our analysis primarily focuses on non-
contextual unsupervised word embeddings. In
future work, it is essential to extend this analy-
sis to contextualized word embeddings, which
are prevalent in modern NLP applications and
offer additional challenges and opportunities
for alignment.

• Our study is more theoretical in nature, and
the Wasserstein-Procrustes problem may not
always hold true in practice due to factors such
as noisy datasets or significant differences
among languages. Despite these potential dis-
crepancies, we believe our unified framework
can inspire future research for improving word
embeddings and contribute to more effective
algorithms in aligning them across languages.

Overall, these limitations highlight potential av-
enues for further research and emphasize the im-
portance of continued exploration in the field of
unsupervised cross-lingual alignment of embed-
dings.

8. Ethics Statement

As researchers in the field of natural language
processing, we recognize the importance of ad-
dressing ethical considerations in our work. In this
study, we focused on unsupervised cross-lingual
alignment of embeddings, with the aim of improv-
ing alignment techniques and fostering further re-
search in this area. Below, we outline some of
the ethical aspects that we have considered in this
research:

• Fairness and Bias: We are aware that word
embeddings can unintentionally capture and
propagate biases present in the training data.
By improving alignment techniques across lan-
guages, our work could potentially contribute
to the mitigation of biases and the promotion
of fairness in multilingual applications. How-
ever, we also acknowledge that our methods
could inadvertently introduce or amplify biases.
Future work should include thorough assess-
ments of potential biases in the embeddings
and the development of strategies to address
them.

• Accessibility: Our research aims to advance
unsupervised cross-lingual alignment meth-
ods, which can contribute to the democratiza-
tion of NLP technologies by enabling their ap-
plication in low-resource languages with mini-
mal data requirements.

• Privacy: As our work is based on unsuper-
vised word embeddings pretrained on large
text corpora, it is crucial to ensure that the un-
derlying data does not contain sensitive or per-
sonally identifiable information. We have made
efforts to use publicly available and well-vetted
datasets for our experiments and evaluations,
minimizing potential privacy concerns.

• Impact: The advancements in unsupervised
cross-lingual alignment could lead to improved
performance in various multilingual NLP tasks,
such as machine translation, cross-lingual in-
formation retrieval, and sentiment analysis.
While these improvements can have positive
effects, it is essential to consider potential mis-
use of such technologies and remain vigilant
against unintended consequences.

Acknowledgements

This research was sponsored in part by the United
States Air Force Research Laboratory and was ac-
complished under Cooperative Agreement Number
FA8750-19-2-1000. This material is based upon
work supported in part by the U.S. Army Research



9

Office through the Institute for Soldier Nanotech-
nologies at MIT, under Collaborative Agreement
Number W911NF-18-2-0048. The work was also
supported by the Technical University of Catalo-
nia (UPC), the CFIS program and Fundació Cellex.
The views and the conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the United States
Air Force, the U.S. Government, or the U.S. Army.
The U.S. Government is authorized to reproduce
and to distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References

Jean Alaux, Edouard Grave, Marco Cuturi, and
Armand Joulin. 2019. Unsupervised hyper-
alignment for multilingual word embeddings. In
Proceedings of the International Conference on
Learning Representations, ICLR ’19, New Or-
leans, LA, USA.

Ghafour Alipour, Jamshid Bagherzadeh Mohasefi,
and Mohammad-Reza Feizi-Derakhshi. 2022.
Learning bilingual word embedding mappings
with similar words in related languages using gan.
Applied Artificial Intelligence, 36(1):2019885.

David Alvarez-Melis and Tommi Jaakkola. 2018.
Gromov-Wasserstein alignment of word embed-
ding spaces. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1881–1890, Brussels, Bel-
gium. Association for Computational Linguistics.

M. Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. Generalizing and improving bilingual
word embedding mappings with a multi-step
framework of linear transformations. In AAAI.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2016. Learning principled bilingual mappings of
word embeddings while preserving monolingual
invariance. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2289–2294, Austin, Texas.
Association for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2017. Learning bilingual word embeddings with
(almost) no bilingual data. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 451–462, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018b. A robust self-learning method for fully

unsupervised cross-lingual mappings of word
embeddings. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 789–
798, Melbourne, Australia. Association for Com-
putational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2019. Bilingual lexicon induction through unsu-
pervised machine translation. In Proceedings
of the 57th Annual Meeting of the Association
for Computational Linguistics, ACL ’19, pages
5002–5007, Florence, Italy.

Mikel Artetxe, Sebastian Ruder, Dani Yogatama,
Gorka Labaka, and Eneko Agirre. 2020. A call for
more rigor in unsupervised cross-lingual learning.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
ACL ’20, pages 7375–7388, Seattle, WA, USA.

Antonio Valerio Miceli Barone. 2016. Towards
cross-lingual distributed representations with-
out parallel text trained with adversarial autoen-
coders. In Proceedings of the 1st Workshop on
Representation Learning for NLP, RepL4NLP ’16,
pages 121–126, Berlin, Germany.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions of
the Association for Computational Linguistics,
5:135–146.

Marco Cuturi. 2013. Sinkhorn distances: Light-
speed computation of optimal transport. In Ad-
vances in Neural Information Processing Sys-
tems 26, NIPS ’13, pages 2292–2300.

Georgiana Dinu and Marco Baroni. 2014. Improv-
ing zero-shot learning by mitigating the hubness
problem. In Proceedings of the 3rd International
Conference on Learning Representations (Work-
shop Track), ICLR ’14, San Diego, CA, USA.

Jack Edmonds and Richard M. Karp. 1972. Theo-
retical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264.

Zihao Feng, Hailong Cao, Tiejun Zhao, Weixuan
Wang, and Wei Peng. 2022. Cross-lingual fea-
ture extraction from monolingual corpora for low-
resource unsupervised bilingual lexicon induc-
tion. In Proceedings of the 29th International
Conference on Computational Linguistics, pages
5278–5287.

Marguerite Frank and Philip Wolfe. 1956. An al-
gorithm for quadratic programming. Naval Re-
search Logistics Quarterly, 3(1-2):95–110.

https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073


10

Masood Ghayoomi. 2023. Training vs post-training
cross-lingual word embedding approaches: A
comparative study. International Journal of In-
formation Science and Management (IJISM),
21(1):163–182.

Marjan Ghazvininejad, Hila Gonen, and Luke Zettle-
moyer. 2023. Dictionary-based phrase-level
prompting of large language models for machine
translation. arXiv preprint arXiv:2302.07856.

Steven Gold and Anand Rangarajan. 1996. A grad-
uated assignment algorithm for graph matching.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 18(4):377–388.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014.
Generative adversarial nets. In Proceedings of
the 27th International Conference on Neural In-
formation Processing Systems, NIPS ’14, pages
2672–2680, Montreal, Canada.

Edouard Grave, Armand Joulin, and Quentin
Berthet. 2019. Unsupervised alignment of
embeddings with Wasserstein Procrustes. In
Proceedings of the 22nd International Confer-
ence on Artificial Intelligence and Statistics, AIS-
TATS ’2019, pages 1880–1890, Naha, Japan.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of
ACL-08: HLT, pages 771–779, Columbus, Ohio.
Association for Computational Linguistics.

Mareike Hartmann, Yova Kementchedjhieva, and
Anders Søgaard. 2019. Comparing unsuper-
vised word translation methods step by step. In
Advances in Neural Information Processing Sys-
tems 32, NeurIPS ’19, pages 6033–6043, Van-
couver, BC, CA.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free pre-trained subword
embeddings in 275 languages. In Proceedings
of the Eleventh International Conference on Lan-
guage Resources and Evaluation, LREC ’18,
Miyazaki, Japan.

Yedid Hoshen and Lior Wolf. 2018. Non-adversarial
unsupervised word translation. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’18,
pages 469–478, Brussels, Belgium.

Ann Irvine and Chris Callison-Burch. 2013. Su-
pervised bilingual lexicon induction with multiple
monolingual signals. In Proceedings of the 2013
Conference of the North American Chapter of the

Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT ’13,
pages 518–523, Atlanta, GA, USA.

Roy Jonker and A. Volgenant. 1987. A short-
est augmenting path algorithm for dense and
sparse linear assignment problems. Computing,
38(4):325–340.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2017. Bag of tricks for ef-
ficient text classification. In Proceedings of the
15th Conference of the European Chapter of
the Association for Computational Linguistics,
EACL ’17, pages 427–431, Valencia, Spain.

Guillaume Lample and Alexis Conneau. 2019.
Cross-lingual language model pretraining. In
Advances in Neural Information Processing Sys-
tems 32, NeurIPS ’19, pages 7059–7069.

Guillaume Lample, Alexis Conneau, Ludovic De-
noyer, and Marc’Aurelio Ranzato. 2017. Unsu-
pervised machine translation using monolingual
corpora only. In Proceedings of the 6th Interna-
tional Conference on Learning Representations,
ICLR ’18, Vancouver, BC, Canada.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou.
2018. Word translation without parallel data. In
Proceedings of the 6th International Conference
on Learning Representations, ICLR ’18, Vancou-
ver, BC, Canada.

Ziheng Li, Shaohan Huang, Zihan Zhang, Zhi-
Hong Deng, Qiang Lou, Haizhen Huang, Jian
Jiao, Furu Wei, Weiwei Deng, and Qi Zhang.
2023. Dual-alignment pre-training for cross-
lingual sentence embedding. arXiv preprint
arXiv:2305.09148.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na-
man Goyal, Marjan Ghazvininejad, Luke Zettle-
moyer, and Madian Khabsa. 2023. Xlm-v: Over-
coming the vocabulary bottleneck in multilin-
gual masked language models. arXiv preprint
arXiv:2301.10472.

Yuzhi Liu and Massimo Piccardi. 2023. Topic-
based unsupervised and supervised dictionary
induction. ACM Transactions on Asian and
Low-Resource Language Information Process-
ing, 22(3):1–21.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. In Proceedings
of the 1st International Conference on Learn-
ing Representations (Workshop Track), ICLR ’13,
Scottsdale, AZ, USA.

https://aclanthology.org/P08-1088
https://aclanthology.org/P08-1088
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781


11

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever.
2013b. Exploiting similarities among lan-
guages for machine translation. arXiv preprint
arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013c. Distributed
representations of words and phrases and their
compositionality. In Proceedings of the 26th Inter-
national Conference on Neural Information Pro-
cessing Systems, NIPS ’13, page 3111–3119,
Red Hook, NY, USA.

Facundo Mémoli. 2011. Gromov-Wasserstein dis-
tances and the metric approach to object match-
ing. Foundations of Computational Mathematics,
11:417–487.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’14, pages
1532–1543, Doha, Qatar.

Milo Radovanovic, Alexandros Nanopoulos, and
Mirjana Ivanovic;. 2010. Hubs in space: Pop-
ular nearest neighbors in high-dimensional
data. Journal of Machine Learning Research,
11(86):2487–2531.

Sebastian Ruder, Ryan Cotterell, Yova Ke-
mentchedjhieva, and Anders Søgaard. 2018. A
discriminative latent-variable model for bilingual
lexicon induction. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 458–468, Brussels,
Belgium. Association for Computational Linguis-
tics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2019. A survey of cross-lingual word embed-
ding models. Journal of Artificial Intelligence
Research, 65:569–631.

Peter H. Schönemann. 1966. A generalized solu-
tion of the orthogonal Procrustes problem. Psy-
chometrika, 31(1):1–10.

Richard Sinkhorn and Paul Knopp. 1967. Concern-
ing nonnegative matrices and doubly stochastic
matrices. Pacific J. Math., 21(2):343–348.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline bilin-
gual word vectors, orthogonal transformations
and the inverted softmax. In Proceedings of the
2017 International Conference on Learning Rep-
resentations, ICLR ’17, Toulon, France.

Zhoujin Tian, Chaozhuo Li, Shuo Ren, Zhiqiang
Zuo, Zengxuan Wen, Xinyue Hu, Xiao Han,

Haizhen Huang, Denvy Deng, Qi Zhang, et al.
2022. Rapo: An adaptive ranking paradigm
for bilingual lexicon induction. arXiv preprint
arXiv:2210.09926.

Nobuaki Tomizawa. 1971. On some techniques
useful for solution of transportation network prob-
lems. Networks, 1:173–194.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin.
2015. Normalized word embedding and orthog-
onal transform for bilingual word translation. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, pages 1006–1011, Denver, Colorado.
Association for Computational Linguistics.

Meng Zhang, Yang Liu, Huanbo Luan, and
Maosong Sun. 2017. Earth mover’s distance min-
imization for unsupervised bilingual lexicon induc-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1934–1945, Copenhagen, Denmark.
Association for Computational Linguistics.

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi,
Stefanie Jegelka, and Jordan L. Boyd-Graber.
2019. Are girls neko or shōjo? cross-lingual
alignment of non-isomorphic embeddings with
iterative normalization. CoRR, abs/1906.01622.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016. Ten pairs to tag – multilin-
gual POS tagging via coarse mapping between
embeddings. In Proceedings of the 2016 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 1307–1317,
San Diego, California. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.3115/v1/N15-1104
https://doi.org/10.3115/v1/N15-1104
https://doi.org/10.18653/v1/D17-1207
https://doi.org/10.18653/v1/D17-1207
https://doi.org/10.18653/v1/D17-1207
https://doi.org/10.18653/v1/N16-1156
https://doi.org/10.18653/v1/N16-1156
https://doi.org/10.18653/v1/N16-1156

	Introduction
	Background: Towards a Unifying Framework
	Optimal Transport Methods
	Other Methods

	Properties of the Wasserstein-Procrustes Problem
	Approach
	Experiments
	The Iterative Hungarian Algorithm as a Refinement Tool
	Aligning Word Embeddings from the Same Data

	Conclusion and Future Work
	Limitations
	Ethics Statement

