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Abstract
Recent research in the field of multimodal machine translation (MMT) has indicated that the visual modality is either
dispensable or offers only marginal advantages. However, most of these conclusions are drawn from the analysis
of experimental results based on a limited set of bilingual sentence-image pairs, such as Multi30k. In these kinds
of datasets, the content of one bilingual parallel sentence pair must be well represented by a manually annotated
image, which is different from the real-world translation scenario. In this work, we adhere to the universal multimodal
machine translation framework proposed by Tang et al. (2022). This approach allows us to delve into the impact of
the visual modality on translation efficacy by leveraging real-world translation datasets. Through a comprehensive
exploration via probing tasks, we find that the visual modality proves advantageous for the majority of authentic
translation datasets. Notably, the translation performance primarily hinges on the alignment and coherence between
textual and visual contents. Furthermore, our results suggest that visual information serves a supplementary role in
multimodal translation and can be substituted.
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1. Introduction

With the development of neural machine transla-
tion (NMT), the role of visual information in ma-
chine translation has attracted researchers’ atten-
tion (Specia et al., 2016; Elliott et al., 2017; Bar-
rault et al., 2018). Different from those text-only
NMT (Bahdanau et al., 2014a; Gehring et al., 2016),
a bilingual parallel corpora with manual image anno-
tations are used to train an MMT model by an end-
to-end framework, and therefore visual information
can assist NMT model to achieve better translation
performance (Calixto and Liu, 2017; Calixto et al.,
2017; Su et al., 2021).

Concurrently, researchers have also undertaken
a diverse range of experiments in an effort to vali-
date the specific role of visual information in NMT.
For example, Grönroos et al. (2018a) and Lala et al.
(2018) observed that the robustness of MMT sys-
tems remains unaffected when the input image
lacks direct relevance to the accompanying text.
Notably, the absence of visual features, as high-
lighted by Elliott (2018), also does not yield detri-
mental effects. Wu et al. (2021) underscores that
the utilization of the visual modality serves as a reg-
ularization mechanism during training rather than
serving as a true complement to the textual modal-
ity. Oppositely, Caglayan et al. (2019) delve into the
correlation between visual features and text. Their
investigation reveals that incorporating the input im-
age aids translation, particularly when certain input
words are masked. Li et al. (2022) design more de-
tailed probing tasks and found that stronger vision
features strengthen MMT systems.

Note that most of the previous conclusions are
drawn from the analysis of experimental results
based on a restricted selection of manually anno-
tated bilingual sentence-image pairs, known as the
Multi30k dataset (Elliott et al., 2016). Within the
Multi30k dataset, as depicted in Table 1, the sen-
tences primarily comprise common and straightfor-
ward vocabulary, with each bilingual parallel sen-
tence pair being effectively depicted by a single im-
age. Table 1 also presents an illustration of a bilin-
gual sentence-image pair extracted from a genuine
news report from the United Nations News1, along-
side examples of sentence pairs derived from other
other authentic translation datasets. Evidently, a
substantial disparity exists between the Multi30k
dataset and the authentic translation data. Hence,
the evidence and findings derived from Multi30k
may potentially exhibit inadequate generalizability
and offer limited utility when attempting to analyze
the role of the visual modality in MMT within real-
world translation scenarios. In these scenarios,
sentences often incorporate rare and uncommon
words and are only partially depicted by accompa-
nying images.

In a recent study, Tang et al. (2022) introduced
a universal multimodal neural machine translation
model that integrates open-vocabulary image re-
trieval techniques. In this work, inspired by Tang
et al. (2022), we formulate a set of comprehen-
sive probing tasks aimed at assessing the extent
to which the visual modality enhances MMT within
real-world translation scenarios. In addition to com-

1https://news.un.org/en/

https://news.un.org/en/
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Data source Sentences Image

Multi30k EN: A dog is running in the snow.
DE: Ein Hund rennt im Schnee.

UN News

EN: Rescue workers look for survivors in a
building in Samada, Syria destroyed by
the February 6 earthquake.

DE: Rettungskräfte suchen nach Überleben-
den in einem Gebäude in Samada,
Syrien, das durch das Erdbeben vom 6.
Februar zerstört wurde.

Bible

EN: I saw, and behold, there was no
man,and all the birds of the sky had fled.

DE: Ich sah, und siehe, da war kein Mensch,
und alle Vögel unter dem Himmel waren
weggeflogen.

no image

MultiUN

EN: Development assistance cannot by itself
prevent or end conflict.

DE: Entwicklungshilfe allein kann Konflikte
weder verhüten noch beenden.

no image

Table 1: Comparison between Multi30k Dataset and Authentic Datasets

monly used Multi30k, we conduct an extensive set
of experiments across four authentic text-only trans-
lation datasets. We further evaluated two visual
noise filtering approaches based on the correlation
between textual and visual content. Furthermore,
we investigate the necessity of visual modality in
the current multimodal translation process by sub-
stituting visual data with closely equivalent textual
content. To summarize, our findings are:

(1) Visual modality is mostly beneficial for transla-
tion, but its effectiveness wanes as text vocab-
ulary becomes less image-friendly.

(2) The MMT performance depends on the con-
sistency between textual and visual contents,
and utilizing filters based on the textual-visual
correlation can enhance the performance.

(3) Visual information plays a supplementary role
in the multimodal translation process and can
be substituted by the incorporation of addi-
tional textual information.

2. Related Work

The integration of extra knowledge to build fine-
grained representations is a crucial aspect in lan-
guage modeling (Li et al., 2020a,b; Zhang et al.,
2020). Incorporating the visual modality into lan-
guage modeling has the potential to enhance the
machine’s understanding of the real world from

a more comprehensive perspective. Inspired by
the studies on the image description generation
task (Elliott et al., 2015; Venugopalan et al., 2015;
Xu et al., 2015), MMT models have gradually be-
come a hot topic in machine translation research.
In some cases, visual features are directly used
as supplementary information to the text presenta-
tion. For example, Huang et al. (2016) take global
visual features and local visual features as addi-
tional information for sentences. Calixto and Liu
(2017) initializes the encoder hidden states or de-
coder hidden states through global visual features.
Calixto et al. (2017) use an independent atten-
tion mechanism to capture visual representations.
Caglayan et al. (2016) incorporate spatial visual
features into the MMT model via an independent
attention mechanism. On this basis, Delbrouck and
Dupont (2017b) employs compact bilinear pooling
to fuse two modalities. Lin et al. (2020) attempt to
introduce the capsule network into MMT, they use
the timestep-specific source-side context vector to
guide the routing procedure. Su et al. (2021) intro-
duce image-text mutual interactions to refine their
semantic representations.

Researchers have also come to recognize the
potential redundancy of the visual modality. Incon-
sequential images exhibit minimal impact on trans-
lation quality, and the absence of images does not
yield a significant drop in BLEU scores, as noted
by Elliott (2018). Encouraging findings emerged
in the study by Caglayan et al. (2019). They high-
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Figure 1: Frameworks of three probing methods

lighted the continuing utility of the visual modal-
ity in scenarios where linguistic context is limited
but noted its diminished sensitivity when exposed
to complete sentences. In a more recent investi-
gation, Wu et al. (2021) attributed the observed
BLEU improvement in MMT tasks to training reg-
ularization. They underscored the importance of
constructing appropriate probing tasks with inade-
quate textual input. It’s important to highlight that
the proposed probing task represents an enhanced
iteration building upon prior research (Caglayan
et al., 2019; Wu et al., 2021). Li et al. (2022)
made a systematic study on whether stronger vi-
sion features are helpful. All the preceding research
has been conducted exclusively on the Multi30k
dataset, which has limitations in scale and consid-
erably differs from real-world translation scenarios.
In this study, we employ the framework introduced
by Tang et al. (2022) to systematically examine the
influence of visual information across various au-
thentic translation datasets, extending our analysis
beyond the limitations of the small and specialized
Multi30k dataset.

3. Preliminary

We start with a description of three probing meth-
ods employed in this work, which encompass the
approach introduced by Tang et al. (2022) and two
additional methods derived from it. Figure 1 shows
frameworks of these three methods.

3.1. MMT with Search Engine Based
Image Retrieval

As depicted in the top section of Figure 1, Tang
et al. (2022) introduced a search engine-based im-
age retrieval technique and a text-aware attention
image encoder. This innovation enables the han-
dling of authentic text-only translation data within
MMT systems. We implement this approach across
multiple authentic translation datasets to examine
the influence of visual information across datasets
with varying styles. To ensure the comprehensive-
ness of this paper, this section will provide a brief
overview of the approach proposed by Tang et al.
(2022).

Text Encoder In this work, we employ a com-
monly utilized bi-directional LSTM as the RNN text
encoder. For a given sentence denoted as X,
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the output of the text encoder is represented as
C = (h1,h2, . . . ,hN ), where N denotes the length
of the sentence X.

Image Retrieval To emphasize the core compo-
nents of the sentence and mitigate the impact of
noise, including stopwords and infrequent words,
Tang et al. (2022) utilized the TF-IDF method (Wit-
ten et al., 2005) to generate search queries for
image search engines. Subsequently, the gener-
ated search queries are utilized in image search en-
gines to retrieve the first available image associated
with each query. For each given sentence X, M
search queries denoted as (q1, q2, . . . , qM ) are gen-
erated, and subsequently M images represented
as (A1, A2, . . . , AM ) are retrieved from search en-
gines.

Text-Aware Attentive Visual Encoder Each im-
age Am (m = 1, . . . ,M ) is transformed into a
196×1024 dimensional feature vector using ResNet-
50 (He et al., 2016) . A simple but effective scaled
dot-product attention in visual encoder is subse-
quently employed in the visual encoder to derive
a resultant visual representation. Here, we utilize
the average pooling C′ of the text representation
C = (h1,h2, . . . ,hN ) as the query, while the visual
feature vectors A1, A2, . . . , AM serve as the keys
and values in this attention mechanism. The re-
sultant visual representation A is also expressed
as a 196× 1024 dimensional feature vector, which
can be regarded as a matrix A = (a1,a2, . . . ,aL),
where L = 196 and each al ∈ R1024 (l = 1, . . . , L).
Visual representation A = (a1,a2, . . . ,aL) and text
representation C = (h1,h2, . . . ,hN ) are then used
as the inputs of translation decoder.

Translation Decoder For the decoder, we adopt
the approach introduced by Su et al. (2021), imple-
menting both a bidirectional attention network and
a co-attention network to effectively capture the un-
derlying semantic interactions between textual and
visual elements. Based on the results of the prelim-
inary experiment, it was evident that transformer-
based models did not confer a performance ad-
vantage on datasets like Global Voices and other
smaller ones. Consequently, we followed the ap-
proach of Tang et al. (2022) and selected LSTM as
our foundational model. The bidirectional attention
network enhances the representations of both text
and image. These enhanced representations are
subsequently input into the co-attention network
to obtain the time-dependent context vector ct and
the visual vector vt. Within the co-attention net-
work, we calculate the probability distribution for
the next target word yt using the previous hidden
state st−1, the previously generated target word

yt−1, the time-dependent context vector ct, and the
time-dependent visual vector vt.

3.2. MMT with Visual Noise Filtering

Considering that the noise images obtained from
search engines could have a substantial impact
on the performance of the MMT system, we fur-
ther evaluated two visual noise filtering approaches
based on the correlation between textual and visual
content, as depicted in the central part of Figure 1.
One approach utilizes the pretrained CLIP model
to filter out noise images, while the other employs
a region-level image-text attentive filter module to
filter out noisy image regions.

Noise Image Filter In the CLIP-based noise im-
age filtering approach, we begin by retrieving M

′

(M ′
> M ) images from search engines for each

input sentence. Following this, we calculate the
correlation between the input text and the retrieved
images using a pretrained CLIP model (Radford
et al., 2021). Subsequently, we select only the
top-M images with the highest correlation to the
input source text as the output of the image retrieval
process.

Noise Region Filter In the noise image region
filtering approach, we begin by extracting convo-
lutional feature maps from the top-O most confi-
dent regions denoted as (r1, . . . , rO) in each col-
lected image. This is achieved using a pretrained
Faster R-CNN model (Ren et al., 2015), aiding in
the initial filtration of visual information that may
be challenging to distinguish as distinct regions in
the images. The image region of each collected
image is then represented as a 1024 dimensional
feature vector using ResNet-50. For all the re-
trieved M images, we extract a total of M × O
regions (r1, . . . , rM×O), resulting in M ×O feature
vectors (a1, . . . ,aM×O,ao ∈ R1024). Subsequently,
we compute the correlation score between each
image region and the input text using the following
equation:

S(ao, C
′
) = Vatanh(Waao + UaC

′
)

Here, C ′ represents the average pooling of the text
representation C = (h1,h2, . . . ,hN ). We retain
only the visual information from the top-O most rel-
evant regions out of the initially extracted M × O
regions. This preserved visual information serves
as the visual representation for the given input sen-
tence, denoted as A = {ao|S(ao, C

′
) ranks in the

top-O, 1 ≤ o ≤ M ×O} , and it is subsequently fed
into the translation decoder module. Less relevant
regions are discarded during this process.
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3.3. Supplementary Text Enhanced NMT
As discussed by Caglayan et al. (2019), multimodal
translation models typically view visual information
as a complementary component to textual informa-
tion. However, we raise the question of whether
this complementary role can also be achieved by
incorporating additional textual information, poten-
tially obviating the need for images in the process.
Hence, our investigation aims to assess the neces-
sity of visual information in the existing multimodal
translation process by substituting visual data with
nearly equivalent textual information. As illustrated
in the lower section of Figure 1, we replace the
image retrieval module with a supplementary text
retrieval module and substitute the text-aware at-
tentive visual encoder with a similar text-aware at-
tentive supplementary text encoder.

Supplementary Text Retrieval Similar to the pro-
cess of retrieving images from search engines, we
collected supplementary textual data from search
engines. For every input source sentence X, we
follow the same approach as outlined in Section 3.1
to generate M search queries (q1, . . . , qM ). Sub-
sequently, we collect M sentences (T1, . . . , TM )
that contains all the terms present in the respective
search queries (qi ⊆ Ti, 1 ≤ i ≤ M ).

Text-Aware Attentive Supplementary Text En-
coder Each gathered supplementary text Tm

(m = 1, . . . ,M ) is transformed into a N × 1024 di-
mensional feature vector using BERT (Devlin et al.,
2018), where N denotes the length of the gathered
text data. To ensure consistency, these textual fea-
ture vectors are subsequently padded to match the
dimensions of L × 1024 (L = 196), aligning them
with the visual feature vectors. These feature vec-
tors are then integrated into the scaled dot-product
attention module as keys and values, with the aver-
age pooling C

′ representing the input text serving
as the query. The resultant supplementary text
representation is then passed to the translation de-
coder.

4. Experiment Setup

4.1. Dataset
We conducted experiments on five commonly used
machine translation datasets, including multimodal
machine translation dataset Multi30k (Elliott et al.,
2016) English-to-German, Global Voices (Tiede-
mann, 2012) English-to-German , and WMT’
16 (100k) English-to-German (Newstest2016 as
the test set)2 , Bible (Christodouloupoulos and

2To ensure a focused evaluation of the retrieved vi-
sual information’s effectiveness, we intentionally sought

dataset training set dev set test set
Multi30k 29,000 1,014 1,000

Global Voices 69,227 2,000 2,000
WMT’16 (100k) 100,000 2,000 3,000

Bible 56,734 1,953 1,821
MultiUN 56,235 4,000 4,000

Table 2: Statistics of datasets

Steedman, 2015) English-to-German, and Mul-
tiUN (Eisele and Chen, 2010) English-to-German.
The statistics for each dataset are presented in
Table 2.

4.2. Model Implementation

For image retrieval, we used the Microsoft Bing3 as
the image search engine. In contrast, for supple-
mentary text retrieval, we gathered sample sen-
tences that included all the terms found in the
respective search queries by referencing the Mi-
crosoft Bing Dictionary4. As described in Sec-
tion 3.1 and Section 3.3, we set M to 5. This
choice signifies that we formulated 5 search queries
and procured 5 images or supplementary text in-
stances5 for every source language sentence.

Regarding the text encoder, we used a bi-
directional RNN with GRU to extract text features.
Specifically, we used a 256 dimensional single-
layer forward RNN and a 256 dimensional single-
layer backward RNN. For the translation decoder,
we adhered to the approach proposed by Su et al.
(2021) and utilized a modified cGRU with hidden
states of 256 dimensions. Furthermore, we con-
figured the embedding sizes for both source and
target words to be 128.

As described in Section 3.1, the visual encoder
we employed leveraged the res4f layer of a pre-
trained ResNet-50(He et al., 2016) model to extract
visual features of dimensions 196× 1024. Further-
more, as described in Section 3.3, the supplemen-
tary text encoder utilized a BERT model pretrained
on the BooksCorpus(Zhu et al., 2015) and English
Wikipedia6. This model was employed to extract

to minimize the impact of data size. Consequently, we
opted to construct our training set by randomly sampling
100,000 sentence pairs from the total pool of 4.5 mil-
lion sentence pairs. This sampling approach aligns our
dataset size more closely with that of other datasets for
a fairer assessment.

3https://global.bing.com/images
4https://www.bing.com/dict
5When an insufficient number of sample sentences

can be collected, we resort to large pretrained models
like ChatGPT to generate sentences that meet the search
query.

6https://en.wikipedia.org/wiki/
English_Wikipedia

https://global.bing.com/images
https://www.bing.com/dict
https://en.wikipedia.org/wiki/English_Wikipedia
https://en.wikipedia.org/wiki/English_Wikipedia
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Method BLEU Score
Text-only Bi-LSTM (Calixto et al., 2017) 33.70
NMT Transformer (Zhang et al., 2019) 36.86

Zhang et al. (2019) 36.86
MMT with Zhao et al. (2021) 38.40
Original Images Su et al. (2021) 39.20

Tang et al. (2022) (Section 3.1) 38.14
MMT with Zhang et al. (2019) 36.94
Retrieved Images Tang et al. (2022) (Section 3.1) 38.43

MMT with Visual Noise Filtering (Section 3.2) 38.51
NMT with Retrieved Supplementary Text (Section 3.3) 39.13

Table 3: Results on Multi30K

Method Dataset
Multi30k Global Voices WMT‘16 (100k) Bible MultiUN

Text-only NMT 33.70 9.22 7.99 35.23 39.49
MMT with Random Images 37.65 9.29 8.11 35.31 39.48
MMT with Blank Images 37.79 9.46 8.31 35.39 39.52
MMT with Retrieved Images 38.43 9.81 8.41 35.42 39.53

Table 4: Translation performance across diverse datasets under varied image conditions (BLEU score)

textual features of dimensions N × 1024, where N
represents the length of the retrieved supplemen-
tary text.

Regarding the noise image filter, we set M ′
=

10 and used a CLIP model (Radford et al., 2021)
pretrained on the YFCC100M dataset (Thomee
et al., 2016) to filter out noisy images. For the noise
region fitler, we configured it with O = 128. Here,
we utilized a pretrained Faster R-CNN model (Ren
et al., 2015) that had been trained on the Open
Images dataset (Kuznetsova et al., 2020). This
model was employed to identify and filter noisy
regions in images effectively.

4.3. Training Parameters

We initiated the word embeddings and other as-
sociated model parameters randomly, following a
uniform distribution with a range of −0.1 to 0.1. Dur-
ing training, we employed the Adam optimizer with
a mini-batch size of 32 and set the learning rate to
0.001. Additionally, a dropout strategy with a rate
of 0.3 was applied to further enhance the models.
The training process continued for up to 15 epochs,
with early stopping activated if the BLEU (Papineni
et al., 2002) score on the development set did not
exhibit improvement for 3 consecutive epochs. The
model with the highest BLEU score on the dev set
was selected for evaluation on the test set. To min-
imize the impact of random seeds on experimental
results and ensure result stability, we conducted
the experiment 5 times with fixed random seeds
and reported the macro-average of BLEU scores
as the final result.

4.4. Baselines

In the case of the Multi30k dataset, we conducted
a quantitative comparison of the probing methods
with several recent MMT models (Zhang et al.,
2019; Zhao et al., 2021; Su et al., 2021; Tang et al.,
2022). However, the main focus of this research
is to evaluate the necessity of visual information
within real-world translation scenarios. Four out of
the five datasets utilized in our evaluation experi-
ments are authentic text-only translation datasets
without any visual annotation. Consequently, for
each dataset, we exclusively employed the text-only
Bi-LSTM (Calixto et al., 2017) as a baseline.

The baseline model and the models detailed in
Section 3 were all trained using the same training
set and identical training parameters. For all these
models, we present the 4-gram BLEU score (Pap-
ineni et al., 2002) as the primary evaluation metric.

5. Results and Analysis

Table 3 presents the experimental results of the
Multi30k dataset. Compared to various baseline
models, all three probing methods mentioned in
Section 3 have achieved promising results. No-
tably, the MMT model with visual noise filtering
(Section 3.2) achieved a BLEU score of 38.51,
while the NMT model with retrieved supplementary
text (Section 3.3) achieved an impressive BLEU
score of 39.13. In comparison to text-only NMT
models (Calixto et al., 2017; Vaswani et al., 2017),
the NMT model with retrieved supplementary text
significantly outperforms them, showcasing a sub-
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stantial increase in BLEU score. When compared
to existing MMT methods that utilize original im-
ages (Zhang et al., 2019; Zhao et al., 2021; Su
et al., 2021), the NMT model with retrieved sup-
plementary text obtains a comparable BLEU score.
Furthermore, in contrast to the MMT methods with
retrieved images (Zhang et al., 2019; Tang et al.,
2022), the NMT model with retrieved supplemen-
tary text demonstrates performance gains of ap-
proximately 2.2 and 0.7 BLEU points, respectively.

Further experimental results and analysis will be
presented in the following sections.

5.1. Translation Performances across
Varied Datasets

We firstly quantitatively compared text-only
NMT (Calixto et al., 2017) with MMT utilizing
retrieved images (Section 3.1) across five diverse
datasets mentioned in Section 4.1. As demon-
strated in Table 4, MMT achieved significantly
higher BLEU scores on Multi30k, higher BLEU
scores on Global Voices and WMT’16 (100k), and
slightly higher BLEU scores on Bible and MultiUN.
It is intriguing to note that the improvement in
translation performance is substantial on Multi30k,
with an increase of approximately 4.7, whereas
the gain on MultiUN is relatively modest, at
approximately 0.04.

We speculate that the variations in results among
the aforementioned translation datasets, such as
Multi30k and other datasets, may be attributed to
the differing qualities of images collected through
the search engine. To evaluate the influence of
the quality of collected images, we train the MMT
model with randomly retrieved unrelated images,
blank images, and retrieved images from image
search engines, respectively.

The evaluation results are shown in table 4. It
is obvious that MMT models with retrieved images
achieves the highest BLEU score on all Multi30k
and other four datasets, demonstrating the effec-
tiveness of visual information from retrieved images.
Compared with the model with random images and
blank images, the performance gain of collected
images is approximately 0.7 & 0.6 BLEU score
on Multi30k, and 0.5 & 0.3 BLUE score on Global
Voices. However, on WMT’16 (100k), Bible, and
MultiUN datasets, models with retrieved images
achieve almost the same BLEU score as the model
with blank images.

One of the possible reason is that sentences from
those three datasets contains fewer entity words
that can be represented by images, and therefore,
the search engine based image retrieval method
collects numbers of noise images. Sentences from
WMT’16 (100k), Bible, and MultiUN datasets de-
scribe abstract concepts and complex events, while

sentences from Multi30k and Global Voices de-
scribe real objects and people, which is more reli-
able for image retrieval. 7

To validate the hypotheses, we manually ana-
lyzed the image retrieval outcomes of each dataset.
In detail, we initially conducted a random sampling
of 1,000 sentences and employed the image re-
trieval methods outlined in Section 3.1 to gather
keywords and images for each sentence. Regard-
ing the extracted keywords, we conducted man-
ual assessments to identify whether each keyword
qualifies as an entity word. Regarding the collected
images, we carried out manual evaluations to deter-
mine if an image could offer pertinent visual infor-
mation for the search query, and those that could
not. Images in the latter category were categorized
as noise images. Lastly, we tallied the quantity
of sentences containing at least half of non-entity
keywords and the quantity of sentences harboring
at least half of noise images among the collected
images.

As presented in Table 5, for the Multi30k dataset,
out of 1000 sentences, only 27 sentences con-
tained half or more non-entity keywords, and 61
sentences gathered half or more noise images from
search engines. However, in the WMT’16 (100k)
dataset, there are 796 sentences with half or more
non-entity keywords and 685 sentences with half
or more noise images, accounting for more than
half of the sampled sentences. Consequently, our
method shows poor performance on the WMT’16
(100k) dataset. The Bible dataset and MultiUN
dataset exhibit a similar situation. For the Global
Voices dataset, there are 94 sentences with half
or more non-entity keywords and 228 sentences
with half or more noise images. This falls between
the Multi30K and WMT’16 (100k) datasets. It is
interesting to note that the Multi30k dataset, which
has the smallest proportions of non-entity keywords
and noise images, achieves the most significant
gain in translation performance. On the other hand,
datasets with the largest proportions of non-entity
keywords and noise images show the smallest gain
in translation performance.

5.2. Influence of the Correlation between
Text and Images

Table 6 shows the evaluation results of applying
two filtering approaches described in Section 3.2
in MMT. It is obvious that MMT models with both
noise image filter and noise region filter achieves
the highest BLEU score across all datasets, includ-
ing Multi30k and the other four,underscoring the

7Examples of retrieved images from various datasets
are presented in Table 8.
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Multi30k Global Voices WMT’16 (100k) Bible MultiUN
Number of sentences
with half or more non-
entity keywords

27 94 796 398 818

Number of sentences
with half of more noise
images

61 228 685 761 663

Table 5: Summary of manual analysis of image retrieval outcomes for each dataset

Method Dataset
Multi30k Global Voices WMT’16 (100k) Bible MultiUN

MMT with retrieved images 38.43 9.81 8.41 35.42 39.53
(Tang et al., 2022)
+ noise image filter 38.50 10.12 8.89 36.12 39.91
+ noise region filter 38.46 9.95 8.78 35.84 39.72
+ noise image & region filter 38.51 10.23 8.93 36.38 39.95

Table 6: Results of image and region filtering method across diverse datasets (BLEU score)

effectiveness of these two filtering approaches. 8

Notably, it is intriguing to note that the noise filter-
ing techniques exhibited more substantial enhance-
ments in translation performance for the WMT’16
(100k), Bible, and MultiUN datasets, in contrast to
the improvements observed in the Multi30k and
Global Voices datasets. This further underscores
the significant impact of the correspondence be-
tween image and text content on the translation per-
formance the alignment and coherence between im-
age and text content on the translation performance
of the MMT system. It also elucidates why noise
filtering methods yield marginal improvements on
the Multi30K dataset.

In conclusion, the translation performance of the
multimodal model primarily hinges on the consis-
tency between textual and visual content. In other
words, the more alignment exists between textual
and visual content, the greater enhancement in
translation performance with multimodal translation
compared to text-only translation. Hence, we arrive
at a conclusion that aligns closely with (Caglayan
et al., 2019), which suggest that multimodal transla-
tion models predominantly treat visual information
as a complement to textual information.

5.3. Exploring the Necessity of Visual
Modality

We conducted a quantitative comparison between
MMT with retrieved images (Section 3.1) and NMT
with retrieved supplementary texts on the Multi30k
dataset. Table 7 shows the experimental results. In
comparison to MMT model employing images for
translation enhancement, the approach integrating

8A correct example generated by MMT with visual
noise filtering is presented in Table 9.

Method BLEU score
text-only NMT 33.70
+ visual information 38.43

(MMT with retrieved images)
(Tang et al., 2022)

+ textual information 39.13
+ visual & textual information 38.55

Table 7: Results on Multi30k using visual informa-
tion or textual information enhanced NMT

supplementary textual data for translation enhance-
ment demonstrated a significantly higher BLEU
score of 39.13. Remarkably, the combined utiliza-
tion of both images and supplementary texts for
translation enhancement yielded a BLEU score of
38.55, positioning itself between image-enhanced
NMT and text-enhanced NMT.

This demonstrates that both additional visual and
supplementary textual information play an entirely
equivalent supplementary role in the translation
process. Moreover, in most cases, the utilization
of supplementary textual information assists the
translation process more effectively. 9

Therefore, we speculate that multimodal trans-
lation models trained on a large volume of data
might face challenges in outperforming text-only
translation models trained on comparable data vol-
umes. This is because as the volume of data used
in multimodal model training increases, the poten-
tial impact of visual information could diminish. We
will verify this in future work.

9A correct example comparing NMT with retrieved
supplementary texts to MMT with retrieved images is
presented in Table 10.
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6. Conclusions

In this paper, we conduct an in-depth exploration
into the role of visual information within the multi-
modal translation process on Multi30k and other
four authentic translation datasets. Our findings
emphasize that the substantial correlation between
visual and textual content significantly impacts the
efficacy of multimodal translation, while employing
filtering mechanisms based on the textual-visual
correlation can enhance translation performance.
Additionally, experimental results reveal that visual
information plays a supplementary role in the mul-
timodal translation process. This supplementary
function of visual information can be substituted by
the incorporation of supplementary textual informa-
tion. As one of our future work, we plan to assess
the impact of the visual modality on more exten-
sive translation datasets, including the complete
WMT’16 dataset. We speculate that as multimodal
translation models are trained using larger datasets,
the impact of visual information is likely to diminish.
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A. Qualitative Examples

In this appendix, we provide examples of retrieved
images (Table 8), as well as translation examples
for MMT with visual noise filtering (Table 9) and
NMT with retrieved supplementary texts (Table 10).
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Dataset English Sentence One of five retrieved images

Multi30k The person in the striped shirt
is mountain climbing.

Global Voices Now the city is under a siege
from the security forces.

WMT’16 (100k)

In the future, integration will
be a topic for the whole of so-
ciety even more than it is to-
day.

Bible

You are Yahweh, even you
alone. You have made
heaven. the heaven of heav-
ens, with all their army, the
earth and all things that are
on it, the seas and all that is in
them and you preserve them
all.

MultiUN
Development assistance can-
not by itself prevent or end
conflict.

Table 8: Examples of retrieved image from different datasets. For the sentence from Multi30k dataset,
our method efficiently retrieves an image that accurately represents the sentence’s content “A man is
rock climbing”. For the sentence from Global Voice dataset, the retrieved image exhibits a degree of
alignment with the source sentences, encompassing elements like “city”,“siege” and“forces”. However,
for the sentence from WMT’16 (100k), Bible and MultiUN datasets, it becomes evident that the retrieved
images offer limited relevant visual information and thus provide little assistance for translation.
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Source (En) But he answered and said, "Every plant which my heavenly Father
didn’t plant will be uprooted.

Target (De) Aber er antwortete und sprach: Alle Pflanzen, die mein himmlis-
cher Vater nicht pflanzte, die werden ausgereutet.

Retrieved images

MMT with retrieved im-
ages

Er antwortete aber und sprach: Alle Pflanzen, die mein himmlis-
cher Vater nicht verderbte Quelle.

Retrieved images with
noise image filter

MMT with noise image fil-
ter

Er antwortete aber und sprach: Alle Pflanzen, die mein himmlis-
cher Vater nicht pflanzte.

MMT with both noise im-
age and region filter

Er antwortete aber und sprach: Alle Pflanzen, die mein himmlis-
cher Vater nicht pflanzte, wird entwurzelt werden.

Table 9: A correct example generated by MMT with visual noise filtering. Due to its unique characteristics,
the Bible dataset contains numerous entity words but is challenging to obtain images that effectively
represent the textual content. However, visual noise filtering based on visual-text correlation can partially
alleviate this situation. In this example, the filtered visual information has enabled the translation of
“uprooted” to be correct.
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Source (En) Group of Asian boys wait for meat to cook over barbecue.
Target (De) Eine Gruppe asiatischer Jungen wartet am Grill darauf, dass

Fleisch gar wird.
Text-only NMT Eine asiatische Jungen warten auf dem Fleisch, um den Grill zu

kochen.

Retrieved images

MMT with retrieved im-
ages

Eine Gruppe von asiatischen Jungen wartet darauf, um Fleisch
zu grillen.

Retrieved supplementary
texts

(1) Delivery is hardly limited to pizza at this point; everything from
sushi to barbecue seems available as a to-go order.

(2) While the savory aroma of barbecue filled the air, friends and
family gathered around the grill, eagerly sharing stories and
laughter as they waited for the delicious meal to be ready.

(3) As the sun dipped below the horizon, our group of friends
decided to have a barbecue in the backyard, lighting up the
grill and eagerly waiting for the charcoal to heat up so that we
could start cooking our favorite dishes.

(4) At the lively outdoor barbecue gathering, a diverse group of
friends, including a talented Asian chef, couldn’t wait to cook
up a mouthwatering feast.

(5) While the enthusiastic Asian group gathered around the bar-
becue, they took turns to cook their favorite dishes, making
everyone else eagerly wait in anticipation of the delicious
meal.

MMT with retrieved supple-
mentary texts

Eine Gruppe von asiatischen Jungen wartet darauf, dass Fleisch
über Grill zukochen.

Table 10: A correct example generated by NMT with retrieved supplementary texts. In this example, in
contrast to text-only NMT without any supplementary information, visual information and supplementary
text information play an equivalent role, correctly translating “Group” to “Gruppe”. Benefiting from the rich
information in the supplementary text, the NMT with retrieved supplementary text achieves more accurate
translations compared to MMT with retrieved images.
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