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Abstract

Missed recognition of named entities while de-
identifying clinical narratives poses a critical
challenge in protecting patient-sensitive health
information. Mitigating name recognition er-
rors is essential to minimize risk of patient re-
identification. In this paper, we emphasize the
need for stratified sampling and enhanced con-
textual considerations concerning Name tokens
using a fine-tuned Longformer BERT model
for clinical text de-identification. We introduce
a Hidden in Plain Sight (HIPS) Markov-based
replacement technique for names to mask name
recognition misses, leading to a significant re-
duction in name leakage rates. Our experimen-
tal results underscore the impact on addressing
name recognition challenges in BERT-based de-
identification systems for heightened privacy
protection in electronic health records.

1 Introduction

Clinical narratives and unstructured documentation
within electronic health records (EHRs) are con-
sidered valuable assets in epidemiological research
(Sheikhalishahi et al., 2019; Patra et al., 2021) and
the creation of prognostic clinical prediction mod-
els (Seinen et al., 2022). The advancement of these
applications is frequently impeded by the limited
availability of de-identified clinical text corpora.
Clinical notes must remove protected health in-
formation (PHI) to safeguard patient privacy and
align with privacy regulations exemplified by the
United States’ HIPAA Safe Harbor privacy guide-
lines (OfC, 2022).

Bidirectional Encoder Representations from
Transformers (BERT) models have shown promise
in automatically identifying sensitive PHI in clini-
cal texts (Johnson et al., 2020; Ahmed et al., 2020).
Previous research has explored BERT variants with
hyper-parameter tuning, comparing their efficacy
in clinical text de-identification across PHI sub-
categories, including dates, phone numbers and

names (Meaney et al., 2022). Less focus has
been given to the shrinking but persistent margins
of error that plague even the best-performing de-
identification pipelines. For instance, our base de-
identification model uses a Longformer BERT vari-
ant (Beltagy et al., 2020) fine-tuned using discharge
summaries from a US-based tertiary healthcare in-
stitution. In preliminary work as a part of Alkiek
et al. (2023), we discovered that the Longformer
model performed exceptionally well during pre-
liminary testing among the pretrained models we
sampled. Our base model achieved an impressive
but far-from-optimal overall F1 score of 0.90 for
names (Table 1). Considering the inherent privacy
risks of missed PHI, even small margins of error
have the potential to result in substantial numbers
of exposed patient records with identifiable health
information when de-identification systems are de-
ployed in the real world.

This study aims to contribute to characterizing
Name errors in BERT-based transformer models
on real-world discharge summaries. The goal is to
provide insights into the development of compre-
hensive de-identification strategies capable of both
correcting bias and tolerating mistakes related to
names. We first compare the effect on recognizing
names using a fine-tuned Longformer model with
a stratified sample that uses demographic informa-
tion against a model fine-tuned with a standard
randomized sample. We suggest that enhancing the
recognition of name tokens in our de-identification
system is achieved by including sets of name to-
kens found in stratified training samples compared
to those in random training samples. Next, we
investigate a Hidden in Plain Sight (HIPS) Markov-
based replacement technique for names. Using
real-world discharge summaries from an academic
healthcare institution, we compare the effectiveness
of a Markov-based replacement strategy against
a random replacement strategy in reducing name
leakage.
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PHI Mean True Precision Recall F1-ScoreToken Count
PROVIDER NAMES 503 .984 (.007) .984 (.007) .984 (.007)
NON-PROVIDER NAMES 1836 .904 (.019) .850 (.027) .876 (.010)
NAMES IN WHITE RECORDS 1756 .923 (.022) .889 (.019) .905 (.006)
NAMES IN URM RECORDS 583 .925 (.018) .860 (.024) .892 (.014)

ALL NAMES 2339 .923 (.016) .880 (.019) .900 (.007)

ALL PHI 13103 .953 (.005) .952 (.005) .952 (.004)

Table 1: Baseline fine-tuned Longformer performance, averaged over 5 runs, on identifying name tokens over a test
set of discharge summaries (n=80). For performance metrics, the numbers in parentheses show standard deviation.
Name tokens from full name entities that matched with doctor, nurse or specialist names in a given EHR provider
list were labeled as provider names. Name tokens from unmatched full name entities in the EHR provider list were
labeled as non-provider. Underrepresented minority (URM) records are notes associated with patients reporting any
non-white racial identity or a Hispanic/Latino ethnicity.

2 Related Work

2.1 Name-related biases in BERT Models

Naming a person often involves a deliberate or sub-
conscious choice conveying racial, ethnic, class-
based, gender-normative, or religious affiliations
(Seguin et al., 2021; Lindsay and Dempsey, 2017).
These choices collectively contribute to naming
trends or groups of names characterized by gen-
der, race, or association with a specific locality or
decade (Lockhart et al., 2023). Learned contextual
embeddings in BERT models have been shown
to capture such signals in socio-demographic
phenomena, which may then contribute to dis-
criminative biases in recruitment and other sys-
tems informed by trained contextual embeddings
(Ramezanzadehmoghadam et al., 2021). Name to-
kens like "Smith" are expected to be prominent
in United States based, English-language datasets,
making them more easily identifiable by systems
trained on those datasets. In contrast, names
that are rare, unique, or correspond to underrep-
resented minority (URM) groups in the training
data may carry a higher risk of being overlooked
by the model. Our work is inspired by Xiao et al.
(2023), who studied learned name biases in pre-
trained BERT models for de-identification using
synthetic patient data to evaluate fairness across de-
mographic patient groups. Others, such as Yue and
Zhou (2020), have proposed solutions involving
training data augmentation.

2.2 Hidden in Plain Sight (HIPS) strategies

Multiple strategies have been explored to enhance
privacy through de-identification. Notable among
these are the HIPS approaches, which involves sub-

stituting personally-identifiable information (PIIs)
with authentic pseudonyms to mitigate false neg-
atives (Carrell et al., 2013). For example, in-
stead of replacing a real name token "John" with
a placeholder tag "[NAME]", HIPS uses a realis-
tic pseudonym like "Tony". As an extension of
this methodology, Osborne et al. (2022) proposed
Bratsynthetic, which utilizes a Markov-based sub-
stitution component to introduce randomness in the
selection of pseudonyms. Building on this foun-
dation, our study applies a similar approach to a
real-world dataset of discharge summaries, extend-
ing the scope of its evaluation beyond simulated
environments.

3 Methods

3.1 Stratification of Training Data

Our methodology challenges the conventional prac-
tice of randomly selecting clinical notes for train-
ing data annotation, that tends to predominantly
include the majority patient population of white
patients. Instead, we advocate for a stratified
sampling approach to diversify the training data,
that would select disproportionately more patients
from underrepresented minority communities. This
method aims to improve the generalizability of the
Longformer-based de-identification model previ-
ously proposed by Alkiek et al. (2023), particularly
in identifying patient names during inference. We
propose that the name token sets found in a strat-
ified training samples containing a higher propor-
tion of documents from URM patients, would re-
sult in superior name de-identification performance
than the performance achieved with the name token
set found in random training samples.
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Sampling Demographic # Names Precision Recall F1 score

Random
All 654 (17) 0.918 (0.021) 0.843 (0.019) 0.878 (0.008)
White 483 (24) 0.916 (0.014) 0.849 (0.022) 0.881 (0.009)
URMs 171 (29) 0.901 (0.029) 0.837 (0.042) 0.867 (0.020)

Stratified
All 654 (17) 0.897 (0.032) 0.842 (0.018) 0.868 (0.014)
White 483 (24) 0.900 (0.026) 0.857 (0.032) 0.877 (0.015)
URMs 171 (29) 0.892 (0.030) 0.837 (0.025) 0.863 (0.020)

Table 2: Test set performance of patient name identification models fine-tuned on (a) random sample (URM patients:
21%, s.d. 0.01) and (b) stratified sample (URM patients: 34%, s.d. 0.01). Averaged over five runs. The numbers in
parentheses are standard deviations.

Our annotated dataset consists of 400 discharge
summary notes from a tertiary academic medical
center, annotated by trained medical professionals
to label eighteen PHI categories, including provider
and patient names. The average discharge summary
consists of 1643 tokens containing 43 PHI entity
annotations, of which 12 are names. The average
name entity has two tokens, typically a first name
and a surname. For this study, full-name entities
that did not match with doctor, nurse, or specialist
names in a given EHR provider list were labeled
as non-providers and assumed to patient or family
names.

The discharge summary notes were randomly
split 80:20 into train-test splits. To implement the
stratified sampling approach and evaluate its effec-
tiveness, we created two subsamples of 200 notes
each from the train set. One subsample followed
random selection, while the other used stratified
sampling that leveraged structured EHR race and
ethnicity fields to create a white stratum and an
underrepresented minority (URM) stratum. A pa-
tient was categorized into the URM stratum if their
record indicated any non-white racial identity or
Hispanic/Latino ethnicity. In the stratified sam-
ple, we included the maximum number of available
notes from URM (Underrepresented Minority) pa-
tients in the train split. The remaining notes were
randomly sampled from white patients. This pro-
cess was repeated five times, starting from a new
80:20 split.

On average, the number of instances from the
underrepresented minority patients increased from
21% in the random sample to 34% in the stratified
sample. Subsequently, two new Longformer mod-
els were trained and tested on the same held-out
test set (n=80): one fine-tuned with the random sub-
sample and the other with the stratified subsample.

3.2 Markov-based name pseudonymization

Inspired by the strategy used by Osborne et al.
(2022), we designed the following Markov-based
strategy to replace the names identified by the
Longformer models with surrogates. For each
note, when the Longformer identifies k name token
predictions, our approach will select k surrogates.
There’s a p = 0.5 chance that the preceding sur-
rogate name will be reused, and a p = 0.5 chance
that a new surrogate name will be chosen. In ad-
dition, each surrogate name is constrained to be
used at most t = 4 times, which follows the ob-
servation that the mode frequency of name tokens
in the training documents is four. Once identified,
the surrogate names are used to replace the origi-
nal names at random. This strategy was contrasted
with random pseudonymization strategy, where the
k surrogate names are selected at random without
replacement. All surrogate names were selected
from a United States Census name list (Bureau,
2021) and the sampling strategies are document-
independent, ensuring that names are not sampled
repetitively for the same name tokens across multi-
ple documents. The values for the probability and
repetition threshold was set empirically based on
the mode of the name frequency distribution.

3.3 Name leakage

We defined name leakage as instances where a
name token appears more frequently than allowed
by a perfect re-identification system and replace-
ment strategy. For example, a name token appear-
ing five times in a document would flag that docu-
ment as leaking real name tokens with our Markov-
based replacement strategy, as it contains a name
token count exceeding the maximum threshold of
t = 4 uses. The overall leakage rate was calcu-
lated across the entire test set by considering the
proportion of notes where the mode of the name
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frequency distribution was indeed a true patient
name. This follows a heuristic that in a clinical
note, the patient’s name is the one most likely to re-
peat. Wilcoxon signed-rank tests (Wilcoxon, 1945)
were conducted to test statistical significance of
differences in mode of name frequency distribution
in the original data and each replacement strategy.
McNemar’s test (Sundjaja et al., 2023) was con-
ducted to test if the leakage rate of Markov-based
strategy is significantly lower than the random re-
placement strategy.

4 Results

4.1 Stratification of training data

Across the five iterations, the performance of the
Longformer models fine-tuned with stratified sam-
ples exhibited comparable results to the models
fine-tuned with random samples (Table 2). A slight
reduction in precision and F1-score was observed
across all test notes and within each demographic
subgroup. Recall remained consistent for all test
notes and URM notes, with a modest and statisti-
cally insignificant increase in recall for names in
notes from white patients. Consequently, our demo-
graphic stratification rule, aimed at enhancing the
representation of URMs in the training set of notes
from 21% to 34%, did not yield an improvement in
name recognition.

4.2 Markov-based name pseudonymization

Pseudonymization strategies significantly influ-
enced the frequency of name tokens in documents,
impacting the risk of name leakage. For each note,
the random replacement strategy assigns a unique
surrogate to each name token prediction, ensuring
no repetition. This results in an expected mode of 1
among all name token frequencies in a given docu-
ment. In contrast, Markov-based replacement may
reuse a name token surrogate for up to four predic-
tions, adjusting the expected mode to 4 among all
name token frequencies. Our analysis showed that
instances of a name being missed twice, even with
random replacement, could signal potential name
leakage.

Over the five iterations, random strategy dis-
played significant differences in mode values,
whereas Markov distributions exhibited smaller
differences, compared to the original name fre-
quency distribution. In Iteration 5 (Figure 1), the
Markov name distribution closely resembled the
original distribution and was statistically similar

per Wilcoxon’s signed rank test.

Figure 1: Distributions of unique name modes in the
test set by replacement strategy on a sample iteration.

Further, the average leakage rate decreased
from 13.1% with random replacement to 3.8%
with Markov replacement across all iterations (Ta-
ble 3). Markov replacement significantly reduced
the name leakage rate compared to random replace-
ment, as evidenced by McNemar’s test.

5 Discussion

While previous research has emphasized the effec-
tiveness of strategies such as data augmentation
for improving name diversity and contextual pat-
terns (Yue and Zhou, 2020), we focused on enhanc-
ing name performance through stratification. We
aimed to increase the proportion of URM patients
in the train dataset by using a stratified sampling
approach. Surprisingly, this approach did not sig-
nificantly improve the name performance of our
de-identification system. This lack of improvement
could be attributed to a relatively small sample size,
where the change in URM representation was not
substantial enough to impact name performance in
a predominately White patient population. Addi-
tionally, higher URM representation in the training
sample through stratification may not perfectly cor-
relate with a more robust set of name tokens. URM
patients may have names more commonly associ-
ated with white demographics and white patients
may also have rare or unique names.
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Iter. Original data Random replacement Markov-based replacement
Avg. Mode Leakage (%) Avg. Mode Leakage (%) Avg. Mode Leakage (%)

1 3.5 100 1.2 7.5 3.8 1.3*

2 3.8 100 1.5 17.7 4.1 3.8***

3 3.7 100 1.4 11.3 4.0 3.8*

4 3.9 100 1.6 14.1 4.0 5.1**

5 4.0 100 1.6 15.0 4.0 5.0**

AVG 3.8 100 1.5 13.1 4.0 3.8

Table 3: Average mode and rate of name leakage on the test set across five runs. Statistically significant drop relative
to leakage in random approach using McNemar’s test:*(p<0.05), **(p<0.01),***(p<0.001)

In our discharge summaries, there is a single
patient with two notes. To prevent name token
leakage, we deliberately included both notes from
this patient exclusively in the training sets. This en-
sures that the names associated with this particular
patient do not leak between the training and test
sets through their notes.

However, this method does not address the po-
tential leakage of provider names between training
and test sets, as a provider’s name may appear in
notes from multiple patients. Additionally, our
stratification rule for creating the white and URM
strata does not consider the demographics of the
providers. Consequently, not only may provider
names leak between the training and test sets, but
the set of provider name entities could also remain
similar between the stratified and random training
samples, posing a challenge to the effectiveness
of our methodology." The higher performance for
provider names in Table 1 is therefore unsurpris-
ing considering the possibility of name leakage for
this subgroup. This observation reinforces the im-
portance of name token distributions represented
in the training data as a vector for improving de-
identification performance on names.

Future work could expand on efforts to explore
how shifts in training data effect embedding or
attention mechanisms (Clark et al., 2019) to bet-
ter understand causal mechanisms for targeting
name distributions as a parameter to improving
de-identification system performance on names.

Nevertheless, achieving complete elimination of
name errors through incremental model improve-
ments is unlikely, especially as the model is applied
to different note types or health system contexts. In
such scenarios, our Markov-based HIPS strategy
holds theoretical efficacy in diminishing document-
level leakage associated with false negatives related
to name tokens. However, missed names that ap-

pear more than the allowable repeats in the Markov
method remain at risk for PHI leakage. Our results
propose that implementing such a strategy would
be beneficial for BERT-based de-identification sys-
tems, effectively masking name errors and provid-
ing enhanced privacy protection for patients.

6 Conclusion

Our study aims to address errors in name recogni-
tion of a Longformer-based de-identification model
fine-tuned on discharge summaries. Stratified
sampling for fine-tuning did not significantly im-
prove name recognition. However, the introduc-
tion of a HIPS Markov-based pseudonymization
strategy showed promising results, significantly re-
ducing name leakage rates compared to random
replacement. This research contributes to the on-
going efforts to address the persistent challenges
associated with de-identification of clinical texts,
offering valuable guidance for the development
of robust and privacy-conscious clinical text de-
identification.

Limitations

While we recognize the importance of acknowl-
edging and addressing disparities in healthcare, the
term “Underrepresented Minorities (URM)” uti-
lized in this study is acknowledged as not being
an ideal or precise grouping, potentially oversim-
plifying the diverse range of minority patient pop-
ulations in a tertiary, academic healthcare institu-
tion. The rationale behind the chosen stratification
rule was to establish a straightforward method that
could yield sufficient samples in each stratum to
ensure a stable signal for analysis.

Moving forward, we advocate for future research
endeavors in stratified sampling to prioritize anno-
tation efforts aimed at including more substantial
samples from demographic subgroups. It is impor-
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tant to acknowledge and accept this limitation as
a conscious choice made to address the inherent
dominance and potential bias arising from a larger
representation of White patient records in this spe-
cific experiment. Our commitment remains stead-
fast in contributing to a nuanced understanding of
healthcare disparities, and we encourage ongoing
efforts to refine and expand upon our methodology
in future investigations.

Additionally, using name lists from US Census
data for pseudonymization may not be ideal for
all contexts due to potential biases and limitations.
Careful consideration of the specific context and
potential biases is crucial when selecting and utiliz-
ing name lists for pseudonymization purposes.

Finally, we acknowledge that fine-tuning of
our BERT-based de-identification system used dis-
charge summaries written exclusively in American
English clinical language and not other languages.

Ethics Statement

The experiments in this study use 400 discharge
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sight of an Institutional Review Board, ensuring
continual adherence to ethical guidelines.
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