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Abstract

Large language models in public-facing indus-
trial applications must accurately process data
for the domain in which they are deployed, but
they must not leak sensitive or confidential in-
formation when used. We present a process
for anonymizing training data, a framework for
quantitatively and qualitatively assessing the
effectiveness of this process, and an assessment
of the effectiveness of models fine-tuned on
anonymized data in comparison with commer-
cially available LLM APIs.

1 Data Privacy in the era of LLMs

Recent progress in the capabilities of large lan-
guage models (LLMs) (Devlin et al., 2019; Brown
et al., 2020; Zhao et al., 2023), has led to their
widespread adoption as the foundation for a variety
of tasks in industrial and academic NLP (Bom-
masani et al., 2021). With parameter counts in the
tens and hundreds of billions, these models require
vast amounts of data to train and fine-tune (Hoff-
mann et al., 2022). At the same time, this overpa-
rameterization enables the memorization and poten-
tial leakage or extraction of large portions of LLMs’
training data (Biderman et al., 2023; Carlini et al.,
2023; Hartmann et al., 2023). Taken together, the
required volume of training data and memorization
capabilities of LLMs raise substantial issues con-
cerning data privacy (Li et al., 2023). This risk
is compounded because LLMs, like all supervised
learners, perform best on test sets that have similar
distributions to their training data. Thus, organiza-
tions seeking to deploy practically effective LLMs
must train them with data that reflect the distribu-
tion of their deployment, with specific, sensitive
data such as medical records or call transcripts lead-
ing to improved performance, but correspondingly
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greater risk of exposing that data to breaches or
adversarial attacks (Nasr et al., 2023).

Furthermore, the lack of predictability and diffi-
culty in constraining the outputs of LLMs means
that including personal information (PI) in a train-
ing or fine-tuning data split runs the risk of this data
being exposed in output generated by the model —
even in the absence of adversarial attacks and when
the task does not call for such data. Maximal miti-
gation of this risk requires removing all instances of
PI from the training data, for example by excising
any sentences that contain PI, or redacting any PI
tokens. This kind of full exclusion leads to the chal-
lenge discussed above: depending on its use-case
or deployment environment, a model may need to
process and respond to PI at inference time. Sup-
pressing all instances of PI, effectively removing
the entire entity, is an approach seen when under-
taking anonymization of structured data, however
with unstructured text as in this context, this is not a
realistic option due to resulting in training data that
will be distributionally and semantically (Hassan
et al., 2023) different from the input. Additionally,
these types of data perturbations have been shown
to negatively impact model performance (Malle
et al., 2016, 2017). A more targeted approach to
PI token redaction, tagging a set of candidate PI
tokens with tags from a pre-defined taxonomy, is
offered by some companies as a publicly-available
anonymization service.

In this paper we leverage and modify such an
anonymization service, proposing a nuanced ap-
proach to token redaction and risk assessment,
showing that these measures can address the stan-
dard trade-off between privacy protection and per-
formance. Our specific contributions are:

• Modifications to the taxonomy of PI cate-
gories defined by Google’s Cloud Data Loss
Prevention service1 that serve to increase the

1https://cloud.google.com/security/products/
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accuracy of anonymization of call transcripts
generated by a proprietary automatic speech
recognition (ASR) system.

• A framework for evaluating our modified
anonymization pipeline with respect to resid-
ual risk: a measure encompassing both the
likelihood of identifying an individual from
residual PI that persists after anonymization,
and the relative magnitude of harm based on
the sensitivity of the remaining data. When
properly calibrated, residual risk scoring for
arbitrary combinations of PI or partial PI
should closely align with the potential real-
world impact of their exposure.

• A demonstration that a model fine-tuned with
data that has been anonymized in accordance
with our approach shows comparable F1 and
ROUGE scores to other popular LLMs on
four in-domain tasks, with acceptable levels
of residual risk.

1.1 Related Work

Data anonymization Elliot et al. (2020) present
a framework for data anonymization, including a
taxonomy of identifiers with different risk/exposure
profiles. The framework’s purpose is to furnish
practical understanding of anonymization for use in
business or organizational contexts. It is designed
to control the risk of unintended re-identification
and disclosure.

The problem of automated data anonymization
specifically in the context of textual data is inves-
tigated by Lison et al. (2021). They draw links
between work done in this area in the fields of
NLP and privacy-preserving data publishing, and
highlight some general challenges, including the
trade-off between data utility and residual risk, and
how to assess the quality of anonymization.

Privacy-preserving LLM/ML training Xu
et al. (2021) provide a systematic review of exist-
ing privacy-preserving machine learning (PPML)
approaches. They propose a Phase, Guarantee, and
Utility based model to understand and guide the
evaluation of various PPML solutions by decom-
posing their privacy-preserving functionalities.

Plant et al. (2022) empirically investigate the ex-
tent to which personal information is encoded in
the representations of a variety of widely-available
pre-trained LLMs. They demonstrate a positive

dlp

correlation between the complexity of a model, the
data volume used in pre-training, and data leakage.
In addition, they present an evaluation and compari-
son of some popular privacy-preserving algorithms
on a large multi-lingual sentiment analysis data set
annotated with demographic information (location,
age and gender). Their results show that larger
and more complex models are more prone to leak-
ing private information, and hence that the use of
privacy-preserving methods is necessary. In addi-
tion to the preceding domain-general investigations,
Yin and Habernal (2022) and Guerra-Manzanares
et al. (2023) investigate some of the challenges of
privacy-preserving training for machine learning
and language modeling in the legal and healthcare
domains, including increased resource needs to ad-
dress the high computational complexity of some
methods (e.g. homomorphic encryption), and pri-
vacy/accuracy trade-offs for methods with strong
guarantees (e.g. differential privacy).

2 Data

The data set to be anonymized consists of tran-
scripts generated by an internal proprietary ASR
system. Raw transcripts are passed through an in-
verse text normalization module to generate final
formatted transcripts. The transcripts in the data set
include phone and video conference conversations
between at least one and usually two or more speak-
ers in business contexts, such as voicemails (single
speaker), call center conversations (typically two
speakers) and internal company meetings (two or
more).

Transcripts generated from an ASR system are
imperfect due to characteristics common to busi-
nesses, such as noisy environments, fast or quiet
speakers, and poor-quality microphones. Recog-
nition errors propagate to the final transcription,
which can create difficulties in applying and evalu-
ating the anonymization process.

3 Anonymization Process

Mindful of the ongoing discussion over the appro-
priate terminology for such processes (Garfinkey,
2015), we use the term “anonymization” herein be-
cause the intended outcome of our method is that
no individual can be identified from the resulting
text. Additionally, specifying anonymization distin-
guishes our method from pseudonymization, which
appears superficially similar in that it includes re-
placing PI with tokens, e.g. [PERSON_NAME_1].
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The difference is that pseudonymization maintains
a consistent mapping of the replacement token
across conversations, potentially permitting later
reidentification, whereas our process reuses these
de-identified tokens across conversations, function-
ally eliminating the possibility of using them for
re-identification purposes.

3.1 PI identification

There are several commercial offerings for PI iden-
tification and anonymization of text data. We
surveyed services by Amazon,2 Microsoft,3 and
Google.4 We selected Google’s Cloud Data Loss
Prevention (DLP) service due to its broader cov-
erage of PI categories. The DLP service defines a
taxonomy of information types, or infoTypes; kinds
of sensitive data such as names, email addresses,
and telephone numbers.5 An additional advantage
of using the DLP service was the in-house access to
data stored in BigQuery6 and the ease of creating a
configuration template to set up asynchronous jobs
for large volumes of data, which was well suited
for our use case.

In the PI identification process, we included most
of the global infoTypes from the available taxon-
omy, as well as those infoTypes which are specific
to the US and Canada (e.g. social security or so-
cial insurance numbers). A preliminary analysis
suggested that the ETHNIC_GROUP, GENDER,
DATE, and TIME infoTypes had a much higher
rate of false positives (FPs) in our data sets, and
so we excluded them. The taxonomy also includes
categories for human names. The categories FE-
MALE_NAME, MALE_NAME, FIRST_NAME, and
LAST_NAME are individually and collectively sub-
sets of the PERSON_NAME infoType, and so we
retain the latter while excluding all of the former.

We made the following modifications to DLP’s
PI identification to improve its performance on our
data set:

1. Exclusion List: On the basis of the most
frequent FPs seen in the masked transcripts

2https://docs.aws.amazon.com/transcribe/
latest/dg/pii-redaction.html

3https://learn.microsoft.com/en-us/
azure/ai-services/language-service/
personally-identifiable-information/how-to-call

4https://cloud.google.com/dlp/docs/
sensitive-data-protection-overview

5For a complete list, see https://cloud.google.com/
dlp/docs/infotypes-reference.

6https://cloud.google.com/bigquery

we created an exclusion list for the PER-
SON_NAME, ORGANIZATION_NAME, and
LOCATION infoTypes.

2. Custom dictionary: A custom dictionary was
added to the PI detection configuration for
the two infoTypes of PERSON_NAME and
ORGANIZATION_NAME to reduce the num-
ber of false negatives (FNs) and increase the
chance of correctly detecting names of organi-
zations and people in the transcripts. Both of
these resources were developed from a propri-
etary database of company and user names.

3. Letters and digits: After preliminary evalu-
ation of the DLP API on our data, two addi-
tional infoTypes are created and added to the
identification configurations:

• Spelled words: Our transcription engine
transcribes and formats letter sequences,
for example verbally spelled-out words,
with hyphens as separators e.g. A-L-P-
H-A. The DLP API fails to detect and
mask these instances, leaving potential
PI in the anonymized data. A regular
expression pattern to detect such groups
in the transcript was added to the custom
dictionary.

• Numbers: Although our transcription en-
gine can successfully decode and format
digit sequences such as phone numbers,
if a user repeats digits, or there is a tran-
scription error such as “four” mistran-
scribed as “for”, there is the potential for
an unformatted sequence of digits to ap-
pear in the transcripts, which may not
be detected by the DLP API. We there-
fore added a regular expression to detect
numeric sequences of length 3, reducing
the risk of missing potentially identifi-
able data due to mistranscription.

4. Usernames: Although they fall within the
scope of DLP’s built-in GENERIC_ID info-
Type, usernames such as enigma52 or Mr-
bigchef were consistently not tagged as po-
tential PI by the DLP service. We identified
instances where these unmasked usernames
were used across multiple social media plat-
forms, or were some combination of multiple
pieces of PI such as first initial + last name,
first name + last name or first name + birth
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Original Transcript
Pam: This is Pam calling from Dunder Mifflin,
may I speak to Jim?
Anonymized Transcript
[PERSON_NAME_1]: This is [PERSON_NAME_1] calling
from [ORGANIZATION_NAME_1],
may I speak to [PERSON_NAME_2]?

Table 1: Example of context-aware anonymization

year, and in each of these instances could be
used to identify the user.

The DLP service can detect domain or data-
specific entities via the creation of a hotword
regex (regular expression). We improved the
detection accuracy of GENERIC_ID and PER-
SON_NAME in two ways. Firstly, we cre-
ated a hotword regex for mentions of the word
user name in our data, e.g. (username|user
name|Username|user ID) and defined a con-
text window of 100 characters around the hot-
word regex as an area of higher likelihood
username detection. Secondly, we added a
custom regex to the GENERIC_ID infoType
to detect alphanumeric sequences of a certain
length and commonly-used conditions for cre-
ating a username. Together, these approaches
increased the hit rates for usernames up to
66% in our data set.

5. Context-aware anonymization: DLP does
not offer means of differentiating tokens or
instances of identified infoTypes, thus losing
semantic information in the application of the
anonymized text. In order to preserve con-
text for later analysis, each masked span is
assigned a unique numeric ID within the call.
Multiple instances of the same masked infor-
mation are assigned the same ID. See Table 1
for an example. 7

4 Residual Risk Analysis

4.1 Identifying and annotating residual risks
Transcripts that were redacted using Google’s DLP
were subsequently annotated by humans to identify
any residual PI that had not been detected, with
a subset being subject to a second pass for veri-
fication.8 Annotation of residual PI proved to be

7Note that numeric IDs do not persist across calls, which
would cross into pseudonymization and raise a reidentification
risk.

8While we made some effort to mitigate false positives,
this is not an issue that impacts our discussion here, which is

challenging, requiring multiple iterations of the
guidelines with our annotators. Table 2 shows the
output of post-anonymization annotation on a ficti-
tious example.

Annotators did not tag instances of undetected
PI that were not relevant to personal identification,
even if there was an associated infoType. For exam-
ple, DLP redacts generic ID numbers, but missed
instances of these were only tagged if they could
contribute to identifying an individual — for in-
stance, organization-internal order numbers were
not tagged, while a business registration license
number would be. This choice was made because
our goal was not to evaluate the accuracy of the
PI tagging per se, but rather to quantify the risk of
residual PI after anonymization. In Table 2, a tran-
scription error results in partial detection, hence
only partial anonymization, of the order number.
It is not annotated, however, because the residual
partial information of an internal order number is
not usable for identifying the speaker.

Given the unstructured nature of transcript data
and potential transcription errors, PI may be im-
perfectly formatted, so it may occur that only a
portion of a span of PI is detected and tagged.
To account for such cases, we associate with any
given tag [TAG] a TAG_PARTIAL tag to be used
by the annotators when only part of the PI is not
anonymized. Table 2 demonstrates such cases; Per-
son 1’s last name and Person 2’s email domain
name are marked as _PARTIAL.

We found that the most common infoTypes
missed by the de-identification process are PROD-
UCT and ORGANIZATION. There are two scenar-
ios in which PRODUCT and ORGANIZATION are
mentioned in a conversation: a common product
or organization that can be used as a conversation
topic, and the specific product or organization the
speaker associates with. There is quite a differ-
ence between a person discussing using an iPhone
from Apple and a person selling a product for their
own company — the former does not provide much
insight into identifying the speaker, but the latter
does. However, DLP PI identification doesn’t dif-
ferentiate and doesn’t have a consistent pattern in
identifying the product and organization in the two
scenarios. Therefore, in our evaluation, we only
consider the missed product or organization to con-
tain residual risk if they are closely related to the
speaker. To illustrate, in Table 2, Dunder Mifflin

concerned with preventing the leakage of PI.
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Original Transcripts
Person 1: Dunder Mifflin, this is Rachel green speaking.
Person 2: Hi, this is mark from ABC Trust Fund, we just ordered a set of paper
and they have worse quality than staples. We would like to return and get refund.
Person 1: Okay, what is the order number?
Person 2: It’s B. 231 C. for A. two.
Person 1: And the email for that order?
Person 2: It’s M-K two one @abc.com
Anonymized Transcripts
Person 1: Dunder Mifflin, this is [PERSON_NAME_1] green speaking.
Person 2: Hi, this is [PERSON_NAME_2] from [ORGANIZATION_NAME_1],
we just ordered a set of paper and they have worse quality than staples.
We would like to return and get refund.
Person 1: Okay, what is the order number?
Person 2: It’s B. [NUMERIC] C. for A. two.
Person 1: And the email for that order?
Person 2: It’s M-K two one [EMAIL_1]
Anonymized + Annotated Transcripts
Person 1: (Dunder Mifflin)[MISSED_ORGANIZATION_NAME_SPEAKER], this
is [PERSON_NAME_1] (Green)[MISSED_PERSON_NAME_PARTIAL] speaking.
Person 2: Hi, this is [PERSON_NAME_2] from [ORGANIZATION_NAME_1],
we just ordered a set of paper and they have worse quality than (staples)[MISSED_ORGANIZATION_NAME].
We would like to return and get refund.
Person 1: Okay, what is the order number?
Person 2: It’s B. [NUMERIC] C. for A. two.
Person 1: And the email for that order?
Person 2: It’s (M-K two one)[MISSED_EMAIL_PARTIAL] [EMAIL_1]

Table 2: Example of post-anonymization annotation of residual PI. Missed PI is enclosed in parentheses and assigned
a tag derived from the associated infoType.

was marked with the tag _SPEAKER to denote the
risk associated with the missed PI, while Staples
was not as it does not associate with any speakers
in the conversation.

4.2 Quantifying residual risk

To assess residual risk for a conversation, we must
first quantify the risk for each infoType. We be-
gin by distinguishing direct and indirect identifiers,
following Elliot et al. (2020):

• Direct Identifier: A variable or set of vari-
ables specific to an individual (e.g. name, ad-
dress, phone number, bank account) that are
explicitly or commonly used for the purpose
of identification. These identifiers have a com-
paratively higher risk profile.

• Indirect Identifier: Information that in isola-
tion does not enable identification (e.g. gen-
der, nationality, city of residence), but may
do so in combination with other indirect iden-
tifiers and/or background knowledge. These
identifiers have a reduced but non-zero risk
profile.

Residual risk is assigned an integer score ranging
from 0 to 5. As stated above, for direct identifiers

such as a person’s name, credit card number, pass-
port number, or social security/insurance number,
we assign a maximal risk score of 5, to account
for both the specificity of the identifier (a proxy
for the likelihood of re-identification) and the im-
pact of potential misuse. For indirect identifiers
like company name or city of residence, we assign
a risk score of 2 or 3. These risk categorizations
for different infoTypes were developed in collab-
oration with privacy counsel. For the full list of
categorizations and scores, see Table 6 in Appendix
A.

For partially-redacted PI, tagged with the _PAR-
TIAL annotation, the risk score of the associ-
ated tag is halved and rounded up or down
to the next higher or lower integer, depending
on the risk profile. For example, if the tag
[MISSED_EMAIL] has a score of 3, then the
score for [MISSED_EMAIL_PARTIAL] becomes
⌊3/2⌋ = 1. In the case of [PERSON_NAME],
which has a base score of 5, we round the score for
[MISSED_PERSON_NAME] up to 3 to account
for the wide variety of circumstances in which
[MISSED_PERSON_NAME_PARTIAL] can occur.
As noted above, we consider both first names
and last names as _PARTIAL because the [PER-
SON_NAME] infoType is a superset of the other
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[_NAME] infoTypes and using both created incon-
sistencies.

To calculate the residual risk score for an entire
conversation, we sum the scores of the [MISSED_]
tags, avoiding double-counting of multiple
instances of a given token of missed PI. For
example, in a conversation with four instances of
(Marc)([MISSED_PERSON_NAME_PARTIAL]),
the risk score contributed by this tag would be 3
rather than 12 (= 4 × 3). Note that there can be
variations in the spelling and formatting of a given
token of PI due to ASR transcription error e.g.
Mark, Marc, M-A-R-K. In this case, we consider
them as a single piece of PI in three instances
instead of different PIs if the annotators determine
it is most likely a reference to the same entity.9

For the example in Table 2, the total residual risk
is calculated as follows (tag names are shortened
for consideration of space):

MISSED_ORG_NAME_SPEAKER = 2

MISSED_PERS_NAME_PARTIAL = ⌈5/2⌉ = 3

MISSED_EMAIL_PARTIAL = ⌊3/2⌋ = 1

Total_Risk_Score = 2 + 3 + 1 = 6

(1)

The score assigned to
MISSED_ORG_NAME_SPEAKER is
2 (see Appendix A, whereas the PERSON and
EMAIL identifiers, being tagged PARTIAL
are halved and round up (down, resp), as
discussed in Section 4.2. Note that the
MISSED_ORGANIZATION_NAME
tag is not included in the calculation above as it
is assigned a score of zero, because it does not
represent a conversational participant, but is simply
the name of a company.

4.3 Successful anonymization at the
population level

We wish to know what proportion of a corpus
of anonymized conversational transcripts carry an
unacceptable residual risk profile. Pursuant to
some preliminary data analysis, and in the ab-
sence of strong arguments to the contrary, we
make the simplifying assumption that residual risks
scores are well modeled by a normal distribution,
N ∼ (µ, σ).

Given the previously-defined risk scores for each
category, and our assumption of residual risk score

9There is a potential difficulty here for conversations in-
cluding multiple participants with the same name. We hope to
address this in a future iteration of this work.

normality, we define the following simple criterion
as a measure of “successful" anonymization of a
given conversational transcript:

µ+ σ < 5 (2)

That is, we want the distribution of residual risk
scores in our corpus of anonymized transcripts to
be such that their mean plus one standard deviation
is less than 5. We select 5 as our threshold of ac-
ceptability for the following reasons: (i) it is the
risk score for a single occurrence of a direct identi-
fier, which carries a maximal residual risk profile
(high likelihood of re-identification and high im-
pact of misuse), and (ii) it is equal to a combination
of two complementary indirect identifiers such as
company name + person’s first name. Thus, 5 repre-
sents an easily-administerable target for assessing
whether PI in the output of automated processes
is sufficiently reduced to warrant more detailed re-
view (see 4.5, below). We manually reviewed a
set of high-scoring (above criterion) transcripts to
ensure that this threshold met our needs.

Our assumption that residual risk is normally
distributed implies that approximately 16% of our
corpus of anonymized conversations carry a resid-
ual risk greater than 5.10 Upon review of sam-
ple conversations, we find that anonymized tran-
scripts with risk scores that are above the thresh-
old—but do not have direct identifiers as part of the
score—do not in practice enable re-identification.
This is because as the indirect identifiers found in
the masked text do not in general have a compound-
ing effect. While we cannot guarantee the impos-
sibility of re-identification in such, the risk after
review was deemed acceptable. Table 3 provides
an illustrative example: the total residual risk score
is 6, with three independent instances of PI that do
not combine to increase the risk of identification of
any individual in the conversation.

We assessed the strength of our criterion manu-
ally, with anonymized call transcripts sampled from
our corpora of business conversations in customer
support, sales, videoconferencing, and direct call
contexts. As shown in Table 4, after anonymization,
human annotation of residual PI, and risk score as-
signment, none of the sampled corpora carried un-

10Recall that one standard deviation to each side of the mean
of a normal distribution accounts for approximately 68% of
the probability mass. Since we are only worried about one tail
of the distribution, i.e. the proportion with score greater than
5, we have one half of the tails’ probability mass included in
our coverage, for a total of 84%.
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Person 1: Hi [PERSON_NAME_2]. This is [PERSON_NAME_3] calling back
from (XYZ lawyer)(MISSED_ORGANIZATION_NAME_SPEAKER).
Person 2: Oh, hi.
Person 1: I am calling regarding your request to change your business name on
(IRS dot gov)(MISSED_URL) website.
Person 2: Oh, yes, I want it to be changed to
(ABC incorporated) (MISSED_ORGANIZATION_NAME_SPEAKER).

Table 3: Example conversation where residual risk score over-represents practical impact

acceptable risk profiles with our criterion (although
several did so at µ+ 2σ).

We conclude that a target residual risk score of
5 represents a conservative but readily achievable
level of assurance that the anonymization proce-
dure is effective.

4.4 Results

We sampled 498 conversations across four business
communication products to ensure the represen-
tation of different conversation contexts, such as
video conferencing, customer support, and sales
calls. Table 4 shows the residual risk statistics of
the five data sets.

Conversations in the video conferencing data
set tend to be longer than the other data sets, with
word counts five to six times that in other data
sets. 11 For the samples with high residual risks,
the identified PIs are not compounding, i.e., they
include multiple indirect identifiers that all refer to
different people.

After the residual risk score passes the suc-
cess criterion to demonstrate quantitatively that the
anonymization process reliably reduces risk to an
acceptable level, we conduct a red-team exercise to
stress test the resulting output.

4.5 Red-Teaming

The term “red team” originates in the military con-
text: a red team is a group that assumes the role of
an adversary, simulating attacks to identify vul-
nerabilities so that they can be resolved before
a real attacker can exploit them. In the context
of anonymization, this means “attacking” the de-
identified output using common internet resources
(e.g. search engines) and creative thinking to at-
tempt to re-identify participants. “Success” of the
exercise in our context — PI protection — means

11Meetings, the main source of video conferencing call data,
are typically longer and have more speakers than audio-only
calls.

Context Count Mean STD P95 Max µ + σ
Customer Support 1 100 0.7 1.4 3.1 6 2.1
Customer Support 2 98 1.3 2.1 6.0 11 3.4
Meetings 99 1.2 3.1 6.1 20 4.3
Sales Calls 100 0.6 1.3 3.1 6 1.9
1-to-1 Phone Calls 100 1.0 1.7 5.0 8 2.7
Total 498 1.0 2.0 5.0 20 3.0

Table 4: Residual risk analysis

that the adversary is unable to identify an individ-
ual based on remaining unmasked information in
the data set.

The red team for this exercise consisted of data
engineers, applied scientists, computational lin-
guists, privacy counsel, and a security advisor.

We sampled 200 conversations across different
conversation contexts for the red-teaming prac-
tice. The conversations were anonymized using
the modified DLP method described above.12 Our
red team found that of 200 full conversations, 181
calls (90.5%) were fully anonymized (no PI identi-
fied by the red team) and 19 calls (9.5%) showed
some residual PI. However, the team determined
that even with creative research and inference, none
of the remaining 19 calls contained enough PI to
successfully identify any individual, meaning that
the data set could be safely used to train an LLM
with no risk of exposing identifiable PI in later gen-
erative tasks. The failure of the red team to achieve
its goal is a strong indication of the success of our
anonymization methods.

With the proposed anonymization workflow suc-
cessfully passing both quantitative and qualita-
tive evaluation, we conducted LLM fine-tuning
experiments to demonstrate the usability of the
anonymized data for downstream tasks.

5 Privacy-Preserving LLM Training

Given a successfully anonymized data set, it can
be used in combination with training prompts to

12The conversations considered by the red team were not
annotated with MISSED_ labels, because this annotation step
was only used during the calibration and quantitative evalua-
tion of the automated de-identification method.
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fine-tune an LLM. As the training prompts con-
tain no PI either, the combined fine-tuning data set
contains no PI. If the model remains suitably perfor-
mant, this demonstrates the ability to benefit from
highly relevant domain-specific (i.e. real-world)
training data while substantially reducing or even
eliminating the risk of leakage or extraction.

5.1 Model
We used the “Chat” version of the LLaMA-2 model
(Touvron et al., 2023) with 7B parameters as our
base model.13 LLaMA-2 is an open-source LLM
developed by Meta. We chose LLaMA-2-7B as
it showed comparable performance to larger mod-
els with a reduced cost of deployment. This base
model was fine-tuned with a Text-to-Text Transfer
Transformer (Raffel et al., 2020) on 59000 external
samples and 13000 in-domain conversations. In
the following, we refer to our fine-tuned LLM as
DialpadGPT.

5.2 Experiment
After the model was fine-tuned, we sampled 400
LLM outputs across four downstream tasks of in-
terest (100 outputs per task), involving both gener-
ation and classification:

• Action Item: Generate a description of a well-
defined task to be completed after the call
conversation.

• Summarization: Generate a summary of the
conversation.

• Call Purpose: Classify the call into one of
a pre-defined group of broad conversational
themes, and the speaker intention and/or atti-
tude.

• Call Outcome: Classify the call into one of
a pre-defined group of categories that specify
the result of the call e.g. complaint resolved,
callback requested.

The four tasks were included in the fine-tuning
process. All inputs provided to the model to gen-
erate output samples were anonymized using the
process described above (the process used on the
fine-tuning data set).

5.3 Results
Human annotators manually reviewed the outputs
for each task and found no instances of PI in any

13https://huggingface.co/meta-llama/Llama-2-7b

of the output samples — that is, each piece of PI
remained anonymized in the output.

Model performance on the aforementioned test
set is shown in Table 5, which compares ROUGE-1
scores (Lin, 2004) and F1 scores of DialpadGPT
to the following commercial LLMs:

• GPT-3.5: GPT-3.5 is the model behind Ope-
nAI’s14 ChatGPT (Laskar et al., 2023). We
use the gpt-3.5-turbo-0613 model, which has
a maximum context length of 4096 tokens.

• GPT-4: GPT-4 is the latest LLM released by
OpenAI (OpenAI, 2023), which has a maxi-
mum context length of 8192 tokens. In this
experiment, we evaluate two versions of the
model: GPT-4 (gpt-4-0613) and GPT-4 Turbo
(gpt-4-1106-preview).

• PaLM-2: PaLM-2 (Anil et al., 2023) is an
LLM developed by Google. It leverages the
mixture of objectives technique (Anil et al.,
2023) and significantly outperforms the orig-
inal PaLM (Chowdhery et al., 2023) model.
We use the text-bison@001 model, which has
an input context window length of 8192 to-
kens.15

Across two generative tasks and two clas-
sification tasks, DialpadGPT, fine-tuned with
anonymized data, outperforms all four popular
commercial models.

6 Conclusion

In this paper, we presented a method for improv-
ing data anonymization on transcripts of business
conversations using a publicly available service.
We proposed a framework for quantitative and
qualitative criteria for anonymization (residual risk
scoring plus red team review), and showed that
an LLM fine-tuned with data anonymized by the
proposed workflow on relevant tasks has superior
performance compared to commercially available
LLMs. This shows LLMs are still able to under-
stand and leverage contextual information without
access to those key entities. In practice, we found
that having some key entities like user or company
names is helpful for some downstream tasks. In fu-
ture work we will assess the performance of LLMs

14https://platform.openai.com/docs/models/
15Available via Google’s VertexAI platform. https:

//cloud.google.com/vertex-ai/docs/generative-ai/
model-reference/text
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Models/Tasks Summarization Action Items Call Purpose Call Outcome
ROUGE-1 ROUGE-1 F1 F1

DialpadGPT 0.6096 0.5532 0.6562 0.738
GPT-3.5 0.4957 0.3918 0.5078 0.6638
GPT-4 0.5783 0.5483 0.5508 0.6114
GPT-4 Turbo 0.5243 0.4143 0.6289 0.6812
PaLM-2 0.4832 0.4629 0.4492 0.4803

Table 5: Comparison between LLMs on downstream tasks of interest.

fine-tuned on an augmented anonymized data set,
with names substituted by gender-neutral names
and companies substituted by synthetic companies.

7 Limitations

One limitation of relying on a commercial system
for data anonymization is that it is not always clear
how to improve the process when unexpected re-
sults are obtained. With the improvements we made
to the system, person and company name are still
the infoTypes most likely to have false negatives,
especially in lexically ambiguous cases like the
name Mark16 or with uncommon or unusually for-
matted company names.

In addition, the use of proprietary data for eval-
uating the results of fine-tuning LLMs renders di-
rect comparison to other organizations’ models
challenging. Despite the low residual risk and re-
sulting high confidence in the anonymization of
the data sets, privacy best practices nonetheless
caution against publishing our resulting data sets
(Narayanan and Shmatikov, 2007). That being said,
the overall methodology described here is certainly
replicable, using a publicly available anonymiza-
tion API, with task or domain-specific modifica-
tions to the PI taxonomy, and with the residual risk
threshold tuned appropriate to the use case.

Finally, in our evaluation we mainly focused
on the recall/hit-rate of the PI tagging. The preci-
sion/recall trade-off in machine learning suggests
that an anonymization system with very high recall,
i.e. poor precision, will lose context and generate
data that cannot be used in LLM training. In prac-
tice, however, we did not observe such cases and
our experiment showed that LLMs are still able to
capture enough context after the anonymization.

16The person’s name Mark and verb mark are often con-
fused in the formatting process in terms of casing and thus fail
to be identified as PI in the anonymization process.
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A Residual Risk Categorization

Type Missing Occurrence Tag Google Tag Score
(MISSED_EMAIL) EMAIL_ADDRESS 4
(MISSED_LOCATION) LOCATION 2
(MISSED_LOCATION_COORD) LOCATION_COORDINATES 4
(MISSED_US_STATE) US_STATE 1

Contact Info (MISSED_PERSON_NAME) PERSON_NAME 5
(MISSED_PHONE) PHONE_NUMBER 4
(MISSED_ADDRESS) STREET_ADDRESS 4
(MISSED_USER_NAME) USER_NAME 3
(MISSED_DOMAIN) DOMAIN_NAME 1
(MISSED_HTTP_COOKIE) HTTP_COOKIE 1
(MISSED_ORGANIZATION_NAME) ORGANIZATION_NAME 0
(MISSED_ORGANIZATION_NAME_SPEAKER) ORGANIZATION_NAME 2

Entities (MISSED_PRODUCT) PRODUCT 0
(MISSED_PRODUCT_SPEAKER) PRODUCT 2
(MISSED_STORAGE_SIGNED_POLICY) STORAGE_SIGNED_POLICY_DOCUMENT 2
(MISSED_STORAGE_SIGNED_URL) STORAGE_SIGNED_URL 3
(MISSED_URL) URL 2

Demographic (MISSED_AGE) AGE 1
(MISSED_DATE_OF_BIRTH) DATE_OF_BIRTH 3
(MISSED_ICD9_CODE) ICD9_CODE 2

Health Info (MISSED_ICD10_CODE) ICD10_CODE 2
(MISSED_MEDICAL_RECORD_NUMBER) MEDICAL_RECORD_NUMBER 5
(MISSED_MEDICAL_TERM) MEDICAL_TERM 1
(MISSED_ADVERTISING_ID) ADVERTISING_ID 3
(MISSED_GENERIC_ID) GENERIC_ID 4
(MISSED_ICCID_NUMBER) ICCID_NUMBER 4
(MISSED_IMEI_HARDWARE_ID) IMEI_HARDWARE_ID 4
(MISSED_IMSI_ID) IMSI_ID 4

ID number (MISSED_IP_ADDRESS) IP_ADDRESS 3
(MISSED_MAC_ADDRESS) MAC_ADDRESS 3
(MISSED_MAC_ADDRESS_LOCAL) MAC_ADDRESS_LOCAL 3
(MISSED_PASSPORT) PASSPORT 5
(MISSED_VAT_NUMBER) VAT_NUMBER 2
(MISSED_VEHICLE_IDENTIFICATION_NUMBER) VEHICLE_IDENTIFICATION_NUMBER 5
(MISSED_CREDIT_CARD_NUMBER) CREDIT_CARD_NUMBER 5
(MISSED_CREDIT_CARD_TRACK_NUMBER) CREDIT_CARD_TRACK_NUMBER 5
(MISSED_IBAN_CODE) IBAN_CODE 5

Payment Info (MISSED_SWIFT_CODE) SWIFT_CODE 1
(MISSED_ROUTING_NUMBER) ROUTING_NUMBER 3
(MISSED_SSN) SSN 5

Table 6: Residual risk scores assigned to infoTypes
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