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Introduction

We are excited to offer you the first proceedings from the workshop on Computational Approaches to
Language Data Pseudonymization, CALD-pseudo 20241!
We have accepted 10 high-quality papers representing a wide geographic diversity, namely co-authors
with affiliations in the Basque Country, Canada, Finland, France, Germany, Japan, Norway, Spain, Swe-
den, and the USA.
In this volume, you can read papers that deal with the topic of personal or sensitive information, and
the subsequent question of accessibility of research data. Accessibility of research data is critical for
advances in many research fields but textual data often cannot be shared due to the personal and sensitive
information it contains, e.g. names, political opinions, sensitive personal information, and medical data.
General Data Protection Regulation, GDPR (EU Commission, 2016), suggests pseudonymization as a
solution to secure open access to research data but we need to learn more about pseudonymization as
an approach before adopting it for the manipulation of research data (Volodina et al., 2023). The main
challenge is how to effectively pseudonymize data so that such individuals cannot be identified, while
at the same time keeping the data usable for research (e.g. in computational linguistics, linguistics) and
natural language processing tasks for which it was collected.
This workshop has invited a broad community of researchers in all concerned cross-disciplinary fields
to jointly discuss challenges within pseudonymization, such as

• automatic approaches to detection and labelling of personal information in unstructured language
data, including events and other context-dependent cues revealing a person;

• developing context-sensitive algorithms for replacement of personal information in unstructured
data;

• studies into the effects of pseudonymization on unstructured data, e.g. applicability of pseudony-
mised data for the intended research questions, readability of pseudonymised data, or addition of
unwelcome biases through pseudonymization;

• effectiveness of pseudonymization as a way of protecting writer identity;

• reidentification studies, e.g. adversarial learning techniques that attempt to breach the privacy
protections of pseudonymized data;

• constructing datasets for automatic pseudonymization, including methodological and ethical as-
pects of those;

• approaches to the evaluation of automatic pseudonymization both in concealing the private infor-
mation and preserving the semantics of the non-personal data;

• pseudonymization tools and software: evaluating the available tools and software for pseudonymi-
zation in different languages, and their ease of use, scalability, and performance;

• and numerous other open questions.

The workshop was one full day and included two invited talks - by Ildikó Pilán and Anders Søgaard.
We would kindly like to thank our program committee for their valuable (and enthusiastic!) contribution
to the success of the workshop:

• Lars Ahrenberg, Linköping University, Sweden

• Terhi Ainiala, University of Helsinki, Finland

1https://mormor-karl.github.io/events/CALD-pseudo/
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• Emilia Aldrin, Halmstad University, Sweden

• Špela Arhar Holdt, University of Ljubljana, Slovenia

• Andrew Caines, University of Cambridge, United Kingdom

• Hercules Dalianis, Stockholm University, Sweden

• Dana Dannélls, University of Gothenburg, Sweden

• Simon Dobnik, University of Gothenburg, Sweden

• Cyril Grouin, LIMSI, CNRS, Université Paris-Saclay, France

• Lasse Hämäläinen, University of Helsinki, Finland

• Aron Henriksson, Stockholm University, Sweden

• Dimitrios Kokkinakis, University of Gothenburg, Sweden

• Jannika Lassus, University of Helsinki, Finland

• Therese Lindström Tiedemann, University of Helsinki, Finland

• Pierre Lison, Norwegian Computing Center, Norway

• Krister Lindén, University of Helsinki, Finland

• Peter Ljunglöf, Chalmers University of Technology / University of Gothenburg, Sweden

• Ricardo Muñoz Sánchez, University of Gothenburg, Sweden

• Boel Nelson, Aarhus University, Denmark

• Lieselott Nordman, University of Helsinki, Finland

• Ildikó Pilán, Norwegian Computing Center, Norway

• Vipul Raheja, Grammarly, USA

• Tatjana Scheffler, Ruhr University Bochum, Germany

• Vicenc Torra, Umeå University, Sweden

• Thomas Vakili, Stockholm University, Sweden

• VG Vinod Vydiswaran, University of Michigan, USA

• Elena Volodina, University of Gothenburg, Sweden

• Xuan-Son Vu, Umeå University, Sweden

Our further thanks go to the generous support from the Swedish Research Council2 through its funding
to the research environment project Grandma Karl is 27 years old3.

2https://www.vr.se/english/swecris.html#/project/2022-02311_VR
3https://mormor-karl.github.io/

iii

https://www.vr.se/english/swecris.html#/project/2022-02311_VR
https://mormor-karl.github.io/


Organizing Committee

General Chair

Elena Volodina, University of Gothenburg, Sweden

General Co-chairs

Simon Dobnik, University of Gothenburg, Sweden
Therese Lindström Tiedemann, University of Helsinki, Finland
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Keynote Talk: NLP is Dead - Now What?
Anders Søgaard

University of Copenhagen, Denmark
2024-03-21 09:10:00 – Room: Corinthia hotel, Gardjola 3 (virtual talk)

Abstract: For decades, the NLP community was on a mission to get computers to understand language.
To the extent the goal of the mission was defined, our mission is complete. Now what? There are still
a ton of open problems, of course. Pseudonymization is one of them. Others include bias mitigation,
performance parity, or getting things to run on-device. None of these problems are NLP problems, but
they are all inter-dependent. Does their locus leave room for a raison d’être for the remnants of NLP?

Bio: Anders Søgaard is Full Professor in Natural Language Processing and Machine Learning, Dpt. of
Computer Science, University of Copenhagen. He is also affiliated with the Pioneer Centre for Artificial
Intelligence, Dpt. of Philosophy, and Center for Social Data Science. He was previously at University
of Potsdam, Amazon and Google Research. He has won eight best paper awards and several prestigious
grants.
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Keynote Talk: Pseudonymisation and related techniques: a
quest for determining what personal information to rewrite

and how
Ildikó Pilán

The Norwegian Computing Center, Norway
2024-03-21 13:00:00 – Room: Corinthia hotel, Gardjola 3

Abstract: In this talk, we will walk through the different steps involved in the process of concealing
personal information. We will start by looking at methods for which pieces of personal information to
detect and how. We will then discuss strategies for rewriting these and, finally, we will look at approaches
proposed for evaluating the resulting redacted text in terms of privacy protection and utility preservation.
We will discuss previous work inspired by Named Entity Recognition as well as more recent approaches
employing Large Language Models. We will also explore the differences between pseudonymization and
anonymization highlighting the remaining challenges in performing these automatically.

Bio: Ildikó Pilán is a Senior Research Scientist at the Norwegian Computing Center, Norway. Her most
impactful research comes from linguistic complexity studies within the domain of language learning,
and recently from the area of anonymization and pseudonymization where she has been actively working
on preparing datasets, benchmarks and models for automatic anonymization and pseudonymization of
Norwegian and English data in the project Cleanup (e.g. Lison et al., 2021; Pilán et al., 2022). Her fields
of expertise include Natural Language Processing, Machine Learning, privacy protection, data privacy,
medical text processing and Intelligent Computer-Assisted Language Learning.
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Handling Name Errors of a BERT-Based Text De-Identification System:
Insights from Stratified Sampling and Markov-based Pseudonymization

Dalton Simancek
Department of Learning Health Sciences

University of Michigan
daltonsi@umich.edu

V.G.Vinod Vydiswaran
School of Information
University of Michigan
vgvinodv@umich.edu

Abstract

Missed recognition of named entities while de-
identifying clinical narratives poses a critical
challenge in protecting patient-sensitive health
information. Mitigating name recognition er-
rors is essential to minimize risk of patient re-
identification. In this paper, we emphasize the
need for stratified sampling and enhanced con-
textual considerations concerning Name tokens
using a fine-tuned Longformer BERT model
for clinical text de-identification. We introduce
a Hidden in Plain Sight (HIPS) Markov-based
replacement technique for names to mask name
recognition misses, leading to a significant re-
duction in name leakage rates. Our experimen-
tal results underscore the impact on addressing
name recognition challenges in BERT-based de-
identification systems for heightened privacy
protection in electronic health records.

1 Introduction

Clinical narratives and unstructured documentation
within electronic health records (EHRs) are con-
sidered valuable assets in epidemiological research
(Sheikhalishahi et al., 2019; Patra et al., 2021) and
the creation of prognostic clinical prediction mod-
els (Seinen et al., 2022). The advancement of these
applications is frequently impeded by the limited
availability of de-identified clinical text corpora.
Clinical notes must remove protected health in-
formation (PHI) to safeguard patient privacy and
align with privacy regulations exemplified by the
United States’ HIPAA Safe Harbor privacy guide-
lines (OfC, 2022).

Bidirectional Encoder Representations from
Transformers (BERT) models have shown promise
in automatically identifying sensitive PHI in clini-
cal texts (Johnson et al., 2020; Ahmed et al., 2020).
Previous research has explored BERT variants with
hyper-parameter tuning, comparing their efficacy
in clinical text de-identification across PHI sub-
categories, including dates, phone numbers and

names (Meaney et al., 2022). Less focus has
been given to the shrinking but persistent margins
of error that plague even the best-performing de-
identification pipelines. For instance, our base de-
identification model uses a Longformer BERT vari-
ant (Beltagy et al., 2020) fine-tuned using discharge
summaries from a US-based tertiary healthcare in-
stitution. In preliminary work as a part of Alkiek
et al. (2023), we discovered that the Longformer
model performed exceptionally well during pre-
liminary testing among the pretrained models we
sampled. Our base model achieved an impressive
but far-from-optimal overall F1 score of 0.90 for
names (Table 1). Considering the inherent privacy
risks of missed PHI, even small margins of error
have the potential to result in substantial numbers
of exposed patient records with identifiable health
information when de-identification systems are de-
ployed in the real world.

This study aims to contribute to characterizing
Name errors in BERT-based transformer models
on real-world discharge summaries. The goal is to
provide insights into the development of compre-
hensive de-identification strategies capable of both
correcting bias and tolerating mistakes related to
names. We first compare the effect on recognizing
names using a fine-tuned Longformer model with
a stratified sample that uses demographic informa-
tion against a model fine-tuned with a standard
randomized sample. We suggest that enhancing the
recognition of name tokens in our de-identification
system is achieved by including sets of name to-
kens found in stratified training samples compared
to those in random training samples. Next, we
investigate a Hidden in Plain Sight (HIPS) Markov-
based replacement technique for names. Using
real-world discharge summaries from an academic
healthcare institution, we compare the effectiveness
of a Markov-based replacement strategy against
a random replacement strategy in reducing name
leakage.
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PHI Mean True Precision Recall F1-ScoreToken Count
PROVIDER NAMES 503 .984 (.007) .984 (.007) .984 (.007)
NON-PROVIDER NAMES 1836 .904 (.019) .850 (.027) .876 (.010)
NAMES IN WHITE RECORDS 1756 .923 (.022) .889 (.019) .905 (.006)
NAMES IN URM RECORDS 583 .925 (.018) .860 (.024) .892 (.014)

ALL NAMES 2339 .923 (.016) .880 (.019) .900 (.007)

ALL PHI 13103 .953 (.005) .952 (.005) .952 (.004)

Table 1: Baseline fine-tuned Longformer performance, averaged over 5 runs, on identifying name tokens over a test
set of discharge summaries (n=80). For performance metrics, the numbers in parentheses show standard deviation.
Name tokens from full name entities that matched with doctor, nurse or specialist names in a given EHR provider
list were labeled as provider names. Name tokens from unmatched full name entities in the EHR provider list were
labeled as non-provider. Underrepresented minority (URM) records are notes associated with patients reporting any
non-white racial identity or a Hispanic/Latino ethnicity.

2 Related Work

2.1 Name-related biases in BERT Models

Naming a person often involves a deliberate or sub-
conscious choice conveying racial, ethnic, class-
based, gender-normative, or religious affiliations
(Seguin et al., 2021; Lindsay and Dempsey, 2017).
These choices collectively contribute to naming
trends or groups of names characterized by gen-
der, race, or association with a specific locality or
decade (Lockhart et al., 2023). Learned contextual
embeddings in BERT models have been shown
to capture such signals in socio-demographic
phenomena, which may then contribute to dis-
criminative biases in recruitment and other sys-
tems informed by trained contextual embeddings
(Ramezanzadehmoghadam et al., 2021). Name to-
kens like "Smith" are expected to be prominent
in United States based, English-language datasets,
making them more easily identifiable by systems
trained on those datasets. In contrast, names
that are rare, unique, or correspond to underrep-
resented minority (URM) groups in the training
data may carry a higher risk of being overlooked
by the model. Our work is inspired by Xiao et al.
(2023), who studied learned name biases in pre-
trained BERT models for de-identification using
synthetic patient data to evaluate fairness across de-
mographic patient groups. Others, such as Yue and
Zhou (2020), have proposed solutions involving
training data augmentation.

2.2 Hidden in Plain Sight (HIPS) strategies

Multiple strategies have been explored to enhance
privacy through de-identification. Notable among
these are the HIPS approaches, which involves sub-

stituting personally-identifiable information (PIIs)
with authentic pseudonyms to mitigate false neg-
atives (Carrell et al., 2013). For example, in-
stead of replacing a real name token "John" with
a placeholder tag "[NAME]", HIPS uses a realis-
tic pseudonym like "Tony". As an extension of
this methodology, Osborne et al. (2022) proposed
Bratsynthetic, which utilizes a Markov-based sub-
stitution component to introduce randomness in the
selection of pseudonyms. Building on this foun-
dation, our study applies a similar approach to a
real-world dataset of discharge summaries, extend-
ing the scope of its evaluation beyond simulated
environments.

3 Methods

3.1 Stratification of Training Data

Our methodology challenges the conventional prac-
tice of randomly selecting clinical notes for train-
ing data annotation, that tends to predominantly
include the majority patient population of white
patients. Instead, we advocate for a stratified
sampling approach to diversify the training data,
that would select disproportionately more patients
from underrepresented minority communities. This
method aims to improve the generalizability of the
Longformer-based de-identification model previ-
ously proposed by Alkiek et al. (2023), particularly
in identifying patient names during inference. We
propose that the name token sets found in a strat-
ified training samples containing a higher propor-
tion of documents from URM patients, would re-
sult in superior name de-identification performance
than the performance achieved with the name token
set found in random training samples.
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Sampling Demographic # Names Precision Recall F1 score

Random
All 654 (17) 0.918 (0.021) 0.843 (0.019) 0.878 (0.008)
White 483 (24) 0.916 (0.014) 0.849 (0.022) 0.881 (0.009)
URMs 171 (29) 0.901 (0.029) 0.837 (0.042) 0.867 (0.020)

Stratified
All 654 (17) 0.897 (0.032) 0.842 (0.018) 0.868 (0.014)
White 483 (24) 0.900 (0.026) 0.857 (0.032) 0.877 (0.015)
URMs 171 (29) 0.892 (0.030) 0.837 (0.025) 0.863 (0.020)

Table 2: Test set performance of patient name identification models fine-tuned on (a) random sample (URM patients:
21%, s.d. 0.01) and (b) stratified sample (URM patients: 34%, s.d. 0.01). Averaged over five runs. The numbers in
parentheses are standard deviations.

Our annotated dataset consists of 400 discharge
summary notes from a tertiary academic medical
center, annotated by trained medical professionals
to label eighteen PHI categories, including provider
and patient names. The average discharge summary
consists of 1643 tokens containing 43 PHI entity
annotations, of which 12 are names. The average
name entity has two tokens, typically a first name
and a surname. For this study, full-name entities
that did not match with doctor, nurse, or specialist
names in a given EHR provider list were labeled
as non-providers and assumed to patient or family
names.

The discharge summary notes were randomly
split 80:20 into train-test splits. To implement the
stratified sampling approach and evaluate its effec-
tiveness, we created two subsamples of 200 notes
each from the train set. One subsample followed
random selection, while the other used stratified
sampling that leveraged structured EHR race and
ethnicity fields to create a white stratum and an
underrepresented minority (URM) stratum. A pa-
tient was categorized into the URM stratum if their
record indicated any non-white racial identity or
Hispanic/Latino ethnicity. In the stratified sam-
ple, we included the maximum number of available
notes from URM (Underrepresented Minority) pa-
tients in the train split. The remaining notes were
randomly sampled from white patients. This pro-
cess was repeated five times, starting from a new
80:20 split.

On average, the number of instances from the
underrepresented minority patients increased from
21% in the random sample to 34% in the stratified
sample. Subsequently, two new Longformer mod-
els were trained and tested on the same held-out
test set (n=80): one fine-tuned with the random sub-
sample and the other with the stratified subsample.

3.2 Markov-based name pseudonymization

Inspired by the strategy used by Osborne et al.
(2022), we designed the following Markov-based
strategy to replace the names identified by the
Longformer models with surrogates. For each
note, when the Longformer identifies k name token
predictions, our approach will select k surrogates.
There’s a p = 0.5 chance that the preceding sur-
rogate name will be reused, and a p = 0.5 chance
that a new surrogate name will be chosen. In ad-
dition, each surrogate name is constrained to be
used at most t = 4 times, which follows the ob-
servation that the mode frequency of name tokens
in the training documents is four. Once identified,
the surrogate names are used to replace the origi-
nal names at random. This strategy was contrasted
with random pseudonymization strategy, where the
k surrogate names are selected at random without
replacement. All surrogate names were selected
from a United States Census name list (Bureau,
2021) and the sampling strategies are document-
independent, ensuring that names are not sampled
repetitively for the same name tokens across multi-
ple documents. The values for the probability and
repetition threshold was set empirically based on
the mode of the name frequency distribution.

3.3 Name leakage

We defined name leakage as instances where a
name token appears more frequently than allowed
by a perfect re-identification system and replace-
ment strategy. For example, a name token appear-
ing five times in a document would flag that docu-
ment as leaking real name tokens with our Markov-
based replacement strategy, as it contains a name
token count exceeding the maximum threshold of
t = 4 uses. The overall leakage rate was calcu-
lated across the entire test set by considering the
proportion of notes where the mode of the name

3



frequency distribution was indeed a true patient
name. This follows a heuristic that in a clinical
note, the patient’s name is the one most likely to re-
peat. Wilcoxon signed-rank tests (Wilcoxon, 1945)
were conducted to test statistical significance of
differences in mode of name frequency distribution
in the original data and each replacement strategy.
McNemar’s test (Sundjaja et al., 2023) was con-
ducted to test if the leakage rate of Markov-based
strategy is significantly lower than the random re-
placement strategy.

4 Results

4.1 Stratification of training data

Across the five iterations, the performance of the
Longformer models fine-tuned with stratified sam-
ples exhibited comparable results to the models
fine-tuned with random samples (Table 2). A slight
reduction in precision and F1-score was observed
across all test notes and within each demographic
subgroup. Recall remained consistent for all test
notes and URM notes, with a modest and statisti-
cally insignificant increase in recall for names in
notes from white patients. Consequently, our demo-
graphic stratification rule, aimed at enhancing the
representation of URMs in the training set of notes
from 21% to 34%, did not yield an improvement in
name recognition.

4.2 Markov-based name pseudonymization

Pseudonymization strategies significantly influ-
enced the frequency of name tokens in documents,
impacting the risk of name leakage. For each note,
the random replacement strategy assigns a unique
surrogate to each name token prediction, ensuring
no repetition. This results in an expected mode of 1
among all name token frequencies in a given docu-
ment. In contrast, Markov-based replacement may
reuse a name token surrogate for up to four predic-
tions, adjusting the expected mode to 4 among all
name token frequencies. Our analysis showed that
instances of a name being missed twice, even with
random replacement, could signal potential name
leakage.

Over the five iterations, random strategy dis-
played significant differences in mode values,
whereas Markov distributions exhibited smaller
differences, compared to the original name fre-
quency distribution. In Iteration 5 (Figure 1), the
Markov name distribution closely resembled the
original distribution and was statistically similar

per Wilcoxon’s signed rank test.

Figure 1: Distributions of unique name modes in the
test set by replacement strategy on a sample iteration.

Further, the average leakage rate decreased
from 13.1% with random replacement to 3.8%
with Markov replacement across all iterations (Ta-
ble 3). Markov replacement significantly reduced
the name leakage rate compared to random replace-
ment, as evidenced by McNemar’s test.

5 Discussion

While previous research has emphasized the effec-
tiveness of strategies such as data augmentation
for improving name diversity and contextual pat-
terns (Yue and Zhou, 2020), we focused on enhanc-
ing name performance through stratification. We
aimed to increase the proportion of URM patients
in the train dataset by using a stratified sampling
approach. Surprisingly, this approach did not sig-
nificantly improve the name performance of our
de-identification system. This lack of improvement
could be attributed to a relatively small sample size,
where the change in URM representation was not
substantial enough to impact name performance in
a predominately White patient population. Addi-
tionally, higher URM representation in the training
sample through stratification may not perfectly cor-
relate with a more robust set of name tokens. URM
patients may have names more commonly associ-
ated with white demographics and white patients
may also have rare or unique names.

4



Iter. Original data Random replacement Markov-based replacement
Avg. Mode Leakage (%) Avg. Mode Leakage (%) Avg. Mode Leakage (%)

1 3.5 100 1.2 7.5 3.8 1.3*

2 3.8 100 1.5 17.7 4.1 3.8***

3 3.7 100 1.4 11.3 4.0 3.8*

4 3.9 100 1.6 14.1 4.0 5.1**

5 4.0 100 1.6 15.0 4.0 5.0**

AVG 3.8 100 1.5 13.1 4.0 3.8

Table 3: Average mode and rate of name leakage on the test set across five runs. Statistically significant drop relative
to leakage in random approach using McNemar’s test:*(p<0.05), **(p<0.01),***(p<0.001)

In our discharge summaries, there is a single
patient with two notes. To prevent name token
leakage, we deliberately included both notes from
this patient exclusively in the training sets. This en-
sures that the names associated with this particular
patient do not leak between the training and test
sets through their notes.

However, this method does not address the po-
tential leakage of provider names between training
and test sets, as a provider’s name may appear in
notes from multiple patients. Additionally, our
stratification rule for creating the white and URM
strata does not consider the demographics of the
providers. Consequently, not only may provider
names leak between the training and test sets, but
the set of provider name entities could also remain
similar between the stratified and random training
samples, posing a challenge to the effectiveness
of our methodology." The higher performance for
provider names in Table 1 is therefore unsurpris-
ing considering the possibility of name leakage for
this subgroup. This observation reinforces the im-
portance of name token distributions represented
in the training data as a vector for improving de-
identification performance on names.

Future work could expand on efforts to explore
how shifts in training data effect embedding or
attention mechanisms (Clark et al., 2019) to bet-
ter understand causal mechanisms for targeting
name distributions as a parameter to improving
de-identification system performance on names.

Nevertheless, achieving complete elimination of
name errors through incremental model improve-
ments is unlikely, especially as the model is applied
to different note types or health system contexts. In
such scenarios, our Markov-based HIPS strategy
holds theoretical efficacy in diminishing document-
level leakage associated with false negatives related
to name tokens. However, missed names that ap-

pear more than the allowable repeats in the Markov
method remain at risk for PHI leakage. Our results
propose that implementing such a strategy would
be beneficial for BERT-based de-identification sys-
tems, effectively masking name errors and provid-
ing enhanced privacy protection for patients.

6 Conclusion

Our study aims to address errors in name recogni-
tion of a Longformer-based de-identification model
fine-tuned on discharge summaries. Stratified
sampling for fine-tuning did not significantly im-
prove name recognition. However, the introduc-
tion of a HIPS Markov-based pseudonymization
strategy showed promising results, significantly re-
ducing name leakage rates compared to random
replacement. This research contributes to the on-
going efforts to address the persistent challenges
associated with de-identification of clinical texts,
offering valuable guidance for the development
of robust and privacy-conscious clinical text de-
identification.

Limitations

While we recognize the importance of acknowl-
edging and addressing disparities in healthcare, the
term “Underrepresented Minorities (URM)” uti-
lized in this study is acknowledged as not being
an ideal or precise grouping, potentially oversim-
plifying the diverse range of minority patient pop-
ulations in a tertiary, academic healthcare institu-
tion. The rationale behind the chosen stratification
rule was to establish a straightforward method that
could yield sufficient samples in each stratum to
ensure a stable signal for analysis.

Moving forward, we advocate for future research
endeavors in stratified sampling to prioritize anno-
tation efforts aimed at including more substantial
samples from demographic subgroups. It is impor-
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tant to acknowledge and accept this limitation as
a conscious choice made to address the inherent
dominance and potential bias arising from a larger
representation of White patient records in this spe-
cific experiment. Our commitment remains stead-
fast in contributing to a nuanced understanding of
healthcare disparities, and we encourage ongoing
efforts to refine and expand upon our methodology
in future investigations.

Additionally, using name lists from US Census
data for pseudonymization may not be ideal for
all contexts due to potential biases and limitations.
Careful consideration of the specific context and
potential biases is crucial when selecting and utiliz-
ing name lists for pseudonymization purposes.

Finally, we acknowledge that fine-tuning of
our BERT-based de-identification system used dis-
charge summaries written exclusively in American
English clinical language and not other languages.

Ethics Statement

The experiments in this study use 400 discharge
summaries sampled from patient populations in a
tertiary, academic healthcare institution. The han-
dling of sensitive medical data prioritized partici-
pant privacy, with robust data handling protocols in
place. The research was conducted under the over-
sight of an Institutional Review Board, ensuring
continual adherence to ethical guidelines.
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Abstract

Since medical text cannot be shared easily due
to privacy concerns, synthetic data bears much
potential for natural language processing ap-
plications. In the context of social media and
user-generated messages about drug intake and
adverse drug effects, this work presents dif-
ferent methods to examine the authenticity of
synthetic text. We conclude that the generated
tweets are untraceable and show enough au-
thenticity from the medical point of view to be
used as a replacement for a real Twitter cor-
pus. However, original data might still be the
preferred choice as they contain much more
diversity.

1 Introduction

Medical text is difficult to share, even for research
purposes, as it contains information about patients
that might reveal an individual’s identity. This
makes natural language processing in that domain
difficult. Moreover, there have been concerns about
sharing even publicly available data from social
media in recent years. This is partially due to le-
gal reasons (e.g., X (Twitter)) but also due to pri-
vacy concerns. While data sensitivity can be at
least addressed by de-identification (removal of
personal health identifiers) and anonymization (ir-
reversible removal of all information that possi-
bly links back to an individual) (Meystre et al.,
2010), privacy aspects constitute an additional bar-
rier (see (Vakili et al., 2022; Volodina et al., 2023;
Ben Cheikh Larbi et al., 2023)).

Synthetic data generation bears much potential
and a way out of this misery, particularly with the
rise of generative models. Various attempts within
and outside the medical domain generate synthetic
clinical data and show that large datasets can be
easily generated and models trained on them can
compete with models trained on real data (Ive et al.,

∗* Equal contribution

Ex1: I’ve heard a lot about people going blind after
inoculation, but the ears too. If you have pneumonia,
you can recover instantly with steroids, but the eyes
and ears...

Ex2: I’ve been taking azathioprine for 2 days now
and I feel like it’s working really well. But the side
effect is a rash all over my body..

Figure 1: Example of a source (top) and a pseudo
(bottom) tweet translated into English. The original
Japanese text can be found in the appendix.

2020; Libbi et al., 2021; Giuffrè and Shung, 2023).
Apart from that, the use of generative data has ad-
vantages such as structural similarity, information
relevance, and subjective assessment (Guillaudeux
et al., 2023). Furthermore, synthetic dataset have
been shown to be useful in, e.g., epidemiology
research, medical education and training, and algo-
rithm testing (Gonzales et al., 2023).

For example, Choi et al. (2017) employ Gener-
ative Adversarial Networks (GANs) (Goodfellow
et al., 2014) to generate (English) electronic health
records (EHRs) while Abedi et al. (2022) synthe-
size tabular medical data such as laboratory values.
Amin-Nejad et al. (2020) use GPT-2 (Radford et al.,
2019) amongst other models to create datasets of
discharge summaries in English. These data are
then used as either pure training/fine-tuning ma-
terial (Choi et al., 2017) or to augment existing
resources (Amin-Nejad et al., 2020; Abedi et al.,
2022), resulting in a better performance of the
trained models when compared to the low-resource
setup in which they are usually fine-tuned. Hiebel
et al. (2023) report that linguistic phenomena are
reproduced while privacy is preserved in their gen-
erated datasets of French clinical case reports. The
usefulness of the authors’ synthetic corpus is ex-
trinsically investigated by fine-tuning models for a
clinical named entity recognition task. The perfor-
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mance of the models yields promising results.

Although the use of generated data in corpora is
highly significant from the viewpoint that medical
language resources are difficult to make public, few
studies evaluate the anonymity or authenticity of
the data, including medical aspects. Melamud and
Shivade (2019) investigate the privacy-preserving
characteristics and utility of synthetic EHRs by
introducing a new measure based on Pointwise
Differential Training Privacy (PDTP) (Long et al.,
2017). Another work is provided by Mclachlan
et al. (2018), who propose a framework to investi-
gate the “realism” of synthetic EHRs. They com-
pare the generated information with the rules, con-
straints, and concepts used in the original EHR
data. Their approach, however, does not apply to
unstructured user-generated texts.

In contrast to related work, this paper examines
the authenticity of synthetic user content with re-
spect to health-related topics in Japanese. More pre-
cisely, we examine whether artificially generated
user tweets about potential adverse drug effects
(ADE) are authentic and privacy-preserving and,
therefore, might be a valuable alternative resource
for future research.

2 Dataset

The baseline of this work is a synthetic corpus of
Japanese tweets in the context of drug intake and
symptoms (Wakamiya et al., 2023). The source
data (original) was collected using 68 medica-
tion names as keywords from a Japanese drug-
name dictionary1 in the Twitter API. During pre-
processing, URLs and user names were removed.
Only tweets containing mentions of drugs and
symptoms were kept in the data. T5 (Raffel et al.,
2020), a transformer-based encoder-decoder model,
was fine-tuned on these data and finally used to
generate 10,000 tweets per medication name. The
created texts were filtered and manually annotated
with 22 different adverse drug reactions. More de-
tails about the synthetic data can be found in the
appendix and in Wakamiya et al. (2023). In this
paper, we are examining how authentic these syn-
thetic data are. In the following, we distinguish
between source tweets, i.e., the original data, and
pseudo-tweets, i.e., the synthetics tweets.

1https://sociocom.naist.jp/hyakuyaku-dic/

3 Method

We analyze the data in different ways to measure
the authenticity and validate the anonymity of the
pseudo-tweets. First, we examine the source and
the pseudo data on the word level and compare the
vocabulary of both datasets. Next, we analyze if
the distribution of our target events in the synthetic
data is similar to that in the source data. Finally, we
directly compare a subset of synthetic and source
tweets manually as well as automatically with re-
spect to naturalness, comprehensibility, medical
correctness and anonymity.

3.1 Vocabulary

First, we compare the vocabulary of both corpora to
analyze the diversity of the source and the pseudo
data. Since there are considerably more source
tweets (441,151) than pseudo-tweets (10,000), we
sample 5 times 10,000 messages from the source
tweets and compare each sample to the pseudo-
tweets. To this end, we tokenize all tweets using
spaCy2 and report the number of tokens, types, and
the mean lengths of source versus pseudo-tweets.

Additionally, we compare the similarity of origi-
nal and pseudo tweets with the FAISS library3. All
tweets (original and pseudo) are embedded using
SentenceBERT (Reimers and Gurevych, 2019)4

and compared using cosine similarity. Finally,
we compute the type-token ratio (TTR) (Johnson,
1944) as a function of corpus size, and we check
the frequency of part-of-speech tags.5

3.2 Analysis of ADEs

We compare the distribution of adverse drug effects
in the pseudo data to their distribution/frequency in
the real world. We compare the data to the Japanese
Adverse Drug Event Report database (JADER) 6,
which contains information about medications and
ADEs. Since JADER reports every single ADE,
the relative frequency of an ADE is calculated by
dividing the number of reports for each adverse
drug reaction pair by the total number of reports
on the 22 ADEs for that drug. Using the frequency,

2https://spacy.io/api, version 3.7.2., model
“ja_core_news_trf”

3https://github.com/facebookresearch/faiss
4https://huggingface.co/sonoisa/

sentence-luke-japanese-base-lite
5More details on the corpus statistics can be found in Ap-

pendix B.
6https://www.pmda.go.jp/safety/info-services/

drugs/adr-info/suspected-adr/0003.html (in
Japanese)
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we calculate Pearson’s and Spearman’s correlation
coefficients for each drug individually and for all
drugs globally. We also categorize ADEs into a
more frequent (MFG) and a less frequent group
(LFG) based on this frequency, for each drug in-
dividually and for all drugs globally, and compare
MFG and LFG using a t-test. As the source data is
not annotated, we draw only a comparison between
pseudo data and world knowledge (JADER), but
not to the source data. In addition, we examine
whether we can find ADEs in the pseudo data that
are unknown according to JADER.

3.3 Direct Comparison

Next, we directly compare the content of the source
and pseudo-tweets. For this, we randomly select
100 source tweets and 100 pseudo-tweets. We con-
duct a manual and an automatic (GPT-4 (OpenAI,
2023)) analysis, giving the following questions to
human annotators and GPT-4. Both of the human
annotators are native Japanese speakers and medi-
cally trained.

Q1: “Do you think a human wrote this message?”
(naturalness)

Q2: “Do you understand what the person wants to
say with this message?” (comprehensibility)

Q3: “Is this message medically correct?” (medical
correctness)

Q4: “Does the message contain any identifying
information?” (anonymity)

Each question could only be answered with “yes”
or “no”. The human annotators were encouraged to
answer quickly, i.e., without overthinking their re-
sponse. Based on the responses, we calculated the
inter-annotator agreement using Cohen’s κ (Cohen,
1960).

4 Results

In the following section, we briefly present the
results of our analyses. More details, particularly
tables and figures, can be found in the appendix.

4.1 Vocabulary

For the pseudo-tweets, we count 441,022 tokens
in total and on average 646,773 ± 1,568 tokens
for the sampled source tweets. When comparing
the number of types in the vocabulary, we find
6,499 different types in the pseudo data, whereas
the source tweets exhibit 21,079 ± 121 types per
random sample batch. Further, the mean length

of pseudo-tweets is 44 (median is 44), while the
source tweets have a mean length of 64 (median is
68). The results of the other statistics are summa-
rized in Appendix B.

4.2 Analysis of ADEs

The comparison between the overall drug-ADE
pairs is presented in Figure 2. The left figure in-
dicates that according to the frequency in JADER,
frequent ADE pairs in the pseudo data also occur
more frequently than the less frequent ADE pairs.
The right figure analyzes the single drug-ADE pairs
in more detail. A deeper analysis, however, shows
that we cannot find a correlation between the fre-
quency of drug-ADE pairs in our pseudo data and
their occurrence in the real world, as reported in
JADER. The figure shows, for instance, that var-
ious drug-ADE pairs occur with a much higher
frequency in the pseudo data than JADER. Con-
versely, we can observe some frequent drug-ADE
pairs hardly occur in the pseudo data.

Figure 2: The frequency of ADEs from JADER and
the pseudo data. (left): Comparison between MFG and
LFG in the pseudo data. (right): Scatter plot between
JADER and the pseudo data.

Figure 2 (right) does not show a strong associa-
tion between JADER and the pseudo data, but the
t-test result between MFG and LFG from all drug-
ADE pairs indicated some association. When look-
ing at the drugs individually, we found that only
two of the drugs, amiodarone and azathioprine,
were correlated with Pearson’s and Spearman’s
correlation coefficient, respectively. Although the
results of the t-tests in each drug showed no statis-
tically significant differences, each of the means of
MFG was greater than each of the means of LFG.

Next, we analyzed the drug-ADE pairs of the
pseudo data. We found six pairs that were not listed
in JADER, namely azathioprine-constipation,
amiodarone-insomnia, infliximab-insomnia,
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Ex3: Colchicine has been used for a long time and I
have either constipation or diarrhea... I was told that
if I get any side effects I can reduce it... but so far
I’ve only had side effects.

Figure 3: Original tweet mentioning colchicine and
constipation. (Translated from Japanese into English)

colchicine-asthma, colchicine-constipation, and
colchicine-hemorrhagic cystitis. Of those six pairs,
however, three could be found in the drug leaflets
of the corresponding medications. For the remain-
ing three, we cannot judge if this is correct from a
medical perspective. Further analysis revealed that
the pair colchicine-constipation at least occurred
in the source data as shown in Figure 3, while
the combinations azathioprine-constipation and
colchicine-asthma did not.

4.3 Direct Comparison - Human

The human analysis shows a considerable disagree-
ment between the two annotators on what can be
considered a message written by a human (Q1).
Normally, a higher Cohen’s kappa closer to one is
desirable, but in this result the Cohen’s kappa closer
to zero is desirable. The closer to zero, the better,
because it means that the two human annotators are
choosing more randomly which tweets are written
by humans and which are generated by the model.
Moreover, the results show that both annotators
consider a slightly higher number of pseudo-tweets
human-like than those from the source data.

Regarding the tweets’ comprehensibility (Q2),
most can be understood by both annotators. Again,
there seems to be no major difference between
pseudo and source tweets. Interestingly, both anno-
tators agreed not to understand only eight pseudo
and 13 source tweets.

Although our two annotators are medical ex-
perts, the results show a considerable disagreement
(Cohen’s kappa of 0.290) regarding which mes-
sages can be considered medically correct (Q3).
However, there is a slight tendency towards source
tweets being considered by both as medically cor-
rect (37 original versus 29 pseudo-tweets). The
same applies to the joint agreement for medically
incorrect tweets (23 versus 25).

Finally, regarding the anonymity of the data
(Q4), the agreement of both annotators is very
strong. Only up to four tweets (overlap of one
tweet) were considered to contain identifying infor-
mation. Notably, none of those four tweets were

Ex4: Hanako, good evening... I couldn’t tell him
about my mental health... instead he gave me some
Calonal because of a pressure headache...

Figure 4: Example of a part of a source tweet that con-
tained a person’s name, manually replaced here with
‘Hanako’ for publication.

from the pseudo data. More details can be found in
the appendix.

4.4 Direct Comparison - Model

In contrast to the human analysis, GPT-4 only re-
sponded to the above-described questions for 198
tweets. Of those tweets, the model considered all
messages human-generated and nearly all under-
standable (196/198). Moreover, 144 tweets were
regarded as medically correct, of which a slightly
larger portion came from the pseudo-tweets. The
number of tweets considered medically correct by
GPT-4, but as incorrect by both annotators, was
30. On the other hand, the number of messages
considered medically incorrect by GPT but correct
by both annotators was six. Finally, no message
was considered by GPT-4 to be not anonymous.

5 Discussion

5.1 Vocabulary

Vocabulary inspection reveals a lower diversity of
the pseudo-tweets compared to the source text mes-
sages, i.e., the source data generally contains more
types and longer messages. The similarity compar-
ison shows that given the pseudo-tweets and 4,000
source tweets, 1% of the pseudo-tweets are very
similar to the original tweets, but not equal7. The
generation process added content or reformulated
the messages, leading to pseudo-tweets covering
the same topics as the original tweets. The dis-
tribution of POS tags is similar in both datasets.
Therefore, with respect to vocabulary, the pseudo
data seems to be diverse, but not as diverse and cre-
ative as the source data. This aligns with research
on the diversity of generated content (Chung et al.,
2023) and might lead to an easy-to-learn dataset
from which a machine-learning model cannot be
generalized to other data.

5.2 Analysis of ADEs

Based on the investigated distribution of drug-ADE
pairs, we conclude that the data is medically au-

7Except for one tweet, see details in Appendix B.
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thentic to a certain degree. Further investigation by
medical experts would be needed to arrive at a final
conclusion.

5.3 Direct Comparison – Human Annotators

Naturalness A large number of pseudo-tweets
were considered to be written by humans, whereas
many source tweets were considered to be not
written by humans. Moreover, the inter-annotator
agreement on this task was very low (Cohen’s
kappa of 0.089). Therefore, we conclude that it is
difficult to detect tweets written by humans and that
our pseudo-tweets are sufficiently human-alike.

Comprehensibility Many tweets, even those
written by humans, were not understood, and in
fact, a larger percentage of the source tweets writ-
ten by humans did not make sense to the annotators.
This suggests that our pseudo-tweets are at least as
comprehensible as the source tweets.

Medical correctness The annotations show that
both annotators considered more source tweets
medically correct. On the other hand, the anno-
tators also show a strong disagreement with many
tweets. Therefore, it is difficult to conclude that
source data might be medically more accurate than
synthetic data. Conversely, we can see a similar
distribution of messages labeled as medically incor-
rect by both annotators (source=23; pseudo=25).
In other words, this means that one out of four mes-
sages is medically incorrect. Although our subset
was randomly sampled, this shows a concerning
tendency and raises concerns about health-related
information from social media.

Anonymity Most tweets did not include identi-
fying information, as critical information and mes-
sages were filtered out beforehand. Interestingly,
the only messages considered problematic regard-
ing anonymity were still from the source data, not
the pseudo data, as shown in Figure 4. However,
we cannot guarantee that pseudo-tweets per se do
not include identifying information, but we believe
that removing critical information before training a
generative model helps.

5.4 Direct Comparison – Model

While the question about comprehension might be
too abstract for GPT-4, it fails to identify messages
with identifying information. Moreover, regarding
medical correctness, the model identified multi-
ple tweets as correct, which, on the other hand,

were labeled by both humans as incorrect and vice
versa. Finally, regarding the differentiation be-
tween human-generated and synthetic tweets, GPT-
4 and humans come to a similar conclusion: they
are difficult to differentiate. However, GPT-4 is too
optimistic and assigns all messages to human-alike.

6 Conclusion

In this work, we analyzed synthetically-generated
tweets in the context of drug intake and adverse
drug reactions. The data was compared to (real)
user-generated messages regarding authenticity,
privacy preservation, and medical correctness. The
results show that the synthetic data has character-
istics similar to the source data. From a linguistic
point of view, the data shows less variation, but it
contains a similar number of data with question-
able medical correctness (as the original), and has
a similar authenticity. In addition to that, pseudo
data could serve as a “safety net” as it might be less
likely to provide identifiable information. Finally,
we believe that the findings are generally valid for
different languages; however, larger and more com-
plex models than T5 might increase the authenticity
and correctness level but might easily reproduce
sensitive information it has seen during training.
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Regarding ethical considerations, the following
three methods were implemented to avoid privacy
issues in the original Twitter data: Deleting the
usernames in training data for the model, delet-
ing the exact duplicates in the generated text from
the source, and, with manual work of annotators,
checking all of the synthetic data and making sure
no identifying information remains. Models using
original data were trained locally.

We further acknowledge that questions used to
judge tweets with GPT-4 and the corresponding
responses are (1) not reproducible as soon as an
updated version of GPT-4 is released, and (2) might
result in different responses when the questions are
slightly modified or set up differently.

Finally, to assess the authenticity and diversity of
the data, many more linguistic measures could be
applied. This paper only presents a few as a com-
plement to the medically inspired investigations.
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A Appendix

A.1 Corpus Generation

The synthetic data creation consists of two steps,
data generation and pre-processing. First, Japanese
tweets were collected from Twitter (X), using 68
drug queries extracted from a Japanese drug-name
dictionary8 and the public Twitter API9. The text
generation model was built from the collected
tweets to produce Japanese pseudo tweets. URLs
and user names in the original tweets were replaced
with masks. Using a Japanese medical named en-
tity recognizer, MedNER-CR-JA10, tweets without
any symptom expression were filtered out. T5 was
fine-tuned on the remaining tweets to generate syn-
thetic tweets mentioning a subset of 17 drugs.

During post-processing, the following tweets
were filtered out; (i) pseudo-messages that do
not mention any drug or symptom, (ii) pseudo-
messages that are identical to any of the original
tweets, and (iii) duplicates.

Finally, all tweets mentioning any of the 17
drugs were annotated manually. After counting
the number of annotations describing positive ADE
mentions, the 24 most frequent ones were chosen.
In two cases, two similar ADEs were merged into
one. Then, 22 ADEs were obtained as labels. More
details can be found in Wakamiya et al. (2023).

A.2 Tables and Figures about analysis of
ADEs and human comparison

Tables 1 and 2 and Figure 6 present the detailed re-
sults of the direct comparison of source and pseudo
data, analyzed by human annotators and GPT-4.
Figure 5 presents the detailed distribution of the
drugs and their ADE in the pseudo data compared
to JADER. Table 3 and Figures 10 and 11 show a
detailed overview of the data’s drug-ADE correla-
tion. Finally, Figure 8 presents all example tweets
from above in the original language (Japanese).

B Details on Corpus Statistics

The following will give more details on the cor-
pus statistics we used to compare the original and
pseudo-tweets. This is not exhaustive; there are
many more interesting analyses that can be applied
to the data.

8https://sociocom.naist.jp/hyakuyaku-dic/
9https://developer.twitter.com/en/support/

twitter-api
10https://huggingface.co/sociocom/MedNER-CR-JA
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Figure 5: Distributions between JADER and the corpus

Q1 A1
yes no

A2 yes 71 (31 / 40) 15 (7 / 8)
no 83 (41 / 42) 31 (21 / 10)

Cohen’s kappa 0.089
Q2 A1

yes no
A2 yes 126 (63 / 63) 38 (15 / 23)

no 15 (9 / 6) 21 (13 / 8)
Cohen’s kappa 0.281
Q3 A1

yes no
A2 yes 66 (37 / 29) 24 (7 / 17)

no 48 (23 / 25) 48 (23 / 25)
Cohen’s kappa 0.290
Q4 A1

yes no
A2 yes 1 (1 / 0) 1 (1 / 0)

no 2 (2 / 0) 196 (96 / 100)
Cohen’s kappa 0.393

Table 1: Results from human judgment by annotator1
(A1) and annotator2 (A2).*The numbers are counts of
original + pseudo (original / pseudo)

GPT-4 Answer Cohen’s kappa
yes no A1 A2

Q1 198 (98 / 100) 0 (0 / 0) 0.000 0.000
Q2 196 (97 / 99) 2 (1 / 1) 0.088 0.014
Q3 144 (67 / 77) 54 (31 / 23) 0.237 0.298
Q4 0 (0 / 0) 198 (98 / 100) 0.000 0.000

Table 2: Results from model judgment by GPT-4

Figure 6: Results from human judgment by A1 and A2
(Barplots of Table 1) .

B.1 Statistics
Type-Token Ratio The type-token ratio (TTR)
(Johnson, 1944) counts the number of types and
divides the result by the number of tokens as a mea-
sure of diversity in a corpus. However, this ratio
strongly depends on the corpus size, and therefore,
it is often shown as a function of the corpus size.

Part-of-Speech Tags We further calculate the
relative frequencies of the occurring POS tags in
the data using spaCy for tagging.

Similarity We index the pseudo-tweets with the
FAISS library and compare them using cosine sim-
ilarity with a sample from the original data. This
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Figure 7: The relative frequency of the POS tags for the
pseudo- and source tweets.

Ex1: 接種後失明は良く聞くけど耳もなんだ肺
炎だとステロイドで即回復だけど目や耳って

Ex2: アザチオプリンを飲み始めて2日目だけど
めっちゃ効いてる気がする。でも副作用で全
身の発疹が凄い..

Ex3: コルヒチンは昔から使われてるし、便秘
か下痢のどっちかかな…副作用出たら減らし
てもいいから、次の病院まで飲み続けてって
言われたんだけど、副作用しか今のとこない
んだけど

Ex4: はなこちゃん，こんばんは... 精神的なこ
とは伝えられずに終わりました～，そのかわ
り気圧頭痛が酷くてカロナール出して…

Figure 8: Japanese version of examples Ex1–Ex4. Ex1:
source tweet. Ex2: pseudo tweet. Ex3: tweet mention-
ing colchicine and constipation. Ex4 where a person’s
name remained in the tweet (manually replaced here
with ‘はなこ’ for publication).

sample contained only 4,000 original tweets since
the computation was time-consuming.

B.2 Results and Discussion

Type-Token Ratio In Figure 9, we show the TTR
for both datasets (the first 20,000 tokens), plotted
against the corpus size. The source tweets clearly
show a higher type-token ratio which decreases
slower than the ratio of the pseudo-tweets.

Part-of-Speech Tags We show the relative fre-
quencies of the occurring POS tags in Figure 7.
The pseudo-tweets get tagged with 15 different
POS tags, while the original data gets 16 POS tags.
Nouns (NOUN), adpositions (ADP), auxiliaries

Figure 9: The type-token ratio as a function of corpus
size for the source (orange) and pseudo data (blue) for
an excerpt of the data.

Pearson Spearman KS
drug CC p-value CC p-value p-value

azathioprine 0.316 0.153 0.508 0.016 0.049
aspirin -0.154 0.493 -0.014 0.951 0.007
amiodarone 0.762 0.000 0.391 0.072 0.020
infliximab 0.040 0.859 0.176 0.435 0.109
colchicine 0.314 0.154 0.205 0.359 0.632
cyclosporine -0.096 0.670 -0.072 0.750 0.394
cyclophosphamide 0.110 0.627 0.205 0.361 0.109
cisplatin 0.184 0.411 0.269 0.226 0.872
tacrolimus 0.025 0.911 -0.137 0.542 0.394
minocycline -0.212 0.343 -0.064 0.776 0.218
mesalazine 0.104 0.646 0.102 0.652 0.632
methotrexate -0.215 0.336 -0.086 0.705 0.109
metformin 0.107 0.635 0.210 0.349 0.007
all drugs 0.088 0.140 0.126 0.034 -

Table 3: Pearson’s and Spearman’s correlation coeffi-
cient and p-values of the tests in each drug

(AUX) and punctuation markers (PUNCT)11 are
the most common POS tags for both corpora.

Similarity From the 4,000 samples we compared
to the pseudo-tweets, we retrieved 86 hits that
showed a cosine similarity higher than 0.9 and
one that was exactly the same. However, from
the 86 hits, only 39 were unique, i.e., one pseudo-
tweet can have several very similar, but not exact
nearest neighbors. The single pseudo-tweet that
was identical to the source tweet did not contain
any identifiable information and was basically a se-
quence of hashtags. However, this shows that even
though the generation process included a diversity
penalty, synthetic data might still be repetitive or
near-repetitive.

11https://universaldependencies.org/u/pos/
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Figure 10: The frequency between JADER and the corpus in each drug

Figure 11: Comparison between MFG and LFG in each drug
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Abstract

In this paper we evaluate two annotation ap-
proaches for automatic detection and labelling
of personal information in legal texts in relation
to the ambiguity of the labels and the homo-
geneity of the annotations. For this purpose,
we built a corpus of 44 case reports from the
European Court of Human Rights in Spanish
language and we annotated it following two
different annotation approaches: automatic pro-
jection of the annotations of an existing English
corpus, and manual annotation with our rein-
terpretation of their guidelines. Moreover, we
employ Flair on a Named Entity Recognition
task to compare its performance in the two an-
notation schemes.

1 Introduction

One of the reasons why research on the automatic
detection and labelling of personal information in
legal texts (such as case reports) is important is
that many countries, including Spain, have the le-
gal requirement of removing sensitive information
from these texts before publishing them. However,
Pilán et al. (2022) have argued that most research
on sensitive entities detection and classification
has focused on clinical data, and publicly available
evaluation datasets outside this domain are scarce.
Moreover, as indicated by Csányi et al. (2021),
carrying out this process manually is extremely
inefficient.

Regarding datasets for automatic detection and
labelling of personal data in the legal domain in
Spanish, few datasets have been published, and
often they have been built from texts subjected to
previous anonymization, thus making the evalua-
tion performed on this data less realistic. This is
the case of the work of Arranz et al. (2022), which
introduces very detailed annotation guidelines (Ar-
ranz et al., 2020).

In contrast, the privacy-oriented annotated cor-
pus in English built by Pilán et al. (2022) stands out

due to the use of case reports from the European
Court of Human Rights (ECHR), which are pub-
licly available in the HUDOC database1 in full-text
with the consent of the applicants involved in the
cases. Additionally, they annotated the corpus by
taking into consideration not just direct identifiers,
following the usual procedure, but also quasi or
indirect identifiers. Nevertheless, their annotation
approach presents some ambiguity, given that it
leaves room for interpretation and some of their
selected entities cover a broad variety of forms.

The ambiguity of annotation guidelines is an
important factor to take into consideration when
investigating automatic detection and labelling of
personal information because it might cause an-
notations to be non-homogeneous. As argued by
Benesty (2019a), non-homogeneous annotations
may decrease the performance of Language Mod-
els (LMs) on Named Entity Recognition (NER)
tasks (the tasks that precede the masking or replace-
ment of sensitive information for anonymization or
pseudonymization in legal texts).

Drawing from the work of Pilán et al. (2022),
in this paper we intend to contribute to the field
of automatic detection and labelling of personal
information by (1) building one evaluation corpus
of case reports from the ECHR in Spanish, and
annotating it following two different annotation ap-
proaches; and (2) employing this corpus for assess-
ing the performance of Flair (Akbik et al., 2018)
on a NER task and comparing the results of the two
annotation schemes. On the one hand, we anno-
tate the corpus via automatic annotation projection,
respecting the annotation approach of Pilán et al.
(2022). Separately, we annotate the same corpus
by following our own reinterpretation of their an-
notation approach, inspired by the guidelines of
Arranz et al. (2020). Our goal is to observe the
effects of the different level of ambiguity of the

1https://hudoc.echr.coe.int (accessed on July 2023)
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annotation approaches on the results of the NER
task per entity type. We publish the code employed
as well as the annotated datasets on GitHub2 under
a MIT license.

2 The TAB corpus

In order to build an evaluation corpus of case re-
ports from the ECHR in Spanish, we departed from
the test set of the English corpus built by Pilán et al.
(2022). Their corpus is called the Text Anonymiza-
tion Benchmark (TAB) corpus and it is available
on GitHub3 in json format under a MIT license.
This json file contains both the annotations as well
as the texts from the ECHR, taken from the HU-
DOC database. In regards to the reproduction of
its website content, the EHCR (n.d.) claims that:

The information and texts available on
the Court’s website may be reproduced
provided the source is acknowledged ( c⃝
ECHR-CEDH) and the reproduction is
made for private use or for the purposes
of information and education in connec-
tion with the Court’s activities. This au-
thorisation is subject to the condition that
the source is indicated and that any such
reproduction is free of charge.

As it is explained by Pilán et al. (2022), the
texts included in their annotated corpus only con-
tain judgments from the “Grand Chamber” and
the “Chamber”, and they are restricted to the doc-
ument sections called “Introduction” and “State-
ment of Facts”, given that they contain the largest
quantity of personal identifiers. In addition to that,
they selected the judgements by ensuring that their
annotators would have knowledge of the national
language of the country accused of human rights
violations.

It is important to note that the TAB corpus was
annotated by 12 annotators. In the work of Pilán
et al. (2022), annotators were instructed to annotate
all sensitive entities and their semantic types in a
first step. In a second step, they were asked to use
their interpretation to determine whether to mask
each sensitive entity for protecting a person’s iden-
tity while preserving data utility. Moreover, annota-
tors were instructed to indicate whether the entities
to be masked were direct or quasi-identifiers. In a

2https://github.com/mariasierrofer/
sensitive-entity-detection-ECHR-Spanish

3https://github.com/NorskRegnesentral/
text-anonymization-benchmark

third step, they added a second attribute to the en-
tity mentions indicating whether they corresponded
to confidential information (such as religious be-
liefs, ethnicity or health data). The TAB corpus
maintains the masking decisions by all the anno-
tators given that Pilán et al. (2022) consider that
there are often multiple correct masking choices in
the same text.

3 Dataset creation

In this section we explain our workflow for creating
the Spanish corpus.

3.1 Data collection and translation

We extracted 44 random texts from the TAB test
set and automatically translated them into Spanish
with DeepL.4 The use of Machine Translation (MT)
for building our corpus implies that a number of
translation errors are expected. In our corpus, the
texts translated with DeepL were not post-edited,
but they were inspected by native speakers during
the review of the projected annotations. In general,
the most common flaw in the Spanish automatic
translations was the inconsistent translation of or-
ganization names (e.g. “Poole Magistrate’s Court”
sometimes translated as “Tribunal de Magistrados
de Poole” and sometimes left untranslated in the
same text).

3.2 Projection of annotations

Before projecting the annotations, we collapsed the
annotations by all the annotators in the test set of
the TAB corpus (they are all considered equally cor-
rect examples). When collapsing all the annotators’
decisions, only the annotations of the spans to be
masked (which are both direct and quasi-identifiers)
were kept.

Furthermore, in order to project the annotations
with the T-Projection method (García-Ferrero et al.,
2023) we transformed the data to get a CoNLL
file with IOB tags, with sentences separated by
double-space, and only one layer of annotations.
The downside of this process was that there was
some loss of information. The entity types (shown
in the first column of Table 1) of the spans to be
masked were transferred. However, the additional
labels (which include the distinction between direct
and quasi-identifiers and the indication of confiden-
tial information) were lost. Consequently, our work

4https://www.deepl.com/translator
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is limited to the recognition of the different entity
types.

After projecting the annotations of the selected
texts into the Spanish translations, two persons (a
Natural Language Processing (NLP) Master’s stu-
dent and a linguist) reviewed them with the IN-
CEpTION tool.5 We measured the Inter-Annotator
Agreement (IAA) with the same tool at the entity
level using the metric Cohen’s Kappa, resulting in
a value of 0.89.

3.3 Reinterpretation and reannotation

Our reinterpreted guidelines, which combine the
annotation approach of Pilán et al. (2022) with
the detailed guidelines of Arranz et al. (2020), are
available in the appendix. Table 1 compares the
entity types included by Pilán et al. (2022) with
the entity types included in our reinterpretation
of their guidelines. Our goal is to pave the path
for reducing label ambiguity. The most relevant
changes of our reinterpreted guidelines include:

• The replacement of the DEM entity by two
new labels: NATIONALITY (referring to
a person’s demonym) and ETHNIC CATE-
GORY (covering the ethnic parameters of a
person’s identity, such as race, religion, lan-
guage, and regional origin). A disadvantage
of this replacement is that the new labels do
not cover some information that was included
by the DEM entity (such as health informa-
tion, political and sexual orientation). Due to
the small size of our corpus, adding detailed
labels for all types of personal information
would produce few occurrences of each one.
For the same reason, the MISC label is not
addressed in our reinterpreted guidelines.

• The split of the DATETIME entity into two
new labels: DATE and TIME. In regards to
these labels, our reinterpreted guidelines con-
tain one specific adaptation for Spanish lan-
guage: the annotation of dates and times cov-
ers their preceding articles (but not prepo-
sitions) in order to comply with the ISO-
TimeML standard for temporal annotation
(ISO, 2008) and to potentially ease its auto-
matic detection with existing tools.

• A specification related to the ORG entity,
which now only covers the spans which refer

5https://inception-project.github.io/

to distinct organizations and not to generic
institutions (e.g. “High Court”, “Supreme
Court”).

• The split of the PERSON entity into two new
labels: PER and LEGAL PROFESSIONAL.
These two labels make a distinction between
the names of the people professionally in-
volved in the cases and the names of the rest
of the people mentioned in the texts. The rea-
son for making this distinction is that in Spain
(and other countries), the names of the peo-
ple professionally involved in the cases do not
have to be masked (van Opijnen et al., 2017).

• A difference regarding the QUANTITY entity,
which now covers meaningful quantities (not
directly deducible from the rest of the informa-
tion of the text) without their units of measure.
It also covers periods of time, which were
previously included in the DATETIME label.
Currency instead gets a separate treatment:
these units of measure are annotated with the
CURRENCY tag because they can reveal in-
formation about the locations involved in the
cases.

Corpus with pro-
jected annotations

Corpus with manual an-
notations

Entity nb. tags Entity nb. tags
PERSON 355 PER 191

LEGAL PRO-
FESSIONAL

170

CODE 54 CODE 87
LOC 163 LOC 454
ORG 216 ORG 130
DEM 92 NATIONALITY 110

ETHNIC CATE-
GORY

22

QUANTITY 55 QUANTITY 204
CURRENCY 32

DATETIME 799 DATE 786
TIME 5

MISC 50 - -
total 1,784 total 2,191

Table 1: Comparison of the entity types and number of
tags included in the corpora with projected and manual
annotations.

It is also important to note that, as stated in Sec-
tion 2, Pilán et al. (2022) included a second step
of annotation where they instructed annotators to
judge case by case which combination of sensitive
entities to mask for protecting a person’s identity
while preserving data utility. We intend to simplify
this process and avoid leaving any room for inter-
pretation by annotating all the occurrences of the
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entity types included in our reinterpreted guidelines
in a unique annotation step. With the intention of
avoiding compromising the data utility of the texts,
our strategy consisted in defining the entity types
for targeting precise sensitive information.

Two persons (a NLP Master’s student and a
philologist) carried out the manual annotations with
the INCEpTION tool by making modifications to
the preceding projected annotations. In this case,
we measured the IAA with the same tool at the en-
tity level using the metric Cohen’s Kappa, resulting
in a value of 0.99. This higher agreement could
indicate that the new annotation approach of the
reinterpreted guidelines was indeed less ambiguous
and the annotators had less room for interpretation.

4 Experimental setup

Once we built and annotated the corpus of legal
texts in Spanish language, we used it for assessing
Flair (Akbik et al., 2018), which has provided good
results in the identification of sensitive information
in legal texts in previous studies (Benesty, 2019a;
Benesty, 2019b). We used Flair version 0.12.2. For
all the experiments, the corpus was split into train,
dev, and test set as shown in Table 2.

Set nb. sents. nb. tokens
train 1,245 34,924
dev 178 4,430
test 193 5,255

Table 2: Number of sentences and tokens of the train,
dev, and test sets.

We trained a bi-LSTM-CRF sequence tagger6

with default hyper parameters for 18 epochs in both
our experiment on the corpus with projected anno-
tations as well as our experiment with the manually
annotated corpus. We used pre-trained embeddings
(Akbik et al., 2019) from Flair “ner-multi” model.7

The metrics used in the assessment of Flair are
precision, recall, and F1-score, computed at the
mention level, but for brevity we will only focus
on the F1-scores in Section 5 and Section 6.

5 Evaluation on corpus with projected
annotations

On the corpus with projected annotations, Flair
achieves a micro average F1 of 0.73.

6https://github.com/flairNLP/flair/blob/
master/flair/models/sequence_tagger_model.py

7https://huggingface.co/flair/ner-multi

Entity F1-score
PERSON 0.73
CODE 0.92
LOC 0.67
ORG 0.39
DEM 0
QUANTITY 0.50
DATETIME 0.95
MISC 0
micro avg 0.73

Table 3: F1-scores per entity type and micro average F1
calculated on the test set of the corpus with projected
annotations.

By looking at the results per entity type (shown
in Table 3), it can be observed that there is a particu-
larly stark contrast between Flair’s performance on
the DATETIME and CODE labels (F1-score over
0.9) vs. the DEM and MISC labels (0 F1-score).
This difference could indicate that the DEM and
MISC labels were more widely defined than the
DATETIME and CODE labels and their annota-
tions were less homogeneous. Pilán et al. (2022)
noticed a similar difference in the performance of
their selected LMs, and they stated that the reason
could be related to the broad variety of forms that
the DEM and MISC labels can take. Moreover, it
could be argued that such an imbalanced perfor-
mance might be due to a dissimilar number of tags
for each label. However, while it is true that the
DATETIME label presents the larger number of
tags (799 tags in the corpus with projected anno-
tations), the labels CODE, MISC, and DEM all
have a similar number of tags (54, 50, and 92 tags
respectively), and still the performance of Flair on
the CODE label is much higher.

6 Evaluation on corpus annotated with
our reinterpreted guidelines

On the corpus annotated with our reinterpreted
guidelines, Flair outperforms the results of the pre-
vious experiment, achieving a micro average F1 of
0.80.

By looking at the results per entity type (shown
in Table 4), it can be observed that the TIME and
the ETHNIC CATEGORY labels obtained a 0 F1-
score, likely due to the scarcity of tags of these
types (5 and 22 tags respectively in the whole cor-
pus).

On the other hand, the performance of Flair on
the DATE label (0.98 F1-score) is slightly higher
than it was on the DATETIME label (0.95 F1-
score). With a similar number of tags of this type,
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Entity F1-score
PER 0.67
LEGAL PROFESSIONAL 0.46
CODE 1
LOC 0.87
ORG 0.20
NATIONALITY 0.85
ETHNIC CATEGORY 0
QUANTITY 0.75
CURRENCY 0.60
DATE 0.98
TIME 0
micro avg 0.80

Table 4: F1-scores per entity type and micro average F1
calculated on the test set of the corpus annotated with
our reinterpreted guidelines.

the increase in performance could indicate that it
was beneficial to make a distinction between the
annotation of dates, times, and durations. In par-
ticular, the annotation of durations was covered by
the DATETIME label according to the guidelines
created by Pilán et al. (2022). On the contrary, in
our reinterpretation of their guidelines, durations
were covered by the QUANTITY label, which also
shows an increase in performance (0.75 F1-score
vs. 0.50 F1-score in the previous experiment).

There is also a slight increase in Flair’s perfor-
mance on the CODE label (1 F1-score vs. 0.92
F1-score in the previous experiment). Regarding
the labels PER and LEGAL PROFESSIONAL, the
performance of Flair decreases when compared to
the PERSON label.

In regards to the NATIONALITY label included
in the manually annotated corpus, which replaces
the previous DEM label, the performance of Flair is
higher (0.85 F1-score). This is especially interest-
ing considering that the DEM label included in the
corpus with projected annotations got a 0 F1-score
and the number of tags is similar in both corpora.

Furthermore, while the performance of Flair on
the ORG label decreases, its performance on the
LOC label is much higher (0.87 F1-score vs. 0.67
F1-score in the previous experiment). In this case,
the main reason for the increase seems to be related
to the larger number of LOC tags in the corpus
annotated according to our reinterpreted guidelines
(454 tags vs. 163 tags). The larger number of
LOC tags is due to our indication of annotating all
the occurrences of the entity types included in our
reinterpreted guidelines.

Finally, the performance of Flair on the CUR-
RENCY label is low (0.60 F1-score). Other than
having few occurrences (32 tags in the whole cor-

pus), this low performance could also indicate that
this label is still ambiguous.

7 Conclusions and future work

Throughout this paper, we have evaluated two anno-
tation approaches for the automatic detection and
labelling of personal information in case reports
from the ECHR in Spanish language. Our goal was
to observe the differences in the performance of
Flair (Akbik et al., 2018) in relation to the ambi-
guity of the selected entity types. We performed
this evaluation by building one evaluation corpus of
case reports from the ECHR in Spanish, and anno-
tating it by following two different annotation ap-
proaches: automatic projection of the annotations
of the English corpus built by Pilán et al. (2022),
and manual annotation with our reinterpretation of
their guidelines, also based on the work of Arranz
et al. (2020). We used this newly-built corpus for
assessing Flair on a NER task and comparing the
results of the two annotation schemes. We make
both the corpus and the code public under a MIT
license to encourage research on automatic detec-
tion and labelling of personal data in legal texts in
Spanish.

The results showed that our reinterpreted guide-
lines partly succeeded in getting less ambiguous
labels and more homogeneous annotations. This
idea is reinforced by the higher IAA obtained with
our reinterpreted guidelines, which suggests that
the more detailed approach of our guidelines might
also help human annotators to be consistent in their
annotations. As we mentioned, the manual annota-
tion of entities may be very time-consuming. An
automatic system that yields a good performance
in the task will help decreasing the burden. Trying
to make a more consistent annotation has proven
to be a sensible approach to improve the perfor-
mance of Flair. In the near future an anonymiza-
tion analysis should be conducted to see whether
our approach effectively reduces the risk of re-
identification while not compromising the readabil-
ity of the document.

In the future research, we will expand our cor-
pora, adapt and apply our reinterpreted guidelines
to other languages, and include new specific labels.
We also plan to test other Language Models and
other techniques such as zero-shot or few shot. Ad-
ditionally, we intend to test privacy models such as
C-sanitized (Sánchez and Batet, 2016) for a com-
prehensive risk analysis.
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Limitations

We evaluated the performance of Flair (Akbik et al.,
2018) on a NER task with one corpus of 44 case
reports from the ECHR in Spanish. The texts of our
corpus were translated from English into Spanish
via MT (using DeepL) without post-editing. In fu-
ture work, it would be interesting to either employ
professional translations or post-edit the automatic
translations. Additionally, our work could be ex-
tended to other languages. It would also be inter-
esting to carry out similar experiments on larger
corpora and add labels covering other types of in-
formation that we could not cover due to the size of
our corpus, including a deeper treatment of quasi-
identifiers. On the other hand, it should be noted
that our work is restricted to the recognition of sen-
sitive entities on legal texts and it does not reflect on
the masking operations following this task. More-
over, since we do not annotate pronouns and posses-
sive adjectives, our corpus is suited for anonymiza-
tion rather than pseudonymization. Lastly, there is
no comprehensive risk analysis which examines the
connection between the detected sensitive entities
and external knowledge bases, as recommended by
Csányi et al. (2021).
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A Reinterpreted guidelines

This appendix contains the annotation guidelines
for the detection and labelling of personal infor-
mation of case reports from the ECHR in Spanish
language. The set of entity types to be annotated
are:

• PER: this label comprises the names, initials,
titles and honorifics (e.g. “Mr.”, “Dr.”) of peo-
ple who are not legal professionals involved
in the cases.

• LEGAL PROFESSIONAL: this label com-
prises the names, initials, titles and honorifics
(e.g. “Mr.”, “Dr.”) of people who are legal
professionals involved in the cases.

• CODE: the CODE label covers all types of
identification numbers (e.g. passport num-
bers, phone numbers, report identifiers, etc.).
Nevertheless, even if the CODE label includes
case numbers (because they make reference to
the cases being treated and can consequently
be considered a direct identifier), this label
does not comprise any other numbers making
reference to legal texts involved in the cases
(e.g. convention and law articles, protocols,
rules, paragraphs, etc.).

• LOC: covers all types of geographical loca-
tions (e.g. countries, cities, addresses, etc.).

• ORG: covers the names of distinct organi-
zations (with the exception of the “ECHR”
and the “European Commission on Human
Rights”, which should not be annotated), and
not generic institutions (e.g. “High Court”,
“Supreme Court”, etc.). Still, if address infor-
mation (e.g. city, country, etc.) is comprised
within the expression of a generic institution
(e.g. “Supreme Court of Sweden”), the ad-
dress information (e.g. “Sweden”) should be
annotated using the LOC label.

• ETHNIC CATEGORY: covers the ethnic pa-
rameters of a person’s identity, such as race,
religion, language and regional origin.

• NATIONALITY: refers to a person’s de-
monym (e.g. “French”, “Swedish”, “Norwe-
gian”).

• DATE: this label makes reference to dates
(days, months, and years) including articles
(but not prepositions) in order to comply with
the ISO-TimeML standard for temporal anno-
tation. As it happened with the CODE label,
the DATE label does not apply to dates that
serve to identify legal texts (with the excep-
tion of case reports) involved in the case (e.g.
convention and law articles, protocols, rules,
paragraphs, etc.).

• TIME: corresponds to hours (e.g. “at 4 p.m.”;
or in Spanish “a las 4 horas”), expressed in fig-
ures or in words (e.g. “morning”, “evening”,
etc.). It does not include durations, since these
are covered by the label QUANTITY.

• QUANTITY: covers quantities (e.g. surface
areas, distances, percentages, etc.) without
their units of measure. In this way, the QUAN-
TITY label targets meaningful quantities (not
directly deducible from the rest of the informa-
tion of the text), including figures associated
to periods of time (e.g. “it lasted for 9 years
and 9 months”), which were previously cov-
ered by the DATETIME label, as well as ages
(e.g. “she was 19 years old”).

• CURRENCY: covers currency types (e.g.
“euro”, “pound”, “dollar”, etc.).

The general principles that should be kept in
mind when annotating are:

• Annotate all the entities in all the selected
texts that correspond to the selected entity
types.

• Do not annotate pronouns and possessive ad-
jectives revealing gender information, since
they imply a low re-identification risk.

• Annotate all the mentions pertaining to the
same entity.
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Abstract
Since the announcement of the GDPR, the pseu-
donymization of legal documents has become
a high-priority task in many legal organiza-
tions. This means that for making public a
document, it is necessary to redact the identity
of certain entities, such as witnesses. In this
work, we present the first results obtained by
PSILENCE, a pseudonymization tool created
for redacting semi-automatically international
arbitration documents in English. PSILENCE
has been built using a Named Entity Recogni-
tion (NER) system, along with a Coreference
Resolution system. These systems allow us
to find the people that we need to redact in
a clustered way, but also to propose the same
pseudonym throughout one document. This last
aspect makes it easier to read and comprehend
a redacted legal document. Different experi-
ments were done on four different datasets, one
of which was legal, and the results are promis-
ing, reaching a Macro F-score of up to 0.72 on
the legal dataset.

1 Introduction

Although the redaction of sensitive information in
different types of documents is a common practice
in multiple domains, since the announcement of
the GDPR and especially after its implementation,
the need to find automatic or semi-automatic ways
to redact documents has become a priority in many
organizations. Historically, the redaction of doc-
uments has been done mostly by hand, following
guidelines and, in some cases, pattern-matching
tools. However, due to its nature, the redaction
process is not only slow, but it is also expensive as
in many cases an expert needs to be consulted.

In certain domains, like biomedicine, the auto-
matic redaction of documents is well-known thanks
to shared tasks, e.g. Stubbs and Uzuner (2015).
However, in the legal domain, as in many others,
the automatic redaction of documents is still a chal-
lenge. For instance, legal documents tend to be

long and they have multiple types of entities, e.g.
parties, witnesses, experts, judges, lawyers, and
citations. Furthermore, some of these entities can
be either individuals or organizations. Finally, as
we get farther from the beginning of the document,
entities become less clear to identify correctly.

Currently, in the legal domain, we can find two
different redaction processes: anonymization and
pseudonymization, and while both terms are simi-
lar, they differ in key aspects. Mourby et al. (2018)
summarizes GDPR definition of pseudonymiza-
tion as the task that “prevents direct identifica-
tion through attribution, but not through any other
mean”. Certain organizations add to the definition
of pseudonymization the use of a unique identifier
for each individual across multiple data sources,
that hides their actual identity (Graham, 2012; El-
liot et al., 2020). Furthermore, it is a process, that
if necessary, can be reversed (Elliot et al., 2020)
as only the individuals are substituted, regardless
of the occurrence of other elements which could
reveal, for example, the gender or age of a person
(Allard et al., 2021). In contrast, the goal of anon-
ymization is to remove the complete link between
individuals and data (Graham, 2012). Moreover, it
is a process that should make the re-identification
of people hard to achieve, sometimes by doing addi-
tional alterations to the source (Elliot et al., 2020).

We present in this work the first results of PSI-
LENCE (PSeudonymization of International Law
casEs using NER and Coreference rEsolution), a
tool created to pseudonymize international arbitra-
tion documents in English. These first results come
from multiple experiments done over four different
datasets, one of which has been created by a group
of legal experts for this specific task.

The rest of the paper is organized as follows.
We present the scope and objectives of this work
in Section 2. In Section 3, we present the most
relevant works found in the literature related to the
automatic redaction of documents, i.e. methods

25



and data, as well as some additional relevant tasks.
Then, we present the methodology of our system in
Section 4. The data collection explored in this work
is described in Section 5 while the evaluation setup
is detailed in Section 6. The experimental results
and their discussion are presented in Section 7 and
Section 8 respectively. Finally, we conclude and
propose our future work in Section 9.

2 Scope and Objectives

PSILENCE has been developed to semi-automatize
the pseudonymization process of English docu-
ments within Jus Mundi1. Currently, it focuses only
on entities of type people, however, we are aware
of the existence of other types of information that
need to be hidden, such as emails and addresses.
Furthermore, from all the entities of type people,
only those of type witnesses are redacted. This
means that we do not redact lawyers, judges, or
parties.2

Therefore, PSILENCE has two main goals. First,
to propose to a legal expert a list of people that
should be redacted in the document to keep the
sensitive information hidden. Secondly, to cluster
the names of people to provide a unique identifier
to each redacted person within a document. This
means that different name variations of the same
person are grouped together. For instance, “Mari-
ano Puerta” and “Mr. Puerta” will compose one
cluster, while “Laura Puerta” would be put into
a different one. In this way, we can simplify the
redaction process and improve the readability and
comprehension of a redacted document.

3 Related Work

In the health and biomedical domains, we can find
multiple tools developed for the anonymization,
pseudonymization, and deidentification of informa-
tion, as presented by Chevrier et al. (2019) and
Leevy et al. (2020). However, in the legal domain,
there is a reduced number of works. For instance,
we can name ANOPPI (Oksanen et al., 2019; Arttu
Oksanen et al., 2022), a pseudonymization tool for
Finnish Court documents that makes use of mul-
tiple NER systems, based on rules and machine
learning. It uses regular expressions and dictio-
naries to find elements such as registration plates

1https://jusmundi.com/
2This was defined by Jus Mundi’s legal team according to

their needs. However, PSILENCE is capable of redacting all
types of person entities if necessary.

or specific names. As Finnish inflects pronouns
and nouns, they perform morphological analysis to
correctly inflect pseudonyms. Individuals are not
grouped, this means that each occurrence of them
is assigned a different identifier. In Schamberger
(2021), the authors present an anonymization tool
for German court rulings. Specifically, the authors
create a NER system by using BERT embeddings
(Devlin et al., 2019) through a BiLSTM and CRF
architecture. Pilán et al. (2022) compare different
tools for anonymyzing legal documents: Presidio3,
a generic NER system based on RoBERTa (Liu
et al., 2019) and a specialized NER based on Long-
former (Beltagy et al., 2020).

Outside the legal domain, we can highlight the
work of Biesner et al. (2022). In this paper, the au-
thors present a full anonymization system for Ger-
man financial documents. The system considers the
anonymization task as a sequence tagging problem,
thus, they make use of NER for detecting entities.
They explored elements such as word embeddings,
contextual embeddings, and different neural net-
work architectures for creating the NER system.
Similarly, Papadopoulou et al. (2022) use knowl-
edge graphs and k-anonymity (Sweeney, 2002) to
generate a weakly supervised dataset. Then, the
generated dataset is used to fine-tune RoBERTa
(Liu et al., 2019) and create an anonymization tool
following a NER architecture.

Regarding pseudonymization and anonymiza-
tion data there are not many publicly available
datasets. The documents that need this kind of
tool have to be pseudonymized or anonymized be-
fore becoming public, due to privacy reasons, and,
annotating documents is an expensive and time-
consuming task. Thus many of the legal datasets
used in the literature are private, such as the works
of Barriere and Fouret (2019) and Garat and Won-
sever (2022). One exception is the TAB Corpus
(Pilán et al., 2022), which is a collection of publicly
available documents from the European Court of
Human Rights that have been annotated for evalu-
ating anonymization tasks.

Outside the legal domain, there are clinical
datasets such as the 2014 i2b2/UTHealth corpus
(Stubbs and Uzuner, 2015) and the 2016 CEGS
N-GRID Shared Task (Stubbs et al., 2017). Pa-
padopoulou et al. (2022) created an anonymization
dataset using a collection of Wikipedia biographies.

As the pseudonymization and anonymization

3https://github.com/microsoft/presidio
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tasks can be seen as a NER one (Pilán et al., 2022;
Garat and Wonsever, 2022; Papadopoulou et al.,
2022) it is not uncommon for researchers to use
general NER datasets, such as CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003), and then apply
the (pre-) trained models through a zero-shot ap-
proach into the legal domain. This is the case of
the works presented by Schamberger (2021) and
Pilán et al. (2022). However, as Pilán et al. (2022)
conclude, the zero-shot results are not the best as,
in some cases, the entities to mask are different
than those available in the original tagset.

Although the clustering of individuals for the
pseudonymization and anonymization tasks has
been considered relevant in some works (Pilán
et al., 2022; Garat and Wonsever, 2022), the
amount of available resources regarding this as-
pect is scarce. For instance, in TAB (Pilán et al.,
2022) only 1.7k of 24k entities of type person be-
long to a cluster, the rest are singletons4. In the
case of CoNLL 2012 coreference corpus (Pradhan
et al., 2012) there are no singletons. The best excep-
tion is LitBank (Bamman et al., 2020), a collection
of 100 fiction documents in English that are an-
notated with coreference resolution, and presents
singletons and clusters.

Finally, we can find some additional tools in the
literature related to the pseudonymization task. In
Gupta et al. (2018), the authors present a tool for
identifying parties of legal cases using NER and
coreference resolution. Moreover, in Kalamkar
et al. (2022), the authors present a NER system for
annotating Indian legal documents on which they
reconcile types of named entities using rules and
coreference resolution. BookNLP5 a Spacy-based
tool created for processing long documents, espe-
cially fiction books. Among BookNLP’s tools, we
can name a character clustering and a coreference
resolution module. Finally, PeTra (Toshniwal et al.,
2020) is a model based on BERT (Devlin et al.,
2019) which uses memory modules to keep track
of people within short documents.

4 Methodology

In Figure 1, we present PSILENCE’s architecture,
which is composed of four modules. In the first
module, we make use of a Python-based HTML
parser and Spacy (Honnibal et al., 2020) to pre-

4A singleton is a type of cluster composed of only one
person occurring only once in a document.

5https://github.com/booknlp/booknlp
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Figure 1: Global architecture of PSILENCE.

process the documents. During the pre-processing
of documents, we convert HTML documents into
plain text divided into paragraphs and we extract ci-
tations that were defined as HTML spans. The sec-
ond module is a hybrid NER system, i.e. based on a
machine learning model and rules; its goal is to de-
tect different types of named entities within a docu-
ment. The third module is a simplified coreference
resolution model that only clusters names of enti-
ties and does not consider any kind of pronouns.6

The fourth module is a reconciliation system, simi-
lar to the one used in Kalamkar et al. (2022), which
tries to determine the exact type of entity in a doc-
ument, even if the context in which it occurs, is not
clear.

At the end of the pipeline, we create a pseudo-
nymization dictionary, which is a JSON file, see
Figure 2, indicating the different clusters found for
each type of person entity. Each cluster contains all
the variations found for the same person with their
occurrences based on character positions. Based
on the example presented in Figure 2, the occur-
rences of the names “Bill Scott”, “William Scott”
and “Scott”, would be replaced with “WITNESS_1”
while the name “McConnell” would be replaced
with “WITNESS_2” in the pseudonymized docu-
ment. Although in this work we focus on clusters
of type Witness, we provide other types of clusters
in the JSON output in case we make a mistake in
the grouping or classification of entities.

The second, third, and fourth modules will be
described in detail in the following subsections.

4.1 Named Entity Recognition (NER)

For extracting named entities, PSILENCE uses a
hybrid NER system. It was done by coupling a

6The reasons for not considering pronouns is that it makes
the coreference resolution task harder to do and, as Pilán et al.
(2022) indicate, pronouns do not tend to leak highly sensitive
information even in anonymization tasks.
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1 {
2 " c l u s t e r s " : {
3 "WITNESS" : [
4 {
5 " B i l l S c o t t " : [ [ 2003 , 2013 ] ] ,
6 " Wi l l i am S c o t t " : [ [ 2317 , 2330 ] ] ,
7 " S c o t t " : [ [ 2443 , 2448 ] , [ 3305 , 3310 ] ]
8 } ,
9 {

10 " McConnell " : [ [ 3300 , 3309 ] ]
11 }
12 ] ,
13 "LAWYER" : [
14 {
15 " Bermudez " : [ [ 1712 , 1720 ] ]
16 }
17 ]
18 }
19 }

Figure 2: Example of a PSILENCE’s JSON output file.
The file presents the different person entity types and
the clusters found in the document. We indicate as well
the character position in which the replacement needs
to be done.

machine learning model, through a zero-shot ap-
proach, and a collection of rules.

The machine learning model is a transformer-
based NER system trained on CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) using
BERTLARGE (Devlin et al., 2019).7 This model
was used due to the lack training data8 and it can
predict four types of named entities, person, orga-
nization, miscellaneous, and location.

Regarding the collection of rules, we use regu-
lar expressions and string matching9 to determine
whether an entity found by the machine learning
approach should be specialized. For instance, we
do string matching between named entities of type
person and metadata from the case database to find
the names of judges, lawyers, and parties. In the
case of authors, we use, for example, regular ex-
pressions to extract them from citations found in
the pre-processing module.

In total, we can detect 12 types of entities: Party,
Judge, Lawyer, Arbitrator, Tribunal member, Ex-
pert, Author, Law firm, Person, Organization, Mis-
cellaneous, and Location. These are obtained using
the following approaches. Machine learning - Per-
son, Organization, Miscellaneous, and Location.

7This model was not trained by us, instead it was down-
loaded from https://huggingface.co/dbmdz/bert-large-cased-
finetuned-conll03-english

8This research was done before the publication of
Kalamkar et al. (2022), which proposes an English Indian
Legal NER dataset. Moreover, it should be noted that we
focus on international arbitration cases and not national legal
cases as it happens in Kalamkar et al. (2022).

9This is done using RapidFuzz:
https://github.com/maxbachmann/RapidFuzz.

Metadata string matching - Party, Judge, Lawyer,
Arbitrator, Tribunal member, Expert, and Law firm.
Regular expressions - Judge, Lawyers, Authors. As
it can be seen, the category Witness is not present
in the aforementioned list, this is because all the
entities of type Person that could not become spe-
cialized, e.g. Judge and Author, are considered as
witnesses at the end of PSILENCE’s pipeline.

Although the approach described before can be
counter-intuitive, i.e. to find specialized named
entities rather than directly finding witnesses, it
should be indicated that finding only witnesses is
harder. In the first place, and especially as we
get farther from the beginning of the document, the
context in which the name of a person occurs might
not be descriptive enough to determine whether it
is a witness or not. At the beginning of a document,
specialized people tend to be formally introduced
either using titles or specific contexts. For instance,
a lawyer can be introduced in a document as “Doe
QC”, a judge as “Honorable Doe”, or an arbi-
trator as “Arbitrator: Ms. Jane Doe”. However,
in the case of witnesses, these do not tend to be
introduced directly as witnesses, such as in “Mr.
Doe was a personal trainer in the defendant’s com-
pany and noticed that. . . ”. In the second place,
this approach makes PSILENCE’s output easier
to correct by humans, for example, if a person is
wrongly marked as an Expert, all their occurrences
in a document can be easily converted into Witness,
without having to find these by hand. Finally, it
makes PSILENCE easier to use in different legal
contexts, such as those where judges or lawyers
need to be redacted as well.

4.2 Coreference resolution
For clustering named entities, we use a coreference
resolution system based on the work of Clark and
Manning (2016a,b). This means that it is composed
of a mention-pair encoder, a cluster-pair encoder,
a mention ranking model, and a cluster ranking
model; moreover, the neural network has three fully
connected hidden ReLU layers.

The input features of the neural network are pre-
sented as follows:

• Dense Embeddings: We use FastText with
subword information (Bojanowski et al.,
2017) to vectorize entities and entities con-
texts. Specifically, we use those trained on
Common Crawl10 and we reduced the size of

10crawl-300d-2M-subword.zip

28

https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english
https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english
https://github.com/maxbachmann/RapidFuzz
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M-subword.zip


the embedding from a dimension of 300 to
100 using FastText API11.

• Length of named entity: Using binary en-
coding, we set the number of characters in
a named entity.

• Named entity location: It is the relative posi-
tion of the named entity within a document.

• Matching root: Using Spacy’s dependency
parser, we compare whether the root of a
named entity matches the root of other ones.

• Words intersection: Proportional number of
words shared between couples of named enti-
ties.

• Exact match: We compare whether two
named entities have an exact match.

• Relaxed match: We make use of RapidFuzz
to determine the degree of string matching
between a couple of named entities. In other
words, we utilize fuzzy string matching met-
rics as digitized legal documents can contain
misspelling mistakes, originated either by the
OCR or by the data entry clerk.

• Cosine similarity: Using FastText embed-
dings, we calculate the cosine similarity be-
tween named entities.

• Named entity distance: We calculate the rel-
ative distance, in terms of words, between a
couple of named entities.

• Dense representation of context: We calcu-
late, using FastText embeddings, the dense
representation of the named entities’ contexts.

All the string comparisons are done using UTF-8
and ASCII encodings to prevent mistakes by the
use of diacritics.

In Table 1, we present the hyperparameters used
for training the coreference resolution model.

It should be indicated that during prediction
time, we pre-cluster the named entities using Rapid-
Fuzz and a similarity score of 0.6. This allows
us to decrease the processing time on long docu-
ments. This approach is similar to the one used by
BookNLP12 for the coreference resolution (Bam-
man et al., 2020).

4.3 Entities reconciliation
One common problem in NER tasks, especially in
long documents, is the fact that certain entity names
can be predicted with different types in multiple
paragraphs or sentences (Kalamkar et al., 2022).
The main reason is that the context in which an

11https://fasttext.cc
12https://github.com/booknlp/booknlp

Table 1: Hyperparameters used for training the corefer-
ence resolution model.

Hyperparameter Value

Maximum Epochs 200
Early Stop Patience 30
Learning Rate 0.001
Scheduler Linear with warm-up
Warm-up Ratio 0.1
Optimizer AdamW with bias correction
AdamW ϵ 1× 10−8

Random Seed 1111
Dropout rate 0.5
Weight decay 0.01
Embeddings size 100
h1 size 1000
h2 size 500
h3 size 500
Cost False New 0.8
Cost False Anaphoric 0.4
Cost Wrong Link 1.0

entity occurs might change. For instance, at the
beginning of a document, it might be stated that
Mr. X is a lawyer but, later on in the document
it is just presented as Mr. X. In these cases, it
might be impossible to determine the correct entity
type, not only for humans (without reading the full
document), but for machine learning models too.
Therefore, it is necessary to reconcile entity types
to have the best performance possible.

In this work, we use the output generated by
the coreference resolution system along with some
rules to reconcile entities. Specifically, for a given
cluster of people, we start by counting the different
types of entities. If only one type of entity exists,
we consider the type of entity to be correct. How-
ever, if it is the opposite, i.e. more than one type,
we use the following rules:

• If one of the entities is marked as a party, then
all the entities become of type party and will
be ignored for the pseudonymization process.

• If more than 30% of the entities are not of
type person, i.e. Location, Miscellaneous,
Law Firm, or Organization, the cluster will
be ignored for the pseudonymization process.

• If the most frequent type of entity is a Judge,
Author, Expert, Arbitrator, Tribunal Member,
or Lawyer, then the cluster is ignored for the
pseudonymization process.

The clusters considered to pseudonymize, i.e. Wit-
ness, are those of type Person that after the reconcil-
iation process could not be specialized. These rules
were developed and fine-tuned experimentally by
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Table 2: Statistics of the legal corpus.

Per document Median Minimum Maximum

Tokens 10 809 496 112 509
Witness entities 14 1 305
Clusters 4 1 38

assessing the performance of PSILENCE on the
development part of a legal corpus (see Section 5).

5 Data

For training PSILENCE coreference resolution sys-
tem, we use three different corpora. LitBank (Bam-
man et al., 2020) is the main training corpus be-
cause it contains singletons, documents are long
and it is one of the biggest coreference resolution
corpora. However, due to its literary nature, we de-
cided as well to use two entity-linking-related cor-
pora, In Media Res (Brasoveanu et al., 2020) and
AIDA-CoNLL-Yago dataset (Hoffart et al., 2011);
both of these corpora focus on news articles. Even
though these two corpora are not annotated with
coreference resolution groups, as we focus only
on the clustering of people, we make use of their
entity-linking annotations to determine clusters. In
other words, named entities of type person can be
grouped thanks to common knowledge-base links.
For example, in AIDA-CoNLL-Yago, in a docu-
ment talking about the signer “Johnny Allen Hen-
drix”, all his name variations, e.g. “Hendrix” and

“Jimi Hendrix”, are linked to the same knowledge
base Yago ID. To improve the quality of these two
last corpora, we manually validated some of the
clusters, and in the case of AIDA-CoNLL-Yago,
we also included some heuristics to match some
people that were not linked correctly.13 For the
three corpora, we use a training, development, and
testing partition; therefore, we can fine-tune the
models and evaluate their performance.

Besides, we have a collection of 140 interna-
tional arbitration documents written in English cov-
ering different types of cases: sports (121), com-
mercial (8), inter-state (5), Iran-US claims (2),
and investor-state (4); see Table 2 for statistics.
These 140 documents were manually annotated by
a group of expert lawyers at Jus Mundi. Specif-
ically, these experts created for each document a
list of witness clusters; in other words, they found
all the witnesses in a document and grouped their

13In AIDA-CoNLL-Yago, we used the original documents.
However, for In Media Res, we create pseudo-documents by
grouping sentences based on the co-occurrence of people.

different occurrences into clusters.14 It should be
indicated that these documents are in HTML for-
mat and were previously enriched with citations
using an in-house tool. Each document is associ-
ated with metadata which was manually verified by
Jus Mundi’s legal team. From the 140 documents,
33 were used for fine-tuning PSILENCE’s pipeline,
i.e. NER, and coreference resolution, and 107 were
used for testing it.

6 Evaluation

In this paper, we use the evaluation framework pro-
posed in CoNLL 2012 Coreference Shared Task
(Pradhan et al., 2012). It asses in the first place
whether all the named entities have been found
within a document. And, in the second place, it
evaluates how well these entities have been grouped
into clusters. This evaluation framework is com-
posed of three metrics, B3 (Bagga and Baldwin,
1998), CEAF (Luo, 2005) and MUC (Vilain et al.,
1995). However, instead of using MUC as defined
by Vilain et al. (1995), we make use of a modified
version that takes singletons into account. Specifi-
cally, for singletons, we define the minimum num-
ber of correct links as |k(S)|, instead of |k(S)|− 1,
and the number of missing links as |p(S)| instead
of |p(S)| − 1; where |k|(S) is the size of the key
cluster for mention S, i.e. 1, and p(S) is the inter-
section of the predicted cluster and the key cluster
of mention S. In simple words, MUC for single-
tons becomes a binary metric. This change was
necessary as the CoNLL 2012 Coreference Shared
Task did not consider singletons but our four cor-
pora do.

As indicated in Section 3, there are not many
available tools for pseudonymizing legal docu-
ments. However, we compare PSILENCE coref-
erence resolution tool with BookNLP15. Specifi-
cally, we assess the clustering performance of PSI-
LENCE and BookNLP when they are provided
with the gold standard entities, i.e., those that have
to be pseudonymized. We use BookNLP because
it was designed to process long documents and
it is capable of performing coreference resolution
(Bamman et al., 2020).16 The comparison is done

14We did not include clusters of other types of entities in
these lists, such as lawyers or judges, as they were out of the
project scope. But also because their annotation would have
become harder to achieve.

15https://github.com/booknlp/booknlp
16Although BookNLP has its own NER, we did not adapt its

NER to predict and/or filter subtypes of people, like lawyers
and judges, due to the complexity of the task.
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on the legal documents, thus, we can assess how
well the tools behave in the legal domain when all
the correct entities are given.

7 Results

We present in Table 3 the results, in terms of Macro
F-score, obtained by our coreference resolution sys-
tem, when it was applied on the testing partitions
of AIDA-CoNLL-Yago, In Media Res and LitBank.
The results presented in Table 3 show us how well
can we cluster the names of people in different
types of documents and circumstances. It is clear
that as the length of the documents increases, as it
happens in LitBank, the performance decreases.

In Table 4 and Table 5, we show the F-scores
obtained by our coreference tool and BookNLP, the
baseline, regarding the clustering of gold standard
entities, i.e. the names of people that had to be
pseudonymized, over the legal development and
testing corpora respectively. The macro outcomes
presented in both Table 4 and Table 5 show that,
despite applying the coreference resolution tools
to an unseen domain, they manage to cluster peo-
ple correctly in most documents. Nonetheless, the
micro outcomes shown in Table 4 and Table 5, in-
dicate that in documents where a great number of
people co-occur, the performance decreases as it is
harder to disambiguate people.

In Table 6, we introduce PSILENCE pipeline’s
results. We can observe in Table 6 that when we
include the NER system into the pipeline, the per-
formance of our coreference resolution tool is af-
fected. This means that the detection of named
entities is not perfect and the produced noise af-
fects the clustering of people. Specifically, in the
test corpus we pass from a macro CoNLL F-score
of 0.95 (Table 5) to 0.82 (Table 6).

8 Discussion

Regarding the results presented in Table 3, we
can observe that the macro F-scores achieved by
the coreference system tend to be greater than
0.90, meaning that in general, most of the doc-
uments are clustered correctly. The performance
decreases as the length of the document increases
because the number of mentions increases, thus
the number of pairs needed to be compared in-
creases as well. Moreover, the documents from
AIDA-CoNLL-Yago and In Media Res are rela-
tively small and have fewer named entities and
clusters than LitBank.

As we observed in Table 4 and Table 5, our coref-
erence resolution system, performed in general,
better than the one found in BookNLP. This can
be due to several aspects. In the first place, PSI-
LENCE coreference resolution system was trained
on two more datasets. This means that PSILENCE
was trained on more examples but also from differ-
ent domains, literary and news. Secondly, to use
BookNLP as a baseline, we had to introduce our
gold standard named entities into BookNLP, mean-
ing that we had to remove their NER system and
modify certain pipelines. This could have affected
the performance; also, BookNLP was designed to
link personal pronouns to names too. Moreover, we
do not see any change between BookNLP’s small
and big models (Table 4 and Table 5).

We performed a manual analysis of certain clus-
ters found in our legal dataset to better understand
Table 4 and Table 5. From this analysis, we de-
termined that there are recurrent errors that occur
in both PSILENCE and BookNLP. We found out
that spelling name variations are one of the most
common reasons for people not being correctly
clustered. For instance, “Mahmood” can also be
referred to as “Mahmoud”; “Lief” as “Liefs” and

“Kuan” as “Koan”. Another frequent clustering er-
ror across both approaches occurs when the full
name is used but then, only a part of it is used later
in the text, like “Michael S. Blatter” as “Blatter”
and “Lalit Merchant” as “L Merchant”. We no-
ticed a drop in performance when the documents
have people with long names, such as double last
names, but also if they contain accentuated letters.
Nonetheless, we also noticed that with PSILENCE,
we can correctly cluster some entities among the
above-mentioned instances. For instance, we man-
age to cluster “Bill Essick” and “William Essick”
correctly whereas they remain as separate entities
with BookNLP. It should be indicated that these
types of errors are not uncommon, neither in PSI-
LENCE or BookNLP. We believe it is related to the
sentences’ context, but a deeper analysis is needed.

Some of the previous errors might be able to be
fixed by changing the embeddings type, from word
to contextual ones like those provided by BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019).
However, this would mean that the architecture of
the coreference resolution system would need to
change completely, as contextual embeddings are
not designed for single-word analysis, and have to
be trained differently for calculating cosine similar-
ity (Reimers and Gurevych, 2019). Moreover, mod-
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Table 3: Results in terms of macro F-score for each testing partition of the corpora used for training the coreference
resolution system.

Corpus MUC BCUB CEAFE CoNLL

AIDA-CoNLL-Yago 0.98 0.97 0.96 0.97
In Media Res 0.94 0.95 0.92 0.94
LitBank 0.96 0.93 0.80 0.90

Table 4: Results of the coreference resolution task in terms of F-score, micro and macro averaged, for legal
development corpus.

System MUC BCUB CEAFE CoNLL

Micro Macro Micro Macro Micro Macro Micro Macro

Ours 0.90 0.95 0.50 0.95 0.64 0.90 0.68 0.93
BookNLP Small 0.89 0.94 0.61 0.92 0.58 0.86 0.69 0.91
BookNLP Big 0.89 0.94 0.61 0.92 0.58 0.86 0.69 0.91

els such as Sentence BERT (Reimers and Gurevych,
2019) have been created to find similar sentences
and not similar words, unlike FastText.

As we observed in Table 6, the coreference reso-
lution F1-score decreases by 37% (micro) and 24%
(macro) in comparison to the clustering-only task.
This means that PSILENCE’s NER has trouble in
correctly detecting all the different types of named
entities. For instance, the machine learning model
sometimes cannot find all the entities in a sentence,
or if they are found they can be tagged with the
wrong type, or they are split into multiple smaller
ones, or the boundaries are wrong, e.g. “Romano
F.” and “Subiotto Q.C.” rather than “Romano F.
Subiotto”. Regarding the collection of rules, some-
times it is hard to correctly apply them. For in-
stance, in some documents, the parties were stated
as “Company (Country) Ltd.” or lawyers as “John
R. Doe”, however in our metadata, these entities
were “Company Ltd.” and “John Roe Doe”.

To solve the aforementioned issues, we can pro-
pose certain solutions. First, we need to reduce
our dependency on rules for the NER by training a
specialized legal NER rather than using a generic
one in a zero-shot way. Secondly, to reduce the
number of entities with wrong boundaries, the new
NER should be trained with a CRF layer, like in
Ma and Hovy (2016), and use an IOBES encoding,
as in Ratinov and Roth (2009). Also, we might
need to use data augmentation methods, such as
in Cabrera-Diego and Gheewala (2023), where a
frustratingly easy domain adaption method is used
to mix different legal NER corpora.

Moreover, some of the detected errors were
caused by the reconciliation module. In other
words, the rules used in this module were not ro-
bust enough to detect or solve issues generated by
the NER model. For example, in one document a
law firm was incorrectly tagged as a person rather
than as an organization; in this case, the reconcilia-
tion module determined that the entity was of type
person because it was the most frequent type, thus
it was an entity that had to be pseudonymized.

Some other errors found during the analysis were
caused by a wrong splitting of sentences. This was
particularly noticeable when a paragraph contained
citations that were not tagged in the HTML doc-
ument, which in consequence made a paragraph
be split into wrong sentences. In consequence, au-
thors found in these undetected and wrongly split
citations were considered many times as witnesses
because specialization rules could not be applied.
Other splitting errors in sentences come from the
fact that Spacy, was not trained to analyze legal
documents, thus it is not aware of specialized ab-
breviations such as Hon’ble and Q.C. Moreover,
we found out that in general, Spacy is bad at pro-
cessing long sentences, such as those that are found
in legal documents. Therefore, when a paragraph is
wrongly split into sentences, it has a consequence
not only on the NER system but also on the coref-
erence resolution one. To solve these errors, one
option is to train our model for splitting sentences,
although it can be complicated to achieve due to
the number of data necessary to train this kind of
model. Another option is to stop using sentences
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Table 5: Results of the coreference resolution task in terms of F-score, micro and macro averaged, for the legal
testing corpus.

System MUC BCUB CEAFE CoNLL

Micro Macro Micro Macro Micro Macro Micro Macro

Ours 0.94 0.97 0.47 0.96 0.45 0.92 0.62 0.95
BookNLP Small 0.9 0.93 0.51 0.92 0.37 0.85 0.59 0.90
BookNLP Big 0.9 0.93 0.51 0.92 0.37 0.85 0.59 0.90

Table 6: Results of the pseudonymization pipeline, i.e., NER, coreference resolution, and entities reconciliation, in
terms of F-score, micro and macro averaged, for the development and testing corpora.

Corpus MUC BCUB CEAFE CoNLL

Micro Macro Micro Macro Micro Macro Micro Macro

Developement 0.70 0.87 0.24 0.86 0.32 0.80 0.42 0.82
Test 0.71 0.77 0.18 0.77 0.27 0.71 0.39 0.72

for delimiting the context in which a named entity
occurs. However, this would mean that it could be
harder to determine the actual context of a named
entity in the coreference resolution system.

Despite the complexity of the pseudonymization
task and the use of multiple deep learning mod-
els through a zero-shot approach, we consider the
macro results shown in Table 6 good in general.
Nonetheless, there is still work to be done, espe-
cially when we observe the micro results (Table 6).
These results indicate that we need to continue
working on the clustering of people in long doc-
uments because it becomes harder to keep track
of people. We might need to explore more com-
plex methods for clustering people using memory
systems, such as PeTra (Toshniwal et al., 2020).
However, we also need to consider that many of
the works of coreference resolution are done on
relatively short documents.

9 Conclusions

In this paper, we presented the first results of PSI-
LENCE, a pseudonymization tool for the semi-
automatic redaction of international arbitration doc-
uments in English, where people are clustered, to
accelerate the human validation step and improve
the readability of the document.

Experiments were done on different datasets, in-
cluding one composed of legal documents. The
obtained results were promising, especially for the
clustering of people through coreference resolu-
tion. For instance, we got a macro F-score of 0.95,

when clustering gold standard named entities, and
a macro F-score of 0.72 when we use the NER.

An analysis of the results showed that some of
the errors come from the fact that we use multi-
ple rules at different levels. But also, because the
current implementation of PSILENCE is based on
multiple zero-shot approaches, meaning that the
training data did not come from the legal domain.
Therefore, to improve PSILENCE, it will be neces-
sary to work on a specialized legal corpora.

In the future, we will work on the improvement
of the PSILENCE system as discussed in Section 8.
Moreover, we would like to cluster named entities
through multiple documents to assign them the
same pseudonym. This would be useful when a
case has multiple documents and certain people
occur in several of them, allowing us to increase
the readability of complex cases.

Finally, we will train PSILENCE using multilin-
gual language models on legal documents in other
languages than English, especially those from the
European Union where legal documents are subject
to GDPR rules.
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Limitations

PSILENCE has different limitations that need to be
clarified. In the first place, while we indicate that
PSILENCE can pseudonymize, if necessary, dif-
ferent types of person entities besides witnesses, it
should be stated that we have not evaluated yet how
well PSILENCE can detect these other person enti-
ties. The main reason is that we do not have those
annotations and are very expensive to manually get.
While we expect PSILENCE’s coreference reso-
lution system to perform similarly to the results
presented in this work, we cannot ensure that the
quality of the NER will be equal for all the types of
named entities. Nevertheless, we expect that by de-
ploying PSILENCE in Jus Mundi, we will be able
to have more and better annotations that could be
used to train specialized tools. In the second place,
we have explored different types of international
arbitration cases, however, there are many more.
Thus, we cannot ensure that the current pipeline
used in PSILENCE can be applied to all types of
arbitration, at least without a fine-tuning process.
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Abstract

This study discusses the methods and chal-
lenges of deidentifying and pseudonymizing
Norwegian clinical text for research purposes.
The results of the NorDeid tool for deidentifica-
tion and pseudonymization on different types
of protected health information were evaluated
and discussed, as well as the extension of its
functionality with regular expressions to iden-
tify specific types of sensitive information. This
research used a clinical corpus of adult patients
treated in a gastro-surgical department in Nor-
way, which contains approximately nine mil-
lion clinical notes. The study also highlights
the challenges posed by the unique language
and clinical terminology of Norway and empha-
sizes the importance of protecting privacy and
the need for customized approaches to meet
legal and research requirements.

1 Introduction

Today with the European General Data Protection
Regulation (GDPR) law, and the Norwegian law
for the processing of personal information Lov
om behandling av personopplysninger (personop-
plysningsloven) it is notoriously difficult to get ac-
cess to electronic patient record texts to perform
research.

First of all, one needs to submit an application
to the Norwegian Regional Committees for Med-
ical and Health Research Ethics (REK) and after
that approval, one needs to ask Personvernsombud
(PVO) at the local hospital to access the data. One
way to make it easier is to process the data before
using it for research by sanitising the data, that is to
deidentify and then pseudonymise it, very similar
to what has been carried out in (Vakili et al., 2022).

2 Related research

The field of deidentifying and pseudonymizing
clinical text for research purposes has been a sub-
ject of extensive research, with much of the previ-
ous work based on shared tasks related to datasets
such as i2b2 (now n2c2). In (Stubbs and Uzuner,
2015), and most studies model deidentification as
a named entity recognition (NER) task, (Nadkarni
et al., 2011). Making these datasets available to
researchers has facilitated a lot of progress on this
task over the years; starting with traditional NLP
methods (Stubbs et al., 2015), then with deep learn-
ing using word embeddings, (Dernoncourt et al.,
2017), then more recently to deep learning meth-
ods using contextual embeddings or large language
models, (Vakili and Dalianis, 2022). These bench-
mark datasets partially solved the need for standard-
ised evaluation metrics to facilitate the comparison
and improvement of different deidentification meth-
ods. Regarding the generation of pseudonyms or
surrogates there is a nice description carried out by
Olstad et al. (2023) where the authors elaborate on
the replacement at different generalisation levels.

More recent research have shown promising re-
sults in the field. Among others, López-García et al.
(2023) conducted a study on the automatic deiden-
tification of medical documents in Spanish. The
study developed two different deep learning-based
methodologies for the task and also developed a
data augmentation procedure to increase the num-
ber of texts used to train the models. Vakili et al.
(2022) carried out deidentification and pseudonymi-
sation of 17.9 Gb of Swedish clinical text using a
Swedish clinical BERT model called SweDeClin-
BERT. The process of deidentification took over
two weeks, while pseudonymisation, replacing the
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found entities with pseudonyms or surrogates, was
ready in a couple of days since it is a rule based ap-
proach. In total 83,914,340 sensitive entities were
found in 49,715,558 sentences encompassing 2.8
billion words.

Zheng et al. (2021) reviewed the recent research
for ensuring the correct usage of regular expres-
sions, which is crucial for identifying specific types
of sensitive information.

However, there is a growing focus on address-
ing the challenges posed by the diverse and nu-
anced nature of clinical narratives, including varia-
tions in language use, context, and medical jargon.
For instance, different institutions have different
standards on how they treat their electronic health
record narratives. This highlights the importance of
documenting deidentification processes in diverse
contexts, such as Norway in this case.

3 Methods and Materials

3.1 Methods
The methods used are a combination of deep learn-
ing methods and rule-based methods in the form of
regular expressions.

The NorDeid deidentification and pseudonymi-
sation tool was used in this study. NorDeid
utilises the ScandiBERT1 language model based
on all Scandinavian languages and fine-tuned on
the Swedish Stockholm EPR PHI Pseudo Corpus
augmented with Danish and Norwegian personal
names, (Lamproudis et al., 2023). ScandiBERT is
a Bidirectional Encoder Representations (BERT)
that was specifically fine-tuned for understanding
and processing the Scandinavian languages, includ-
ing Danish, Norwegian, and Swedish. NorDeid’s
functionality was extended with a number of regu-
lar expressions to identify email-addresses, Norwe-
gian social security numbers, user name and family
numbers, and used to identify the Protected Health
Information (PHI) described in Table 1. PHIs are
entities in a text that can reveal the identity of a
person.

The chosen strategy to sanitise the text is first
the NER identification of the PHIs and secondly
to pseudonymise the found PHI by replacing them
with similar surrogates, (Dalianis, 2019). For exam-
ple: A last name is replaced with another random
last name, the same name is replaced with the same
random name to keep the coherence within the dis-
course. Female names are replaced with another

1https://huggingface.co/vesteinn/ScandiBERT

random female name. A gender-neutral first name
is replaced with another random gender-neutral first
name. A location is replaced with another location
nearby.

The HIPS, Hidden in Plain Sight strategy pro-
posed by Carrell et al. (2019) was used in this study
which implies removing the tags around the identi-
fied and pseudonymised PHIs so the PHIs that have
been missed to be identified will be hidden among
the pseudonymised PHIs.

PHI classes Found PHIs
First Name 26,250,587
Last Name 29,793,462
Phone Number 14,227,411
Full Date 20,063,639
Date Part 19,866,503
Health Care Unit 84,232,994
Location 11,407,571
Organisation 5,292,142
Family Number 15,215,076
Social Security Number 700,527
Email 125,572
User name 4,126,831
Summary 227,179,610

Table 1: The table presents the PHI-classes2 to be dei-
dentified.

3.2 Materials
A clinical corpus called ClinCode Gastro Corpus
containing 31,378 adult patients treated between
the years 2017 to 2022 at the Gastro-Surgical de-
partment at the University Hospital of North Nor-
way, Tromsø was used3. The dataset includes ap-
proximately 8.8 million clinical notes (in total, 27.6
Gb).

4 Application of method

A server Republic of Gamers with the operating
system Debian Linux installed and equipped with
two GPUs (ASUS Geforce RTX 3090), 64 Gb of
internal memory (RAM) (2 x 32GB 3200 MHz
DDR4), 8 TB Gen4 x4 M.2 NVMes SSD hard
disc etc and not connected to the Internet was used

2The PHI class Age was at some point excluded from
the execution of NorDeid after some discussion within the
research group, since it was not considered sensitive, but it
can easily be included again.

3This research was approved by The Norwegian Regional
Committees for Medical and Health Research Ethics (REK)
North, decision number 260972
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Figure 1: Top five types of clinical notes in the data.
The letters are not clinical notes and will not be used in
the research.

for the deidentification task. The server was also
encrypted and situated in a server room only acces-
sible to researchers who were specially authorised
to work with the data and signed a confidentiality
agreement. The server also remains offline during
the project.

The process to deidentify and pseudonymise the
corpus took approximately one week. The results
can be seen in Table 2.

The evaluation of the current version of NorDeid
is based on a comparison between human anno-
tations and predictions made by the model. The
evaluation dataset consists of 19 clinical notes that
encompass about 13,000 tokens, annotated in the
CoNLL format, a popular schema for text anno-
tation used in natural language processing. The
annotations target various entities of PHIs listed in
Table 1.

The performance of the model is quantitatively
measured using standard metrics: precision, recall,
and F1-score. Precision measures the proportion of
correct positive identifications made by the model,
recall assesses the model’s ability to identify all
relevant instances, and the F1-score provides a har-
monic mean of precision and recall, offering a bal-
ance between the two.

5 Analysis

The evaluation results are presented in a detailed
format as shown in Table 2, covering various types
of PHIs. The model shows varying levels of ef-
fectiveness across different PHI types. For exam-
ple, it performs well in identifying entities like
First_Name, Full_Date, and Phone_Number, but it

struggles with Family_Number, Organisation, and
Social_Security_Number.

The model achieves its highest F1-scores with
Full_Date (0.76), Phone_Number (0.73), and
First_Name (0.68). These results indicate a
strong ability to recognise and accurately tag full
dates and names in clinical notes. Although
the model shows no capability in correctly clas-
sifying Family_Number, Organisation, and So-
cial_Security_Number, NorDeid was able to iden-
tify those entities as PHIs, according to the confu-
sion matrix (Figure 2). By looking at the average
scores (micro average, macro average and weighted
average), the model demonstrates moderate effec-
tiveness with a weighted average F1-score of 0.53.
While this indicates potential utility in a clinical
setting, there is notable room for improvement.

Figure 2 shows the entity confusion matrix. Each
row of the matrix represents the instances in an
actual class, while each column represents the in-
stances in a predicted class. For PHI types such
as Health_Care_Unit, Full_Date, First_Name, and
Last_Name, there is a higher number of true posi-
tives. This shows a strong alignment with human
annotations. Certain types of PHIs, such as Organ-
isation and Social_Security_Number, have higher
false positives and false negatives. This suggests
the challenge in classifying these PHIs correctly.
There are also a high number of misclassifications
between Location and Health_Care_Unit, as well
as between Date_Part and Full_Date. This could
be due to the similarity in format and context be-
tween these types of PHIs.

PHI class Precision Recall F1-score

Age 0.30 0.32 0.31
First_Name 0.61 0.76 0.68
Last_Name 0.66 0.70 0.68
Full_Date 0.65 0.93 0.76
Date_Part 0.28 0.44 0.34
Health_Care_Unit 0.29 0.40 0.34
Location 0.75 0.63 0.68
Organisation 0.00 0.00 0.00
Phone_Number 0.60 0.92 0.73
Social_Security_Number 0.00 0.00 0.00
Family_Number 0.00 0.00 0.00
Username 0.00 0.00 0.00

micro avg 0.47 0.59 0.52
macro avg 0.34 0.43 0.38
weighted avg 0.49 0.59 0.53

Table 2: Evaluation results of NorDeid on 19 random
clinical notes, approximately 13,000 tokens

Precision, recall, and F1-score do not consider
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Figure 2: Entity level confusion matrix

the expected chance agreements that occur when
humans annotate instances. We calculated the inter-
annotator agreement to measure how well two dif-
ferent annotators made the same annotation deci-
sion. The two independent annotators annotated
the same subset of clinical notes following the an-
notation guidelines developed in this work to qual-
itatively validate the labels. The inter-annotator
agreement calculated using Cohen’s Kappa was
0.86, indicating almost perfect agreement, (Landis
and Koch, 1977).

6 Challenges

A major challenge was encountered in the begin-
ning when trying to identify and classify sensitive
data. This required a detailed understanding of the
type and extent of sensitive information applicable
to Norwegian texts, which included a wide vari-
ety of personal identifiers and confidential medi-
cal details. The difficulty was further increased
by the subtle differences in language and clini-
cal terminology that are unique to Norway. An
example of illustrating this challenge is person-
nummer, which refers to a Norwegian social secu-
rity number. This number is highly sensitive since
it is unique to each person and contains informa-
tion such as date of birth and gender. The model

needed to distinguish between actual personnum-
mer instances and other similar-looking numeri-
cal sequences. There are also different ways to
represent this number depending on how health-
care professionals annotate notes. For example, a
personnummer of 01010112345 can be rewritten
as 010101-12345 or 010101 12345 or 01 jan 01
12345.

The task of data management, such as cleaning
and formatting, can be challenging. This included
ensuring the data was in the correct text format,
linking the data correctly, and dealing with issues
when tokenizing Norwegian clinical texts. These
processes were essential to ensure the data was
accurate and reliable before using them with the
model. Annotation of clinical texts requires a lot of
resources. This process required both time and ex-
pertise, particularly in the medical domain. There-
fore, providing enough resources for annotation is
a major challenge in ensuring the overall efficiency
and precision of the deidentification procedure.

Implementing the model to deidentify Norwe-
gian clinical texts is also computationally intensive.
It requires substantial computational resources, in-
cluding processing power and memory, which was
a limiting factor. Operating in an offline environ-
ment also introduced additional constraints, par-
ticularly in setting up the environment for model
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training and debugging code. This scenario limits
the ability to take advantage of cloud computing
resources and requires reliance on local computa-
tional capabilities.

Finally, there is a potential challenge in mitigat-
ing biases in the training and the output produced
by NorDeid. Since the model relies on existing
datasets for training, there is a risk of carrying the
biases that exist within these datasets. Therefore,
ensuring the unbiased and equitable functioning of
the model in the deidentification of Norwegian clin-
ical texts is essential and should not be overlooked.

7 Discussion

Each deidentification system needs to be cus-
tomised on which PHIs to remove depending on the
research task and type of data or what each country
has for laws or rules. Lawyers and physicians do
not always agree on which PHI is sensitive. For
example, Health Care Unit can be valuable to keep
sometimes, Age can also be important in certain
research, most clinical researchers want to keep
the class name while computer scientists consider
it is much safer to replace identified PHIs with
pseudonyms or surrogates, (Vakili and Dalianis,
2022). In the example with Age it can be replaced
with an age close to the actual age, for example,
random ± 2-3 years.

8 Conclusion

In conclusion, this paper has discussed the chal-
lenges and methods involved in deidentifying and
pseudonymizing Norwegian clinical text for re-
search purposes. The use of the NorDeid tool and
regular expressions for identifying specific types
of sensitive information proved effective in the dei-
dentification process. The research highlighted the
importance of privacy preservation and the need
for tailored approaches to meet legal and research
requirements. The significance of mitigating poten-
tial biases in the training and output of deidentifi-
cation models were also emphasized.

9 Future work

The plan for the produced pseudonymised gas-
tro corpus now called ClinCode Gastro Pseudo
Corpus is to create a Norwegian Clinical BERT
Model using the publicly available Norwegian lan-
guage model NorBERT4 based on general Norwe-

4NorBERT, http://wiki.nlpl.eu/Vectors/norlm/
norbert.

gian Bokmål and Nynorsk, and perform continued
pretraining from NorBERT on the pseudonymised
gastro corpus. The aim of this is twofold first to
improve the deidentification tool NorDeid and sec-
ondly to make a privacy preserved Norwegian large
clinical language model available to researchers
worldwide and improve the result of the current
Norwegian clinical text mining. We will also ex-
tend the ClinCode Gastro Corpus with more man-
ually annotated PHIs improve the performance of
the NorDeid tool. The NordDeid tool is available
for use by other researchers and research groups.

10 Limitations

The study may be limited by the availability of
annotated Norwegian datasets for training and eval-
uating deidentification models. In addition to the
limitation posed by the Norwegian language, it is
important to note that there exist minor languages
in Norway that were not considered in this study.
The performance of the model has not been eval-
uated for these languages, which may introduce
a bias in the results. This highlights a potential
limitation of the study and underscores the impor-
tance of considering linguistic diversity in future
research to ensure inclusivity and avoid bias.

The model’s performance was not perfect and
it had problems in classifying the PHIs in the cor-
rect PHIs class. In some cases, only parts of the
health care unit or the social security number were
identified, which led that only parts of it were
pseudonymised, but NorDeid did its task in de-
identifying and pseudonymising sensitive informa-
tion. NorDeid also identified some false positives
such as parts of ICD-10 codes or Drug names (as
last names). In the Appendix some examples are
shown. In the examples the SGML tags are left.

The clinical text used in the study was extracted
only from a gastro-surgical department. Therefore,
there may be a potential lack of generalizability of
the findings to other healthcare domains or orga-
nizations. Finally, the potential impact of biases
that exist in training data and how they affect dei-
dentification and pseudonymization needs further
investigation.
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Appendix: De-identified clinical texts

Here follows examples with de-identified and pseudonymised Norwegian clinical text where the SGML
tags has been kept (hence not HIPS), for pedagogical purposes.

1. Var henvist av egen lege til en kolonskopi som skulle vært tatt den
<Date_Part>28.</Date_Part> < Date_Part>08,</Date_Part> men har utsatt denne
grunnet operasjon.

2. Gjenomgikk så <Full_Date>17.02.19</Full_Date> fedmekirurgi (type Gastric
sleeve) ved <Health_Care_Unit>en vårdenhet</Health_Care_Unit>, reoperert
<Date_Part>20.02</Date_Part> pga blødning ved <Health_Care_Unit>en
vårdenhet</Health_Care_Unit>.

3. Godkjent av/skrevet av lege i spesialisering 2 <First_Name>Signe</First_Name>
<Last_Name>Rybakk</Last_Name> / <User_Name>/Sry001</User_Name> Da hun bor i
<Location>Horten</Location> ble hun sendt hjem og kommer derfor i dag for
kontroll.

4. <Full_Date>26.01</Full_Date> 17 Journalnotat SO, <Health_Care_Unit>en
vårdenhet</Health_Care_Unit> <Health_Care_Unit>Bergen</Health_Care_Unit>
v/Overlege endokrinologi <First_Name>Carrie</First_Name>
<Last_Name>Rammus</Last_Name> /Cra2377aaa Pasienten er overflyttet hit fra
<Location>Kongsberg</Location> pga akutt nekrotiserende pancreatitt med
påfølgende langt behandlingsforløp og intensivt opphold.

5. J<Date_Part>UG05</Date_Part> Rektoskopi md biopsi

In Example 1. above, one can observe that the de-identifier splitted the Date_Part in two parts while 28.08
should be encompassed by one Date_Part tag.

In Example 4. the de-identifier missed to tag number 17 as in year 2017, while 26.01 was tagged
as Full_Date while it is actually a Date_Part. To be correct 26.01 17 should be tagged as Full_Date,
moreover in the same example the User name /Msø2377 is not tagged.

In Example 5. a part of a procedure code is wrongly identified as a Date_Part.
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Abstract

We present the findings and results of our
pseudonymisation system, which has been de-
veloped for a real-life use-case involving users
and an informative chatbot in the context of
the COVID-19 pandemic. Message exchanges
between the two involve the former group pro-
viding information about themselves and their
residential area, which could easily allow for
their re-identification. We create a modular
pipeline to detect PIIs and perform basic dei-
dentification such that the data can be stored
while mitigating any privacy concerns. The use-
case presents several challenging aspects, the
most difficult of which is the logistic challenge
of not being able to directly view or access the
data due to the very privacy issues we aim to
resolve. Nevertheless, our system achieves a
high recall of 0.99, correctly identifying almost
all instances of personal data. However, this
comes at the expense of precision, which only
reaches 0.64. We describe the sensitive infor-
mation identification in detail, explaining the
design principles behind our decisions. We ad-
ditionally highlight the particular challenges
we’ve encountered.

1 Introduction and Context

With current advances in NLP relying on data-
hungry machine learning systems and even more
data-hungry language models, user-generated data
is becoming increasingly important: data from con-
versations with chatbots, crawls of internet forums,
posts on social media, etc can and are often used
to train deep learning systems. At the same time,
respecting user privacy is critical.

The General Data Protection Regulation (GDPR)
came into effect as of the 25th of May 2018, af-
fecting any data identifying or allowing the iden-
tification of a natural person. For instance, in the
previous examples of user-generated data, identifi-
able data could take the form of a username, a full
name, or an address, among others (Francopoulo

and Schaub, 2020). At its core, the aim of the
GDPR is to bring EU data protection legislation in
line with the new ways that personal data is now
being used by giving users more control over the
ways their data is bring processed.

One of the implications of the GDPR is for there
to be no way to trace data back to a specific individ-
ual or a group thereof. As a result, anononimized
data is exempt of GDPR requirements. In turn,
much effort has gone into perfecting anonymization
and pseudonymisation techniques to allow NLP
practitioners to work directly with user-generated
data.

However, each domain presents its own unique
challenges. In this paper we tackle anonymiza-
tion in user-generated messages with a virtual chat-
bot. Text originating from this domain presents
the same characteristics as other instances noisy
user-generated text; we encounter different types
of text, with some of the messages being charac-
terised with non-standard spelling, use of slang,
etc, while others are written in a formal register
(Barbieri et al., 2020; Baldwin et al., 2015a). Fur-
thermore, information is exchanged between the
user and the virtual agent in a dialog fashion, such
that it is possible for no individual message to allow
the identification of the user, but the conversation,
taken as a whole, could.

In this paper we describe findings from our par-
ticular real-life scenario of automatically identify-
ing PIIs in user-generated data from conversations
involving a virtual agent serving as an informative
tool while not being able to directly access the data.
Users adhering to the contemplated use-case could
use the virtual assistant to make inquiries regarding
COVID restrictions in their area of residence. Such
exchanges are a perfect example of personal infor-
mation that can be used to identify an individual
based on their location.

As stated, different domains present different
challenges for anonymization. With this in mind,
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we design a flexible and modular pipeline1 to
anonymize GDPR protected text by allowing for
different components that perform sensitive data
identification and subsequent deidentification. We
describe our experimental setup and methods used,
and highlight particularly difficult aspects of work-
ing on real-life user-generated data in both Spanish
and Catalan that we could not directly access.

2 Literature Review

The task of pseudonymisation is generally consid-
ered to be complex given that based on context,
one can re-identify pseudonymised information and
the. These difficulties can be in turn modulated by
each domain’s characteristics. Up until recently,
most techniques were applied in either medical or
legal domains, which were considered to be sen-
sitive domains well before the GDPR (Sánchez-
León, 2019; Langarizadeh et al., 2018; Yuwono
et al., 2016). Methods typically vary between ap-
plications; generally speaking, pseudonymisation
occurs in at least two steps: the first step is iden-
tifying personal information, where most of the
our efforts in this paper are centered. Most meth-
ods that are applied to highly regular data rely on
simple regular expressions, whereas less structured
information requires more sophisticated Named
Entity Recognition (NER) systems based on ma-
chine learning. Deidentification can vary more in
terms of applicable methods, and is more depen-
dent on the properties of the source text. That is
to say, there are different methods that are more of
less preferable depending on the use case (Belkadi
et al.). Typically methods involve substituting sen-
sitive information with a random sequence, a label,
or a random entity of the same or similar type.

Nevertheless, Adams et al. (2019) posit that the
need for robust anonymization is being extended
to other domains, due to the GDPR affecting other
sources of data, which has made the task of auto-
matic text pseudonymisation more relevant than
ever. To that end they develop a machine learning-
based toolkit to perform automatic pseudonymisa-
tion in human-computer dialogue while taking into
account information that could potentially identify
persons (PIIs) but also corporations (CIIs).

1https://github.com/langtech-bsc/
AnonymizationPipeline

2.1 Regular expression-based sensitive
information identification

Hassan et al. (2019) create ReCRF, a named entity
extraction system that extracts features based on
orthography, lexis and regular expressions from a
specific token and its surrounding context to clas-
sify a token as containing PII or not in medical
text. The interesting aspect to their feature craft-
ing method is the use of a data-driven method to
automatically generate regex-based rules. These
features are then used as input to Conditional Ran-
dom Field models.

Still involving the medical domain, Sánchez-
León (2019) develop a pseudonymisation system
for Spanish clinical text. They enrich a simple
grammar formalism with regular expressions to
take into account spelling variations and then ap-
ply each rule in order of reliability, with generally
favourable results.

Yuwono et al. (2016) apply regular expressions
similarly to detect PIIs in clinical discharge papers.
On top of the regular expressions they construct
hand-crafted heuristics involving minimum edit
distance to account for spelling and formatting in-
consistencies between documents. Their simple
heuristics-based approach does not require any sort
of fine-tuning, model training, or manual annota-
tion, but they do make use of their own database
when detecting patient information.

2.2 Machine learning-based detection of
sensitive data

A variety of machine learning methods can be
utilised in several ways when detecting sensitive
information. Juez-Hernandez et al. (2023) perform
a comprehensive assessment of PII detection meth-
ods using current state-of-the-art methods and pro-
pose a few of their own, with a focus on several
languages. They perform several experiments to
derive optimal solutions for PII identification in
different types of Spanish text (clinical texts and
law-enforcement reports). They pose different re-
search questions regarding the performance of NER
models of PII detection. Specifically, they contem-
plate the effects of using off-the-shelf models on
performance in comparison to training a model for
each specific domain, as well as if an ad hoc trained
model can be used in a cross-domain fashion. Their
findings suggest that while off-the-shelf models can
be used for PII detection, training domain-specific
models yields superior results, given the variabil-
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ity across domains. Specifically, they note that a
model trained on one domain can be used in another
with acceptable performance, but performance will
degrade when used on out-of-domain data.

In terms of methods, they test different NER ar-
chitectures ranging from off-the-shelf Stanza (Qi
et al., 2020) and Flair (Akbik et al., 2019) NER
models to recurrent neural architectures with dif-
ferent combinations of embeddings, to pretrained
transformers available on HuggingFace that were
then fine-tuned on their task-specific data.

2.3 Challenges

Examining the requirements of the GDPR, and
what constitutes genuinely anonymized data, a
question that is continually asked is how do we
manage the trade-off between privacy and utility?
Francopoulo and Schaub (2020) determine that for
an anonymization framework to be successful, it
needs to: (1) avoid identifying the individuals in the
text, (2) allow posterior analysis of the anonymized
text, (3) allow for off-the-shelf NLP tools to be
applied to the anonymized text, (4) produce a prov-
able anonymization, (5) be usable in different Eu-
ropean languages. They highlight that some of
these are contradictory or at least that some require-
ments directly interfere with the effectiveness of
the others, even if we assume a perfect detection
of PIIs. The problem lies in that if resulting data
from an anonymization or deidentification process
is indistinguishable from a non-anonymized text,
there would be no way to prove that it has actually
been anonymized. For instance, anonymization
by redaction (i.e. the elimination of PIIs by sub-
stituting them with a fixed character such as an X)
leaves proof of the anonymization, but severely lim-
its any posterior usability of the text. On the other
hand, if a more sophisticated substitution is applied
to the text, the result maximises posterior useful-
ness, but by definition should not leave a trace of
the anonymization. As a solution they propose a
relaxation of requirements based on the specific
circumstance. They argue that requirement (3) is
vital when using off-the-shelf tools within a secure
environment, where requirement (4) can be relaxed,
while requirement (4) is more important outside of
a secure environment, where requirement (3) can
be relaxed.

These concerns are echoed in Mozes and Klein-
berg (2021). They argue that current methods do
not correctly quantify anonymization performance,

given that if a text contains several instances of
PIIs, it is enough for one of them to go unde-
tected to identify the person in question. Many
metrics would still assign a high performance to the
anonymization system, as evaluation is typically
applied on a sentence or instance level, despite the
anonymization essentially failing.

They propose specific evaluation criteria to mea-
sure the effectiveness of the anonymization. The
criteria presented in TILD take into account an
anonymization system’s technical performance, the
information loss resulting from the anonymiza-
tion, and the human ability to deanonymize the
redacted documents. They highlight the impor-
tance of information loss and robustness against
de-anonymization; to guarantee posterior utility,
the authors argue that the anonymization process
must introduce as minimal changes as possible to
the original document such that utility loss (dif-
ference in performance when using anonymized
data in comparison to the original data) and con-
struct loss (difference according to a higher order
construct) are minimised. However, while ensur-
ing minimal differences between anonymized and
original texts, the anonymization process must be
irreversible, such that a human intruder with the
ability to use external resources would not be able
to identify the original PIIs.

We can draw parallelisms between Francopoulo
and Schaub (2020) and Mozes and Kleinberg
(2021). Both papers highlight the importance of
the actual detection component (requirement (1)
of Francopoulo and Schaub (2020) and criterion T
of TILD), and both are concerned with the poste-
rior utility of the data in terms of the analyses that
can still be carried out (requirements (2) and (3) in
Francopoulo and Schaub (2020) and criterion IL
of TILD). However, we observe that Francopoulo
and Schaub (2020) suggest modulating the impor-
tance of that requirement based on intended use and
level of exposure of the anonymized data, while
Mozes and Kleinberg (2021) make no such state-
ment. After that point, both criteria diverge. Fran-
copoulo and Schaub (2020) highlight the impor-
tance of having a provable anonymization, while
Mozes and Kleinberg (2021) place more emphasis
on the anonymization being non-reversible while
maintaining the properties of the original data.
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Figure 1: Diagram of our experimental design. round 1 was performed on the randomly sampled dataset (left, in
pink), while rounds 2 and 3 were performed on the entire conversation dataset (top and right, in green).

3 Methods

3.1 Anonymization Data

As stated in section 1, our evaluation data originates
from conversations between users and a virtual
agent. For context, the conversations took place
during the COVID-19 pandemic. We examine two
subsets of the data. Initially, we randomly sample
23.000 messages for simplicity. However, after
our initial assessment, discussion with annotators,
and following Mozes and Kleinberg (2021), we
decide to include full conversations, given that in
some occasions, referents can be identified using
contextual cues that do not individually constitute
PIIs.

We decide to include messages from full con-
versations such that the individual messages sum
to 23.000; annotators were instructed to compile
a second dataset such that all messages sent by
the users from a conversation were included. This
resulted in the generation of a second evaluation
dataset consisting of 23.000 messages from 953
unique conversations. We highlight that due to
privacy restrictions, we only use the data for evalu-
ating our system, as the data cannot be used to train
or fine-tune a base model.

Regarding the annotation process, the data was
selected and processed by two annotators, and then
revised by a third such that the third annotator could
essentially act as a tie-breaker. Cases where no
consensus was reached were excluded from the
experiments (this was the case for fewer than 15
messages in total, taking into account both datasets)

In terms of structure, only messages from the
users are included. Messages are assigned two iden-
tifiers: a unique identifier and an identifier spec-
ifying to which conversation it belongs. Within
each conversation, messages are ordered chrono-
logically. Furthermore, the messages are unlabeled.
We do not explicitly work with a gold standard.
Instead, we rely on the annotators to examine the
data on our behalf. They additionally analyse the
performance of our system by checking what in-
formation is correctly pseudonymised and which
information is incorrectly pseudonymised.

Our setup is as shown in Figure 1. The data is
kept by the third party such that we cannot directly
access or manipulate it. Given this data access con-
straint, the annotators were hired to perform three
evaluation rounds. In each round, we submit a ver-
sion of the pipeline which is run on the third party’s
systems. They in turn evaluate the PII identification
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component performance.

3.2 The Anonymization Pipeline

Input

Ingestor

Truecaser

RE-based PIINER-based PII

PII-tagged texts

Random 
Anonymization

Labelled 
Anonymization

Intelligent 
Anonymization

Figure 2: Diagram of the presented pipeline.

Despite the complexity of the task of
pseudonymisation, the pipeline we present
in this paper is relatively straightforward. In this
subsection we proceed to describe our pipeline as
shown in Figure 2.

Input data is provided textually. Currently, the
pipeline supports different forms of textual input
through different ingestors that, when fed a specific
format, would output the data in a normalized for-
mat that the rest of pipeline can manipulate. The
pipeline currently has ingestors for .csv, .json and
.txt formats.

As explained in section 2, user-generated data is
known to be noisy; while we do not explicitly add
a preprocessing module, we have empirically deter-
mined during initial testing that in our specific case,
performance is hindered by poor textual formatting.
To mitigate this issue, we apply an implementation
of the NLTK truecaser module2 (Bird et al., 2009).
This resolves simple cases where names of people,
locations, organizations, etc are incorrectly cased.

Following ingesting the data, normalizing the
input representation, and applying mild preprocess-
ing, we proceed to the sensitive information iden-
tification task by combining regular expressions
and machine learning models as described in sub-
section 3.3. While we take into account the labels

2https://huggingface.co/HURIDOCS/
spanish-truecasing

provided by our regular expressions and one NER
module, we highlight that the pipeline supports
the use of multiple NER modules. In the case of
a mismatch between any of the components, we
establish a ranking such that the labelling of one
can be determined to be more "trustworthy" and
therefore take scope over the other in case of a
discrepancy.

Once the sensitive information has been identi-
fied within the text, the pipeline can perform sim-
ple deidentification. Three methods are included:
random, labelled, and intelligent. The random
method substitutes the sensitive span with a se-
ries of random characters of varying length, the
labelled method substitutes the span with the cat-
egory of sensitive data detected (e.g. PERS, ID,
LOC, etc). The intelligent method performs a
limited substitution that attempts to substitute the
marked span with a different entity of the same
category. Currently, it is entirely possible for the
intelligent anonymization system to substitute a
street name with a city for instance, as we do not
have a more fine-grained method of PII detection
available. We conduct all of our experiments with
the labelled setting to ease the annotation task.

3.3 PII identification

Given that pseudonymisation is a complex task and
PIIs can occur in varying contexts, our pipeline is
designed with flexibility and modularity in mind,
such that components can be substituted based on
the requirements and difficulty of the task. We dif-
ferentiate between structured and non-structured
PIIs and detect them using different methods; in-
stances of structured data include phone numbers,
zip codes, emails, etc. On the other hand, non-
structured PIIs could include person and location
names.

We take into account the domain properties of
our domain of intended use. User-generated text is
notorious for being noisy (Baldwin et al., 2015b;
Jose and Raj, 2014). This can harm the robustness
of PII detection module of our pipeline, increasing
the number of false positives and negatives. We
mitigate these problems in our pipeline differently
for structured and unstructured data.

According to the intended use-case of the virtual
agent, users are expected to provide information
regarding their location, identity and contact in
the form of structured PIIs of zip codes, ID num-
ber, email, phone number, and even land registry
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identifiers. To detect this sort of information we
hand-craft regular expressions to match such infor-
mation, allowing for some variation by users (e.g.
a missing digit in a phone number, lower-case let-
ters rather than upper-case letters in a license plate
number).

For non-structured data such as location names
and full names whose formats can vary, we use ma-
chine learning and deep learning methods for detec-
tion. We experiment with a large spacy model3 and
a RoBERTa NER4 model that have been fine-tuned
on Catalan and Spanish NER data. We additionally
experiment with a truecasing module to ease the
detection of named entities.

During each of the three evaluation rounds, we
ask the annotators to classify each message using
criteria that we provide. We establish the following
typology to categorise PII detection performance:

A) Information that should not be anonymized
(false positives)

B) PIIs that should have been detected but were
not (false negatives)

C) PIIs that have been detected but assigned an
incorrect type (true positives)

D) Correctly identified PIIs (true positives)

E) Potential PII but not in this context (true posi-
tives)

F) Not PIIs (true negative)

Many PIIs are contextually modulated, in the sense
that the same span of text may allow the identifica-
tion of the individual depending on the information
in the surrounding context. For instance, a first
name on its own might not identify an individual,
but a full name probably would, and both would be
detected by most off-the-shelf NER models. Simi-
larly with locations, a user stating their city of resi-
dence may not be providing sensitive information.
However, the likelihood of being able to identify
the user increases the fewer the inhabitants that
live in the area denoted by the message. Given our
limited access to the data, we cannot use any of the
messages to fine-tune a model and tailor it to our
specific domain, and must rely on models trained

3https://huggingface.co/PlanTL-GOB-ES/
es_anonimization_core_lg

4https://huggingface.co/BSC-LT/
roberta_model_for_anonimization

on other datasets. This limits our system’s ability
to take this contextual modulation into account.

That being said, we still instruct the annotators to
take into the account all messages sent by the user
during the exchange in line with the points raised in
Mozes and Kleinberg (2021) and the TILD evalua-
tion framework; in one of our evaluation paradigms,
if our system fails to detect critical PIIs that allow
the identification of the individual, the entire ex-
change is labelled as B). We additionally instruct
the annotators to highlight instances where users
specify entities that would typically be detected by
NER systems, but do not constitute PIIs, thereby
creating category E). As stated, the models we use
in this case are not specialised in anonymization,
and therefore they are unable to pick up on explicit
contextual cues that allow distinguishing PIIs from
named entities (NEs). In light of this and that that
sensitivity of specific entities is contextually mod-
ulated, for our evaluation we still consider them
to be true positives. Similarly, we also consider
correctly detected PIIs that are not correctly cate-
gorised (e.g. a location that is classified as a name)
to be true positives, given that our main focus is
PII identification.

3.4 Evaluation Rounds
Cleaning and aggregation On one hand, we be-
lieve that whatever PII detection system that is ap-
plied or deployed in a given environment should
show robust performance despite noisy input. But
on the other, in our specific case, without being
able to adapt a model to this type of task and do-
main, the noise in the input negatively skews our
results, both in terms of performance and evalua-
tion. With the aid of the annotators, we identify
two main issues:

1. Much of the input is noisy. Many users will
misspell several words (e.g. weno chao in-
stead of bueno ciao to end a conversation) in
their messages or simply send nonsense (e.g.
button mashing or sending the same random
characters multiple times) to the virtual agent,
which is detected by the model

2. Some users send several instances of the same
message. If PII detection of that specific mes-
sage is incorrect, it is then overrepresented in
the data

Essentially, the first problem causes the model
to detect several false positives through errors of
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type A). By sending several copies of some mes-
sages, the first problem is essentially exacerbated,
such that false positives are overrepresented in our
evaluation.

To mitigate this problem, we first detect
poorly formatted or spelled messages similarly to
Kudugunta et al. (2023); we apply the fasttext lan-
guage identifier (Joulin et al., 2016) to each mes-
sage. The language identifier outputs a probability
distribution over languages. Poorly formed mes-
sages will have a lower probability associated with
the expected languages. We discard any message
with a probability lower than 0.8 of being either
in Spanish or Catalan. Furthermore, in addition to
evaluating performance by considering each mes-
sage individually, we also examine performance
by considering entire conversations. That is to say,
rather than assign labels to individual messages,
we assign them to the entire conversation. We do
this by establishing a hierarchy of error types, such
that graver errors take higher scope. The hierar-
chy is as follows: B > A > C > D > E > F. For
instance, if in a conversation, one message is cor-
rectly anonymized (i.e. type D), but a critical PII is
missed in another message belonging to the same
conversation(i.e. type B, or a false negative), then
that whole conversation is marked as B.

As stated in subsection 3.1, we do not have di-
rect access to the data and instead provide the task
to a third party. We iteratively make improvements
to our pipeline based on their feedback. In Figure
1 we illustrate how we proceed through each evalu-
ation round. We perform three sequential rounds
of evaluation. During each round, we update the
pipeline and make the new version available to
the third party. The pipeline is then downloaded
and run on their systems where the data is kept.
For readability, model performance is based on
the label-based pseudonymisation. Model perfor-
mance is manually examined by comparing the
original data with the anonymized data to examine
if PIIs were correctly detected and replaced with
the correct labels. The results of the examination
are then forwarded back to us in terms of the error
typology presented in the beginning of subsection
3.1. This feedback is then taken into account for
the following round of evaluation.

Round 1 For the first round of evaluation, we
experiment with lightweight approaches. We use
a large spacy NER pipeline (which includes POS
tagger, dependency parser, attribute matcher, and

lemmatizer) (Honnibal et al., 2020). Initial experi-
ments in-house additionally showed a benefit in per-
formance by adding a truecaser as a preprocessing
step. We use our initial set of regular expressions
(RE1).

Round 2 For the second evaluation, we take into
account the results and feedback from the sec-
ond round and include a larger and more robust
RoBERTa NER model to increase the quality of
the PII detection. We additionally perform in-house
experiments to determine if the truecaser adds any
benefit and decide to still include it.

Round 3 After the second round, we observe
that our system manages to detect the majority of
the PII instances in the evaluation set. However,
discussion with the annotators revealed that some
instances were not detected due to user error (e.g. a
phone number missing a digit, a misspelled email).
We refine the regular expressions such that they are
more flexible to account for user error (RE2). We
additionally observe that the truecaser introduced
whitespaces in specific contexts which interfered
with the RoBERTa model tokenization, negatively
impacting precision. We resolved this issue for the
third and final round with the aim of reducing the
number of false positives.

We show the results for each round in Table
1, presenting precision, recall and Fβ (β = 2)for
each round. We additionally present results for
the datasets after filtering our the noisy text and
assigning a label to each conversation, rather than
each individual message.

4 Results

We present our results in Table 1. Within each
round, we evaluate the effects of data cleaning and
applying our evaluation metrics in different ways;
we explore the effects of aggregating the data dif-
ferently (as shown in the Aggregation column), and
the effects of removing poorly formatted messages
from consideration (expressed by the -c (for clean)
suffix). Each round is separated by a horizontal
line in the table. Cleaned and non-cleaned versions
of the data are separated by a dashed line within
each evaluation round.

In spite of not being able to directly access the
data, Table 1 shows the clear benefits of our iter-
ative evaluation paradigm. We can observe non-
trivial improvement from one round to the next; the
first round, using the Spacy model, yields moderate
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Round NER component RE set Aggregation Precision Recall Fβ

R1
Spacy RE1 Total 0.43 0.74 0.65

- - - - - -

R2 RoBERTa RE1
Total 0.06 0.95 0.23

CONV 0.27 0.93 0.62

R2-c RoBERTa RE1
Total 0.1 0.95 0.35

CONV 0.29 0.93 0.64

R3 RoBERTa RE2
Total 0.40 0.99 0.77

CONV 0.63 0.99 0.89

R3-c RoBERTa RE2
Total 0.54 0.99 0.85

CONV 0.64 0.99 0.90

Table 1: Results as classified by annotators for each evaluation round. Best performance in bold. β = 2. REn

indicates the set of regular expressions used, whereas the -c suffix indicates that noisy messages have been removed
from the dataset.

precision but relatively low recall. For the second
round, we incorporate a more robust RoBERTa
model into the pipeline, which drastically raises
recall at the cost of precision. For the third and
final round, we modify the system tokenization
scheme and augment the set of regular expressions,
further improving both recall and precision, ulti-
mately yielding the highest Fβ-score of 0.90.

Furthermore, we can see the clear impact of the
data quality on pipeline performance. For each
evaluated dataset, we create a clean counterpart
after filtering out messages we believe have signifi-
cant orthography or formatting issues. We observe
superior model performance on cleaner datasets,
especially in terms of precision. We observe this
effect in evaluation rounds 2 and 3.

However, we observe a much stronger difference
in precision based on the way we choose to aggre-
gate the data; by aggregating the data by conver-
sation we observe major improvements, which are
more representative of actual PII detection perfor-
mance. That is to say, by assigning a single label
to each conversation based on whether a correct
detection of PIIs was carried out, we attain much
better precision. We observe these effects in both
rounds where we collected several messages from
the same conversation (rounds 2 and 3).

5 Discussion

PII detection performance The results shown
in Table 1 in section 4 show clear improvement be-
tween consecutive iterations. In terms of trade-off
between precision and recall, we note that perfor-
mance is most balanced using the Spacy model.
However, it does also present the lowest recall,

which we consider to be the to be the most rele-
vant metric given the sensitive nature of the data.
In light of this, we find recall to be prohibitively
low using the Spacy model. Comparing perfor-
mance between the Spacy and RoBERTa models
in similar conditions (i.e. considering individual
messages and unclean data), it is clear that the
RoBERTa models show lower precision. That said,
their higher recall makes them more desirable in
this context.

Our findings are in line with those of Juez-
Hernandez et al. (2023). While we are able to
achieve high recall with models trained on out-of-
domain data, we do observe that performance is not
optimal, given the relatively low precision of the
RoBERTa models. That said, we have been able to
determine that the low performance is largely due
to the overrepresentation of noisy input in the data,
which essentially interacts with the imperfect ro-
bustness of our model in this context, contributing
to the deflation of the aforementioned metric. We
have more or less mitigated this issue so that the
results more accurately reflect model performance,
but we also highlight that if the NER models were
more robust to the noise in the input, the number
of false positives would be drastically lower.

Francopoulo and Schaub (2020) and TILD
Given the high recall of our system, we consider
that we fulfill the first item of the criteria presented
in TILD (Technical performance) and Francopoulo
and Schaub (2020), which is to ensure that the data
does not contain PIIs. However, we do note the
low precision of our system may negatively im-
pact Information loss, as obscuring more data than
necessary may render the data less useful. On the
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other hand, tagging more entities than necessary
as PIIs and their subsequent anonymization (via
redaction or substitution) is more likely to make
deanonymization much more difficult. In light of
this, we argue that depending on use, the system we
present in this paper could be more than adequate.

6 Conclusion and Future Work

In conclusion, we present the results and findings
from a real life use-case where we have had to
develop a PII detection system to pseudonymise
exchanges between users and a virtual agent. We
demonstrate the effectiveness of our system and
the issues that can arise when extending a NER sys-
tem beyond its original domain. We highlight the
specific problems we have encountered with user-
generated data. We additionally note that given the
differences between the domains of training and
deployment, our system performs well, achieving
very high recall. We argue that the inter-domain
differences may be detrimental to performance in
general, PII detection can be achieved with robust
off-the-shelf NER models, given that our system
managed to detect almost all instances of PII.

While the performance of our system is more
than adequate given the circumstances, anonymisa-
tion and pseudonymisation are tasks that are gain-
ing more and more urgency and importance. In
light of this we consider it of critical importance
to develop more resources for domain-specific and
domain-general pseudonymisation.

The focus of this paper has been examining the
effectiveness of adapting off-the-shelf NER sys-
tems to the task of PII detection. Our future work
should aim to address explore robust ways of dei-
dentifying the data in accordance with the estab-
lished literature (Francopoulo and Schaub, 2020;
Mozes and Kleinberg, 2021).

7 Limitations

Given the relatively novel nature of this task, one
of the major limitations of the work presented is
only taking into account the benefits of examin-
ing entire conversations over individual messages
from the second round of evaluation onwards. This
negatively impacts the comparability of our results;
we cannot compare the performance of the Spacy
model with the RoBERTa model when considering
entire conversations.

Additionally, we mention in section 3 that our
system contains a rudimentary deidentification

component that can substitute detected PIIs with
either a sequence of random characters, a label, or
a similar entity which was randomly sampled. For
the purposes of our experiments, we have only con-
sidered the label-based deidentification (which is
similar to redaction in the literature), as it made the
anonymized text much more readable, and subse-
quently simplified the annotation task. We leave
evaluating this component for future work.

8 Ethical Statement

The development of anonymisation or pseudonymi-
sation systems is central to people’s right to privacy.
We view the work presented in this paper as a pos-
itive contribution, given that we provide the tools
(pipeline, models, etc) to detect and deidentify sen-
sitive data in Spanish and Catalan. Furthermore, we
highlight the weaknesses we have observed both
in our system and in early iterations of our im-
provement cycle with the aim of helping researches
avoid similar pitfalls. However, while we do not
foresee the methods described here to be used for
unethical purposes, discussing any potential system
weaknesses may facilitate system attacks down the
line.
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Abstract

Linguistic data can — and often does — con-
tain PII (Personal Identifiable Information).
Both from a legal and ethical standpoint, the
sharing of such data is not permissible. Ac-
cording to the GDPR, pseudonymization, i.e.
the replacement of sensitive information with
surrogates, is an acceptable strategy for pri-
vacy preservation. While research has been
conducted on the detection and replacement
of sensitive data in Swedish medical data us-
ing Large Language Models (LLMs), it is un-
clear whether these models handle PII in less
structured and more thematically varied texts
equally well. In this paper, we present and
discuss the performance of an LLM-based PII-
detection system for Swedish learner essays.

1 Introduction

While there is a constant need for linguistic data —
fuelled recently by the advent of Large Language
Models (LLMs) which require copious amounts
of training data — legal and ethical sharing and
use thereof is problematic. The EU Commission
(2016) severely limits the use and sharing of data
containing Personal Identifiable Information (PII).
However, the regulation also presents a possible so-
lution: pseudonymizing the data, defined as: “[...]
the processing of personal data in such a manner
that the personal data can no longer be attributed
to a specific data subject without the use of addi-
tional information, provided that such additional
information is kept separately and is subject to tech-
nical and organisational measures to ensure that the
personal data are not attributed to an identified or
identifiable natural person” (Art. 4 of EU Commis-
sion, 2016). Within the field of Natural Language
Processing (NLP), this definition becomes more
narrow — and while various researchers formulate
it slightly differently, we understand pseudonymiza-
tion as “the process of replacing an individual’s

personal data with a pseudonym, which is not re-
lated to the original data,” with the same end goal
as outlined in the GDPR (Volodina et al., 2023).

Naturally, conducting such a de-identification
procedure manually is extremely time-consuming
and costly, especially when the data in question
is copious and very sensitive (Berg and Dalianis,
2020). It would therefore be beneficial to be able to
automatize the process in a reliable and robust way.
While there is existing research on automated de-
identification systems, many of them are restricted
to specific domains (especially healthcare), and not
as much work has been conducted on less struc-
tured types of input, which we expect to be more
problematic due to more varied types of personal
information as well as a higher likelihood of vari-
ous kinds of errors or non-standard forms (e.g. in
terms of spelling, syntax, or semantics). We choose
to work with L2 (second language) learner essays,
as this kind of texts not only fulfills the require-
ment of larger structural and thematic variety but,
as Volodina et al. (2020) show, the essays are also
likely to contain PIIs. Since L2 corpora are relevant
for various research applications, developing mod-
els that can handle PII detection and replacement
in this kind of texts would be useful.

What exactly constitutes sensitive information
can differ across domains, documents, or even para-
graphs, and is heavily context-dependent. We be-
lieve that algorithms could learn something akin
to human intuition about what is personal and/or
sensitive in the data. With this in mind, we ex-
periment with an approach where none of the
PII and sensitive categories are labeled for their
classes (e.g. name, city, etc.), but are binary (per-
sonal/sensitive or not). This distinction is for-
malized as inside-outside-beginning (IOB) classes,
where non-sensitive tokens are labeled O (outside),
while sensitive tokens or token spans are labeled
with B (beginning) and, in the case of multi-token
sensitive elements, I (inside) for every token after
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the first one. We replace manually assigned cate-
gories in our dataset of learner essays in Swedish
(SweLL-pilot, Volodina et al. (2016)) with B(I)
and O, and fine-tune two Large Language Mod-
els (LLMs, KB/bert-base-swedish-cased and
bert-base-multilingual-cased) to distinguish
between the two types of tokens (Malmsten et al.,
2020; Devlin et al., 2018). While we are aware that
pseudonym generation is likely to rely on a pre-
dicted PII class, we decide to focus on the detection
step, which can precede classification – presuming
that such a step is necessary in a pseudonymization
pipeline. Our hypothesis is that the model will learn
to distinguish between sensitive and non-sensitive
information in a given context, and potentially even
capture more types of personal information than
we at the moment envisage, helping us identify
new classes that can be added to the taxonomy or
refine the existing ones. Simultaneously, we hope
to assess the usefulness of fine-tuned LLMs for
PII detection, especially in more free-flowing and
error-prone genres such as learner essays.

2 Prior Research

As previously mentioned, pseudonymization, as
we understand it, entails the replacement of sen-
sitive tokens or groups of tokens with new and
somewhat unrelated — but still contextually ap-
propriate — surrogates. The replacement of PII
with a pseudonym presupposes a step at which
the sensitive data is detected and possibly classi-
fied; recently Eder et al. (2022) conceptualized the
pseudonymization pipeline as consisting of the two
aforementioned steps.

While Lison et al. (2021) consider the
pseudonym generation step to be more of an open
question than the detection of PIIs themselves,
many previously presented detection systems do
not account for, for example, misspellings or oth-
erwise non-normative writing, which is essential
when working with data like learner essays (Eder
et al., 2019). Although Accorsi et al. (2012) high-
lights the issues stemming from spelling variation,
these issues seem to mostly pertain to specific gen-
res, which so far have been underrepresented in
PII detection research, as the bulk of the existing
research is focused on medical data.

As shown by Yogarajan et al. (2020), many of
the well-performing systems for PII detection in
medical data rely on neural or hybrid approaches.
Recently, Pilán et al. (2022) have released a text

anonymization benchmark corpus consisting of
texts from the legal domain, and presented the re-
sults obtained by several models. While their cus-
tom metrics rely at least partly on there being more
than one possible way to annotate a text, they do
provide overall recall and precision as well, with
the best model — a LongFormer model with a large
window size — reaching 91.9% recall and 83.6%
precision; however, an F1 score is not reported.
Grancharova and Dalianis (2021), in turn, fine-
tuned a Swedish BERT model for Named Entity
Recognition and Classification (NERC) in Swedish
medical texts. The NER categories in the corpus
utilized in their experiment are actually PHI cat-
egories, which could be considered a type of PII,
rendering this task sufficiently similar to warrant a
comparison.

They report precision and recall scores for var-
ious models, with the best of them (KB-BERT
trained and tested on data from the same source)
reaching a weighted precision score of 92.26%
and a weighted recall score of 92.20% (with the
weighted F1 of 92.23%). They also reach relatively
good scores on M-BERT (multilingual BERT) with
the same data setup - 88.99% recall and 90.51%
precision (and F1 of 89.74%). While Berg and
Dalianis (2020) argue that high recall is more desir-
able in PII detection systems than high precision,
the latter is also important, as it means that the
model is not over-detecting the sensitive data and
flagging innocent passages. We believe that the
alterations to the text should be kept to a necessary
minimum as any changes made to the linguistic
data may affect its future usability in various types
of research (e.g. linguistics or machine learning).
While our experiment is meant to test an approach
similar to that of Grancharova and Dalianis (2021),
it is worth keeping in mind that the data we use is
less structured and may contain a bigger variety of
personal information, as described in Volodina et al.
(2020), which may lead to a worse performance by
the system.

3 Materials and Methods

In this experiment, we utilize 445 learner essays
from the SweLL-pilot corpus, representing a wide
variety of learner levels, topics, and types of writing
(e.g. descriptive or argumentative essays) (Volod-
ina et al., 2016). Some of the essays contain PIIs,
and some do not, predominantly due to the vari-
ation in types of writing and the prompts (e.g. a
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descriptive essay with the topic“about me" is much
more likely to contain PIIs than an argumentative
essay with the topic “stress in the modern society").
We use the unpseudonymized1 versions of the texts.
The essays have also been tokenized and reanno-
tated with tags for PII categories using the SVALA
tool according to the SweLL pseudonymization
guidelines developed for the SweLL-gold corpus
and the corresponding tagset (Wirén et al., 2019;
Megyesi et al., 2021; Volodina, 2024). This anno-
tation includes not only typically NER-like cate-
gories such as place names or surnames, but also
e.g. names of professions or references to one’s
faith, with only the tokens deemed sensitive in a
given context being annotated as such. In our ex-
periments, we ignore the categories of sensitive in-
formation and only differentiate between sensitive
and non-sensitive information. We transform the
existing category annotation into an inside-outside-
beginning (IOB) annotation to represent the dif-
ference between PIIs and non-PII tokens. Due to
BERT-imposed input sequence limitations, we sub-
divide the essays into sections that are at most 100
tokens long,2 resulting in a total of 651 such sec-
tions, out of which 165 contain at least one token
of sensitive information.

The data is then balanced so that the data splits
(training, testing, development) contain equally
many passages with PIIs as passages without PIIs,
meaning that these splits are composed of 165 frag-
ments with PIIs and 165 randomly chosen frag-
ments without PIIs out of 486 such fragments.
Importantly, this does not mean that half of the
tokens include sensitive information, and the ac-
tual distribution of sensitive and non-sensitive
tokens can be seen in Table 1. We also cal-
culate weights that represent class importance
for later use with a weighted loss function us-
ing Scikit-learn’s compute_class_weight func-
tion (Pedregosa et al., 2011). The class distribution
and the calculated weights for the data used in the
experiment are presented in Table 1.

1This version is used only within the context of the project
that this experiment is conducted in and is unavailable for
anyone except the project team. The released version of
SweLL-pilot is anonymized and the access form is linked
in Appendix A.

2While BERT’s maximum input sequence length is 512,
this applies to the sequence length after tokenization using
the BERT tokenizer, which often divides words into sub-word
units; since the sectioning of the essays occurred at a much
earlier step than BERT tokenization due to the framework
used, an arbitrary length was chosen to mitigate the impact of
the BERT tokenizer and maximum sequence length.

Instances (%) Count Weight
B 2.64% 1142 12.64419148
I 0.20% 86 167.90310078
O 97.16% 42091 0.34305829

Table 1: The proportions of token instances of classes
in the data used in the experiment and the corresponding
calculated class weights.

The PII-detection system used in this paper is
based on modified code for token classification
included in the transformers library (see Ap-
pendix A) (Wolf et al., 2020). This code allows
for the fine-tuning of a model of choice hosted
by HuggingFace for a token classification task
like NER (Named Entity Recognition) or part-of-
speech (POS) tagging; in our case, we have cho-
sen to work with the BERT model for Swedish
(KB/bert-base-swedish-cased, KB-BERT)3 de-
veloped by the National Library of Sweden (Kung-
liga Biblioteket, KB) as well as a multilingual
BERT model (bert-base-multilingual-cased,
M-BERT)4 (Malmsten et al., 2020; Devlin et al.,
2018). This was done to mirror the setup utilized
by Grancharova and Dalianis (2021) for an easier
comparison of results; simultaneously, our hope is
that using a multilingual model may help mitigate
the effect the foreign tokens found in learner es-
says may have on the performance of the system,
since those tokens may then be parsed as something
other than an unknown word. Additionally, having
an insight into whether multilingual models can
be used for this type of task could be useful when
working with languages that are only featured in
multilingual models.

We have fine-tuned the models on 80% of our
data (after balancing the set) twice, once with a
standard CrossEntropyLoss loss function, and
once with a weighted version thereof, with the in-
tent of accounting for the class imbalance in a task
of this type5. We have also reduced the batch size
to 8 since due to the length of the samples we did
not have the computational resources to process
that much data in one batch. Aside from that, we
have proceeded with the default settings for the
script (notably, 3 epochs and AdamW optimizer

3https://huggingface.co/KB/
bert-base-swedish-cased

4https://huggingface.co/
bert-base-multilingual-cased

5Similarly to regular NER tasks, sensitive and not sensitive
tokens are not equally prominent in the data, with the majority
of the tokens being not sensitive.
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with a learning rate of 5e-05). The fine-tuning pro-
cess also makes use of another 10% of our data for
evaluation between the epochs (development set).

The fine-tuned model has been tested on the
held-out test set (another 10% of the data). The
Transformers evaluation code calculates average
evaluation metrics but here we also additionally
calculate per-class metrics. Additionally, tokens
misclassified by the models relative to the manually
annotated gold standard have been extracted with
their contexts and analyzed manually to see if any
patterns of what the model struggled with could be
identified.

4 Results and Discussion

4.1 Evaluation Metrics

The standard KB-BERT model (using an un-
weighted cross-entropy loss function) performs bet-
ter in terms of accuracy, with the standard M-BERT
and weighted KB-BERT only slightly behind. Sur-
prisingly, the M-BERT model with a weighted loss
function performs drastically worse, as shown in
Table 2. However, it is important to remember that
accuracy is not a weighted metric and that the O
class outnumbers the other two.

Accuracy
Standard model Weighted model
KB M KB M

99.11% 97.78% 97.73% 29.16%

Table 2: The models’ accuracy.

Due to the aforementioned class imbalance, we
find it important to inspect measures like per-class
recall and precision instead of just accuracy in order
to gain a better understanding of the performance
of the models. We additionally follow the example
of Grancharova and Dalianis (2021) and provide
combined scores for the “sensitive” classes (B and
I).

Recall
Standard model Weighted model
KB Multi KB Multi

B 82.57% 38.53% 92.66% 74.31%
I 14.29% 0.00% 57.14% 0.00%
O 99.67% 99.46% 97.93% 28.05%

B+I6 77.79% 35.83% 90.17% 69.11%

Table 3: The models’ per-class recall.

Precision
Standard model Weighted model
KB Multi KB Multi

B 86.54% 64.62% 58.38% 2.58%
I 100.00% 0.00% 18.18% 0.00%
O 99.41% 98.28% 99.78% 97.46%

B+I8 87.48% 60.09% 55.57% 2.40%

Table 4: The models’ per-class precision.

The scores presented in Table 3 show that using
a weighted loss function in KB-BERT models has
improved the detection of the two classes that are
used to denote the sensitive information (B and I),
at the cost of a small drop in the recall for O.

Simultaneously, while it helps with the detection
of the B class in M-BERT models, it has no effect
on the detection of I and causes a drastic drop in
the detection of O. It is rather clear that the models
are struggling with the detection of I-tags, likely
due to them being extremely infrequent in the data,
with most of the sensitive data being restricted to
single tokens. Comparing this with the results ob-
tained by Grancharova and Dalianis (2021) for their
sensitive data detection models for the medical do-
main, we achieve 90.17% recall on the sensitive
data in our best model compared to their 92.20%,
leading us to the conclusion that in terms of re-
call, our weighted KB-BERT model is performing
rather well, especially taking into account the fact
that the types of PII present in learner essays are
more diverse and potentially harder to detect than
those found in medical data (a more narrow do-
main). However, the same cannot be said about
any of the M-BERT models which fail much more
noticeably when trained with the current hyperpa-
rameters: our 69.11% for the weighted M-BERT
model is much lower than 88.99% reported in the
aforementioned research. This is further illustrated
in Figure 1, Figure 2, Figure 3, and Figure 4, which
depict normalized confusion matrices for the mod-
els’ predictions, where the numbers on the main
diagonal correspond to per-class recall.7

6Weighted average of scores for the two sensitive classes.
7Please note that any value differences stem from different

rounding in the table than in the confusion matrices.
8Weighted average of scores for the two sensitive classes.
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Figure 1: Normalized confusion matrix for
PII detection with KB-BERT with the standard
CrossEntropyLoss.

Figure 2: Normalized confusion matrix for
PII detection with KB-BERT with the weighted
CrossEntropyLoss.

Figure 3: Normalized confusion matrix for
PII detection with M-BERT with the standard
CrossEntropyLoss.

Figure 4: Normalized confusion matrix for
PII detection with M-BERT with the weighted
CrossEntropyLoss.

Contrary to the results for recall, precision for
the sensitive classes is much better for the mod-
els without the weighted loss function, as shown
in Table 4. Once again, the M-BERT models are
overall performing worse, with the weighted ver-
sion thereof achieving the worst result. This indi-
cates that the weighted models are noticeably over-
detecting tokens as sensitive — so although they
now correctly identify more of the originally sen-
sitive passages, they are also marking completely
non-sensitive tokens as sensitive. While it is more
important to correctly detect as many PIIs as pos-
sible, we are of the opinion that for the data to
be useful for downstream tasks, such as seman-
tic meaning extraction or information retrieval, it
should be altered only as much as necessary, mean-
ing that high precision would also be desirable.

One way to reconcile the need for considering
both recall and precision in model evaluation is to
look at the F1 score. One drawback of this score is
that it assigns equal importance to its constituent
parts, which is less ideal in the current scenario,
where recall is considered to be more important.
However, it is a widely used metric and it still
allows us to compare the models to each other and
to results from other research. Table 5 contains the
per-class f1 scores alongside a weighted average of
that score for the two sensitive classes.

In terms of the F1 score, the KB-BERT model
with the standard cross-entropy loss function per-
forms best on two out of three classes and as far
as the combined B and I score is concerned. The
KB-BERT with a weighted loss function slightly
outperforms it on the I class. Both of the M-BERT
models display significantly worse performance.

The standard KB-BERT model achieves the best
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F1
Standard model Weighted model
KB Multi KB Multi

B 84.51% 48.28% 71.63% 4.99%
I 25.00% 0.00% 27.59% 0.00%
O 99.54% 98.86% 98.85% 43.56%

B+I9 80.34% 44.89% 68.55% 4.64%

Table 5: The models’ per-class F1 score.

result here - 87.48% weighted precision for the
sensitive classes, which is still somewhat below
92.26% reported by Grancharova and Dalianis
(2021); it is also not fair to compare only the
highest results, as they are not achieved by the
same model; the one with the best recall score
only achieved 55.57% precision. When it comes
to the F1 score, our best model (KB-BERT with a
standard loss function) with a score of 80.34% on
the sensitive classes is about 12 percentage points
behind the best model for medical data, which is re-
ported to have achieved 92.23% F1. This disparity
stems from our model’s decidedly lower precision.

Judging by all of the discussed metrics, KB-
BERT models perform better than the multilingual
BERT models. With the current hyper-parameters,
the standard models suffer from relatively low re-
call, especially for the rarest class; weighted mod-
els, in turn, are over-detecting sensitive data, lead-
ing to lower precision. Nevertheless, the results
seem to indicate that all the models except M-
BERT with a weighted loss function are capable of
distinguishing between sensitive and non-sensitive
passages with a reasonable level of correctness.
Importantly, the underdetection of the I class by
all of the models suggests that they struggle with
detecting multi-token spans of sensitive data.

It is also important to mention that we consider
the task of learning to simply distinguish between
sensitive and non-sensitive tokens or sequences
of tokens to be more difficult than distinguishing
specific classes of PIIs or PHIs, which is also re-
flected in the notably low precision of most of the
models that we have trained. However, the results
promisingly suggest that LLMs are indeed capable
of learning, to some extent at least, what makes
data sensitive in a given context.

9Weighted average of scores for the two sensitive classes.

4.2 Qualitative Prediction Analysis

A qualitative analysis of the predictions made by
the models allows us to investigate what types of
data marked as sensitive during manual annotation
are particularly problematic for the models — and
what kinds of generalizations lead to over-detection
of PIIs they make. Importantly, due to the sensitive
nature of the data used in this experiment sharing
specific examples raises ethical concerns. We have
decided to address this issue twofold: we manually
pseudonymize the sensitive tokens in the examples
and we provide the examples only in English (while
simultaneously trying to mirror any kinds of learner
errors).

The weighted M-BERT has failed to learn to
differentiate between sensitive and non-sensitive
data, as it does not mark some words with regular
spelling (common Swedish given names, names
of languages), and instead classifies words such as
pronouns, determiners, some verbs as sensitive, in
contexts where they with a great degree of certainty
are not sensitive, as Examples 1 and 2 in Table 6
show. Simultaneously, some clearly sensitive to-
kens do not get recognized as such (Example 4).
There are also instances of misspelled tokens being
assigned the wrong category, but sometimes it is
unclear whether the cause for the misclassification
was the spelling or the model’s disagreement as to
what private data is, as in Example 3, where one
could argue that reltivs “relatives” is a word de-
noting family members which could potentially be
sensitive. This could be due to a language-specific
model like KB-BERT being better at capturing spe-
cific semantic knowledge and being better able to
generalize over e.g. street or place names; alterna-
tively, it could be that while we have expected a
multilingual model to improve the results since it
would have representations for foreign language to-
kens, it actually struggled more with misspellings.
While we did not explicitly notice that in our re-
sults, it is also possible that a multilingual model
may have issues with tokens that have two separate
meanings in two different languages.

The M-BERT model with the standard loss func-
tion, which has achieved low recall but some-
what higher precision appears to make more in-
terpretable decisions: there are instances where
this classification could be up for debate, and per-
haps the token should have been marked as such
by the annotator. This can be seen in Example 5,
where Stockholm is not where the author lives, but
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№ Token Token in context Prediction Ground
truth

M-BERT WITH A WEIGHTED LOSS FUNCTION

1 was Historically, stress was a [...] B O
2 me me and johnny at school sit B O
3 reltivs Other reltivs have come B O
4 Alice [...] they are called Sally, Alice and Sam. O B

M-BERT WITHOUT A WEIGHTED LOSS FUNCTION

5 Stockholm We came to Stockholm city from Cairo directly B O
6 Germany [...] one stress muc more in Germany. B O
7 Malmö $$$$$10 $$$ $$ $$$$s in Malmö. Later w$ O B
8 Nobel street11 I live on Nobel street. O B

KB-BERT WITH A WEIGHTED LOSS FUNCTION

9 sweden tim lives in the family in sweden B O
10 novmber wynter is four months from novmber to February B O
11 small because I have a small family here. O B
12 family because I have a small family here. B I

KB-BERT WITHOUT A WEIGHTED LOSS FUNCTION

13 dad and my dad was dizzy always B O
14 Cairo Cairo has a verybig airport B O
15 Pierogi they eat Pierogi which are traditional fud O B
16 %olis% I am $olis$. We $$$$$$ $$$ $$ O B
17 don’t work12 I don’t work. O B, I

Table 6: Examples of errors made by the M-BERT model with a weighted loss function.

constitutes an intermediate point in their travel, or
in Example 6, where one can guess that someone
writing about the reality of living in a given coun-
try in an argumentative essay has likely been born
and raised there, or at least lived there for a longer
period of time. We believe it is likely that in this
case, the model has learned to classify all cities and
countries that it has recognized as sensitive; this ef-
fect could at least partly be attributed to a possible
imbalance between instances where such entities
are not sensitive versus when they are sensitive.

When it comes to KB-BERT, the model with the
weighted loss function provides even more exam-
ples of the model overgeneralizing certain entity
types to always be sensitive — in the SweLL anno-
tation, Sweden was not considered to be sensitive
(as it was certain that all of the essays came from
people living in Sweden), and yet in Example 9 the
model predicts it to be sensitive. Similarly, novem-
ber in Example 10 does not refer to a specific event

10$ is used to designate unintelligible handwriting.
11Names of streets are often just one token in Swedish.
12In Swedish the negation comes after the verb in the main

clause, so in the original the I tag would refer to the negation,
and the B tag to the verb. We have decided to display the two
tokens together in the table for the sake of simplicity.

in the author’s life, but rather to a description of
the climate, rendering it rather non-sensitive. An-
other interesting example here comes from two
subsequent words in a sentence – since we differ-
entiate between the start and the continuation of
a sensitive passage, misclassifying the first token
as non-sensitive, but classifying the second one as
sensitive still leads to two errors, as in the case of
the second error the class should be I, not B. Nev-
ertheless, this suggests that a small fraction of the
errors made by the model could be attributed to
such cases, meaning that the model’s performance
is slightly better than the evaluation metrics may
show.

The highest-scoring model in terms of evalua-
tion metrics, KB-BERT without a weighted loss
function, still has examples of the issue of overgen-
eralization (Example 14). However, it also illus-
trates that in some cases the annotators may have
missed data that should be considered sensitive
— like in Example 13, where the word for a spe-
cific family relation was not annotated as sensitive
when it should have been according to the guide-
lines. Understandably, the model struggles with
half-unintelligible tokens, such as in Example 16,
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where a human annotator is perhaps better able to
guess that the token refers to a nationality, while
the model has very little to go off of, not just in the
token, but also in the context. Finally, Example 15
shows that not all foreign-looking named entities
get classified as sensitive, and that at least in the
case of this sentence the model is not able to guess
that a token would be sensitive just from the sur-
rounding presence of the word "traditional" which
describes it.

Both for M-BERT and KB-BERT, the models
seem to run into difficulties when it comes to de-
termining the sensitivity of data in cases where the
tokens are misspelled, foreign, or surrounded by
misspelled or unintelligible tokens, as in Examples
3, 7, or 10. While the model with a weighted loss
function tends to flag more passages as sensitive
(such as the ones in Examples 1–3, 9, and 10),
the standard one errs on the side of caution in that
regard (as in Examples 7 and 8, as well as 15).

One more notable feature shared by some of the
under-detected PIIs is span. Most of the annotation
in the data marks distinct tokens (e.g. a given name
is separated from the surname, only the number of
a bus or tram is marked as sensitive, etc.), and the
multi-token instances are often somewhat longer
passages that could be considered sensitive but do
not fit into any of the categories in the annotation
guidelines, e.g. talking about a political event or
work status (e.g. being unemployed), as in Ex-
ample 17. This shows how difficult detecting PII
and determining what that concept means is, espe-
cially in the case where contextual information is
essential for resolving whether a token is sensitive.

5 Conclusions

Within this paper we have presented the re-
sults of an investigation into the performance
of LLMs on PII detection in learner essays,
framing it as a task similar to Named Entity
Recognition. We have shown that a finetuned
KB/bert-base-swedish-cased model is capable
of learning how to distinguish between sensitive
and non-sensitive information in this kind of data,
reaching up to 90.17% recall, suggesting that
LLMs are able to approximate a human intuition
when it comes to discerning what is sensitive in
a given context, although they may struggle with
overdetecting such data. We are also of the opinion
that some of the model’s disagreements with the
original PII annotation could be informative when

it comes to refining manual PII annotation, though
perhaps not to the extent we would have wished for
(the models did not discover any new kinds of PII).

While the current performance of the models
is behind the ones presented by Grancharova and
Dalianis (2021) (although they are relatively close
in terms of recall) and the one discussed by Pilán
et al. (2022) (comparing our top two models, one
is slightly ahead in precision, but much worse in
recall, while the other one has a similar recall with
much worse precision), they are promising for PII
detection in unstructured and non-standard texts in
Swedish, and — with some improvements — a fine-
tuned system like this could constitute a part of a
pseudonymization pipeline. The current challenge
is optimizing the model’s hyperparameters so as
to maximize the recall at the least possible cost
to precision. In its current form, a weighted loss
function does not seem to perform its function, but
some method of accounting for class imbalance is
necessary given the models’ low performance on
the I class.

Simultaneously, when discussing the perfor-
mance of our models in relation to the ones reported
by Grancharova and Dalianis (2021) we consider it
relevant to mention that the latter were trained and
tested on various medical datasets. We consider the
medical domain to be much more regular in terms
of the kinds of PII it may include (corresponding,
in large part, to what the authors of that paper de-
scribed as named entities), as well as less likely
to include errors of various kinds. Therefore, PII
detection in learner essays seems to us to be a more
difficult task than PII detection in medical data.

6 Future Work

Aside from trying to optimize the model for this par-
ticular kind of data, we would like to see how well
a model trained on our data would perform on other
PII datasets for Swedish like the Stockholm EPR
PHI Corpus, which consists of medical records or
data from social media, which would also allow us
to see what kinds of PII are present across domains,
and what kinds are more domain-specific (Velupil-
lai et al., 2009; Dalianis and Velupillai, 2010). Un-
fortunately, the TAB corpus mentioned earlier in
the paper is in English, and therefore not suitable
for such a comparison (Pilán et al., 2022).

Another step could be investigating to what ex-
tent the data from various domains like this can be
combined in the fine-tuning process, possibly in
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a semi-supervised fashion, in order to produce a
more universal PII detection model. The insights
from the analysis of model predictions could help
determine how to annotate data for sensitivity. In
terms of the differences between KB-BERT and
M-BERT it would be interesting to see whether the
poor performance of the latter was indeed due to
it being worse at handling misspelled tokens. It
would also be really interesting to be able to utilize
a Swedish version of the LongFormer architecture
in order to see if more contextual information helps
with PII detection — but, unfortunately, no such
model exists as of now (Beltagy et al., 2020).

Finally, we aim to follow up this experiment with
a pseudonym generation task where we intend to
have LLMs simply generate suitable replacements
for the passages flagged as sensitive, without the
intermediate PII classification step, with only the
surrounding context to inform the prediction.

Limitations

This paper presents only a short study, where we
are not really striving to create the best possible
model but we are instead more focused on explor-
ing what personal information is and how it can
be detected, with the only change from the default
settings of the fine-tuning script being the use of
a weighted loss function and smaller batch size (a
technical constraint). Therefore, hyperparameter
tuning may lead to a much better performance than
the presented results.

While this approach may work well, it is not a
universal solution, especially cross-linguistically,
as it relies on a large language model like BERT,
which need not be available for all the languages
in the world.

Ethics Statement

Various kinds of linguistic data are likely to contain
personal information, which has implications on
how the data can be used in terms of ethics and
even legality. This paper aims to investigate the use
of pre-existing language models and small amounts
of annotated data in a pseudonymization pipeline,
possibly leading to an alleviation of this challenge.

Written consent was obtained for all the col-
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dance with the GDPR requirements and is made
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the project, with real names never being disclosed,
which is why we can share neither the data used in
this paper nor the fine-tuned models.

Acknowledgements

This work has been possible thanks to the funding
of two grants from the Swedish Research Council.

The project Grandma Karl is 27 years old: Auto-
matic pseudonymization of research data has fund-
ing number 2022-02311 for the years 2023-2029.

The Swedish national research infrastructure Na-
tionella Språkbanken is funded jointly by contract
number 2017-00626 for the years 2018-2024, as
well 10 participating partner institutions.

References
Pierre Accorsi, Namrata Patel, Lopez Cédric, Rachel

Panckhurst, and Mathieu Roche. 2012. Seek&hide:
Anonymising a french sms corpus using natural lan-
guage processing techniques. Linguisticae Investiga-
tiones, 35:163–180.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Hanna Berg and Hercules Dalianis. 2020. A semi-
supervised approach for de-identification of Swedish
clinical text. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4444–4450, Marseille, France. European Language
Resources Association.

Hercules Dalianis and Sumithra Velupillai. 2010. De-
identifying swedish clinical text - refinement of a
gold standard and experiments with conditional ran-
dom fields. Journal of biomedical semantics, 1:6.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Elisabeth Eder, Ulrike Krieg-Holz, and Udo Hahn. 2019.
De-identification of emails: Pseudonymizing privacy-
sensitive data in a German email corpus. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP
2019), pages 259–269, Varna, Bulgaria. INCOMA
Ltd.

Elisabeth Eder, Michael Wiegand, Ulrike Krieg-Holz,
and Udo Hahn. 2022. “beste grüße, maria meyer” —
pseudonymization of privacy-sensitive information
in emails. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
741–752, Marseille, France. European Language Re-
sources Association.

62

https://doi.org/10.1075/li.35.2.03acc
https://doi.org/10.1075/li.35.2.03acc
https://doi.org/10.1075/li.35.2.03acc
http://arxiv.org/abs/2004.05150
https://aclanthology.org/2020.lrec-1.547
https://aclanthology.org/2020.lrec-1.547
https://aclanthology.org/2020.lrec-1.547
https://doi.org/10.1186/2041-1480-1-6
https://doi.org/10.1186/2041-1480-1-6
https://doi.org/10.1186/2041-1480-1-6
https://doi.org/10.1186/2041-1480-1-6
https://doi.org/10.26615/978-954-452-056-4_030
https://doi.org/10.26615/978-954-452-056-4_030
https://aclanthology.org/2022.lrec-1.79
https://aclanthology.org/2022.lrec-1.79
https://aclanthology.org/2022.lrec-1.79


EU EU Commission. 2016. General data protection
regulation. Official Journal of the European Union,
59, 1-88.

Mila Grancharova and Hercules Dalianis. 2021. Apply-
ing and sharing pre-trained BERT-models for named
entity recognition and classification in Swedish elec-
tronic patient records. In Proceedings of the 23rd
Nordic Conference on Computational Linguistics
(NoDaLiDa), pages 231–239, Reykjavik, Iceland
(Online). Linköping University Electronic Press,
Sweden.

Pierre Lison, Ildikó Pilán, David Sanchez, Montser-
rat Batet, and Lilja Øvrelid. 2021. Anonymisation
models for text data: State of the art, challenges and
future directions. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4188–4203, Online. Association for
Computational Linguistics.

Martin Malmsten, Love Börjeson, and Chris Haffenden.
2020. Playing with Words at the National Library of
Sweden – Making a Swedish BERT.

Beáta Megyesi, Lisa Rudebeck, and Elena Volodina.
2021. SweLL pseudonymization guidelines.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Ildikó Pilán, Pierre Lison, Lilja Øvrelid, Anthi Pa-
padopoulou, David Sánchez, and Montserrat Batet.
2022. The Text Anonymization Benchmark (TAB):
A Dedicated Corpus and Evaluation Framework for
Text Anonymization.

Sumithra Velupillai, Hercules Dalianis, Martin Duneld,
and Gunnar Nilsson. 2009. Developing a standard
for de-identifying electronic patient records written
in swedish: Precision, recall and f-measure in a man-
ual and computerized annotation trial. International
journal of medical informatics, 78:e19–26.

Elena Volodina. 2024. On two SweLL learner corpora –
SweLL-pilot and SweLL-gold. In Proceedings of
the Huminfra Conference (HiC 2024), HiC 2024.
Linköping University Electronic Press.

Elena Volodina, Yousuf Ali Mohammed, Sandra Der-
bring, Arild Matsson, and Beata Megyesi. 2020. To-
wards privacy by design in learner corpora research:
A case of on-the-fly pseudonymization of Swedish
learner essays. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 357–369, Barcelona, Spain (Online). Interna-
tional Committee on Computational Linguistics.

Elena Volodina, Simon Dobnik, Therese Lindström
Tiedemann, and Xuan-Son Vu. 2023. Grandma Karl
is 27 years old – research agenda for pseudonymiza-
tion of research data.

Elena Volodina, Ildikó Pilán, Ingegerd Enström, Lorena
Llozhi, Peter Lundkvist, Gunlög Sundberg, and Mon-
ica Sandell. 2016. SweLL on the rise: Swedish
learner language corpus for European reference level
studies. Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), May 23-28, 2016, Portorož, Slovenia.

Mats Wirén, Arild Matsson, Dan Rosén, and Elena
Volodina. 2019. SVALA: Annotation of Second-
Language Learner Text Based on Mostly Automatic
Alignment of Parallel Corpora. In Selected papers
from the CLARIN Annual Conference 2018, Selected
papers from the CLARIN Annual Conference 2018.
Linköping University Electronic Press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing.

Vithya Yogarajan, Bernhard Pfahringer, and Michael
Mayo. 2020. A review of automatic end-to-end de-
identification: Is high accuracy the only metric? Ap-
plied Artificial Intelligence, 34(3):251–269.

A Appendix

• GitHub repository

• transformers code for token classification

• Application for access to the sanitized SweLL
data

63

https://gdpr-info.eu/ (Accessed 2019-11-19)
https://gdpr-info.eu/ (Accessed 2019-11-19)
https://aclanthology.org/2021.nodalida-main.23
https://aclanthology.org/2021.nodalida-main.23
https://aclanthology.org/2021.nodalida-main.23
https://aclanthology.org/2021.nodalida-main.23
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
http://arxiv.org/abs/2007.01658
http://arxiv.org/abs/2007.01658
http://arxiv.org/abs/2202.00443
http://arxiv.org/abs/2202.00443
http://arxiv.org/abs/2202.00443
https://doi.org/10.1016/j.ijmedinf.2009.04.005
https://doi.org/10.1016/j.ijmedinf.2009.04.005
https://doi.org/10.1016/j.ijmedinf.2009.04.005
https://doi.org/10.1016/j.ijmedinf.2009.04.005
https://doi.org/10.3384/ecp205012
https://doi.org/10.3384/ecp205012
https://doi.org/10.18653/v1/2020.coling-main.32
https://doi.org/10.18653/v1/2020.coling-main.32
https://doi.org/10.18653/v1/2020.coling-main.32
https://doi.org/10.18653/v1/2020.coling-main.32
http://arxiv.org/abs/2308.16109
http://arxiv.org/abs/2308.16109
http://arxiv.org/abs/2308.16109
https://gup.ub.gu.se/publication/248141?lang=en
https://gup.ub.gu.se/publication/248141?lang=en
https://gup.ub.gu.se/publication/248141?lang=en
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1080/08839514.2020.1718343
https://doi.org/10.1080/08839514.2020.1718343
https://github.com/mormor-karl/Detecting-PIIs-in-Swedish-Learner-Essays
https://github.com/huggingface/transformers/tree/main/examples/legacy/token-classification
https://sunet.artologik.net/gu/swell
https://sunet.artologik.net/gu/swell


Proceedings of the Workshop on Computational Approaches to Language Data Pseudonymization
CALD-pseudo 2024, pages 64–75

March 21, 2024 ©2024 Association for Computational Linguistics

Data Anonymization for Privacy-Preserving Large Language Model
Fine-Tuning on Call Transcripts

Nathan Zhang, Anne Paling, †Preston Thomas, Tania Habib,
Mahsa Azizi, Shayna Gardiner, Kevin Humphreys, †Frederic Mailhot*

Dialpad Canada Inc., †Dialpad Inc.
{nzhang, anne, preston, tania.habib, mahsa.azizi,

sgardiner, kevin.humphreys, fred.mailhot}@dialpad.com

Abstract

Large language models in public-facing indus-
trial applications must accurately process data
for the domain in which they are deployed, but
they must not leak sensitive or confidential in-
formation when used. We present a process
for anonymizing training data, a framework for
quantitatively and qualitatively assessing the
effectiveness of this process, and an assessment
of the effectiveness of models fine-tuned on
anonymized data in comparison with commer-
cially available LLM APIs.

1 Data Privacy in the era of LLMs

Recent progress in the capabilities of large lan-
guage models (LLMs) (Devlin et al., 2019; Brown
et al., 2020; Zhao et al., 2023), has led to their
widespread adoption as the foundation for a variety
of tasks in industrial and academic NLP (Bom-
masani et al., 2021). With parameter counts in the
tens and hundreds of billions, these models require
vast amounts of data to train and fine-tune (Hoff-
mann et al., 2022). At the same time, this overpa-
rameterization enables the memorization and poten-
tial leakage or extraction of large portions of LLMs’
training data (Biderman et al., 2023; Carlini et al.,
2023; Hartmann et al., 2023). Taken together, the
required volume of training data and memorization
capabilities of LLMs raise substantial issues con-
cerning data privacy (Li et al., 2023). This risk
is compounded because LLMs, like all supervised
learners, perform best on test sets that have similar
distributions to their training data. Thus, organiza-
tions seeking to deploy practically effective LLMs
must train them with data that reflect the distribu-
tion of their deployment, with specific, sensitive
data such as medical records or call transcripts lead-
ing to improved performance, but correspondingly

*Corresponding author. We would like to thank our anony-
mous reviewers for detailed and helpful feedback, and our
colleagues Mel Andersen and Tere Roldán for their assistance
with data annotation.

greater risk of exposing that data to breaches or
adversarial attacks (Nasr et al., 2023).

Furthermore, the lack of predictability and diffi-
culty in constraining the outputs of LLMs means
that including personal information (PI) in a train-
ing or fine-tuning data split runs the risk of this data
being exposed in output generated by the model —
even in the absence of adversarial attacks and when
the task does not call for such data. Maximal miti-
gation of this risk requires removing all instances of
PI from the training data, for example by excising
any sentences that contain PI, or redacting any PI
tokens. This kind of full exclusion leads to the chal-
lenge discussed above: depending on its use-case
or deployment environment, a model may need to
process and respond to PI at inference time. Sup-
pressing all instances of PI, effectively removing
the entire entity, is an approach seen when under-
taking anonymization of structured data, however
with unstructured text as in this context, this is not a
realistic option due to resulting in training data that
will be distributionally and semantically (Hassan
et al., 2023) different from the input. Additionally,
these types of data perturbations have been shown
to negatively impact model performance (Malle
et al., 2016, 2017). A more targeted approach to
PI token redaction, tagging a set of candidate PI
tokens with tags from a pre-defined taxonomy, is
offered by some companies as a publicly-available
anonymization service.

In this paper we leverage and modify such an
anonymization service, proposing a nuanced ap-
proach to token redaction and risk assessment,
showing that these measures can address the stan-
dard trade-off between privacy protection and per-
formance. Our specific contributions are:

• Modifications to the taxonomy of PI cate-
gories defined by Google’s Cloud Data Loss
Prevention service1 that serve to increase the

1https://cloud.google.com/security/products/
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accuracy of anonymization of call transcripts
generated by a proprietary automatic speech
recognition (ASR) system.

• A framework for evaluating our modified
anonymization pipeline with respect to resid-
ual risk: a measure encompassing both the
likelihood of identifying an individual from
residual PI that persists after anonymization,
and the relative magnitude of harm based on
the sensitivity of the remaining data. When
properly calibrated, residual risk scoring for
arbitrary combinations of PI or partial PI
should closely align with the potential real-
world impact of their exposure.

• A demonstration that a model fine-tuned with
data that has been anonymized in accordance
with our approach shows comparable F1 and
ROUGE scores to other popular LLMs on
four in-domain tasks, with acceptable levels
of residual risk.

1.1 Related Work

Data anonymization Elliot et al. (2020) present
a framework for data anonymization, including a
taxonomy of identifiers with different risk/exposure
profiles. The framework’s purpose is to furnish
practical understanding of anonymization for use in
business or organizational contexts. It is designed
to control the risk of unintended re-identification
and disclosure.

The problem of automated data anonymization
specifically in the context of textual data is inves-
tigated by Lison et al. (2021). They draw links
between work done in this area in the fields of
NLP and privacy-preserving data publishing, and
highlight some general challenges, including the
trade-off between data utility and residual risk, and
how to assess the quality of anonymization.

Privacy-preserving LLM/ML training Xu
et al. (2021) provide a systematic review of exist-
ing privacy-preserving machine learning (PPML)
approaches. They propose a Phase, Guarantee, and
Utility based model to understand and guide the
evaluation of various PPML solutions by decom-
posing their privacy-preserving functionalities.

Plant et al. (2022) empirically investigate the ex-
tent to which personal information is encoded in
the representations of a variety of widely-available
pre-trained LLMs. They demonstrate a positive

dlp

correlation between the complexity of a model, the
data volume used in pre-training, and data leakage.
In addition, they present an evaluation and compari-
son of some popular privacy-preserving algorithms
on a large multi-lingual sentiment analysis data set
annotated with demographic information (location,
age and gender). Their results show that larger
and more complex models are more prone to leak-
ing private information, and hence that the use of
privacy-preserving methods is necessary. In addi-
tion to the preceding domain-general investigations,
Yin and Habernal (2022) and Guerra-Manzanares
et al. (2023) investigate some of the challenges of
privacy-preserving training for machine learning
and language modeling in the legal and healthcare
domains, including increased resource needs to ad-
dress the high computational complexity of some
methods (e.g. homomorphic encryption), and pri-
vacy/accuracy trade-offs for methods with strong
guarantees (e.g. differential privacy).

2 Data

The data set to be anonymized consists of tran-
scripts generated by an internal proprietary ASR
system. Raw transcripts are passed through an in-
verse text normalization module to generate final
formatted transcripts. The transcripts in the data set
include phone and video conference conversations
between at least one and usually two or more speak-
ers in business contexts, such as voicemails (single
speaker), call center conversations (typically two
speakers) and internal company meetings (two or
more).

Transcripts generated from an ASR system are
imperfect due to characteristics common to busi-
nesses, such as noisy environments, fast or quiet
speakers, and poor-quality microphones. Recog-
nition errors propagate to the final transcription,
which can create difficulties in applying and evalu-
ating the anonymization process.

3 Anonymization Process

Mindful of the ongoing discussion over the appro-
priate terminology for such processes (Garfinkey,
2015), we use the term “anonymization” herein be-
cause the intended outcome of our method is that
no individual can be identified from the resulting
text. Additionally, specifying anonymization distin-
guishes our method from pseudonymization, which
appears superficially similar in that it includes re-
placing PI with tokens, e.g. [PERSON_NAME_1].
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The difference is that pseudonymization maintains
a consistent mapping of the replacement token
across conversations, potentially permitting later
reidentification, whereas our process reuses these
de-identified tokens across conversations, function-
ally eliminating the possibility of using them for
re-identification purposes.

3.1 PI identification

There are several commercial offerings for PI iden-
tification and anonymization of text data. We
surveyed services by Amazon,2 Microsoft,3 and
Google.4 We selected Google’s Cloud Data Loss
Prevention (DLP) service due to its broader cov-
erage of PI categories. The DLP service defines a
taxonomy of information types, or infoTypes; kinds
of sensitive data such as names, email addresses,
and telephone numbers.5 An additional advantage
of using the DLP service was the in-house access to
data stored in BigQuery6 and the ease of creating a
configuration template to set up asynchronous jobs
for large volumes of data, which was well suited
for our use case.

In the PI identification process, we included most
of the global infoTypes from the available taxon-
omy, as well as those infoTypes which are specific
to the US and Canada (e.g. social security or so-
cial insurance numbers). A preliminary analysis
suggested that the ETHNIC_GROUP, GENDER,
DATE, and TIME infoTypes had a much higher
rate of false positives (FPs) in our data sets, and
so we excluded them. The taxonomy also includes
categories for human names. The categories FE-
MALE_NAME, MALE_NAME, FIRST_NAME, and
LAST_NAME are individually and collectively sub-
sets of the PERSON_NAME infoType, and so we
retain the latter while excluding all of the former.

We made the following modifications to DLP’s
PI identification to improve its performance on our
data set:

1. Exclusion List: On the basis of the most
frequent FPs seen in the masked transcripts

2https://docs.aws.amazon.com/transcribe/
latest/dg/pii-redaction.html

3https://learn.microsoft.com/en-us/
azure/ai-services/language-service/
personally-identifiable-information/how-to-call

4https://cloud.google.com/dlp/docs/
sensitive-data-protection-overview

5For a complete list, see https://cloud.google.com/
dlp/docs/infotypes-reference.

6https://cloud.google.com/bigquery

we created an exclusion list for the PER-
SON_NAME, ORGANIZATION_NAME, and
LOCATION infoTypes.

2. Custom dictionary: A custom dictionary was
added to the PI detection configuration for
the two infoTypes of PERSON_NAME and
ORGANIZATION_NAME to reduce the num-
ber of false negatives (FNs) and increase the
chance of correctly detecting names of organi-
zations and people in the transcripts. Both of
these resources were developed from a propri-
etary database of company and user names.

3. Letters and digits: After preliminary evalu-
ation of the DLP API on our data, two addi-
tional infoTypes are created and added to the
identification configurations:

• Spelled words: Our transcription engine
transcribes and formats letter sequences,
for example verbally spelled-out words,
with hyphens as separators e.g. A-L-P-
H-A. The DLP API fails to detect and
mask these instances, leaving potential
PI in the anonymized data. A regular
expression pattern to detect such groups
in the transcript was added to the custom
dictionary.

• Numbers: Although our transcription en-
gine can successfully decode and format
digit sequences such as phone numbers,
if a user repeats digits, or there is a tran-
scription error such as “four” mistran-
scribed as “for”, there is the potential for
an unformatted sequence of digits to ap-
pear in the transcripts, which may not
be detected by the DLP API. We there-
fore added a regular expression to detect
numeric sequences of length 3, reducing
the risk of missing potentially identifi-
able data due to mistranscription.

4. Usernames: Although they fall within the
scope of DLP’s built-in GENERIC_ID info-
Type, usernames such as enigma52 or Mr-
bigchef were consistently not tagged as po-
tential PI by the DLP service. We identified
instances where these unmasked usernames
were used across multiple social media plat-
forms, or were some combination of multiple
pieces of PI such as first initial + last name,
first name + last name or first name + birth
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Original Transcript
Pam: This is Pam calling from Dunder Mifflin,
may I speak to Jim?
Anonymized Transcript
[PERSON_NAME_1]: This is [PERSON_NAME_1] calling
from [ORGANIZATION_NAME_1],
may I speak to [PERSON_NAME_2]?

Table 1: Example of context-aware anonymization

year, and in each of these instances could be
used to identify the user.

The DLP service can detect domain or data-
specific entities via the creation of a hotword
regex (regular expression). We improved the
detection accuracy of GENERIC_ID and PER-
SON_NAME in two ways. Firstly, we cre-
ated a hotword regex for mentions of the word
user name in our data, e.g. (username|user
name|Username|user ID) and defined a con-
text window of 100 characters around the hot-
word regex as an area of higher likelihood
username detection. Secondly, we added a
custom regex to the GENERIC_ID infoType
to detect alphanumeric sequences of a certain
length and commonly-used conditions for cre-
ating a username. Together, these approaches
increased the hit rates for usernames up to
66% in our data set.

5. Context-aware anonymization: DLP does
not offer means of differentiating tokens or
instances of identified infoTypes, thus losing
semantic information in the application of the
anonymized text. In order to preserve con-
text for later analysis, each masked span is
assigned a unique numeric ID within the call.
Multiple instances of the same masked infor-
mation are assigned the same ID. See Table 1
for an example. 7

4 Residual Risk Analysis

4.1 Identifying and annotating residual risks
Transcripts that were redacted using Google’s DLP
were subsequently annotated by humans to identify
any residual PI that had not been detected, with
a subset being subject to a second pass for veri-
fication.8 Annotation of residual PI proved to be

7Note that numeric IDs do not persist across calls, which
would cross into pseudonymization and raise a reidentification
risk.

8While we made some effort to mitigate false positives,
this is not an issue that impacts our discussion here, which is

challenging, requiring multiple iterations of the
guidelines with our annotators. Table 2 shows the
output of post-anonymization annotation on a ficti-
tious example.

Annotators did not tag instances of undetected
PI that were not relevant to personal identification,
even if there was an associated infoType. For exam-
ple, DLP redacts generic ID numbers, but missed
instances of these were only tagged if they could
contribute to identifying an individual — for in-
stance, organization-internal order numbers were
not tagged, while a business registration license
number would be. This choice was made because
our goal was not to evaluate the accuracy of the
PI tagging per se, but rather to quantify the risk of
residual PI after anonymization. In Table 2, a tran-
scription error results in partial detection, hence
only partial anonymization, of the order number.
It is not annotated, however, because the residual
partial information of an internal order number is
not usable for identifying the speaker.

Given the unstructured nature of transcript data
and potential transcription errors, PI may be im-
perfectly formatted, so it may occur that only a
portion of a span of PI is detected and tagged.
To account for such cases, we associate with any
given tag [TAG] a TAG_PARTIAL tag to be used
by the annotators when only part of the PI is not
anonymized. Table 2 demonstrates such cases; Per-
son 1’s last name and Person 2’s email domain
name are marked as _PARTIAL.

We found that the most common infoTypes
missed by the de-identification process are PROD-
UCT and ORGANIZATION. There are two scenar-
ios in which PRODUCT and ORGANIZATION are
mentioned in a conversation: a common product
or organization that can be used as a conversation
topic, and the specific product or organization the
speaker associates with. There is quite a differ-
ence between a person discussing using an iPhone
from Apple and a person selling a product for their
own company — the former does not provide much
insight into identifying the speaker, but the latter
does. However, DLP PI identification doesn’t dif-
ferentiate and doesn’t have a consistent pattern in
identifying the product and organization in the two
scenarios. Therefore, in our evaluation, we only
consider the missed product or organization to con-
tain residual risk if they are closely related to the
speaker. To illustrate, in Table 2, Dunder Mifflin

concerned with preventing the leakage of PI.
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Original Transcripts
Person 1: Dunder Mifflin, this is Rachel green speaking.
Person 2: Hi, this is mark from ABC Trust Fund, we just ordered a set of paper
and they have worse quality than staples. We would like to return and get refund.
Person 1: Okay, what is the order number?
Person 2: It’s B. 231 C. for A. two.
Person 1: And the email for that order?
Person 2: It’s M-K two one @abc.com
Anonymized Transcripts
Person 1: Dunder Mifflin, this is [PERSON_NAME_1] green speaking.
Person 2: Hi, this is [PERSON_NAME_2] from [ORGANIZATION_NAME_1],
we just ordered a set of paper and they have worse quality than staples.
We would like to return and get refund.
Person 1: Okay, what is the order number?
Person 2: It’s B. [NUMERIC] C. for A. two.
Person 1: And the email for that order?
Person 2: It’s M-K two one [EMAIL_1]
Anonymized + Annotated Transcripts
Person 1: (Dunder Mifflin)[MISSED_ORGANIZATION_NAME_SPEAKER], this
is [PERSON_NAME_1] (Green)[MISSED_PERSON_NAME_PARTIAL] speaking.
Person 2: Hi, this is [PERSON_NAME_2] from [ORGANIZATION_NAME_1],
we just ordered a set of paper and they have worse quality than (staples)[MISSED_ORGANIZATION_NAME].
We would like to return and get refund.
Person 1: Okay, what is the order number?
Person 2: It’s B. [NUMERIC] C. for A. two.
Person 1: And the email for that order?
Person 2: It’s (M-K two one)[MISSED_EMAIL_PARTIAL] [EMAIL_1]

Table 2: Example of post-anonymization annotation of residual PI. Missed PI is enclosed in parentheses and assigned
a tag derived from the associated infoType.

was marked with the tag _SPEAKER to denote the
risk associated with the missed PI, while Staples
was not as it does not associate with any speakers
in the conversation.

4.2 Quantifying residual risk

To assess residual risk for a conversation, we must
first quantify the risk for each infoType. We be-
gin by distinguishing direct and indirect identifiers,
following Elliot et al. (2020):

• Direct Identifier: A variable or set of vari-
ables specific to an individual (e.g. name, ad-
dress, phone number, bank account) that are
explicitly or commonly used for the purpose
of identification. These identifiers have a com-
paratively higher risk profile.

• Indirect Identifier: Information that in isola-
tion does not enable identification (e.g. gen-
der, nationality, city of residence), but may
do so in combination with other indirect iden-
tifiers and/or background knowledge. These
identifiers have a reduced but non-zero risk
profile.

Residual risk is assigned an integer score ranging
from 0 to 5. As stated above, for direct identifiers

such as a person’s name, credit card number, pass-
port number, or social security/insurance number,
we assign a maximal risk score of 5, to account
for both the specificity of the identifier (a proxy
for the likelihood of re-identification) and the im-
pact of potential misuse. For indirect identifiers
like company name or city of residence, we assign
a risk score of 2 or 3. These risk categorizations
for different infoTypes were developed in collab-
oration with privacy counsel. For the full list of
categorizations and scores, see Table 6 in Appendix
A.

For partially-redacted PI, tagged with the _PAR-
TIAL annotation, the risk score of the associ-
ated tag is halved and rounded up or down
to the next higher or lower integer, depending
on the risk profile. For example, if the tag
[MISSED_EMAIL] has a score of 3, then the
score for [MISSED_EMAIL_PARTIAL] becomes
⌊3/2⌋ = 1. In the case of [PERSON_NAME],
which has a base score of 5, we round the score for
[MISSED_PERSON_NAME] up to 3 to account
for the wide variety of circumstances in which
[MISSED_PERSON_NAME_PARTIAL] can occur.
As noted above, we consider both first names
and last names as _PARTIAL because the [PER-
SON_NAME] infoType is a superset of the other
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[_NAME] infoTypes and using both created incon-
sistencies.

To calculate the residual risk score for an entire
conversation, we sum the scores of the [MISSED_]
tags, avoiding double-counting of multiple
instances of a given token of missed PI. For
example, in a conversation with four instances of
(Marc)([MISSED_PERSON_NAME_PARTIAL]),
the risk score contributed by this tag would be 3
rather than 12 (= 4 × 3). Note that there can be
variations in the spelling and formatting of a given
token of PI due to ASR transcription error e.g.
Mark, Marc, M-A-R-K. In this case, we consider
them as a single piece of PI in three instances
instead of different PIs if the annotators determine
it is most likely a reference to the same entity.9

For the example in Table 2, the total residual risk
is calculated as follows (tag names are shortened
for consideration of space):

MISSED_ORG_NAME_SPEAKER = 2

MISSED_PERS_NAME_PARTIAL = ⌈5/2⌉ = 3

MISSED_EMAIL_PARTIAL = ⌊3/2⌋ = 1

Total_Risk_Score = 2 + 3 + 1 = 6

(1)

The score assigned to
MISSED_ORG_NAME_SPEAKER is
2 (see Appendix A, whereas the PERSON and
EMAIL identifiers, being tagged PARTIAL
are halved and round up (down, resp), as
discussed in Section 4.2. Note that the
MISSED_ORGANIZATION_NAME
tag is not included in the calculation above as it
is assigned a score of zero, because it does not
represent a conversational participant, but is simply
the name of a company.

4.3 Successful anonymization at the
population level

We wish to know what proportion of a corpus
of anonymized conversational transcripts carry an
unacceptable residual risk profile. Pursuant to
some preliminary data analysis, and in the ab-
sence of strong arguments to the contrary, we
make the simplifying assumption that residual risks
scores are well modeled by a normal distribution,
N ∼ (µ, σ).

Given the previously-defined risk scores for each
category, and our assumption of residual risk score

9There is a potential difficulty here for conversations in-
cluding multiple participants with the same name. We hope to
address this in a future iteration of this work.

normality, we define the following simple criterion
as a measure of “successful" anonymization of a
given conversational transcript:

µ+ σ < 5 (2)

That is, we want the distribution of residual risk
scores in our corpus of anonymized transcripts to
be such that their mean plus one standard deviation
is less than 5. We select 5 as our threshold of ac-
ceptability for the following reasons: (i) it is the
risk score for a single occurrence of a direct identi-
fier, which carries a maximal residual risk profile
(high likelihood of re-identification and high im-
pact of misuse), and (ii) it is equal to a combination
of two complementary indirect identifiers such as
company name + person’s first name. Thus, 5 repre-
sents an easily-administerable target for assessing
whether PI in the output of automated processes
is sufficiently reduced to warrant more detailed re-
view (see 4.5, below). We manually reviewed a
set of high-scoring (above criterion) transcripts to
ensure that this threshold met our needs.

Our assumption that residual risk is normally
distributed implies that approximately 16% of our
corpus of anonymized conversations carry a resid-
ual risk greater than 5.10 Upon review of sam-
ple conversations, we find that anonymized tran-
scripts with risk scores that are above the thresh-
old—but do not have direct identifiers as part of the
score—do not in practice enable re-identification.
This is because as the indirect identifiers found in
the masked text do not in general have a compound-
ing effect. While we cannot guarantee the impos-
sibility of re-identification in such, the risk after
review was deemed acceptable. Table 3 provides
an illustrative example: the total residual risk score
is 6, with three independent instances of PI that do
not combine to increase the risk of identification of
any individual in the conversation.

We assessed the strength of our criterion manu-
ally, with anonymized call transcripts sampled from
our corpora of business conversations in customer
support, sales, videoconferencing, and direct call
contexts. As shown in Table 4, after anonymization,
human annotation of residual PI, and risk score as-
signment, none of the sampled corpora carried un-

10Recall that one standard deviation to each side of the mean
of a normal distribution accounts for approximately 68% of
the probability mass. Since we are only worried about one tail
of the distribution, i.e. the proportion with score greater than
5, we have one half of the tails’ probability mass included in
our coverage, for a total of 84%.
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Person 1: Hi [PERSON_NAME_2]. This is [PERSON_NAME_3] calling back
from (XYZ lawyer)(MISSED_ORGANIZATION_NAME_SPEAKER).
Person 2: Oh, hi.
Person 1: I am calling regarding your request to change your business name on
(IRS dot gov)(MISSED_URL) website.
Person 2: Oh, yes, I want it to be changed to
(ABC incorporated) (MISSED_ORGANIZATION_NAME_SPEAKER).

Table 3: Example conversation where residual risk score over-represents practical impact

acceptable risk profiles with our criterion (although
several did so at µ+ 2σ).

We conclude that a target residual risk score of
5 represents a conservative but readily achievable
level of assurance that the anonymization proce-
dure is effective.

4.4 Results

We sampled 498 conversations across four business
communication products to ensure the represen-
tation of different conversation contexts, such as
video conferencing, customer support, and sales
calls. Table 4 shows the residual risk statistics of
the five data sets.

Conversations in the video conferencing data
set tend to be longer than the other data sets, with
word counts five to six times that in other data
sets. 11 For the samples with high residual risks,
the identified PIs are not compounding, i.e., they
include multiple indirect identifiers that all refer to
different people.

After the residual risk score passes the suc-
cess criterion to demonstrate quantitatively that the
anonymization process reliably reduces risk to an
acceptable level, we conduct a red-team exercise to
stress test the resulting output.

4.5 Red-Teaming

The term “red team” originates in the military con-
text: a red team is a group that assumes the role of
an adversary, simulating attacks to identify vul-
nerabilities so that they can be resolved before
a real attacker can exploit them. In the context
of anonymization, this means “attacking” the de-
identified output using common internet resources
(e.g. search engines) and creative thinking to at-
tempt to re-identify participants. “Success” of the
exercise in our context — PI protection — means

11Meetings, the main source of video conferencing call data,
are typically longer and have more speakers than audio-only
calls.

Context Count Mean STD P95 Max µ + σ
Customer Support 1 100 0.7 1.4 3.1 6 2.1
Customer Support 2 98 1.3 2.1 6.0 11 3.4
Meetings 99 1.2 3.1 6.1 20 4.3
Sales Calls 100 0.6 1.3 3.1 6 1.9
1-to-1 Phone Calls 100 1.0 1.7 5.0 8 2.7
Total 498 1.0 2.0 5.0 20 3.0

Table 4: Residual risk analysis

that the adversary is unable to identify an individ-
ual based on remaining unmasked information in
the data set.

The red team for this exercise consisted of data
engineers, applied scientists, computational lin-
guists, privacy counsel, and a security advisor.

We sampled 200 conversations across different
conversation contexts for the red-teaming prac-
tice. The conversations were anonymized using
the modified DLP method described above.12 Our
red team found that of 200 full conversations, 181
calls (90.5%) were fully anonymized (no PI identi-
fied by the red team) and 19 calls (9.5%) showed
some residual PI. However, the team determined
that even with creative research and inference, none
of the remaining 19 calls contained enough PI to
successfully identify any individual, meaning that
the data set could be safely used to train an LLM
with no risk of exposing identifiable PI in later gen-
erative tasks. The failure of the red team to achieve
its goal is a strong indication of the success of our
anonymization methods.

With the proposed anonymization workflow suc-
cessfully passing both quantitative and qualita-
tive evaluation, we conducted LLM fine-tuning
experiments to demonstrate the usability of the
anonymized data for downstream tasks.

5 Privacy-Preserving LLM Training

Given a successfully anonymized data set, it can
be used in combination with training prompts to

12The conversations considered by the red team were not
annotated with MISSED_ labels, because this annotation step
was only used during the calibration and quantitative evalua-
tion of the automated de-identification method.

70



fine-tune an LLM. As the training prompts con-
tain no PI either, the combined fine-tuning data set
contains no PI. If the model remains suitably perfor-
mant, this demonstrates the ability to benefit from
highly relevant domain-specific (i.e. real-world)
training data while substantially reducing or even
eliminating the risk of leakage or extraction.

5.1 Model
We used the “Chat” version of the LLaMA-2 model
(Touvron et al., 2023) with 7B parameters as our
base model.13 LLaMA-2 is an open-source LLM
developed by Meta. We chose LLaMA-2-7B as
it showed comparable performance to larger mod-
els with a reduced cost of deployment. This base
model was fine-tuned with a Text-to-Text Transfer
Transformer (Raffel et al., 2020) on 59000 external
samples and 13000 in-domain conversations. In
the following, we refer to our fine-tuned LLM as
DialpadGPT.

5.2 Experiment
After the model was fine-tuned, we sampled 400
LLM outputs across four downstream tasks of in-
terest (100 outputs per task), involving both gener-
ation and classification:

• Action Item: Generate a description of a well-
defined task to be completed after the call
conversation.

• Summarization: Generate a summary of the
conversation.

• Call Purpose: Classify the call into one of
a pre-defined group of broad conversational
themes, and the speaker intention and/or atti-
tude.

• Call Outcome: Classify the call into one of
a pre-defined group of categories that specify
the result of the call e.g. complaint resolved,
callback requested.

The four tasks were included in the fine-tuning
process. All inputs provided to the model to gen-
erate output samples were anonymized using the
process described above (the process used on the
fine-tuning data set).

5.3 Results
Human annotators manually reviewed the outputs
for each task and found no instances of PI in any

13https://huggingface.co/meta-llama/Llama-2-7b

of the output samples — that is, each piece of PI
remained anonymized in the output.

Model performance on the aforementioned test
set is shown in Table 5, which compares ROUGE-1
scores (Lin, 2004) and F1 scores of DialpadGPT
to the following commercial LLMs:

• GPT-3.5: GPT-3.5 is the model behind Ope-
nAI’s14 ChatGPT (Laskar et al., 2023). We
use the gpt-3.5-turbo-0613 model, which has
a maximum context length of 4096 tokens.

• GPT-4: GPT-4 is the latest LLM released by
OpenAI (OpenAI, 2023), which has a maxi-
mum context length of 8192 tokens. In this
experiment, we evaluate two versions of the
model: GPT-4 (gpt-4-0613) and GPT-4 Turbo
(gpt-4-1106-preview).

• PaLM-2: PaLM-2 (Anil et al., 2023) is an
LLM developed by Google. It leverages the
mixture of objectives technique (Anil et al.,
2023) and significantly outperforms the orig-
inal PaLM (Chowdhery et al., 2023) model.
We use the text-bison@001 model, which has
an input context window length of 8192 to-
kens.15

Across two generative tasks and two clas-
sification tasks, DialpadGPT, fine-tuned with
anonymized data, outperforms all four popular
commercial models.

6 Conclusion

In this paper, we presented a method for improv-
ing data anonymization on transcripts of business
conversations using a publicly available service.
We proposed a framework for quantitative and
qualitative criteria for anonymization (residual risk
scoring plus red team review), and showed that
an LLM fine-tuned with data anonymized by the
proposed workflow on relevant tasks has superior
performance compared to commercially available
LLMs. This shows LLMs are still able to under-
stand and leverage contextual information without
access to those key entities. In practice, we found
that having some key entities like user or company
names is helpful for some downstream tasks. In fu-
ture work we will assess the performance of LLMs

14https://platform.openai.com/docs/models/
15Available via Google’s VertexAI platform. https:

//cloud.google.com/vertex-ai/docs/generative-ai/
model-reference/text
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Models/Tasks Summarization Action Items Call Purpose Call Outcome
ROUGE-1 ROUGE-1 F1 F1

DialpadGPT 0.6096 0.5532 0.6562 0.738
GPT-3.5 0.4957 0.3918 0.5078 0.6638
GPT-4 0.5783 0.5483 0.5508 0.6114
GPT-4 Turbo 0.5243 0.4143 0.6289 0.6812
PaLM-2 0.4832 0.4629 0.4492 0.4803

Table 5: Comparison between LLMs on downstream tasks of interest.

fine-tuned on an augmented anonymized data set,
with names substituted by gender-neutral names
and companies substituted by synthetic companies.

7 Limitations

One limitation of relying on a commercial system
for data anonymization is that it is not always clear
how to improve the process when unexpected re-
sults are obtained. With the improvements we made
to the system, person and company name are still
the infoTypes most likely to have false negatives,
especially in lexically ambiguous cases like the
name Mark16 or with uncommon or unusually for-
matted company names.

In addition, the use of proprietary data for eval-
uating the results of fine-tuning LLMs renders di-
rect comparison to other organizations’ models
challenging. Despite the low residual risk and re-
sulting high confidence in the anonymization of
the data sets, privacy best practices nonetheless
caution against publishing our resulting data sets
(Narayanan and Shmatikov, 2007). That being said,
the overall methodology described here is certainly
replicable, using a publicly available anonymiza-
tion API, with task or domain-specific modifica-
tions to the PI taxonomy, and with the residual risk
threshold tuned appropriate to the use case.

Finally, in our evaluation we mainly focused
on the recall/hit-rate of the PI tagging. The preci-
sion/recall trade-off in machine learning suggests
that an anonymization system with very high recall,
i.e. poor precision, will lose context and generate
data that cannot be used in LLM training. In prac-
tice, however, we did not observe such cases and
our experiment showed that LLMs are still able to
capture enough context after the anonymization.

16The person’s name Mark and verb mark are often con-
fused in the formatting process in terms of casing and thus fail
to be identified as PI in the anonymization process.
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A Residual Risk Categorization

Type Missing Occurrence Tag Google Tag Score
(MISSED_EMAIL) EMAIL_ADDRESS 4
(MISSED_LOCATION) LOCATION 2
(MISSED_LOCATION_COORD) LOCATION_COORDINATES 4
(MISSED_US_STATE) US_STATE 1

Contact Info (MISSED_PERSON_NAME) PERSON_NAME 5
(MISSED_PHONE) PHONE_NUMBER 4
(MISSED_ADDRESS) STREET_ADDRESS 4
(MISSED_USER_NAME) USER_NAME 3
(MISSED_DOMAIN) DOMAIN_NAME 1
(MISSED_HTTP_COOKIE) HTTP_COOKIE 1
(MISSED_ORGANIZATION_NAME) ORGANIZATION_NAME 0
(MISSED_ORGANIZATION_NAME_SPEAKER) ORGANIZATION_NAME 2

Entities (MISSED_PRODUCT) PRODUCT 0
(MISSED_PRODUCT_SPEAKER) PRODUCT 2
(MISSED_STORAGE_SIGNED_POLICY) STORAGE_SIGNED_POLICY_DOCUMENT 2
(MISSED_STORAGE_SIGNED_URL) STORAGE_SIGNED_URL 3
(MISSED_URL) URL 2

Demographic (MISSED_AGE) AGE 1
(MISSED_DATE_OF_BIRTH) DATE_OF_BIRTH 3
(MISSED_ICD9_CODE) ICD9_CODE 2

Health Info (MISSED_ICD10_CODE) ICD10_CODE 2
(MISSED_MEDICAL_RECORD_NUMBER) MEDICAL_RECORD_NUMBER 5
(MISSED_MEDICAL_TERM) MEDICAL_TERM 1
(MISSED_ADVERTISING_ID) ADVERTISING_ID 3
(MISSED_GENERIC_ID) GENERIC_ID 4
(MISSED_ICCID_NUMBER) ICCID_NUMBER 4
(MISSED_IMEI_HARDWARE_ID) IMEI_HARDWARE_ID 4
(MISSED_IMSI_ID) IMSI_ID 4

ID number (MISSED_IP_ADDRESS) IP_ADDRESS 3
(MISSED_MAC_ADDRESS) MAC_ADDRESS 3
(MISSED_MAC_ADDRESS_LOCAL) MAC_ADDRESS_LOCAL 3
(MISSED_PASSPORT) PASSPORT 5
(MISSED_VAT_NUMBER) VAT_NUMBER 2
(MISSED_VEHICLE_IDENTIFICATION_NUMBER) VEHICLE_IDENTIFICATION_NUMBER 5
(MISSED_CREDIT_CARD_NUMBER) CREDIT_CARD_NUMBER 5
(MISSED_CREDIT_CARD_TRACK_NUMBER) CREDIT_CARD_TRACK_NUMBER 5
(MISSED_IBAN_CODE) IBAN_CODE 5

Payment Info (MISSED_SWIFT_CODE) SWIFT_CODE 1
(MISSED_ROUTING_NUMBER) ROUTING_NUMBER 3
(MISSED_SSN) SSN 5

Table 6: Residual risk scores assigned to infoTypes
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Abstract

Clinical data, in the form of electronic health
records, are rich resources that can be tapped
using natural language processing. At the same
time, they contain very sensitive information
that must be protected. One strategy is to
remove or obscure data using automatic de-
identification. However, the detection of sen-
sitive data can yield false positives. This is
especially true for tokens that are similar in
form to sensitive entities, such as eponyms.
These names tend to refer to medical proce-
dures or diagnoses rather than specific per-
sons. Previous research has shown that auto-
matic de-identification systems often misclas-
sify eponyms as names, leading to a loss of
valuable medical information. In this study,
we estimate the prevalence of eponyms in a
real Swedish clinical corpus. Furthermore, we
demonstrate that modern transformer-based de-
identification systems are more accurate in dis-
tinguishing between names and eponyms than
previous approaches.

1 Introduction

De-identification of data invariably reduces in-
formation content by either removing, conceal-
ing, or replacing sensitive text with pseudonyms.
Pseudonymization of data based on automatic iden-
tification and replacement of personally identifiable
information (PII) may also introduce misleading
information if tokens or text spans are erroneously
misclassified as PII. Tokens are more likely to be
misclassified as PII if they share common features
with PII of a certain class. Such situations often
arise in clinical texts, which often contain eponyms
(Kucharz, 2020). These medical terms are named
after a researcher or clinician, typically somebody
involved in the discovery or invention or discovery
of the phenomenon bearing their name. Sometimes,
it can also be the name of a patient affected by a dis-
order. Since eponyms refer to medical phenomena

rather than persons, they should not be considered
sensitive.

It is believed that there are over 8,000 medi-
cal eponyms. As discussed by Kucharz (2020),
eponyms can refer not only to diseases but to a wide
range of categories including tests, surgical proce-
dures and anatomical structures. These eponyms
can cause difficulty when trying to automatically
detect PII. In one study, it was shown that while
only 0.81% of clinical entities were misclassified
as PII, this was substantially higher for eponyms,
where between 10 and 49% of eponyms were mis-
classified as PII (Meystre et al., 2014).

The following example highlights the problem:
Dr. Sjögren suspects the patient has Sjögren’s syn-
drome. In this example, Sjögren’s syndrome is an
eponymous disorder which is being treated by a
physician who happens to have the same name.
When de-identifying the sentence, Sjögren should
be concealed in Dr. Sjögren but not in Sjögren’s
syndrome. Concealing the eponymous name of
the syndrome removes clinical information which
could potentially be very important for the intended
users of the data. However, it is not clear how preva-
lent eponyms are in clinical text and to what extent
transformer-based named entity recognition (NER)
systems trained to identify PII can distinguish be-
tween eponyms and sensitive names.

In this study, we estimate the prevalence of
eponyms in a large corpus of Swedish clinical text.
We also create a manually annotated corpus of clin-
ical notes containing one or more eponyms and use
this corpus to study the extent to which classifi-
cations of names overlap with eponyms. To that
end, we employ a NER system trained to detect
sensitive entities (e.g., names). In other words, we
seek to understand how eponyms affect these mod-
els’ ability to distinguish between actual names and
eponyms. The main contributions of this study are
summarized below:
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• We estimate that around 0.04% of tokens in
clinical notes are eponyms and that these have
a slight tendency to cluster in the same notes.

• We show that modern NER systems based on
BERT are less likely to misclassify eponyms
than older systems evaluated in previous stud-
ies.

• We discuss the implications of eponyms for
automatic de-identification of clinical text and
data utility.

• We create a clinical corpus annotated with
eponyms that we plan to de-identify and make
available to researchers.

2 Related Research

Research looking specifically at eponyms is scarce.
The studies that are available often focus on the
intersection of the de-identification of clinical texts
and the detection of disorders. Berg et al. (2020)
performed de-identification experiments and ob-
served that rare eponyms in the training data tended
to be misclassified as last or first names to a
very high degree, but there were also cases where
eponyms in the training data were misclassified as
last or first names. Meystre et al. (2014) compare
five de-identification systems and their flaws in er-
roneously detecting eponyms as protected health in-
formation (PHI)1 in American clinical text. Three
systems (MIT, MIST and HIDE) misclassify ap-
proximately 10% of all eponyms as PHI, and the
other two systems (HMS and MEDs) misclassify
as many as 40% of all eponyms as PHI.

Berg et al. (2020) created an eponym lexicon
by using a NER model for clinical entities, i.e., a
system to identify Findings, Disorder, Body Parts
and Drugs in a Swedish clinical text. Then, they
investigated whether these were based on the name
of a person, in which case it was marked up as an
eponym and added to the eponym lexicon. Finally,
the created lexicon was manually reviewed to en-
sure correctness. The resulting eponym lexicon
contains 275 eponyms.

Several studies have examined the impact of
de-identification on data utility for machine learn-
ing. Results are highly contingent on an appropri-
ate sanitization algorithm and a sufficiently strong
NER model for detecting sensitive data (Berg et al.,

1PHI are a form of PII specified by the American HIPAA
regulation.

2020; Lothritz et al., 2023). However, there are
several examples of studies showing that data util-
ity can be maintained for both fine-tuning, pre-
training, and combined scenarios (Vakili and Dalia-
nis, 2022; Verkijk and Vossen, 2022; Vakili et al.,
2023). These studies examine the impact of de-
identification by evaluating models trained to per-
form downstream tasks. A shared limitation is that
these studies study the impact on downstream task
performance overall. As such, these studies can-
not conclusively rule out that there may be other
scenarios where de-identification could still have a
disparate impact on data utility. For instance, mis-
classifying and removing information contained
in eponyms could be harmful in many scenarios,
and examining this specific risk provides deeper
insights into possible pitfalls in de-identifying clin-
ical data.

3 Data and Experiments

In this study, we estimate the prevalence of
eponyms in a large sample of Swedish clinical texts
by using an eponym lexicon to automatically iden-
tify mentions of eponyms in clinical notes. We
use this to create an eponym corpus by randomly
sampling 1,000 clinical notes with at least one de-
tected eponym mention. These notes are then man-
ually reviewed and corrected while we also calcu-
late inter-annotator agreement among four annota-
tors. Finally, we fine-tune a Swedish clinical BERT
model to identify PII and calculate to what extent
eponyms are misclassified.

3.1 Creating an Eponym Corpus

The data used in this study was the Stockholm
Eponym Corpus2. This is a subset extracted from
the research infrastructure Health Bank3 (Dalianis
et al., 2015), which contains over 2 million pa-
tient records from the years 2007-2014 from over
500 clinical units. The data originates from the
Karolinska University Hospital in Stockholm, Swe-
den. The eponym lexicon created by Berg et al.
(2020) was used to find eponyms in the clinical
text.

The total number of detected tokens and
eponyms can be seen in Table 1. In the corpora, ap-
proximately 0.04% of all tokens are eponyms. For
scale, this can be compared with the prevalence of

2This research has been approved by the Swedish Ethical
Review Authority under permission no. 2019-05679.

3Health Bank, https://www.dsv.su.se/healthbank
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Corpora Tokens Flagged eponyms Estimated eponyms
Health Bank Subset (1%) 27,837,617 12,066 11,016
Entire Health Bank ∼2,800,000,000 N/A ∼1,108,000

Table 1: The number of flagged eponyms (based on the matching algorithm) and the estimated minimum number of
real eponyms (based on the precision of the algorithm).

Term Occurrences

Babinski(s) 1869
Romberg(s) 1777
Grasset(s) 1325
Crohn(s,’s) 944
Parkinson(s,’s) 738
Alzheimer(s,’s) 490
Sjögren(s) 475
Donder(s) 351
Valsalva 322
Lasegue(s,é) 295
Graves(’s) 290
Akilles 256
Raynaud(s,’s) 217
Bechterew(s) 216
Whipple(s) 173
Willebrand(s) 169
Wegener(s) 162
Waldenström(s) 176
Robin(s) 179
Dix 154

Table 2: Top 20 highest occurrences of the eponyms
from the Stockholm Eponym Corpus, including spelling
variants.

PII which has been estimated as being two to four
times more common (Dalianis, 2018).

Due to computational constraints, one percent
of the Health Bank corpus was randomly extracted
for the experiments. This subcorpus consists of
1,402,782 notes containing 27,837,617 tokens and
was tagged for eponyms using exact matching with
the eponym lexicon. In total, 9,795 notes were
flagged as containing eponyms, and 12,066 match-
ing eponyms were found, as shown in Table 1.

Out of the 9,795 notes with eponyms, 1,000
notes containing the eponym tag were randomly
extracted for manual annotation. The order of the
notes was randomized before being split into five
subsets of 200 notes. These notes were manually
annotated by four annotators. Each annotator was
assigned 400 notes, 200 of which were unique and
200 that were shared. The resulting 1,000 notes
corpora is called the Stockholm Eponym Corpus.
The inter-annotator agreement (IAA) was deter-
mined using the Krippendorff’s alpha (Krippen-
dorff, 1970) and was calculated as 0.97 for the 200
samples annotated by all four annotators.

These 200 shared samples were then used to es-
timate the precision of the eponym lexicon. After
resolving the disagreements between the annota-
tors, the precision was determined as 0.913. No
attempts were made to estimate the recall of the
matching algorithm, as the annotated samples were
only selected from the subset in which the algo-
rithm had found eponyms. Based on the precision
of the matching algorithm, a lower bound for the
total number of eponyms in the Health Bank was
estimated and listed in Table 1.

During the manual annotation, new eponyms
were discovered, annotated, and added to the lex-
icon. This process led to extending the eponym
lexicon from 275 eponyms to 317 eponyms. The
updated eponym lexicon was used for the final
matching presented in Table 1 and 2, respectively.

3.2 Evaluating Misclassification of Eponyms

Previous studies have shown that NER systems for
classifying PII tend to have lower precision for to-
kens that are eponyms. To study this, a BERT-based
NER model was trained using the Stockholm EPR
PHI Corpus (Dalianis and Velupillai, 2010). This
corpus covers a range of PII classes and consists of
380,000 tokens, of which 4,800 are PII. Crucially,
it covers both first and last names – entity types
that are commonly associated with eponyms. A
Swedish clinical BERT model called SweDeClin-
BERT (Vakili et al., 2022) was used as the base
model. The fine-tuned NER model was then used
to tag the corpus described in Section 3.1, creating
a version containing both tags for PII and eponyms.

The new version of the corpus, which contained
parallel tags for eponyms and PII, was examined to
determine how often eponyms were misclassified
as PII. A total of 82 tokens out of the 1,319 tokens
annotated as eponyms were classified as PII. In
other words, approximately 6.2% of eponyms were
misclassified. Interestingly, the NER tagger did
not only confuse eponyms with names but also
with locations and organizations. Statistics for the
misclassifications are shown in Table 3.

78



PII tag Misclassified Eponyms Non-Eponym Classifications
Last Name 72 227
First Name 7 254
Organization 2 14
Location 1 58

Table 3: Many PII were predicted in the Eponym Corpus. Some of these were eponyms. Eponyms were misclassified
mainly as names and, in a few cases, as locations or organizations.

4 Discussion and Conclusions

4.1 Observations During Annotation
One observation during the annotation process was
that eponyms were rarely present in the same con-
text or sentence as PHI. In other words, the scenario
showcased in the example in the introduction was
uncommon. Eponyms often occur in bursts in the
text, in discussions of possible disorders, or in de-
scriptions of tests that had been conducted. This
phenomenon is illustrated in Figure 1.

Figure 1: Although the majority of notes contain
just one eponym, nearly half of all detected eponyms
occurred in notes containing at least one additional
eponym.

There were some examples where either the clin-
ician’s name or the patient’s name coincided with
the eponym. Robin was present in the eponym lexi-
con to catch references to Robin’s syndrome, but
these mentions were more often misclassified as
eponyms since Robin is a common Swedish name.

Many names are also non-eponymous words.
For example, Still was in the eponym lexicon but
was also a common non-eponymous word (with the
same meaning as in English e.g., to sit still).

4.2 Improvements Over Previous Research
The results highlighted in Section 3.2 indicate that
the problem of eponyms being misclassified as PII
is less prevalent in our study compared to previ-
ous research. In particular, the outcome can be

contrasted to the results of Berg et al. (2020), who
also used data from the Health Bank. It is diffi-
cult to confidently conclude what these differences
are caused by. One hypothesis is that transformer-
based models better capture the context surround-
ing a token. This could allow them to better distin-
guish when a name is used as a name and when it
is used as an eponym. Indeed, these uses are gram-
matically distinct and are often obvious to a human
observer. Further experiments would be needed to
conclusively ascribe the differences in results to
this capability or determine if they are due to other
factors.

4.3 Conclusions

Protecting privacy is crucial in the clinical domain
but also comes with domain-specific challenges.
Eponyms contain valuable clinical information and
we estimate, based on our results, that at least
0.04% of all tokens in clinical notes are eponyms.
Previous research has found that automatic de-
identification systems can struggle to distinguish
between eponyms and actual private names that
need to be sanitized. Our results show that mod-
ern transformer-based NER models, such as those
based on BERT, are more effective in separating
these two forms of names. This study also presents
a new annotated corpus containing a wide range
of eponyms. We plan to release a de-identified
version of this resource once the necessary ethical
permissions have been obtained.

5 Limitations

While three of the four annotators had prior ex-
perience working with clinical text, none were
trained medical professionals but computer scien-
tists. Some eponyms may have been missed during
the annotation process, and others may have been
erroneously annotated. In cases where the annota-
tors needed clarification, they searched online for
sources indicating whether or not a name was an
eponym. The high IAA indicates that the annota-
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tions are reliable, but the lack of medical expertise
limits the extent to which the annotations can be
trusted.

A related issue is that the eponym corpus is not
a random sample of the entire Health Bank. In-
stead, it is a consciously chosen subset that was
deemed highly likely to contain eponyms based on
the matching algorithm described in Section 3.1.
Starting from a purely random subset of the Health
Bank could have led to more robust results and
would have allowed us to calculate the recall for
the matching algorithm. This was not deemed fea-
sible due to the very low prevalence of eponyms in
the overall corpus. Starting from a random sample
would have required far more annotators than were
available for this project.

The risk of misclassifying eponyms was only
examined for the SweDeClin-BERT model. It is
possible that other architectures and models trained
on other datasets may perform better or worse. Fur-
ther research could benefit from including a more
diverse range of models, including generative mod-
els. Nevertheless, the results of this study show that
transformer-based models can be less affected by
the misclassification risks than models described
in earlier studies. Determining the mechanism be-
hind this greater resilience is an interesting topic
for future research.
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Abstract

Automated essay scoring (AES) of second-
language learner essays is a high-stakes task
as it can affect the job and educational oppor-
tunities a student may have access to. Thus,
it becomes imperative to make sure that the
essays are graded based on the students’ lan-
guage proficiency as opposed to other reasons,
such as personal names used in the text of the
essay. Moreover, most of the research data for
AES tends to contain personal identifiable in-
formation. Because of that, pseudonymization
becomes an important tool to make sure that
this data can be freely shared. Thus, our sys-
tems should not grade students based on which
given names were used in the text of the essay,
both for fairness and for privacy reasons. In this
paper we explore how given names affect the
CEFR level classification of essays of second
language learners of Swedish. We use essays
containing just one personal name and substi-
tute it for names from lists of given names from
four different ethnic origins, namely Swedish,
Finnish, Anglo-American, and Arabic. We
find that changing the names within the es-
says has no apparent effect on the classification
task, regardless of whether a feature-based or a
transformer-based model is used.

1 Introduction

Artificial intelligence is being deployed in high-
stakes situations, such as automated grading of
second language essays in proficiency assessment.
While AI can improve the opportunities students
have in education, the job market, etc., such sys-
tems often display human-like biases (Blodgett
et al., 2020). Aldrin (2017) notes that human
graders have a slight bias based on names appear-
ing in essay texts. In this paper we aim to identify
whether the same pattern holds in automated sys-
tems.

The broad question for our study is: are there
any implicit biases that models have learnt from

the training data that can influence automated essay
scoring in a negative way? In particular, we are
interested in uncovering potential biases that can be
associated with use of names representing different
ethnic groups – and how this can be reflected in the
domain of automatic essay scoring (AES).

For the purposes of this work, we say that there
is bias in AES when an essay is scored not only by
its contents but also by the assumed demographic
characteristics of its author. We use this definition
as we are looking for biases in a downstream appli-
cation (i.e. extrinsic biases) as opposed to biases
either in the training data or in any intermediate rep-
resentations (i.e. intrinsic biases). Even though we
know that biases in deep learning models cannot be
removed in absolute terms (Gonen and Goldberg,
2019), we can attempt to minimize their impact.

Because of this, we have set out to create a novel
paradigm of diagnostic benchmarks for identify-
ing hidden biases in AES models as a safety gate-
keeping before they are approved for use in real-life
scenarios. In such a dataset each essay is duplicated
(several times), artificially altering given names ap-
pearing in the text to identify if such perturbation
affects how an essay is scored. Since the essays are
identical as far as linguistics, language complex-
ity, and content are concerned, we expect them to
be graded similarly. Thus, we would say that our
model for this task presents bias if it systemically
assigns lower grades when using versions of the es-
says with names coming from specific ethnicities.

Our research questions are the following:

• Does changing given names inside a second
language learner essay affect the way the text
is graded when using automated essay scor-
ing?

• How much does this differ between feature-
based machine learning and deep learning?

For this, we use a de-anonymized (i.e. origi-
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nal) version of the SweLL-pilot corpus of second
language Swedish learner essays (Volodina et al.,
2016a), which consists of 502 essays annotated
with CEFR levels1 (Council of Europe, 2001), as
our source data.

First, we compile four lists of given names
inspired by those in Aldrin (2017): traditional
Swedish names; modern Swedish names of Anglo-
American origin; Finnish names (due both to the
close sociocultural links between Finland and Swe-
den and to Swedish being an official language of
Finland being learnt by the population that does not
speak it as their first language); and names of Ara-
bic origin (the most prominent group of learners in
the corpus).

Second, we create a diagnostic dataset to identify
biases in the classification task. We select SweLL-
pilot essays in which a given name appears only
once. Then, we generate an essay version for each
name on the lists by substituting the name in the
original text with one from the list. All of the essays
chosen have the names in their base form.

Third, we fine-tune a BERT (Devlin et al., 2019)
model on the original SweLL-pilot data to predict
the CEFR level of a given essay and compare it to
an existing feature-based model (Pilán et al., 2016).

Finally, we test the two models and compare the
equality of opportunity between the different given
name groups on the diagnostic dataset, as described
by Hardt et al. (2016).

As mentioned previously, we would expect an
unbiased or a fair model (in terms of given names)
to not show systemic misclassification for the eth-
nic groups considered. It does not mean that it
will be unbiased towards names from other ethnic
groups or that different names would not elicit un-
expected responses from our model (Antoniak and
Mimno, 2021). It is important to note that a model
being fair for a downstream application does not
mean that the model itself, the data, or the annota-
tion lack biases (and vice versa). Social biases are a
very complex phenomenon and they can be embed-
ded in a variety of ways, as illustrated by Suresh
and Guttag (2021). Moreover, Goldfarb-Tarrant
et al. (2023) note that the presence or absence or
intrinsic biases (e.g. in language models) does not
necessarily correlate with the presence or absence
of extrinsic biases (e.g. in downstream applica-

1CEFR stands for Common European Framework of Ref-
erence for Languages. It is a framework to evaluate foreign
language learning and assigns one of six reference levels to
determine the proficiency level of a second language speaker.

tions). Because of this, it is important to monitor
and to audit AES models regularly regardless of
whether they are fair. And, given that this is a
high-stakes task, it is essential to always have a
human-in-the-loop approach.

The rest of the paper is structured as follows:
Section 2 reviews some of the related work both
in terms of automated essay assessment and of
bias and fairness in NLP. Section 3 presents our
methodology, the models and data we used, as well
as how they were evaluated. In Section 4 we show
and discuss the results from our experiments, while
in Section 5 we present some ideas for future work.

2 Related Work

Language assessment and subsequent documented
language proficiency, be it for citizenship, univer-
sity admission or a job application, are extremely
influential, if not life-changing, both on the indi-
vidual, societal and political levels (Roever and
McNamara, 2006). Assessment should therefore
be guaranteed to be fair and unbiased, and assessors
should be kept accountable for the results, i.e. be
able to motivate the assigned scores (e.g. ASLHA,
2023; ALTE, 2020). This is a non-trivial require-
ment even for human assessors, and is clearly a
much greater challenge for automated language
assessment.

2.1 Biases in Humans

People carry a multitude of implicit associations
which have been acquired through previous expe-
riences, for example, an association between ‘day
and . . . ’ (night, supposedly) or ‘commit a . . . ’
(crime, most probably). These associations are
called implicit biases, which can be neutral, pos-
itive or negative in nature. Implicit associations
(or biases) do not necessarily have an impact on
the life around us, but in certain cases they do –
and then they can risk jeopardizing our ideals of
fairness and equality, for example when it comes to
racial or gender discrimination (Greenwald et al.,
2015). Especially important are the associations
that are triggered in ambiguous and confusing con-
texts, when our brain falls back on the associations
stored in our memory from earlier experiences, es-
pecially those that are stored repeatedly (Green-
wald and Krieger, 2006).

For example, Foster (2008) has suggested that
there may be a correlation between ethnicity and
(lower) results at a university, but that this is un-
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likely to be directly due to ethnically marked names
at that stage of education. Aldrin (2017) took it
further and investigated whether there was an in-
fluence from stereotypically marked given names
in first language Swedish essays by letting 113 hu-
man assessors mark one text where she inserted,
in quite a discrete place, one of three names: a
traditional Swedish name, an ethnically marked
name or an Anglo-American name with certain
socio-economical associations. The results showed
a certain influence on the assessment of language
proficiency, "stylistic precision" and "writing tech-
nique", but nothing statistically significant. She
believed the fact that the results were not as clear
as in previous international work (e.g. Anderson-
Clark et al., 2008; Figlio, 2003) could be due to the
fact that (1) the name was discreetly placed, and
(2) several of the teachers worked in schools with
students of heterogeneous background and were
therefore less likely to have a bias, or (3) that the
names picked were not found to be stereotypical in
the way they were thought to be.

2.2 Biases in Machine Learning Systems
Similar to humans, language models, including
Large Language Models (LLMs), store associa-
tions between various linguistic and non-linguistic
information types that they meet during the train-
ing stage. These models do this by looking at large
amounts of data, finding patterns and repeating
them. An important issue here is that social biases
are also reflected in the data that we, humans, pro-
duce (Marchiori Manerba et al., 2022), leading to
models that parrot sexist (e.g. Zhao et al., 2018),
racist (e.g. Sap et al., 2019), or xenophobic (e.g.
Narayanan Venkit et al., 2023) ideas.

Following Blodgett et al. (2020), we claim that
any work on biases in NLP and AI-based systems
should be well-grounded in the domain where bi-
ases need to be uncovered, since (negative) biases
in one domain are not necessarily negative in an-
other. For example, absence of Past Simple in an
essay is an indication of a lower grade. However,
it might not be a negative feature when applied to
filtering application letters for appropriate job can-
didates. Therefore studying biases in a vacuum can
be misleading for a particular domain.

Some previous papers have studied biases re-
garding names in NLP. Several of the word em-
bedding association tests (WEAT, Caliskan et al.,
2017) compare lists of Anglo-American and Afro-
American given names and lists of stereotypical

characteristics associated with each. Meanwhile,
several studies have found that the appearance of
names in text can affect how it is translated (e.g.
Wang et al., 2022; Sandoval et al., 2023). Further-
more, some studies have seen how nationalities and
names of countries are related to the text that auto-
decoders generate (e.g. Narayanan Venkit et al.,
2023).

2.3 Biases in Automated Essay Scoring

Concerns about risks of introducing biases into au-
tomatic assessment scores have also been raised.
Some studies criticize automatic essay scoring
algorithms for flawed grading of high-stakes ex-
ams pointing out bias against certain demographic
groups2 (e.g. Madnani et al., 2017; Loukina et al.,
2019) due to data imbalance or rater bias reflected
in the data. Despite the criticism, the technology
has been embraced and has shaped life stories of
thousands of people.

Kane (2001) views validity and fairness in lan-
guage assessment as closely related ways of look-
ing at the same question. That is, whether the
proposed interpretations and uses of test scores are
appropriate for a population over some range of
contexts. The traditional definition of fairness in
the field of educational measurement is when a
test does not unduly advantage or disadvantage any
groups (Kane, 2001). The concept of fairness is
also closely connected to bias, or the lack thereof.
Bias is when the validity of a given test score is
different for subgroups of test-takers. For example,
this may happen if a set of items would favor a
particular group in a given test. Test scores would
then not reflect the participants’ true ability.

To overcome the technological biases, Madnani
et al. (2017) suggest a scheme to detect demo-
graphic and construct-irrelevant biases (such as
rater biases, data-imbalance, machine-learning bi-
ases) applying model validation based on psycho-
metric and statistical checks using an open-source
tool RSMTool.3 They also suggest reducing sus-
ceptibility to construct-irrelevant factors by design,
among others by using feature review by experts
and combining features into several models by
feature type instead of mixing all features in one
model. However, more advanced machine learning
and neural network algorithms and LLMs are not

2https://www.vice.com/en/article/pa7dj9/flawe
d-algorithms-are-grading-millions-of-students-e
ssays

3https://rsmtool.readthedocs.io/
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as easily interpretable (Alishahi et al., 2020), which
requires other approaches and solutions.

3 Experiment Setup, Materials and
Methods

Our major question for the experiment is whether
algorithms for essay classification are sensitive to
names (or pseudonyms) used in essays. If we need
to pseudonymize research data on a constant ba-
sis to protect writer identities, which is a GDPR
requirement (EU Commission, 2016), we should
find ways to do so that do not affect students. This
means that it is our responsibility to check the ef-
fect the replacement candidates may have on the
data and its downstream tasks and research applica-
tions. In this experiment we study the effects that
replacing given names in learner essays might have
on essay assessment in terms of CEFR4 level, as de-
scribed in the Introduction (section 1). The CEFR
levels are a six-level scale to gauge the proficiency
of an individual on a foreign language (i.e. not their
first language or languages) and they range from
A1 to C2, with A1 being the lowest.

3.1 Dataset
For our experiments we use SweLL-pilot (Volodina
et al., 2016a; Volodina, 2024), a corpus of essays
written by learners of Swedish as a second lan-
guage (L2 Swedish). It contains 502 essays labeled
with CEFR levels, distributed as shown in Table 1.
Given the specifics of learner essays, many of them
touch on personal stories, mostly in response to
topics like ’The best day of my life’, ’My school’,
’My best friend’, etc., which, of course, elicits a
lot of private or sensitive information, starting with
personal names, place names and other information
that can reveal the writer’s identity either in a direct
or in an indirect way. This is natural, given that
some of the CEFR levels expect the student to be
able to describe topics about the personal lives.

To select essays for purposes of identifying bi-
ases based on given names, a few guidelines were
applied:

• there should be, optimally, only one personal
name used in its base form in each essay;

• if possible, no geographical context of the
country of origin should be present;

• two essays per level are included.
4CEFR stands for Common European Framework of Ref-

erence for Languages.

# of diagnostic essays
Level # essays original pseudonymized

A1 59 2 160
A2 143 2 160
B1 86 2 160
B2 105 1 80
C1 96 0 0
C2 7 0 0

Total 497 7 560

Table 1: Number of essays in the SweLL-pilot cor-
pus per CEFR level, and statistics over the diagnostic
dataset.

These guidelines aim to modify as little as possi-
ble in the text of the essays. This should allow for
more controlled experimentation, leading in turn to
a better way to ascertain the presence or absence
of biases.

The selection proved to be more challenging than
expected. First of all, in essays where personal
information was elicited through a topic, usually
more than one name were used, e.g. ’I have five
brothers: name1, name2, name3, ...’. Second, the
higher levels in the corpus (B2, C1 and C2) contain
practically no essays where personal information
is provided. This is due to the topics present in
the dataset being of a non-personal nature at higher
levels of proficiency, e.g. book reviews, argumenta-
tive essays and the like. We have, therefore, limited
the diagnostic dataset to levels A1, A2, B1 and B2,
with only one original essay for B2. No essays
were found to meet our requirements at levels C1
and C2.

The IDs of the selected essays can be found in
Appendix A and we call the resulting dataset with
substituted names the diagnostic dataset.

3.2 Name Selection

The names used to check for biases were inspired
by those chosen by (Aldrin, 2017). The idea be-
hind this is to allow for better comparison in terms
of the kinds of social biases we expect to find. In
general, the idea is to compare how the model per-
ceives stereotypical Swedish given names in the
essays in comparison to those that are not usually
associated with people with a Swedish background,
particularly those that people in Sweden may be
familiar with through their social contact.

We balance the different name lists by (binary)
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gender5 and by name group. Thus, we got 10
names for each combination of gender + name
group, 20 names for each group and 80 names
in total. The full lists of names can be found in
Appendix B.

As mentioned in Section 1, we have chosen the
following four name groups:

• Swedish names, taken from lists containing
the top 100 given names normally used by
men and by women6. These lists were ob-
tained from Statistics Sweden, an official gov-
ernment website dedicated to publishing statis-
tics about the country. This group was cho-
sen as we are dealing with essays written in
Swedish in Sweden. Furthermore, we made
sure that none of the names chosen for the
three originally non-Swedish given names ap-
peared in other two lists.

• Finnish names, taken from lists of the top
10 first names throughout different decades7.
This list was obtained from the Digital and
Population Data Services Agency in Finland.
This group was chosen due to Finland’s and
Sweden’s close historical and cultural prox-
imity and because Swedish is also one of the
official languages in Finland, which means
that it is not uncommon that students have
to take exams in that language. As with all
of the other groups other than the Swedish
name, particular care was put into looking for
names that are used as given names in Swe-
den, while checking that they do not overlap
with common Swedish names.

• Anglo-American names, taken from the list
of the top 100 names over the last 100 years
in the United States8. This list was obtained
from the Social Security Administration of
the United States. This group was chosen as
popular culture from the United States has per-
meated different countries in different ways.
On top of that, these names can have differ-
ent socio-cultural connotations in non-English

5Finding common gender-neutral names proved to be a
challenge as both the papers and the government agencies we
consulted only listed male and female names.

6https://www.scb.se/en/finding-statistics/st
atistics-by-subject-area/population/general-sta
tistics/name-statistics/

7https://verkkopalvelu.vrk.fi/nimipalvelu/def
ault.asp?L=3

8https://www.ssa.gov/OACT/babynames/decades/c
entury.html

speaking countries, including Sweden (Malm
and Zetterström, 2007).

• Arabic names, taken from lists of commonly
used Moroccan names used in the Nether-
lands (Gerritzen, 2007) and of commonly used
Syrian names in Sweden (Gustafsson, 2021).
These lists were later cross-referenced with
information from Statistics Sweden9 to ver-
ify that they are indeed commonly used given
names in Sweden without being traditional
Swedish names.

It is important to note that we combined different
spellings of these names and kept just the one that
is the most common in a Swedish context. This
was necessary both to ensure that all of the lists
contain the same amount of names and to keep
the lists with as little overlap as possible (e.g. not
including Sarah in the Anglo-American list as Sara
was already in the Swedish list).

3.3 Models

We compare biases on the automated essay scoring
task on two models, one feature-based and the other
using a transformer architecture. The idea being
that a feature-based system that does not explicitly
use proper names should not exhibit name-based
biases, while a model based on distributional se-
mantics might pick up unwanted biases during its
pre-training along all of the useful semantic infor-
mation.

The feature-based approach we follow is that
of Pilán et al. (2016) and Volodina et al. (2016b).
They extract length-based, lexical, morphological,
syntactic, and semantic features. Then they use an
SVM as a classifier as well as feature selection and
found that lexical features work best for classifi-
cation. Even though they did not use any features
that directly relate to proper names, there are some
that are based on token length and some names that
are also common nouns might appear in frequency-
based lists (for example Hope in English).

The dataset used originally was SweLL-pilot
(Volodina et al., 2016a) and they used adjacent ac-
curacy to evaluate the model. What is, they treat
the classes as an ordinal scale and consider that an
answer was correct if it was either the correct class
or the immediate one either before or after. That is
under the intuition that misclassifying an A2 essay

9https://www.scb.se/en/finding-statistics/sver
ige-i-siffror/namesearch/
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as B1 is a smaller mistake than misclassifying is
as a B2 or C1 essay. Do note that we do not use
this metric for this work, we report regular accu-
racy instead. This is, to the best of our knowledge,
the current state of the art regarding CEFR level
assessment in Swedish.

We also use a transformer-based model for our
experiments to see whether their contextual behav-
ior leads to biases in AES. This is a Swedish ver-
sion of BERT trained by KBLab10 (Malmsten et al.,
2020), the NLP research group at the National Li-
brary of Sweden. It was trained on slightly less
than 3.5 million tokens, with text coming from digi-
tized newspapers, official reports from the Swedish
government, legal resources, social media, and
Wikipedia in Swedish. They used the same code
and hyperparameters as the original BERT (Devlin
et al., 2019) model did.

The specific implementation that we are using is
the one released on KBLab’s HuggingFace repos-
itory.11 Furthermore, we use the BERT for classi-
fication class from HuggingFace. It adds a linear
layer on top of the base model, with an output for
each of the classes. The whole model is then fine-
tuned on the training data.

3.4 Evaluation
To measure the biases within the classification task,
we use equality of opportunity (Hardt et al., 2016).
Equality of opportunity is achieved when the recall
between a given class and the rest of the population
is equal. This metric is used to minimize false neg-
atives, thus measuring whether any of the groups
gets a systemic unfair disadvantage.

In more mathematical terms, if we have the name
group A, the recall on its respective diagnostic
essays RCA, and the recall for the rest of the essays
on the diagnostic set RC−A, then we can define
equality of opportunity for group A as follows:

Eq.ofOpp.(A) = RCA −RC−A

A negative value in the metric means that using
names from group A in the text of the essay in-
creases the possibility of an unfair disadvantage,
while a positive value means that names from that
group are less likely to be disadvantaged.

Do note that Hardt et al. (2016) also propose
another metric called equalized odds, where we

10https://www.kb.se/in-english/research-colla
boration/kblab.html

11https://huggingface.co/KBLab/bert-base-swedi
sh-cased

expect both recall and precision to be the same.
However, they argue that it is a much stronger re-
quirement and prove that predictors in general can-
not be balanced post-hoc to achieve this definition
of fairness.

4 Results and Discussion

We can notice from Table 2 that the transformer-
based model performs much better than the feature-
based model across all evaluation metrics. On top
of that, we realized both during training and dur-
ing inference that BERT was much faster than the
feature-based model due to the API calls required
to obtain said features.

When looking at the performance on the diag-
nostic set in Tables 3 and 4, we noticed that chang-
ing the names in the text of the essays yielded no
change in performance with either of the models.
That is, the equality of opportunity of the different
groups and subgroups is zero, indicating that the
model is not unfair under this metric. Testing with
a wider array of names yielded no differences ei-
ther in terms of class assigned. On a similar note,
when checking for biases regarding whether the
names were male or female we found no difference
in performance.

As mentioned in Section 3.3, we did not expect
the feature-based model to show much bias, if at all.
This is due to it not using features directly related
to the vocabulary.

On the other hand, we expected the transformer-
based model to display some sort of bias consider-
ing the previous literature on name biases in NLP
(see Section 2). This means that ultimately neither
the distribution of the demographics in the training
set nor the biases in the base BERT model (i.e. in-
trinsic biases) had any effect on the fairness of the
model (i.e. extrinsic bias). A possible direction on
which this study could be expanded to would be
a thorough analysis of given names present in the
vocabulary of the BERT model and seeing whether
there is any correlation between how the model
behaves for each of these.

These results are consistent with what we would
expect from a fair model for AES for second lan-
guage assessment. That is, we expect it to score
the students in terms of their linguistic skills and
proficiencies as opposed to other unrelated things.

One of the possible issues that we could have
run into were the essays used for the diagnostics
dataset. While they represent different CEFR lev-
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Model Accuracy F1 Macro F1 Weighted

Feature-Based 0.25 0.08 0.1
BERT 0.66 0.65 0.65

Table 2: Performance of the models on the test set. Note that the transformer-based architecture fares much better
than the feature-base one. Also note that the test set contains unaltered essays, as opposed to the diagnostic set.

Feature-Based BERT
Name Groups Accuracy Recall Accuracy Recall

Swedish 0.14 0.20 0.86 0.60
Finnish 0.14 0.20 0.86 0.60

Anglo-American 0.14 0.20 0.86 0.60
Arabic 0.14 0.20 0.86 0.60

Table 3: Performance of the models on the diagnostics set. Note that both the accuracy and the recall are the same
for all ethnic groups. Also note that the diagnostic set contains the essays with the substituted names, as opposed to
the test set.

Name Groups Feature-Based BERT

Swedish 0.0 0.0
Finnish 0.0 0.0
Anglo-American 0.0 0.0
Arabic 0.0 0.0

Table 4: Equality of opportunity results for the different
name groups chosen. Note that the values are zero for
all, meaning that the models do not discriminate based
on these names for the essays in the diagnostic set.

els, text genres, and who the name refers to, we
still had a small amount of essays to work with.
Antoniak and Mimno (2021) note that the choice
of seeds for measuring bias can affect the results
of such measurements. Thus, using more essays
would be good way to verify that our results indeed
generalize. However, none of the essays in SweLL-
pilot are fit for the criteria we mentioned in Section
3.1 so this would require either gathering new data
or generating synthetic data. It is also important
to take into account that the size of the diagnostic
dataset scales quickly, as it gets 80 new datapoints
for each new essay we add.

It is important to note that these results do not
mean that neither the base model nor the training
data contain biases. They just mean that we did
not find biases when using them for the AES task.
It has been noted before that intrinsic and extrin-
sic biases do not necessarily correlate with each
other (Goldfarb-Tarrant et al., 2021). That is, just
because we did not find biases on our specific task,

that does not mean that one can assume that neither
Swedish BERT nor the SweLL-pilot are bias-free.
That is, we cannot use them for other tasks or ap-
plications without worrying about bias or fairness.

5 Conclusions and Future Work

In this work we examined how changing given
names within the text of second language learner
essays of Swedish affects the CEFR level they are
assigned to by the models. We found that changing
the names did not change the performance of the
model in any noticeable way across four different
name groups with twenty names each.

This points to our models learning to differenti-
ate the level of an essay based on linguistic charac-
teristics, as opposed to the kind of personal iden-
tifiable information found within the essays, such
as given names. Because of this, we think that
pseudonymization should be considered as a viable
method to allow for research data to be used and
shared.

However, it is important to note that these re-
sults could vary from language to language and
from dataset to dataset. There is no silver bullet to
solve the bias issue in NLP, as it is deeply ingrained
within human perception and the data we generate,
which can lead to unexpected results (Wang et al.,
2019-10). Moreover, it is possible that the chosen
given names and ehtnic groups could have had an
impact on our results, as argued by Antoniak and
Mimno (2021). This would be particularly impor-
tant when considering people coming from regions

87



under-represented in our data, as they are the most
at risk of being the most affected by discrimination,
be it from humans or from machines.

There are several directions in which our work
could be expanded to. One would be to use more
essays for the diagnostic dataset. As mentioned in
Section 4, this would require either acquiring new
essays or generating synthetic data, both of which
can be challenging tasks.

Another possible direction to expand our work
to would be to do an in-depth analysis of the given
names appearing both in different corpora as well
as in the training data of the different models. This
would allow us to verify that the lack of percepti-
ble bias we found was not due to the names not
appearing on the data.

Both of these could be used as a paving stone
to create guidelines on how to generate diagnostic
datasets to identify biases in automated essay scor-
ing of second language learner essays. It would
be particularly interesting to analyze whether the
same patterns hold for different kinds of personal
identifiable information, such as other kinds of per-
sonal names and places. Moreover, it would be
good to check whether this apparent lack of bias
is maintained when dealing with several pieces of
private information at the same time.

Ethics Statement

Different kinds of data are more likely to contain
personal information. This impacts how the data
can be used in an ethical way for research. Written
consent was obtained during the collection process
of the essays from the SweLL-pilot corpus and the
data was processed in accordance to the GDPR.
The original, non-anonymized data is used strictly
within the project, with the real names of the au-
thors of the essays never being disclosed. At the
moment in which the data was originally gathered
and released, there was no requirement of ethical
review.

Special care was put when selecting both the
ethnic groups to include and the names belonging
to these, as noted in Section 3.2. As mentioned,
both of these were chosen to represent some of
the most commonly ocurring names in which we
would expect AES for second language assessment
to occur. While this would showcase any systemic
biases that could occur at scale, it ignores under-
represented minorities which tend to be the most
affected by these kind of things. Thus, it is of

utmost importance that if any such system were
to be put to use on any potentially life-changing
situation, care should be taken to show that even
these minorities are assessed in a fair and unbiased
manner.

Even though our study strongly points to a lack
of biases regarding given names appearing in the
text of the essays, any such systems should be
continuously monitored to avoid biases appear-
ing seemingly out of nowhere. The use of differ-
ent datasets and of different methodologies could
lead to different results, especially considering how
these things might drift over time. Moreover, any
high-stakes applications should still have a human-
in-the-loop approach so as to ensure that test-takers
have access to their rights of explanation and of
revision.

Acknowledgements

This work has been possible thanks to the funding
of two grants from the Swedish Research Council.

The project Grandma Karl is 27 years old: Auto-
matic pseudonymization of research data has fund-
ing number 2022-02311 for the years 2023-2029.

The Swedish national research infrastructure Na-
tionella Språkbanken is funded jointly by contract
number 2017-00626 for the years 2018-2024, as
well 10 participating partner institutions.

References
Emilia Aldrin. 2017. Assessing Names? Effects of

Name-Based Stereotypes on Teachers’ Evaluations
of Pupils’ Texts. Names, 65(1):3–14.

Afra Alishahi, Yonatan Belinkov, Grzegorz Chrupała,
Dieuwke Hupkes, Yuval Pinter, and Hassan Saj-
jad, editors. 2020. Proceedings of the Third Black-
boxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP. Association for Computa-
tional Linguistics, Online.

Association of Language Testers in Europe ALTE. 2020.
ALTE Principles of Good Practice.

Tracy N Anderson-Clark, Raymond J Green, and
Tracy B Henley. 2008. The relationship between
first names and teacher expectations for achievement
motivation. Journal of Language and Social Psychol-
ogy, 27(1):94–99.

Maria Antoniak and David Mimno. 2021. Bad seeds:
Evaluating lexical methods for bias measurement.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages

88

https://doi.org/10.1080/00277738.2016.1223116
https://doi.org/10.1080/00277738.2016.1223116
https://doi.org/10.1080/00277738.2016.1223116
https://aclanthology.org/2020.blackboxnlp-1.0
https://aclanthology.org/2020.blackboxnlp-1.0
https://aclanthology.org/2020.blackboxnlp-1.0
https://doi.org/10.18653/v1/2021.acl-long.148
https://doi.org/10.18653/v1/2021.acl-long.148


1889–1904, Online. Association for Computational
Linguistics.

American Speech-Language-Hearing Association
ASLHA. 2023. Rights and Responsibilities of Test
Takers: Guidelines and Expectations.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186. Publisher: American
Association for the Advancement of Science Section:
Reports.

COE Council of Europe. 2001. Common European
Framework of Reference for languages: Learning,
teaching, assessment. Cambridge University Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

EU EU Commission. 2016. General data protection
regulation. Official Journal of the European Union,
59, 1-88.

David N Figlio. 2003. Names, expectations and black
children’s achievement. Unpublished manuscript.

Gigi Foster. 2008. Names will never hurt me: Racially
distinct names and identity in the undergraduate class-
room. Social science research, 37(3):934–952.

Doreen Gerritzen. 2007. First names of moroccan and
turkish immigrants in the netherlands. In Eva Brylla
and Mats Wahlberg, editors, Proceedings of the In-
ternational Congress of Onomastic Sciences 21, Up-
psala August 2002, pages 120–130. SOFI (Språk-
och folkminnesinstitutet, Institute for Dialectology,
Onomastics and Folklore Research).

Seraphina Goldfarb-Tarrant, Adam Lopez, Roi Blanco,
and Diego Marcheggiani. 2023. Bias beyond English:
Counterfactual tests for bias in sentiment analysis in
four languages. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 4458–
4468, Toronto, Canada. Association for Computa-
tional Linguistics.

Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ri-
cardo Muñoz Sánchez, Mugdha Pandya, and Adam
Lopez. 2021. Intrinsic bias metrics do not correlate

with application bias. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1926–1940, Online. Association
for Computational Linguistics.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 609–614,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Anthony G Greenwald, Mahzarin R Banaji, and Brian A
Nosek. 2015. Statistically small effects of the Im-
plicit Association Test can have societally large ef-
fects. American Psychological Association.

Anthony G Greenwald and Linda Hamilton Krieger.
2006. Implicit bias: Scientific foundations. Califor-
nia law review, 94(4):945–967.

Linnea Gustafsson. 2021. Syriska förnamn i sverige.
en första kartläggning. In Navn på minoritetsspråk
i muntlige og skriftlige sammenhenger, volume 99,
pages 55–68. Sámi allaskuvla / Sámi University
of Applied Sciences, NORNA-förlaget. Confer-
ence Name: 49th NORNA-symposium: Minority
Names in Oral and Written Contexts in a Multi-
Cultural World, Guovdageaidnu (Kautokeino), Nor-
way, 24–25 april, 2019 Publisher: Sámi allasku-
vla Accepted: 2022-02-22T08:18:55Z ISSN: 0332-
7779 Journal Abbreviation: Minoritehtagielaid namat
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A Essays Used for Diagnostics Purposes

The following are the IDs for the essays chosen for
diagnostic purposes:

• S143ST18

• S147ST18

• S42ST9

• S53ST12

• W13WT2

• W53WT5

• W2WT2

B Lists of Names Used

This appendix contains Tables 5, 6, 7, and 8. These
four tables show the names used for each group in
this study.
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Female Male
Anna Lars
Eva Mikael

Maria Anders
Karin Johan
Sara Erik

Christina Karl
Lena Per

Emma Olof
Kerstin Nils
Marie Jan

Table 5: List with the Swedish names chosen for this
study, as specified in Section 3.2.

Female Male
Hannele Juhani
Marjatta Eino
Maarit Olavi

Annikki Antero
Aurora Tapani
Aino Kalevi
Helmi Tapio
Ilona Matti

Minna Ilmari
Sari Onni

Table 6: List with the Finnish names chosen for this
study, as specified in Section 3.2.

Female Male
Mary Kevin

Patricia James
Jennifer Charles
Nancy John
Betty Matthew

Barbara Anthony
Susan William
Jessica Donald
Ashley Steven
Karen Brian

Table 7: List with the Anglo-American names chosen
for this study, as specified in Section 3.2.

Female Male
Fatima Muhammad
Hala Ali
Amal Ahmed
Mariam Ibrahim
Hiba Hassan
Huda Mahmoud
Khadija Omar
Mirna Abdullah
Samira Ismail
Fatemeh Hamza

Table 8: List with the Arabic names chosen for this
study, as specified in Section 3.2.
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