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Abstract

The paper presents the approach developed
for the Climate Activism Stance and Hate
Event Detection Shared Task at CASE 2024,
comprising three sub-tasks. The Shared Task
aimed to create a system capable of detect-
ing hate speech, identifying the targets of hate
speech, and determining the stance regard-
ing climate change activism events in English
tweets. The approach involved data clean-
ing and pre-processing, addressing data im-
balance, and fine-tuning the mistralai/Mistral-
7B-v0.1 LLM for sequence classification using
PEFT (Parameter-Efficient Fine-Tuning). The
LLM was fine-tuned using two PEFT meth-
ods, namely LoRA and prompt tuning, for
each sub-task, resulting in the development
of six Mistral-7B fine-tuned models in total.
Although both methods surpassed the base-
line model scores of the task organizers, the
prompt tuning method yielded the highest re-
sults. Specifically, the prompt tuning method
achieved a Macro-F1 score of 0.8649, 0.6106
and 0.6930 in the test data of sub-tasks A, B
and C, respectively.

1 Introduction

Climate change is an ever-growing concern that has
garnered significant attention worldwide. As the
severity of its impacts becomes increasingly unde-
niable, it has also become an issue that has sparked
diverse reactions and discussions on social media
platforms. Within these discussions, the prevalence
of hate speech, the identification of its targets, and
the detection of various stances towards climate
change and activist movements have become vital
areas of interest. Understanding the dynamics of
hate speech, targets of hate speech, and different
stances within climate change discourse is crucial
for fostering informed discussions, addressing con-
cerns, and promoting positive change. Hate speech,
defined as harmful or offensive language directed
towards individuals or groups, has the potential to

exacerbate division, hinder productive conversa-
tions, and impede constructive collaboration. Iden-
tifying hate speech in climate change discourse
provides a deeper understanding of the negative
impact it can have on the overall conversation. Ad-
ditionally, recognizing the targets of hate speech
helps shed light on the specific groups or entities
facing hostility, enabling targeted interventions and
support. Examining the different stances towards
climate change and activist movements also unveils
the diversity of perspectives within these discus-
sions. Stance detection allows for the identification
of supporters, skeptics, and deniers, providing a nu-
anced understanding of the range of viewpoints on
this pressing issue. By capturing shifts in opinions,
trends can be identified, informing future discus-
sions and policy-making.
Natural Language Processing (NLP) models have
proven to be valuable assets in detecting hate
speech, determining its targets, and classifying
stances within various domains. However, when
it comes to climate change discourse, there is a
need for well-annotated datasets that specifically
address the unique challenges present in this field.
The scarcity of such datasets poses a significant
obstacle to harnessing NLP models effectively. To
address this gap, Thapa et al. (2024) created the
Climate Activism Stance and Hate Event Detec-
tion Shared Task at CASE 2024 which challenged
participants to develop binary and multi-class text
classification systems that are able to detect hate
speech, targets of hate speech as well as stance
detection concerning climate change, events and
movements. The Shared Task leveraged several
aspects of the annotated English Twitter dataset re-
garding climate discourse made by Shiwakoti et al.
(2024). This paper presents the system developed
for this Task, with the code available on the pro-
vided GitHub link.1

1https://github.com/christinacdl/Climate_
Activism_Stance_and_Hate_Event_Detection_CASE_
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The structure of this paper is as follows: Firstly,
Section 2 presents a discussion of the previous re-
lated work followed by the presentation of the task
and data analysis in Section 3, and an overview of
the developed methodology in Section 4. Section 5
presents the results and error analysis. Finally, the
paper concludes with Section 6, which discusses
future work, as well as the limitations during par-
ticipating in the Task.

2 Related Work

As social media usage continues to grow and user-
generated content becomes more prevalent, numer-
ous studies have focused on identifying and cat-
egorizing insulting messages that target individu-
als or groups across different platforms. To ac-
complish this, researchers have utilized NLP in
conjunction with machine learning. While initial
studies focused solely on the English language, the
need to address this issue in a multi-lingual con-
text has emerged in recent years. Many studies
and shared tasks have been conducted, utilizing
various terms such as abuse, aggression, cyberbul-
lying, hate speech, and toxic or offensive language
to classify these messages. SemEval’s 6th shared
task, OffensEval: Identifying and Categorizing Of-
fensive Language in Social Media, introduced the
detection of offensive language on social media.
The task consisted of three sub-tasks that aimed
to implement binary or multi-class text classifica-
tion. Sub-task A sought to differentiate between
offensive and non-offensive English tweets, while
sub-task B aimed to identify the type of offensive
tweets and whether they were targeted or not. Sub-
task C aimed to identify the target of the offensive
posts. Participants were provided with a dataset
containing 13,240 English tweets and a test set of
860 tweets, called the Offensive Language Iden-
tification Dataset (OLID), which were annotated
according to the three sub-tasks (Zampieri et al.,
2019). This task was extended the following year
as the 12th task of SemEval 2020 named as Multi-
lingual Offensive Language Identification in Social
Media to encourage offensive language detection
in other languages, such as Arabic, Danish, Greek
and Turkish, based on the sub-tasks of the previ-
ous SemEval (Zampieri et al., 2020). Moreover,
SemEval’s 5th task in 2019 addressed the issue
of hate speech directed towards immigrants and
women on Twitter, in both English and Spanish.

2024.git

The two sub-tasks required binary classification -
indicating whether a post was hateful or not - and
determining whether the target was a generic group
or an individual (Basile et al., 2019). In addition,
Gautam et al. (2019) analyzed 9,973 tweets related
to the MeToo movement. They identified five di-
mensions: stance, relevance, hate speech, dialogue
acts, and sarcasm. This analysis provided valuable
insights into how people use language to discuss
sensitive social issues like MeToo on social media
platforms. Nevertheless, Parihar et al. (2021) re-
leased a paper that discussed the challenges in hate
speech detection, including the subjective nature
of annotations and the lack of language models for
regional languages. Despite the great endeavour
in mitigating hate speech and dealing with various
social issues, there remains a significant gap in the
study of climate change discourse, particularly in
the analysis of climate discourse on social media
platforms from multiple perspectives. In their ef-
forts to advance this field, Webersinke et al. (2021)
introduced ClimateBERT, a domain-specific LM
that was trained on a staggering 2,046,523 climate-
related paragraphs. Additionally, Stammbach et al.
(2023) curated a dataset of 3,000 binary datasets
focused on environmental claims, often made by
businesses in the finance sector. As per their ex-
periments, transformer models have outperformed
non-neural models.

3 Task & Dataset

3.1 Task

The identification of hate speech and stance detec-
tion are critical components in recognizing events
that occur during climate change activism. In order
to detect hate speech, it is essential to identify the
occurrence of hate speech as the event, the entity as
the target of the hate speech, and the relationship
between the two. The identification of targets is
a crucial task in hate speech event detection. Fur-
thermore, stance event detection is a vital part of
comprehending whether activist movements and
protests related to climate change are being sup-
ported or opposed. The Shared Task at CASE 2024
aimed to address these issues and was divided into
three sub-tasks: detection of hate speech (sub-task
A), targets of hate speech (sub-task B), and stance
(sub-task C). More particularly, sub-task A, Hate
Speech Detection, involved identifying whether a
given text contains hate speech or not. The text
dataset for this sub-task consisted of binary annota-

97



tions for the prevalence of hate speech. Sub-task B,
Targets of Hate Speech Detection, involved identi-
fying the targets of hate speech in a given hateful
text. The text was annotated for individual, organi-
zation, and community targets. Finally, sub-task C,
Stance Detection, involved identifying the stance in
a given text. The text was annotated for three differ-
ent stances: support, oppose, and neutral. Hence,
sub-task A required binary text classification, while
sub-task B and C required multi-class text classifi-
cation (Thapa et al., 2024).

3.2 Dataset

The provided dataset was created by Shiwakoti et al.
(2024) who collated 15,309 English tweets related
to climate change, events, and activist movements
posted during the year 2022 using the Twitter API.
They employed relevant hashtags, including #cli-
matecrisis, #climatechange, #ClimateEmergency,
#ClimateTalk, #globalwarming, #fridaysforfuture,
#actonclimate, #climatestrike, #extinctionrebellion,
#ClimateAlliance, #climatejustice, and #climateac-
tion to retrieve the tweets. The tweets were then
annotated for various aspects, such as relevance,
stance, humor, hate speech as well as direction and
targets of hate speech.
The training data for sub-tasks A and C consisted of
7,284 tweets. In comparison, the validation data in-
cluded 1,561 tweets. The test data comprised 1,562
tweets. For sub-task B, the training data amounted
to 699 tweets, while the validation and test data had
150 tweets each. While cleaning the data, it was
discovered that all data sets contained duplicate
tweets. The training data had 365 duplicate tweets,
while the validation and test data had 33 and 47 du-
plicate tweets, respectively, for sub-tasks A and C.
For sub-task B, the training data had 237 duplicate
tweets, while the validation and test data had 18
and 31 duplicate tweets, respectively. To ensure
data uniformity, only the first occurrence of each
tweet was retained in the training and validation
datasets. However, no duplicates were removed
from the test data to ensure the final evaluation
of the system was not affected. The training data
was used only for training, no data splitting was
applied for evaluation. The class distribution of the
three training sets before and after data cleaning
as well as the categorical labels, along with their
respective numerical labels provided by the orga-
nizers, are presented in Table 1. From the training
data, it became evident that several classes, namely

HATE, COMMUNITY, and OPPOSE in sub-task A,
B and C, respectively, were under-represented and
formed the minority of the classes. For this reason,
different weights were assigned to the loss func-
tion for each class providing higher weight to the
minority classes and lower weight to the majority
classes. Although the labels of all the validation
and test sets were provided after the end of the eval-
uation and testing phases, it became evident that
their class distribution was consistent with the class
distribution of the training set.

Class Label
Before
Data

Cleaning

After
Data

Cleaning
Sub-task A

NON-HATE (0) 6,385 6,262
HATE (1) 899 657

Sub-task B
INDIVIDUAL (1) 563 326
ORGANIZATION

(2)
105 105

COMMUNITY (3) 31 31
Sub-task C

SUPPORT (1) 4,328 4,246
OPPOSE (2) 700 458

NEUTRAL (3) 2,256 2,215

Table 1: Categorical & Numerical Labels with Class
Distribution in Training Sets.

4 Methodology

4.1 Mistral LLM & PEFT Methods
Mistral is a 7-billion-parameter language model
that has been designed to deliver high perfor-
mance and efficiency in text generation (Jiang
et al., 2023). It utilizes grouped-query attention
(GQA) to ensure faster inference and sliding win-
dow attention (SWA) to handle long sequences
effectively. The model has been evaluated and
outperforms the Llama 2 13B model across all
benchmarks. It also outperforms the Llama 1 34B
model in reasoning, mathematics, and code gen-
eration. The model’s architecture is based on a
transformer with specific parameters such as a win-
dow size of 4096 and a context length of 81,922.
It is available on Hugging Face under the name
mistralai/Mistral-7B-v0.1 for easy deployment and
fine-tuning across various tasks.2 There are also

2https://huggingface.co/mistralai/
Mistral-7B-v0.1
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two instruct versions of Mistral (mistralai/Mistral-
7B-Instruct-v0.1 and mistralai/Mistral-7B-Instruct-
v0.2) which were fine-tuned using a variety of
publicly available conversation datasets. To lever-
age for fine-tuning, they require surrounding the
prompt with the [INST] and [/INST] tokens. Af-
ter careful consideration, it was decided that the
Mistral base model architecture would be the sole
focus of the presented approach, even though there
was the possibility of using more LLMs for ex-
perimentation and comparison. The decision was
based on the understanding that the Mistral base
model offered a solid foundation for evaluating
text generation performance, and it would be inter-
esting to assess its text classification performance
as well. Additionally, assessing multiple models
could detract from the accuracy and clarity of the
results. Therefore, it was determined that a focused
approach would be more effective in achieving the
research objectives.
The PEFT library, which is integrated with Hug-
ging Face’s Transformers, includes methods that
are designed for the efficient adaptation of large pre-
trained models to various downstream applications.
These methods enable fine-tuning a small subset of
additional model parameters, which helps in reduc-
ing the computational and storage demands.3

LoRA (Low-Rank Adaptation) is one of the PEFT
methods which adapts LLMs to specific tasks while
reducing the number of trainable parameters (Hu
et al., 2021). This method freezes pre-trained
model weights and injects trainable rank decompo-
sition matrices into each layer of the Transformer
architecture. This significantly reduces the num-
ber of parameters that need to be trained, mak-
ing it more efficient in terms of memory and stor-
age usage. With LoRA, LLMs allow efficient
task switching while reducing hardware require-
ments for training. Moreover, LoRA introduces
no additional inference latency compared to fully
fine-tuned models. Empirical investigations have
shown that LoRA performs on par or better than
fine-tuning on various models like RoBERTa and
DeBERTa, suggesting that it amplifies important
features for specific downstream tasks that were
learned but not emphasized during general pre-
training. To fine-tune a model using LoRa, the
task type, the dimension of the low-rank matrices
(LoRA r), the scaling factor for the weight matrices
(LoRA alpha), and the dropout probability of the

3https://huggingface.co/docs/peft/index

LoRA layers (LoRA dropout) as well as the LoRA
bias to train all bias parameters needed to be de-
fined. For the present approach, the selected task
type was SEQ_CLS and the default LoRA dropout
was used. The same number was set for r and alpha
as a starting point as was suggested because it is
very easy to reduce the impact of LORA data after
the training, in case it appears to be too dominant
and overtakes the entire model.4

Prompt tuning is a technique used to adapt large
pre-trained language models for specific down-
stream tasks by learning soft prompts that are added
to the input text (Lester et al., 2021). These soft
prompts are learned by backpropagation and can
incorporate signals from labelled examples. This
is different from the discrete text prompts used
by models. The main advantage of prompt tun-
ing is that it allows for the reuse of a single frozen
model across multiple tasks, which is more efficient
in terms of storage and computational resources
compared to traditional model tuning where all
model parameters are adjusted. The effectiveness
of prompt tuning is demonstrated by its ability to
outperform few-shot learning approaches like GPT-
3’s prompt design and to match the strong perfor-
mance of model tuning as the size of the language
model increases. It also shows improved robust-
ness to domain shifts, suggesting that it can help
avoid overfitting to specific domains. After cre-
ating multiple prompts, Table 2 displays the final
versions of the prompts that were created using this
method for each sub-task. During experimentation,
it was revealed that Mistral performs better when
the [INST] and [/INST] tokens are added at the be-
ginning and end of the prompt. Thus, it appears
that the Mistral base model closely resembles its
instruction models during prompt construction.

4.2 Environment Setup

The presented methodology was implemented in
three separate Python files, one dedicated to each
sub-task. The experiments were mainly conducted
using the Transformers, PEFT and Hugging Face
libraries and 1 NVIDIA RTX, 24210.125MB. The
model was loaded in 4-bit Quantization using the
BitsAndBytesConfig library which is integrated
with Hugging Face. Quantization was used to re-
duce memory usage and speed up model execution
while maintaining accuracy.

4https://medium.com/@fartypantsham/
what-rank-r-and-alpha-to-use-in-lora-in-llm-1b4f025fd133
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Text Prompt
Sub-task A

[INST]Your task is to classify if the text
contains hate speech or not, and return the
answer as the corresponding label ’0’ or

’1’[/INST]
Sub-task B

[INST]Your task is to classify the target of hate
speech as individual, organization or

community, and return the answer as the
corresponding label ’0’ or ’1’ or ’2’[/INST]

Sub-task C
[INST]Your task is to classify the stance of

hate speech as support, oppose or neutral, and
return the answer as the corresponding label ’0’

or ’1’ or ’2’[/INST]

Table 2: Text Prompts created for prompt tuning with
Mistral-7B in each sub-task.

4.3 Pre-processing & Hyperparameters

Several pre-processing steps were applied to the
tweets of all training, validation, and test sets using
a function that included regular expressions and
other functions. Firstly, all emojis were converted
to their textual representations (Taehoon et al.,
2022).5 The &amp; and & were replaced with and.
The ASCII encoding apostrophe was replaced with
the UTF-8 encoding apostrophe. Consecutive non-
ASCII characters were replaced with whitespace,
and all extra whitespace was removed. Then, the
python wordsegment6 library as well as the Ekphra-
sis library were leveraged for hashtag segmentation
(Baziotis et al., 2017).7 The Ekphrasis library was
also employed for normalizing the usernames, links
and emails by converting them into the special to-
kens <user>, <url> and <email>, respectively.
They were selected to be anonymized for data pri-
vacy. They were not removed completely, instead,
they were replaced by the aforementioned special
tokens to avoid any loss of context. Removing the
usernames, especially in sub-task B whose aim is
to detect the hate speech target, would result in
great loss of performance. Finally, the case and
punctuation were maintained as they contribute to
the context of the text.
Following the pre-processing steps, the training,
validation and test data were converted from

5https://pypi.org/project/emoji/
6https://pypi.org/project/wordsegment/
7https://github.com/cbaziotis/ekphrasis

dataframes into JSON datasets. The datasets were
passed to the LLM’s tokenizer, which tokenized
and returned the tweets into input IDs and attention
masks. The train, validation and test datasets were
concatenated for each sub-task to get the overall
maximum sequence length of the input IDs, which
was employed in each sub-task and is shown in
Table 7 of Appendix A along with all hyperparam-
eters. Identical hyperparameters were employed
for both LoRA and Prompt Tuning models in each
sub-task to ensure consistency and easy model com-
parison. Only one specific random seed (42) was
selected during fine-tuning across all experiments
of sub-tasks to ensure reproducibility.
To address the data imbalance, the weight of each
class was calculated based on the ratio of the to-
tal number of training samples to the number of
training samples in that class. These weights were
then passed into the CrossEntropy Loss function.
This approach ensured that classes with fewer sam-
ples had a higher weight, whereas classes with
more samples, which were over-represented in the
dataset, had a lower weight during fine-tuning. At
this point, it is important to note that the labels
in sub-tasks B and C were converted from 1,2,3
to the corresponding integers 0,1,2 for fine-tuning
the LLM. The correct labels were assigned during
the creation of the submission files. In Table 6 of
Appendix A, the calculated weights for each class
in each sub-task are presented.
The system’s efficiency and final ranking were pri-
marily evaluated based on the Macro-F1 score of
the test set predictions. Thapa et al. (2024), the task
organizers, had released their fine-tuned models as
baselines along with their Macro-F1 and accuracy
scores for each task, which were employed for com-
parison with the approach presented in this paper
in Table 4. Finally, the Macro-F1 score for each
class and Confusion Matrices were calculated for
error analysis.

5 Results & Discussion

Table 3 shows that Mistral with the prompt tuning
method achieved the highest Macro-F1 score in
both validation and test sets across all sub-tasks,
hence, revealing the potential of a causal language
model like Mistral to perform sequence classifica-
tion with the appropriate prompt. For this reason,
the predicted test set labels of the prompt tuning
Mistral models were selected as the final submis-
sions and received a rank based on their results.
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Validation Set
Sub-task A

Model Macro-F1
Mistral LoRA 0.7942

Mistral Prompt Tuning 0.8385
Model Macro-F1

Sub-task B
Model Macro-F1

Mistral LoRA 0.5829
Mistral Prompt Tuning 0.6071

Sub-task C
Model Macro-F1

Mistral LoRA 0.5854
Mistral Prompt Tuning 0.6446

Test Set
Sub-task A

Model Macro-F1
Mistral LoRA 0.7990

Mistral Prompt Tuning 0.8649
Sub-task B

Model Macro-F1
Mistral LoRA 0.5713

Mistral Prompt Tuning 0.6106
Sub-task C

Model Macro-F1
Mistral LoRA 0.6160

Mistral Prompt Tuning 0.6930

Table 3: Results of all models on test and validation
sets based on Macro-F1 score.

Specifically, in sub-task A, the Mistral prompt tun-
ing method achieved the 10th place out of 22 sub-
missions with a Macro-F1 score of 0.8649. In sub-
task B, it achieved the 11th place out of 18 sub-
missions with a Macro-F1 score of 0.6106. Lastly,
in sub-task C, it achieved the 13th place out of
19 submissions with a Macro-F1 score of 0.6930.
According to Table 4, it is revealed that the sub-
mitted Mistral prompt tuning models managed to
beat the baseline accuracy and Macro-F1 scores of
the models developed by the dataset creators across
all sub-tasks (Shiwakoti et al., 2024). The dataset
creators have experimented with Transformer mod-
els like BERT (Devlin et al., 2019), DistilBERT
(Sanh et al., 2020), RoBERTa (Liu et al., 2019) and
ClimateBERT (Webersinke et al., 2021) using a
batch size of 16 for 3 epochs with a learning rate
of 1e-5 for DistilBERT and 1e-3 for the rest of
the models. By taking into account the Macro-F1
score of each class on the validation and test sets in

Table 5, it is demonstrated that the models are not
able to identify the COMMUNITY minority class
and, surprisingly, the NEUTRAL majority class,
since they achieved the lowest scores. On the other
hand, the NON-HATE and INDIVIDUAL majority
classes yielded the highest scores. In subtask A,
both models can identify non-hateful content more
accurately than hateful content. However, the Mis-
tral Prompt Tuning model outperforms the Mistral
LoRA model in detecting hateful tweets. In sub-
task B, the models successfully detect individuals
as targets of hate speech, but fail to identify organi-
zations and communities. Both models in sub-task
C perform better at identifying stances that show
support or opposition rather than neutral stances.
The Mistral Prompt Tuning model exhibited bet-
ter performance in the support and oppose classes
compared to the Mistral LoRA model. The Mistral
LoRA model’s performance was higher in identify-
ing the OPPOSE stance on the test set than on the
validation set, the same applied to the NEUTRAL
stance as well. Finally, the Mistral Prompt Tuning
model achieved a higher score for the OPPOSE
stance on the test set than on the validation set.

Sub-task A
Model Macro-F1 Accuracy
BERT 0.708 0.901

DistilBERT 0.664 0.896
RoBERTa 0.662 0.842

ClimateBERT 0.704 0.884
Mistral Prompt Tuning 0.864 0.946

Sub-task B
Model Macro-F1 Accuracy
BERT 0.554 0.641

DistilBERT 0.550 0.603
RoBERTa 0.501 0.716

ClimateBERT 0.549 0.604
Mistral Prompt Tuning 0.610 0.840

Sub-task C
Model Macro-F1 Accuracy
BERT 0.466 0.586

DistilBERT 0.527 0.610
RoBERTa 0.542 0.648

ClimateBERT 0.545 0.651
Mistral Prompt Tuning 0.693 0.665

Table 4: Comparison of submitted fine-tuned models
with baseline models on test set based on Macro-F1
score and accuracy.
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Class Label Macro-F1
Validation

Macro-F1
Test

Sub-task A
Mistral LoRA

NON-HATE 0.9514 0.9478
HATE 0.6371 0.6502

Mistral Prompt Tuning
NON-HATE 0.9664 0.9697

HATE 0.7107 0.7600
Sub-task B

Mistral LoRA
INDIVIDUAL 0.9101 0.9487

ORGANIZATION 0.5660 0.5652
COMMUNITY 0.2727 0.2000

Mistral Prompt Tuning
INDIVIDUAL 0.9167 0.9487

ORGANIZATION 0.5714 0.5128
COMMUNITY 0.3333 0.3704

Sub-task C
Mistral LoRA

SUPPORT 0.6737 0.6835
OPPOSE 0.6169 0.6838

NEUTRAL 0.4657 0.4806
Mistral Prompt Tuning

SUPPORT 0.7038 0.7195
OPPOSE 0.7250 0.8244

NEUTRAL 0.5052 0.5351

Table 5: Macro-F1 scores in each class on test and
validation sets.

5.1 Error Analysis

The confusion matrices were generated after the
release of the test set labels. The purpose was to
reveal the errors and strengths of the submitted
Mistral Prompt Tuning models. Figure 1 displays
the performance of the Prompt Tuning models on
the test set of sub-tasks A, B and C respectively,
through the confusion matrices. Firstly, it is evi-
dent from the confusion matrix of sub-task A that
the model performed better in identifying tweets
that do not contain hate speech. This could be at-
tributed to the limited data available in the HATE
class. The model placed greater emphasis on boost-
ing the NON-HATE class, which further skewed
the models’ ability to accurately detect hate speech
tweets. Moreover, from the confusion matrix of
sub-task B, it is evident that the model managed
to detect tweets that target individuals with greater
confidence and success because it was the majority
class. The COMMUNITY class contained the least

examples in the training set, hence the model was
able to classify fewer examples than expected into
this category and more examples into the other cat-
egories. The model also seemed to have gotten a bit
confused when it came to identifying between the
ORGANIZATION and COMMUNITY classes, as
texts that belonged to the COMMUNITY class were
assigned to the ORGANIZATION class. Finally, it
has been proven that the model found it difficult
to distinguish between tweets that belonged to the
SUPPORT and NEUTRAL stance classes in sub-
task C, since many texts were falsely classified as
expressing support or neutral stance, respectively.

Figure 1: Test Set Confusion Matrices of Mistral Prompt
Tuning models.
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6 Conclusion

The Climate Activism Stance and Hate Event De-
tection Shared Task at CASE 2024 involved fine-
tuning the LLM Mistral-7B with two PEFT meth-
ods (LoRA and prompt tuning) for binary and
multi-class text classification. This resulted in the
creation of six models that can detect hate speech,
targets of hate speech, and stance regarding cli-
mate change and activist events. The approach also
included adding weights to deal with class imbal-
ance, as well as data cleaning and pre-processing.
Comparing the two PEFT methods showed that
the prompt tuning method yielded the best perfor-
mance by crafting the most appropriate and precise
prompt for each task. Both methods, particularly
the prompt tuning method that was submitted, out-
performed all Transformer language models that
were fine-tuned by the task organizers and whose
scores were presented as baselines. To further
improve the models’ performance, future efforts
should concentrate on adding more tweets in the
sub-tasks, especially hate speech and targets of hate
speech. Although the Mistral model was originally
designed for text generation, it demonstrated its
potential to perform sequence classification effec-
tively as well.

7 Limitations

The experimentation process across all sub-tasks
revealed a major issue of class imbalance. Despite
assigning higher weights to the minority classes, it
became clear that detecting hate speech, targets of
hate speech, and stances concerning climate change
and events was indeed very challenging. The pri-
mary reason for this is the scarcity of data available
for these categories. The lack of sufficient data
causes the trained models to be biased towards the
majority classes, which results in poor performance
on the minority classes. Unfortunately, there was
no other relevant climate activism dataset to lever-
age for this task. As possible solutions, more data
related to climate activism stances and hate events
as well as further model experimentation are nec-
essary. More data will certainly help balance the
classes and train the models to be less biased and
more successful in detecting hate speech, targets of
hate speech and stances concerning climate change
and events.
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A Appendix

Class Label Weight
Sub-task A

NON-HATE (0) 1.1049185563717663
HATE (1) 10.531202435312025

Sub-task B
INDIVIDUAL (0) 1.4171779141104295

ORGANIZATION (1) 4.4
COMMUNITY (2) 14.903225806451612

Sub-task C
SUPPORT (0) 1.6295336787564767
OPPOSE (1) 15.106986899563319

NEUTRAL (2) 3.1237020316027087

Table 6: Calculated Weights Based on Class Distribution
in Training Sets.

Hyperparams
Sub-
task
A

Sub-
task

B

Sub-
task

C
Classes 2 3 3
Epochs 10 10 10
Seq. Length 195 193 195
Batch Size 16 16 16
Learning Rate 1e-4 1e-4 1e-4
Weight Decay 0.0001 0.0001 0.0001
M. G. Norm 0.3 0.3 0.3
Warm-up R. 0.1 0.1 0.1
AdamW E. 1e-8 1e-8 1e-8
G. A. Steps 2 2 2
Early Stop. 5 5 5
Seed 42 42 42
Virtual Tokens 37 44 45
LoRA r 16 16 16
LoRA alpha 16 16 16
LoRA dropout 0.05 0.05 0.05
LoRA bias none none none

Table 7: Model Hyperparameters in Each Sub-task.
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