
Proceedings of the 7th Workshop on Challenges and Applications
of Automated Extraction of Socio-political Events from Text (CASE 2024), pages 178–184

March 22, 2024 ©2024 Association for Computational Linguistics

IUST at ClimateActivism 2024:
Towards Optimal Stance Detection: A Systematic Study of Architectural

Choices and Data Cleaning Techniques

Ghazaleh Mahmoudi and Sauleh Eetemadi
School of Computer Engineering, Iran University of Science and Technology, Iran

gh_mahmoodi@comp.iust.ac.ir, sauleh@iust.ac.ir

Abstract

This paper describes the IUST submission for
sub-task C of the Climate Activism Shared Task
at The 7th CASE workshop at EACL 2024.
This work presents a systematic search of vari-
ous model architecture configurations and data
cleaning methods. The study evaluates the im-
pact of data cleaning methods on the obtained
results. Additionally, we demonstrate that a
combination of CNN and Encoder-only models
such as BERTweet outperforms FNNs. More-
over, by utilizing data augmentation, we are
able to overcome the challenge of data imbal-
ance. Our best system achieves 74.47% F1-
Score on the unseen test set, outperforming the
baseline by 19.97% and ranked 3th among 19
participants.

1 Introduction

Climate change stands as one of the most criti-
cal challenges of our time, impacting ecosystems,
economies, and communities worldwide. At the
same time, understanding the public stance towards
this pivotal issue is increasingly vital. Leveraging
NLP techniques to gauge public stance on climate
change, especially from Twitter data, provides an
innovative means to comprehend diverse perspec-
tives and sentiments in real time. To advance re-
search in this domain, the ClimateActivism 2024
Shared Task1 proposes three sub-tasks focused on
Stance and Hate Event Detection (Thapa et al.,
2024).
Sub-Task C is about Stance detection (also known
as stance classification) which is a problem related
to social media analysis, and natural language pro-
cessing, which aims to determine the position of a
person from a piece of text they produce, towards a
target (a concept, idea, event, etc.) either explicitly
specified in the text or implied only (Küçük and
Can, 2022).

1https://emw.ku.edu.tr/case-2024/

Our work focuses on exploring various model
architectures and data cleaning methods to improve
the performance of stance detection models on
Twitter data related to climate change. We also
investigate the impact of data imbalance on model
performance and propose a solution using data aug-
mentation techniques.

Our best approach utilizes a combination of Con-
volutional Neural Networks (CNN) and BERTweet
to capture both local and global context informa-
tion in the input text with Weighted Cross En-
tropy as loss function. Our experiments show
that a combination of CNN and BERTweet out-
performs Feedforward Neural Networks (FNNs)
in stance detection on climate change related
tweets. We also demonstrate that data augmen-
tation can address the challenge of data imbal-
ance, resulting improvements in model perfor-
mance. We also experiment with different data
cleaning methods. Moreover, the best results in
the data cleaning type are achieved by removing
URLs and usernames, and all experiments of this
method have yielded better results compared to
other data cleaning methods. Code and results are
publicly available on https://github.com/ghazaleh-
mahmoodi/Climate_Activism_Stance_Detection.

2 Data

The Sub-Task C (Stance Detection) dataset is part
of the Multi-Aspect Twitter Dataset (Shiwakoti
et al., 2024). The data was collected from tweets
posted between January 1, 2022, and December
30, 2022. The selection criteria involved hashtags
such as #climatecrisis, #climatechange, #Clima-
teEmergency, #ClimateTalk, #globalwarming, as
well as activist-oriented hashtags like #FridaysFor-
Future, #climatestrike, etc. The dataset distribution
is illustrated in Table 1.
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Split % Support Neutral Against
Train 70% 4328 2256 700
Dev 15% 897 511 153
Test 15% 921 500 141
All 100% 6146 3276 994

Table 1: Class distribution of stance detection dataset

2.1 Data Pre-processing
As the text data is sourced from Twitter, it is nec-
essary to carry out pre-processing to enhance the
extractable features and ensure the cleanliness of
the text. When it comes to cleaning data, the princi-
ple is to not throw away any data. However, given
that our data is limited and if we don’t remove
some noise, the model may be inaccurate (in lim-
ited data), so we need to perform a certain level of
data cleaning. However, based on the assumptions
we will explain below, we have examine a limited
number of data cleaning methods. The defined
methods will involve increasing levels of text input
cleaning, from the least to the most aggressive.

I. Original Tweet Text: Without any changes
in the text.

II. Removing URL: Considering that URLs are
modified (e.g., ://t.co/rs1vhBp2ax), we as-
sumed their presence in the data could cause
errors.

III. Removing username: The existence of user-
names without information about the person
may create ambiguity.

IV. Removing URL and username: To deter-
mine the effect of removing the URL and
username together.

V. Removing URL and username and split
hashtag: For example #FridaysForFuture
becomes Fridays For Future.

VI. Removing URL and username, split hash-
tag, and convert all letters to lowercase:
Sometimes writing letters in capital form has
a special meaning, which we want to observe
its impact.

VII. Complete cleaning: Contains removing
URL, username, stop words, punctuation, con-
verting all letters to lowercase, and split hash-
tag.

2.2 Data Augmentation
One of the existing challenges is the imbalance of
the dataset. In such conditions, the trained model
tends to lean towards the class with more data. To
address this issue, we generate additional data for

minority class data. We use two different methods
to generate data.

1. Substitution: We use synonym substitution
as an augmentation method. We employ the
method provided by python nlpaug library
(Ma, 2019) based on RoBERTa (Liu et al.,
2019a).

2. Round-trip translation: We translate the En-
glish texts to German and then back to gener-
ate extra data using python nlpaug library.

We generated 950 data points for the "oppose"
class using the introduced data augmentation meth-
ods and added them to the training data . The class
distribution of data before and after data augmenta-
tion can be observed in Figure 1.

Figure 1: Train Set Class distribution

3 Methodology

We proposed a model comprising four modules,
and to determine the most suitable parameters
for each module, we conducted numerous experi-
ments with various configurations, seeking the opti-
mal values within the defined search space (Ta-
ble 2). Using the Optuna library (Akiba et al.,
2019), which employs a sampler using the TPE
(Tree-structured Parzen Estimator) algorithm, we
selected the optimal model configuration based on
the Macro F1-score on the development set. In the
following, we provide a brief explanation of the
search space defined for each module.

1. Embedding: We are searching among several
Encoder-only Language Models to determine
which one to choose for extracting features
from text. We chose Encoder-only models be-
cause they are more popular and efficient for
text classification. The search space includes:

• BERT (Devlin et al., 2019)
• RoBERTa: Builds on BERT and modi-

fies key hyperparameters, removing the
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next-sentence pretraining objective and
training with much larger mini-batches
and learning rates.(Liu et al., 2019b).

• BERTweet: Trained based on the
RoBERTa for English Tweets (Nguyen
et al., 2020).

• XLM-RoBERTa: A multilingual pre-
trained language model, trained on
2.5TB of filtered CommonCrawl data.
(Ruder et al., 2019).

• DEBERTA: Improves the BERT and
RoBERTa models using disentangled at-
tention and enhanced mask decoder (He
et al., 2021).

2. Classifier: There are two options.

• Fully Connected Neural Networks. We
use a three-layer network architecture
with a linear layer, a ReLU activation
function, and a dropout. Finally, we ap-
ply a softmax function to the output.

• Convolutional Neural Networks. The
architecture used is the same as the one
introduced by Safaya et al. (2020), with
the difference that instead of 4 last layers,
we defined the search space and exam-
ined. In this architecture the embeddings
are fed into parallel convolutional fil-
ters of five different sizes (768x1, 768x2,
768x3, 768x4, 768x5), with 32 filters for
each size. Each Kernel utilizes the out-
puts from the preceding N last hidden
layers2 of Encoder-only (e.g., BERT) as
separate channels and conducts a convo-
lution operation. Following this, the re-
sulting outputs undergo ReLU Activation
and Global Max-Pooling processes. The
pooled outputs are then concatenated,
flattened, and fed through a dense layer
and softmax function to obtain the final
class.

3. Optimizer: The search space includes four
well-known optimizers (Table 2) that have
shown good performance.

4. Loss Function: Since we are dealing with
the classification task and imbalanced data,
we have chosen two loss functions that are
suitable for our experiments.

• Focal Loss: This loss addresses class
imbalance by down-weighting easy well-

2This variable chooses in search space.

classified examples during the training
stage. It puts more emphasis on hard
examples o improve overall performance
(Lin et al., 2017).

• Weighted Cross Entropy: This loss
is a variant of the standard Cross-
Entropy loss function that assigns dif-
ferent weights to individual class predic-
tions. Class weight can be calculated for
each class as the inverse of its proportion
in the training data. This is commonly
achieved by dividing the total number
of samples by the number of samples in
each class, thereby obtaining the weight
to be assigned to that particular class.

Parameter Search Space
Classifier [FNN, CNN]

N_last_layer [1, 2, 3, 4, 5]
Optimizer [Adam, AdamW, RMSprop, SGD]

Loss [Cross Entropy, Focal]

Table 2: Architecture search space

3.1 Hyperparameter Tuning
Hyper-parameters used in training stages are se-
lected via tuning using the Optuna library. We
choose the optimal hyperparameters by the Macro
F1-score on the development set. The search space
defined for hyper-parameters is present in the Ta-
ble 4.

4 Experiments and Results

To evaluate the results, we used the Marco F1-score
as the main metric and also reported Precision, Re-
call, and Accuracy. The hardware used in experi-
ments is a GPU.1080Ti.xlarge with 31.3GB RAM.
Each training epoch lasts 2–5 minutes on average.

In section 2.1, we introduced seven modes for
data cleaning. Experiments are repeated for the
mode without or with data augmentation. There-
fore, we tested 14 configurations in total, including
7 modes for data cleaning and 2 modes for input
data. For each configuration, we selected model

3CNN with last 5 layers of BERTTweet, Data Augmen-
tation, Weight Cross Entropy as loss function and SGD as
optimizer. Removing URL and username as data cleaning
approach.

4CNN with last 3 layers of XLM-RoBERTa,Focal as loss
function and SGD as optimizer. Removing URL and username
as data cleaning approach.
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Cleaning Aug Embedding Classifier Loss Optimizer F1-Score Recall Precision Accuracy
C1 - RoBERTa CNN(N=1) WCE SGD 71.74 69.94 74.83 68.82
C2 - XLM-RoBERTa CNN(N=3) WCE AdamW 69.80 69.38 74.16 64.91
C2 - BERT CNN(N=2) WCE SGD 70.28 68.64 73.82 66.00
C2 ! BERT CNN(N=3) WCE SGD 68.75 66.27 75.26 70.16
C3 - RoBERTa FNN WCE SGD 71.89 68.89 79.55 73.81
C3 ! XLM-RoBERTa CNN(N=3) F(g=4) SGD 68.59 68.51 75.93 69.84
C4 - XLM-RoBERTa CNN (N=4) WCE RMSprop 71.82 69.56 74.80 69.52
C4 - BERT CNN(N=5) WCE SGD 72.82 69.56 74.80 72.85
C4 - XLM-RoBERTa CNN(N=3) F(g=1) SGD 73.97 70.91 78.17 72.59
C4 - RoBERTa FNN WCE RMSprop 71.52 68.31 78.17 70.06
C4 - XLM-RoBERTa CNN(N=4) WCE SGD 72.72 69.38 78.85 73.17
C4 ! BERTweet CNN(N=5) WCE SGD 74.47 70.31 79.31 73.11
C4 ! BERT CNN(N=4) WCE SGD 70.64 67.75 75.63 70.01
C5 - DEBERTA FNN WCE Adam 71.33 68.78 75.43 67.73
C5 - XLM-RoBERTa CNN(N=2) WCE SGD 72.70 69.63 77.18 72.15
C5 - BERT FNN F(g=1) SGD 72.01 68.62 77.44 71.75
C5 ! DEBERTA FNN WCE AdamW 71.20 68.51 77.68 72.72
C5 ! BERT CNN(N=3) WCE SGD 70.85 70.01 73.41 67.22
C6 - BERT FNN F(g=2) SGD 71.83 68.38 74.48 72.21
C6 - BERT FNN WCE RMSProp 70.13 67.18 74.85 69.65
C6 ! XLM-RoBERTa CNN(N=4) WCE SGD 72.70 69.43 78.56 72.85
C7 - BERT CNN(N=5) F(g=1) SGD 71.68 68.77 76.53 71.76
C7 ! BERTweet CNN(N=2) F(g=4) AdamW 69.36 66.56 74.09 69.06

Table 3: Experiment configuration and result on climate stance detection test data.
Data Cleaning Approuch(C1:Original Tweet Text, C2:Removing URL, C3:Removing username, C4:Removing
URL and username, C5:Removing URL and username and split hashtag, C6:Removing URL and username, split
hashtag, and convert all letters to lowercase, C7:Complete cleaning). Classifier(CNN: Convolutional Neural
Networks, FNN: Fully Connected Neural Networks). Loss Function(WCE:Weighted Cross Entropy Loss, F:Focal
Loss, g:Gamma parameter in focal loss).

Parameter Search Space
Dropout [0.1 : 0.5]

Learning Rate [1e−5 : 1e−2]
Batch Size [4, 8]

Focal_gamma [1, 2, 3, 4, 5]

Table 4: Hyperparameters search space

Model ACC F1
BERTTweet3 73.11 74.47

XLM-RoBERTa4 72.59 73.97
ClimateBERT (Baseline)∗ 65.1 54.5

Table 5: climate stance detection Accuracy and macro
F1-Score result.∗ from Shiwakoti et al. (2024) report.

parameters and hyperparameters using Optuna and
performed fine-tuning for 20 trials. In each trial, the
parameters are selected using the sampling method
TPE (Tree-structured Parzen Estimator), based on
the defined search space. Additionally, a mecha-
nism for pruning unsuccessful trials is also included
by default in Optuna. Finally, the results with F1-
Macro greater than 0.68 on the development set
are present in Table 3 (Since we only included re-
sults F1 scores greater than 0.68, it is possible that

the results for some cleaning methods may not be
available for a specific classifier, such as FNN).

The experimental results indicate that the clean-
ing method, which removes URLs and usernames
(C4), performs better compared to other methods.
The complete cleaning and original text methods,
on the other hand, yielded weaker results than other
approaches. Additionally, it can be said that main-
taining hashtags and not converting to lowercase is
a better cleaning approach because sometimes writ-
ing all letters in capital letters indicates intensity of
anger or opposition.

Furthermore, in general, BERT embeddings per-
form better in complete cleaning, while RoBERTa
and XLM-RoBERTa models are more commonly
used in other cleaning methods and yield better re-
sults and the best result is obtained with BERTweet.

Regarding the classifier type, usually a CNN
with 4-5 last layers achieves better results. Evi-
dence suggests that the defined CCN architecture,
due to its use of different filters sizes and consid-
eration of neighborhoods, has been able to achieve
better results compared to FNN. Additionally, typi-
cally, RoBERTa and XLM-RoBERTa embeddings
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are used with CNN, while BERT is paired with
FNN for better performance. Analyzing the experi-
ments as a whole, it can be concluded that the best
results were obtained by optimizing SGD and using
Weighted Cross Entropy as loss function. Compar-
ison of our results and the baseline illustrate in
Table 5.

Parameter Value
Epoch 8

Batch Size 4
Dropout 0.5

Learning Rate 0.007903
Learning schedule Linear Schedule With Warmup

Embedding BERTweet
Classifier CNN

N_last_layer 5
Optimizer SGD

Loss Function Weighted Cross Entropy

Table 6: Best model configuration and hyperparameters.

To determine the impact of data cleaning on
the results obtained, we repeated experiments with
the best configuration (as shown in Table 6). In
these experiments, hyperparameters and model ar-
chitecture were kept identical, with the only vari-
ation being the method of cleaning data. For each
cleaning technique, we repeated the experiments
10 times for 8 epochs. The results obtained are
illustrated in the Table 7. The results indicate
that C3(Removing username) and C4 (Removing
URL and username) are significantly better than
C1(Original Tweet Text) and C7(Complete clean-
ing). Thus, the influence of data cleaning methods
on the final results is clearly evident.

Cleaning F1-Score
C1 73.98± 0.0012∗

C2 73.92± 0.0017∗

C3 74.35± 0.0015∗†
C4 74.11± 0.0029∗†
C5 73.76± 0.0014∗

C6 73.72± 0.0009∗

C7 72.42± 0.0020

Table 7: Experiment with Best Model Configuration
and hyperparameter. † indicates significance (p < 0.005)
comparing to C1. ∗ indicates significance (p < 0.005)
comparing to C7.

By repeating the experiment with the best config-
uration (Table 6), and only changed the classifier,
it demonstrated the superiority of CNN over FNN.
the results of which are illustrated in Table 8.

Classifier Cleaning F1-Score

CNN
C3 74.35± 0.0015
C4 74.11± 0.0029

FNN
C3 73.73± 0.0058
C4 73.91± 0.0045

Table 8: Classifier impact

5 Error Analysis

By analyzing the model errors, it can be concluded
that as expected, the model struggles with detecting
the oppose class. In addition to the low number
of data points in this class, the presence of sar-
casm and irony in the data makes it harder for the
model to fully comprehend the situation and make
accurate predictions. It is evident that in parts of
the text where there is sarcasm, the probability
of model error significantly increases. Consider
the tweet #FridaysForFuture #ClimateChange
#ExtinctionRebellion #GlobalWarming What
are we saving?. Since some of the hashtags are
used to collect data, they are present in all three
classes.

6 Conclusion

This work involved a systematic exploration of
model architecture and data cleaning methods.
We find that the optimal configuration combining
BERTweet and CNN with Weighted Cross Entropy
and SGD, along with data augmentation, led to
achieving an impressive Macro F1-Score of 0.7447.

7 Limitation

In our research, we encountered GPU limitations,
which affected the scale and speed of our model
training and experimentation. Despite our efforts
to optimize code efficiency and parallel processing,
these limitations restricted the size of our model
architectures and the volume of data we could ef-
fectively process within a reasonable timeframe.
Also, we confronted limitations stemming from
insufficient labeled data and imbalanced class dis-
tributions. Despite employing data augmentation
techniques to mitigate the imbalance, the inade-
quacy of labeled data impeded the depth and robust-
ness of our model’s learning, affecting its overall
performance and generalization capabilities.
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A Appendix

We explore the visualization of Parallel Coordi-
nate (Figure 3) and FS-Importance (Figure 2) of
our search space by functionalities offered by the
Optuna package, providing a comprehensive under-
standing of the hyperparameter optimization pro-
cess in our FNN model.
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Figure 2: FS-Importanc

Figure 3: Parallel Coordinate
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