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Abstract

Being able to obtain timely information about
an event, like a protest, becomes increasingly
more relevant with the rise of affective polarisa-
tion and social unrest over the world. Nowadays,
large-scale protests tend to be organised and
broadcast through social media. Analysing so-
cial media platforms like X has proven to be
an effective method to follow events during
a protest. Thus, we trained several language
models on Dutch tweets to analyse their abil-
ity to classify if a tweet expresses discontent,
considering these tweets may contain practi-
cal information about a protest. Our results
show that models pre-trained on Twitter data,
including Bernice and TwHIN-BERT, outper-
form models that are not. Additionally, the
results showed that Sentence Transformers is a
promising model. The added value of oversam-
pling is greater for models that were not trained
on Twitter data. In line with previous work, pre-
processing the data did not help a transformer
language model to make better predictions.

1 Introduction

The number of protests across the globe has grown
in the last decade (e.g. (Haig et al., 2020)).1 Public
safety can be threatened at these protests when riots
can break out. For example, Trump supporters
attacked the United States Capitol in Washington,
D.C. on January 6, 2021 (Dave et al., 2021). State
property was destroyed (repairs exceeding $1.5 mil-
lion (United States Attorney’s Office, 2021)) and
several law enforcement officers lost their lives dur-
ing the riots that followed (United States Senate
Committee on Homeland Security & Governmental
Affairs, 2021). While these examples of extreme
social unrest are generally uncommon, they express
a need to forecast these types of events. In the
Netherlands, a possibility of large-scale protests
exists. An example is the Curfew protests (Dutch:

1See also http://visionofhumanity.org/reports

Avondklokrellen) held in 2020 and 2021 across sev-
eral cities during the Covid-19 pandemic (Moors
et al., 2022; COT, 2021). Internationally, an emer-
gence of Covid-related protests at the end of 2020
was observed (van der Zwet et al., 2022). Ad-
ditionally, people experience more confidence in
influencing politics during a protest, compared to
voting (Harding et al., 1986; Oliver, 2001), where
Kleiner (2018) argues that extremists are likely to
voice their opinions through protests.

Previous protests and stricter Covid rules might
lead to a divided population over time due to de-
creased social mobility (Moors et al., 2022). This
lack of social mobility is argued to be the source
of growing discontent and polarisation in the coun-
try (Sandel, 2020). It is reported that these higher
levels of affective polarisation have increased in the
Netherlands (Harteveld and Wagner, 2023). Since
polarisation might lead to more social unrest, the
Dutch police are interested in gaining knowledge
about the emergence of protests.

Nowadays, it is possible to follow incidents in
real time as people increasingly use social media to
broadcast live events (e.g. (Shamma et al., 2010)).
As a result, X (formerly Twitter) is increasingly
being studied as a news reporting platform more
than anything else (Weng and Lee, 2011; Petrovic
et al., 2013; Phuvipadawat and Murata, 2010). It
is observed that disaster-related events are also be-
ing reported on X (Imran et al., 2015; Shamma
et al., 2010; Thelwall et al., 2011; Williams and
Burnap, 2015; Burnap et al., 2014). As an exam-
ple, Starbird and Palen (2012) describe the Arab
Spring protests in 2011 as uprisings of a political
nature, where social media was pointed out as hav-
ing gained a more important role in these types
of protests. Subsequently, actors such as govern-
ments and policing agencies “aim to understand
how events are reported using social media and
how millions of online posts can be reduced to ac-
curate but meaningful information that can support
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decision making and lead to productive action” (Al-
saedi et al., 2017, p. 2). Scholars studying social
movements have argued that social networks–as
established through social media–are fundamental
to protest participation (e.g. (Snow et al., 1980;
Boulianne et al., 2020)). Alsaedi et al. (2017) used
an event detection framework in combination with
temporal, spatial and textual content features from
X to detect different kinds of events, including
disruptive ones and those on smaller scale. Fur-
thermore, they found that their method performs
at least as well as using other terrestrial sources.
In line with this, social media has been used as a
way to warn people of unsafe areas and to spread
awareness for disaster relief fundraising (Lindsay,
2011). This power that social media possesses has
also been demonstrated during the Haiti earthquake
in January 2010, where the awareness raising re-
sulted in 8 million U.S. dollar donations to the Red
Cross (Gao et al., 2011). This suggests that under-
standing the dynamics of social media messaging,
especially during high-impact events like protests,
are key to timely decision-making.

An advantage to social media analysis is that
information about events can be extracted faster
than official news reports publicise (Osborne and
Dredze, 2014). However, one of the main research
challenges in studying civil unrest, is the actual iden-
tification of such information in the fasts amount of
data (Sech et al., 2020). We propose an analysis ap-
proach to recognising such information: classifying
messages based on expressions of discontent.

2 Expression of Discontent

A link between discontent and collective protests
is described by Somma (2017), where discontent
is a negative feeling towards certain aspects of the
world, which includes distrust in political authori-
ties, rules, or decisions. Since X is a popular way
to motivate people to protest (Doğu, 2019), we aim
to detect expressions of discontent in tweets (see
Section 5.1.2 for a precise definition). We hypoth-
esise that people expressing discontent are more
likely to start protesting.

This paper compares several BERTje, mBERT,
Bernice, TwHIN-BERT and Sentence Transformers
models fine-tuned to newly annotated datasets of
Dutch tweets. We include experiments with the Set-
Fit framework and compare to a logistic regression
baseline.

We aim to understand how these models can

identify expressions of discontent, and how well
they perform on Dutch protest event tweets.

3 Social Media Analysis Challenges

OSINT utilises social media analysis to gain insights
into events taking place in the country. However,
current social media analysis practices pose several
challenges related to privacy and the availability of
suitable tools.

3.1 Privacy
In the context of the Dutch police, the OSINT unit
aims to predict when and where police forces are
needed in case a protest is organised. OSINT must
take the GDPR (General Data Protection Regu-
lation) into consideration when predicting these
riots (Schermer et al., 2018). For example, the
GDPR does not allow for the creation of profiles or
monitoring of individuals’ anticipation of potential
crime or involvement in a riot.

As part of protest prediction, OSINT evaluates
tweets according to their sentiment. If a tweet
contains expressions of discontent, it is typically
deemed as more relevant for analysis. Using ma-
chine learning models can result in more objective
predictions of discontent. At the same time, OSINT
requires models that respect individuals’ privacy,
as well as obtain insightful predictions. Individual
privacy can be respected with models that focus on
topics, communities, and sentiments of communi-
ties, rather than focusing on individuals. Moreover,
the creation of these types of models can aid in
the transfer of tacit knowledge within organisations.
For example, the creation of manually tailored
queries require experience from former protests,
hence involving tacit knowledge that is difficult to
express due to its non-codified disembodied na-
ture (Howells, 1996; Ribeiro, 2013). Besides, a
machine learning model’s quality is assessed on its
generalisability by evaluating their performance on
previously unseen data (Roelofs, 2019; Raschka,
2018), whereas queries remain difficult to generalise
due to their usage of specific keywords. Therefore,
developing a machine learning model on a given
task results in a more efficient prediction process.

3.2 Non-English Data
Despite the availability of numerous efficient and
well-designed algorithms, models produced using
these algorithms are often trained on the English
language. This poses a challenge for organisations
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situated in countries where English is not the native
language. Baden et al. (2022) discussed three
research gaps in the field of Computational Text
Analysis Methods (CTAM). One of these research
gaps is the focus on the English language, which
results in a lack of tools to study other languages.
Entities situated in the Netherlands have to deal with
Dutch text and information, primarily, for example
when analysing social media posts. Hence, there
is a need to evaluate how well language models
perform on Dutch text, as well as evaluating to
what extent fine-tuning a model may influence its
performance. Unsurprisingly, the Dutch police and
thereby OSINT have to deal with Dutch text and
information, primarily. Hence, this calls for a need
to evaluate how well language models perform on
Dutch text, as well as evaluate to what extent fine-
tuning existing models influences performance.

4 Models & Frameworks

De Vries et al. (2019) created BERTje for Dutch
text, which outperforms a multilingual BERT model
with Dutch training data on word-level tasks. How-
ever, De Vries et al. note that it remains unclear
how well it performs with tasks on sentence-level,
which relates to a model’s deeper understanding
of different types of information. In general, trans-
former models like BERT are restricted in their
input length. Pascual et al. (2021, p. 2) note that a
transformer’s complexity ‘scales quadratically with
the length of their input.’

Bernice is a multilingual RoBERTa language
model specifically trained on tweets through a
custom tokenizer, which is described as the first
BERT model to have been trained on this type of
data (DeLucia et al., 2022). Another multilingual
model trained on a large Twitter corpus has been re-
leased recently: TwHIN-BERT (Zhang et al., 2023).
Both models were developed in 2022. The creators
of both the Bernice and the TwHIN-BERT models
found that they outperform or matches other models’
performance on social media data. Therefore, we
aim to evaluate how Bernice and TwHIN-BERT
perform against other models on a specific task like
discontent detection.

SetFit stands for ‘Sentence Transformer Fine-
Tuning’ (Reimers and Gurevych, 2019). Sentence
Transformer frameworks use Siamese and triplet
network structures to modify pre-trained trans-
former models (Tunstall et al., 2022) to efficiently
derive contextual embeddings for larger units of

text such as sentences. SetFit has been used for
social media data (Bates and Gurevych, 2023). A
characteristic is its relatedness to few- and zero-
shot approaches (Tunstall et al., 2022). These
approaches have gained traction in the research
community as they may prove helpful in domains
lacking resources. Few-shot learning (FSL) refers
to the principle of learning a task with a limited
number of labelled inputs, the ‘shots’ (Liu et al.,
2022). The training data is smaller than normally
used to train models. Thus, FSL is relatively data-
efficient. SetFit can achieve a high accuracy with
few-shot fine-tuning, with a performance compara-
ble to fine-tuned RoBERTa models.2

Although Sentence Transformers (ST) models
using SetFit show promising results for languages
such as German, Japanese and more on classifica-
tion tasks2, to our knowledge it has not been tested
on Dutch yet. In this work, we test ST models both
using regular fine-tuning and using FSL through
the SetFit framework.

5 Method

The collected tweets are labelled according to the
classes ‘No discontent’ and ‘Expression of discon-
tent’. Then, mBERT, BERTje, Bernice, TwHIN-
BERT, and multilingual Sentence Transformer mod-
els are fine-tuned using the labelled datasets from
the previous step. A Logistic Regression model
is trained to determine baseline performance. We
mainly focused on training a Sentence Transformers
model without the SetFit framework due to time
and resource constraints, as the SetFit framework
took substantially longer to train.

The models are evaluated on several met-
rics. The anonymised data and used code
for the models are publicly available at
https://github.com/Meaganium/Detecting-
Discontent-in-Dutch-Events. In summary, we
evaluate whether or not there is a difference in
models’ performance in how well they predict a
tweet’s expression of discontent.

Table 2 provides an overview of the used models.

5.1 Data Collection
The data consists of Dutch tweets related to protests
that took place in the years 2020–2022. Collecting
the data for each protest was done in a reactive
manner where tweets are downloaded a few days

2https://huggingface.co/blog/setfit
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Protest Date of collection Filter keywords Discontent / Total
Fireworks ban protest (RO) November 20, 2022 protest †, rotterdam, protesters *, hooligans ‡ 600 / 4214
Curfew riots (EI) January 24, 2021 protest †, curfew §, eindhoven, riots ˆ 383 / 3892
Black Pete (MA) November 14, 2020 protest †, piet, maastricht 1440 / 10395
Black Lives Matter (AM) June 1, 2020 protest †, black lives matter, amsterdam 2064 / 6329

Table 1: Datasets related to Dutch protests used in this study. Each dataset is defined by specific keywords used to
retrieve relevant tweets. Original Dutch keywords: † demonstratie, * betogers, ‡ relschoppers, ˆ rellen, § avondklok.

after the incident. Since the X API allows down-
loading historic tweets not older than two weeks,
the available data spans between two to three days
before and after the incident. On the days of the
protests themselves, we extracted the majority of
the tweets. The tweets were collected via the X
API. A filter was applied to select Dutch tweets only
related to protests. Table 1 provides an overview
of the specific filters and result set size per protest.
Retweets are excluded and since a free version of the
API is used, only a subset of the tweets is available.

5.1.1 Preparing the Data
Solely the tweets’ contents were used. Any meta
information such as geolocation, number of likes,
number of retweets, and comments were ignored,
as this type of meta information is mostly rele-
vant for the creation of networks rather than de-
termining sentiment. Elements such as hashtags,
emojis and punctuation are included in the analy-
sis. From the tweet texts, any personal information
was replaced by a placeholder. Username men-
tions in the tweet were not masked. During the
labelling process, off-topic tweets (see Appendix C),
tweets containing personal information, duplicates,
and auto-generated tweets were removed from the
datasets.

5.1.2 Data Labelling
The tweets were labelled according to whether
the tweet contained an ‘Expression of discontent’
(EOD). If the tweet included an indication that
the corresponding user disagreed with the govern-
ment’s actions, the rioters’ actions, or provided
a potential reasoning for protesting, the tweet
was labelled as EOD. For this labelling process,
weekly meetings were held to discuss tweets that
were more difficult to label, e.g., due to nuance,
sarcasm and jokes. This labelling process was
performed by the first and second author with
eight other annotators, including university stu-
dents and police employees. Each dataset was
annotated by a different composition of the an-
notator team. The average inter-annotator agree-

ment across all datasets was around 70%, which
is considered respectable, especially for linguistic
annotations (Artstein, 2017). The labelling was
done in a self-made tool named Tweeti, available at
https://github.com/LMuter/Tweeti. The la-
belling process was conducted over a period of
18 months. Table 7 (Appendix B) provides some
example annotations.

5.1.3 Test and Training Data
The data is divided into two sets: training (80%)
and testing (20%). The training data is used to train
model weights and the test set is used to test the
models’ performance. We used fixed hyperparam-
eter settings for all models. Due to the small size
of the training set and spelling variations in tweets,
words might not overlap between training and test,
impeding direct keyword mapping. This prompts
the model to focus on the context of the keyword
occurrences instead of the words themselves, which
can make the model more flexible. The datasets
were imbalanced (Table 1), as they contained sub-
stantially more tweets in the ‘No discontent’ class
than the EOD class. Due to this imbalance, we took
into consideration four other evaluation metrics
(precision (P), recall (R), F1 and Area Under the
Curve (AUC)) besides accuracy (ACC), as accu-
racy will be influenced by how well the majority
class can be predicted (Abd Elrahman and Abra-
ham, 2013). In this paper, we report the macro
averages of ACC and AUC, and the micro averages
of P, R and F1. The micro averages allowed us to
gain more insight into, i.e., the distribution of the
number of true positives and false positives across
the two classes. The metrics were measured per
class, as macro-averages are heavily influenced by
imbalance.

5.2 Training Phase
We consider several models for our study. As a
baseline, a bag-of-words based Logistic Regression
(LR) model is trained. Furthermore, pre-trained
mBERT, Bernice, TwHIN-BERT, BERTje and Sen-
tence Transformer (ST) models are fine-tuned. Ini-
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Model Hugging Face URI
BERT bert-base-uncased
mBERT nlptown/bert-base-multilingual-uncased-sentiment
BERTje GroNLP/bert-base-dutch-cased
Sentence Transformers (ST) sentence-transformers/paraphrase-multilingual-mpnet-base-v2
Bernice jhu-clsp/bernice
TwHIN-BERT-base Twitter/twhin-bert-base
TwHIN-BERT-large Twitter/twhin-bert-large

Table 2: Overview of the models used from the Hugging Face platform.

tial experiments were performed using the SetFit
framework with an ST model.

5.2.1 Pre-Training Phase
For the implementation of the models, we used the
‘text-classification’ task in the pipeline in order to be
able to assign the EOD label to a tweet. See Table
6 in Appendix A for a more extensive overview of
the used Python libraries and functions. in order to
make their produced results more comparable with
one another, as this task allows for the tokenization
of sequences of text, rather than one individual word.
These (sub)words are the result of the separated
text sequences, representing the tokens.3 Note that
these subword tokenizers partially solve the issue of
error mistakes. By declaring this task for BERTje,
they perform the same tokenization process, hence
making their results comparable.

The Hugging Face tokenizers are used in the pre-
training phase. The tokenization process consists
of three steps. Firstly, indicators are added to
demarcate the start and end of the tweet, signified
by the special tokens [CLS] and [SEP], respectively.
Secondly, uniformity in the tweet length is ensured
by adding [PAD] to short tweets and truncating long
tweets. Finally, the converted tokens are assigned
IDs, and an attention mask is created.

5.2.2 Pre-Processing the Data for LR
We trained various additional models on a pre-
processed version of the datasets in order to eval-
uate the difference in performance, considering it
can provide better results for bag-of-words tech-
niques (Angiani et al., 2016). Pre-processing the
data involved lowercasing and lemmatization, and
removing all URLs, Dutch stopwords, username
mentions, accents on letters and punctuation from
the tweet text. Furthermore, only content words
like verbs, nouns, adjectives, adverbs and proper
nouns were typically included after pre-processing.

3https://huggingface.co/docs/transformers/v4.
28.1/en/task_summary#sequence-classification

6 Results

To evaluate the results for the EOD prediction, we
focused mainly on the results for the EOD label, as
this was the minority class for all individual datasets.
See Tables 3 and 4 for the prediction results. First,
we ran all the models with all four dataset combined,
see Table 1. In this round, the models were run with
the oversampling technique with the assumption
that oversampling the minority class would compen-
sate for the data imbalance. We further investigated
the outcomes on the datasets separately by training
the best models from the previous round on all the
datasets combined with oversampling to identify
differences in performance per dataset. After some
test runs without oversampling (see Table 12, Ap-
pendix D), we observed that oversampling may not
produce substantially different results. As such, we
ran the models without oversampling the minority
class to evaluate the models’ sensitivity to data im-
balance. Lastly, we did some extra experimentation
with the multilingual model mBERT.

6.1 Logistic Regression

First, we evaluated the baseline performance with
the Logistic Regression (LR) model. While pre-
processing is not always beneficial for deep learning
methods (Camacho-Collados and Pilehvar, 2018),
for bag-of-words models it is commonly used, hence
its inclusion. LR did not perform better than the
other models, which is highlighted by the fact that
LR has no bold numbers in Table 3.

To evaluate LR’s potential further, we exper-
imented with all possible combinations of pre-
processing steps as given in Section 5.2.2. See
Appendix D, Table 8. The best combination of
pre-processing steps was a combination of lower-
casing and removal of URLs, username mentions,
diacritics and punctuation. This pre-processing
combination resulted in similar results (F1: .418)
compared to no pre-processing (F1: .422).
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Expression of discontent No discontent
Model Measure ACC AUC P R F1 P R F1
Bernice AVG .870 .784 .652 .646 .649 .919 .921 .920
BERTje AVG .867 .745 .685 .548 .609 .899 .941 .919
TwHIN-BERT-base AVG .859 .782 .631 .657 .643 .917 .908 .912
TwHIN-BERT-large AVG .828 .609 .600 .261 .248 .856 .957 .900
Sentence Transformers AVG .871 .766 .682 .597 .636 .908 .935 .921
Logistic Regression AVG .808 .708 .530 .539 .534 .881 .877 .879
Bernice STD .004 .009 .018 .024 .012 .005 .008 .003
BERTje STD .008 .014 .021 .029 .022 .006 .007 .005
TwHIN-BERT-base STD .004 .010 .015 .028 .008 .006 .009 .003
TwHIN-BERT-large STD .021 .028 .071 .110 .012 .056 .054 .011
Sentence Transformers STD .004 .004 .020 .006 .009 .006 .004 .003
Logistic Regression STD .009 .006 .016 .011 .006 .007 .009 .006
Bernice MIN .865 .772 .623 .619 .632 .914 .907 .917
BERTje MIN .859 .721 .670 .497 .609 .890 .934 .914
TwHIN-BERT-base MIN .853 .776 .611 .639 .635 .914 .894 .908
TwHIN-BERT-large MIN .810 None None None None .810 .854 .889
Sentence Transformers MIN .864 .761 .656 .589 .625 .899 .931 .916
Logistic Regression MIN .797 .704 .516 .523 .528 .875 .871 .870
Bernice MAX .875 .793 .667 .679 .663 .926 .926 .923
BERTje MAX .877 .756 .720 .570 .629 .905 .950 .926
TwHIN-BERT-base MAX .864 .800 .647 .707 .656 .928 .918 .916
TwHIN-BERT-large MAX .864 .792 .650 .731 .628 .928 None .917
Sentence Transformers MAX .874 .771 .704 .605 .644 .912 .940 .924
Logistic Regression MAX .820 .718 .558 .552 .542 .892 .889 .888
SetFit .869 .758 .689 .577 .628 .904 .939 .921

Table 3: Comparison between the models for EOD prediction in combination with oversampling of the minority
class. The models were run five times, except for SetFit. The averages, standard deviations, minima and maxima
values of those rounds are provided. The numbers are rounded, and the best scores for the averages, minima and
maxima per metric are in bold. Table 9 in Appendix D provides the results of all the runs.

6.2 Averages, Standard Deviations, Minima
and Maxima

We ran the Bernice, BERTje, TwHIN-BERT-base,
TwHIN-BERT-large, ST and Logistic Regression
models five times to get insight into the range of
possible scores they provide. The results of all
five runs are provided in Appendix D, Table 9. Of
the five runs, we mainly focus on discussing the
minima, maxima and averages.

For the minima scores, we observe that the
TwHIN-BERT-base overall produces the best scores
on EOD (AUC: .776, F1: .635), though Bernice
had the highest accuracy (.865).

Similarly for the maxima scores on EOD, TwHIN-
BERT-base (AUC: .800) and Bernice (F1: .663)
score the best overall. BERTje scored best on
accuracy and precision. For both the minima and
maxima scores, neither ST nor LR scored highest
on a particular metric.

In line with the minima and maxima, we observe
that Bernice scores the best on average for the minor-
ity class (AUC: .784, F1: .649). Notably, ST scored
highest on accuracy for EOD (.871). Universally,
we observe that Bernice and TwHIN-BERT-base
provide better results compared to TwHIN-BERT-

large, BERTje, ST and LR.

6.3 Separate Datasets
In this section, we describe the results for the in-
dividual AM, EI, MA and RO datasets. Note that
the RO dataset is divided in two, wherein each ver-
sion (’22 and ’23) was labelled by other annotators.
The subsets of the RO dataset overlapped to some
degree, but not fully. The annotators of the ’23
version were the same annotators for AM.

6.3.1 With Oversampling
From the former round, we identified that Bernice
and TwHIN-BERT-base outperformed the other
models with oversampling. Arguably, Bernice
performs slightly better than TwHIN-BERT-base
due to its average AUC and F1 scores.

As shown in Table 4, when running Bernice and
TwHIN-BERT-base on the separate datasets, we
observe that the models perform worst on the EI
dataset on EOD. The MA dataset was the second
worst performing dataset.

Bernice produced the highest scores for the ACC
(.893) and P (.754) metrics on the RO dataset.
Though, the AM dataset was observable the best
performing dataset, with TwHIN-BERT-base pro-
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ducing the highest scores for AUC (.791), R (.732)
and F1 (.712) on this dataset.

6.3.2 Without Oversampling
In Table 10 are the results provided by running
BERTje, Bernice, TwHIN-BERT-base and TwHIN-
BERT-large on all separate datasets without over-
sampling the minority class.

The EI dataset performs substantially worse com-
pared to the other datasets. The AM dataset also
again outperforms the other datasets, with BERTje
producing the highest P (.765), and Bernice pro-
ducing the best AUC (.806), R (.760) and F1 (.731)
on the EOD class.

The poor results on the EI dataset can be partially
attributed by the labelling process. Whereas the
AM dataset was solely labelled with the EOD class,
the EI and MA datasets were labelled with sub-
stantially more classes, with only tweets labelled
as EOD or ‘No discontent’ retained and all other
tweets removed from the data. The usage of more
labels poses greater opportunity for disagreements
among annotators, hence affecting the quality of
the labels. Moreover, the proportion of EOD tweets
is substantially lower for these two datasets.

6.3.3 Oversampling vs Non-Oversampling
Besides the observations previously mentioned, it
is noteworthy that the oversampling technique does
not always guarantee better results for some models.
For some models, oversampling has more added
value compared to others.

For example, oversampling on the EI dataset did
not help for the Bernice model on some metrics,
including AUC, P, R and F1.

Furthermore, we observed that the oversampling
was ineffective for the TwHIN-BERT-base model
on the ACC and P metrics. This was the case for all
datasets RO23 on ACC. Although this finding may
suggest that oversampling provides less added value
for the models trained on Twitter data due to their
higher performance in general, this observation
warrants further investigation.

6.4 Notable Results
In this section, we describe some noteworthy addi-
tional results we found.

6.4.1 TwHIN-BERT-large
The TwHIN-BERT-large model was unable to con-
verge in some runs on the data. This is likely due
to the small size of the datasets, whereby the model

is unable to fine-tune all its parameters due to its
large size. When TwHIN-BERT-large was able to
configure all its parameters, it produced good re-
sults. As shown in Table 9, run 1 provided the best
R score (.731) across all runs and models. Run 5
also configured correctly, with some notable results
being the ACC and P.

6.4.2 BERTje
To investigate if the pre-trained data influences the
results, we trained a BERTje model based on a
Dutch text corpus with a variety of settings. The
extra results for BERTje can be found in Appendix
D, Tables 8 and 11.

For BERTje, we experimented with pre-
processing to evaluate whether our results are in
line with previous work (e.g. (Camacho-Collados
and Pilehvar, 2018; Kurniasih and Manik, 2022;
Alzahrani and Jololian, 2021)). For each met-
ric, except recall in the ‘No discontent’ class, pre-
processing lowered BERTje’s performance. Espe-
cially the recall (.091) and F1 (.153) scores were
particularly poor in the minority class. This is
explained by BERT’s use of contextual informa-
tion, like punctuation, morphology and sentence
structure.

To find out if there is a difference in performance
between annotators for the same dataset, we trained
BERTje on the two RO dataset versions. We found
a noticeable difference for all metrics.

Using all datasets provided the best score com-
pared to using the datasets separately for EOD on
precision (.863), though recall was poor (.328).
This shows that providing BERTje with more data,
despite the imbalance, will result in the model clas-
sifying a large number of items with the minority
class correctly whilst still missing quite a large
portion of tweets to label as ‘discontent’. This
shows that BERTje can identify strong markers in
the tweets that suggest discontent, as long as it is
given a sufficient amount of data. At the same time,
the low recall score would suggest that identifying
discontent is still a nuanced task, meaning that
these nuances make it difficult to define all concrete
markers of discontent. Generally, it is questionable
if it is possible to capture this complex notion with a
language model using short social media messages.

6.4.3 SetFit
We ran SetFit once, and it did not produce better
results over Bernice and TwHIN-BERT-base (see
Table 3). SetFit also takes substantially longer to

12



Expression of discontent No discontent
Model Data ACC AUC P R F1 P R F1
Bernice AM .826 .781 .745 .664 .702 .857 .898 .877
Bernice EI .888 .574 .368 .182 .243 .915 .966 .940
Bernice MA .866 .639 .508 .328 .399 .901 .950 .925
Bernice RO22 .893 .768 .622 .595 .608 .935 .941 .938
Bernice RO23 .884 .765 .754 .573 .652 .906 .957 .931
TwHIN-BERT-base AM .813 .791 .694 .732 .712 .873 .851 .862
TwHIN-BERT-base EI .886 .653 .412 .364 .386 .931 .943 .937
TwHIN-BERT-base MA .868 .665 .514 .386 .441 .908 .943 .925
TwHIN-BERT-base RO22 .864 .769 .510 .638 .567 .939 .901 .920
TwHIN-BERT-base RO23 .866 .749 .677 .560 .613 .901 .938 .919

Table 4: Comparison between the models Bernice and TwHIN-BERT-base for EOD prediction across all four
datasets with oversampling of the minority class. The numbers are rounded.

train than the other models. Due to these con-
straints, we did not experiment with SetFit further.
However, the underlying ST model did produce
reasonable results when oversampling the minority
class for both the AM and MA datasets. Therefore,
future work with less restrictions regarding time and
resources could explore SetFit’s potential further.

6.4.4 Multilingual BERT: mBERT

Since multilingual models are known to perform
well on monolingual tasks (Rust et al., 2021), we
experimented shortly with the multilingual version
of the BERT model: mBERT (see Appendix D
for extra results). Oversampling the minority class
in the AM dataset produced reasonable scores for
AUC (.758), recall (.646) and F1 (.677). However,
this introduces a performance reduction for the ‘No
discontent’ class of around .08. Notably, mBERT
scored particularly well on precision (.833) for a
pre-processed dataset, while ACC, R and F1 came
out relatively low.

The mBERT results are not in line with previous
work where monolingual models outperform mul-
tilingual models (e.g. (De Vries et al., 2019; Rust
et al., 2021)), but they are not totally unexpected
given the substantial amount of English words and
phrases used in Dutch social media. Similar to
other models, combining oversampling and includ-
ing emojis did not improve the results compared to
solely applying oversampling. However, we sug-
gest future work to take this multilingual nature of
social media messaging into consideration through
analyses based on the principle of code-switching
(e.g. (Das and Gambäck, 2014)), like Language
Identification (see (Aguilar et al., 2020; Barman
et al., 2014; Khanuja et al., 2020; Molina et al.,
2019; Solorio et al., 2014)).

6.5 T-test Results
To gain insight into how different the models per-
form compared to one another, we conducted two-
way t-tests on the average F1 of five runs. Table
5 provides a full overview of the t-test results.
However, note that the t-test results for compari-
son between TwHIN-BERT-large and other models
were influenced by the fact that TwHIN-BERT-large
could not compute several runs. Naturally, runs
that were not completed successfully were excluded
from the tests.

From the t-tests, we find that Bernice’s, TwHIN-
BERT-base’s, and the ST’s F1 scores are signifi-
cantly different from logistic regression (p < .001).
Furthermore, we found that BERTje’s F1 score was
significantly difference compared to TwHIN-BERT-
base’s and logistic regression with p < .01.

These results support our previous findings that
the models trained on Twitter data (Bernice and
TwHIN-BERT) report better prediction of EOD,
as Bernice and TwHIN-BERT-base perform sig-
nificantly different from the baseline (logistic re-
gression). Notably, BERTje and ST also perform
significantly different from the baseline, suggesting
that these models also have the potential to provide
reasonable results on the data.

7 Discussion

In this paper, we aimed to identify how future
NLP models can be improved in order to provide
better predictions for social media text. Our work
provides an overview of several language models’
performances on Dutch tweets for the prediction of
Expression of Discontent.

Whether someone expresses discontent is depen-
dent on human interpretation, thus complicating the
identification process of parameters that determine
tweet sentiment. Moreover, human annotators may
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Bernice BERTje TwHIN-
BERT-base

TwHIN-
BERT-large

Sentence Transformers

BERTje .022*
TwHIN-BERT-base .250 .006**
TwHIN-BERT-large .030* .038* .030*
Sentence Transformers .029* .028* .170 .032*
Logistic Regression 7.4E-06*** .002** 5.4E-06*** .068 2.8E-05***

Table 5: Overview of the t-test results between the F1 scores of the models’ predictions on all of the four datasets
combined. Asterisks denote p-values: * p < .05, ** p < .01, *** p < .001.

consider other kinds of information subconsciously
when labelling a tweet for discontent. This claim
is supported by results we found when training
models on subsets of the RO dataset labelled by
two different annotator teams.

The results showed that the models trained on
Twitter data, namely TwHIN-BERT and Bernice,
performed best. Pre-processing did not improve the
results for any model. This highlights the impor-
tance of using models that have been pre-trained
on similar types of data for event prediction, which
is in line with a review conducted by Zimbra et al.
(2018). They found that the average accuracy for
sentiment analysis on Twitter data was 61%, and
that state-of-the-art approaches performed similarly,
with accuracies routinely below the 70%. How-
ever, they did find that domain-specific approaches
performed better by 11%, which is an average in-
crease in performance we did not achieve. For
all datasets combined, Bernice and TwHIN-BERT-
base achieved average scores ranging from .63 to
.65 for precision, recall and F1 on the EOD class,
though for both classes (EOD and ‘No discontent’)
the average accuracy and AUC scores were substan-
tially higher, ranging from .78 to .87.

Surprisingly, we found that the Sentence Trans-
formers models perform on par with Bernice and
TwHIN-BERT, despite not being a pre-trained
model on Twitter data. Additional results showed
that mBERT, a multilingual model, performed bet-
ter than BERTje. This may be because social media
users tend to lend words from other languages, in-
cluding English. Furthermore, mBERT is trained
on a larger corpus of text compared to BERTje.
This indicates that the selection of a specific dataset
to pre-train a language model is one of the main
indicators to acquire a greater return on prediction
performance.

Lastly, we found that oversampling provides sub-
stantial benefits for smaller datasets, like EI and
MA in our work, whereas the benefit is limited for
larger ones, like AM in our work. Furthermore,

when combining all datasets together, the benefit
of oversampling was also limited. However, the
issue of highly imbalanced datasets cannot be fully
solved with oversampling, which was observed in
the results. In line with this, some models gain
more benefit from oversampling than others. In
particular, oversampling had the least added value
for the models trained on Twitter data, potentially
due to their relatively high base performance.

All in all, the results indicate that the identifica-
tion of discontent in social media text is a feasible
approach to filtering relevant to irrelevant messag-
ing, given that the appropriate language models
are chosen. The ability to accurately filter the data
provides opportunities for more efficient extraction
of a variety of information relevant to entities like
the police and OSINT, including locations, dates
and time stamps.

7.1 Limitations

First, in all of the used datasets, the number of
‘No discontent’ tweets outnumbers the number of
discontent tweets with a ratio of around one to
five. In order try to make up for this limitation,
we used the widely used oversampling technique
named Synthetic Minority Oversampling TEch-
nique (SMOTE) (Chawla et al., 2002) for the dis-
content tweets. However, SMOTE has limitations,
including misclassification of the majority class,
resulting in negative effects for the model’s overall
balance (Puntumapon and Waiyamai, 2012).

Second, some publicly available tweets may have
been removed by the corresponding users since the
tweets have been extracted via the X API, which may
reduce the reproducibility of the study. Besides
that, it is possible that some of the results were
unsatisfactory partially due to the switch-ups in the
annotator teams. The compositions in the annotator
teams may have resulted in some inconsistencies in
the labelling process.

Third, we did not conduct an error analysis in
this work. Therefore, future work that aims to
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build upon this paper should consider aiming to
gain more insights into, i.e., whether the degree
of false positives for a specific dataset correlates
with the (perceived) difficulty of the annotation
task. However, to support such an error analysis,
we propose follow-up studies to report more details
on the inter-annotator agreement.

Fourth, being able to predict a protest’s location,
date, time or size is also of interest to OSINT and the
Dutch police, especially in times of higher affective
polarisation and social unrest. In this work, we did
not explore the extraction of such information from
the tweets, presenting an opportunity for future
work.

Lastly, the practice of combining all four datasets
may be flawed. Some protests may have been more
extreme in terms of the events that took place, hence
(indirectly) influencing how the annotators interpret
discontent per protest. Therefore, some datasets
may capture a limited, or even a different, meaning
of expression of discontent, given that the datasets
were labelled for different protests and/or with more
labels, affecting classification performance.

8 Ethics Statement

Ethical approval to conduct this study, including
approval for the collection and annotation of the
datasets, was acquired from the appropriate local
institutional review boards and ethics committees.
To minimise potential privacy issues, we excluded
direct and indirect personal identifiers from the data,
including names and locations. In line with the
GDPR guidelines, the data has been anonymised
by hashing usernames and mentions.

Besides the focus on Dutch text, it is desirable for
high-impact applications, like those used in medical
practice and law enforcement, to work with models
and algorithms that have low false negative rates,
due to potential societal and ethical complications
that arise with false positives. For example, it is
unethical and socially undesirable to inaccurately
label a person’s social media message along the lines
of ‘high-risk’ or ‘negative’. Therefore, in this work,
we focused on the optimisation of the precision
metric, as this indicates lower false positives. We
encourage future work to put low false positive
rates at the forefront in the evaluation of models’
performance.

Furthermore, we followed the European Data
Protection Board (EDPB) guidelines to assess the

risks and potential impacts of the data.4 These
guidelines were followed in order to minimise po-
tential risks for individuals’ freedoms, and to use
the data in a lawful and transparent manner.

For future work, we provide several suggestions
on how to use social media data in an ethical manner.
First, ethical data assessment methodologies should
be used before the analysis is conducted in order
to evaluate potential conflicts with (public) values
and to minimise social disruption. We recommend
using approaches like ‘De Ethische Data Assistent’
(DEDA, ‘The Ethical Data Assistent’) from Schäfer
et al. (2022). Second, when conducting social me-
dia analysis, the focus should be on groups rather
than individuals, so that privacy is ensured and the
results remain ‘superficial’ in nature. As previously
mentioned, the GDPR emphasises that monitoring
and profiling is not allowed, even in the context
of anticipating crimes and riots. Therefore, social
media analyses for research purposes should empha-
sise the recognition of general trends, sentiments
and events instead, as presented in this paper.
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A List of Used Python Libraries

Processing Step Libraries
Pre-processing re

string
pandas
sklearn (TfidfVectorizer)
nltk (word_tokenize, stopwords)
spacy (nsubj, VERB)
WordCloud
datasets (Dataset, DatasetDict)

Training BERT models codecs
tqdm
datasets (concatenate_datasets, load_dataset, Dataset, DatasetDict)
pandas
numpy
sklearn (f1_score, roc_auc_score, accuracy_score, train_test_split)
torch
transformers (BertTokenizerFast, AutoTokenizer, AutoModelForSe-
quenceClassification, TrainingArguments, Trainer, EvalPrediction,
pipeline)

Training SetFit frame-
works

sentence_transformers (CosineSimilarityLoss)

setfit (SetFitModel, SetFitTrainer)
EOD Prediction pycm

emoji
matplotlib

Additional testing random

Table 6: Overview of the Python libraries used to train the models.
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B Example Tweets and their Corresponding Label

Translated tweet from Dutch to En-
glish

Label Annotators’ reasoning for the given label

Half of the hooligans in #Rotterdam were
underage!!!! Where are the parents????

EOD * Usage of the word ‘hooligans’.
* Usage of 4 exclamation marks.
* Indirect expression of discontent towards the parents of the hooli-
gans, implying that they did not raise their kids correctly.

Only 3 wounded in Rotterdam from last
night’s riots? It is time for the police to
take some shooting lessons...

EOD * The ‘Only 3 wounded [...]’ subsentence has a sarcastic tone.
* Suggesting that police officers should take shooting lessons, implies
that the user wants the police to shoot at rioters and succeed.

The Austrian Baudet could not accom-
pany the anti-vaccin protest. He was
so ill from the corona-virus that he is
staying at the hospital.

No discon-
tent

* Without additional contextual information, it is unclear from the
tweet itself who is meant with ‘The Austrian Baudet’.
* The tweet is too descriptive in order to determine the user’s intent
with certainty.

Has someone already called themselves
in for the torn off finger ? #Rotterdam

No discon-
tent

* A potential expression of discontent towards people who light
fireworks.
* Too unclear what is meant with a torn off finger.

Table 7: Overview of some example tweets with their corresponding label, including the reasoning used by the
annotators to assign the ‘Expression of Discontent’ (EOD) or the ‘No discontent’ class. Although tweet examples 1
and 3 were relatively easy to label, tweet examples 2 and 4 were more difficult, causing annotators to have differing
opinions on how to interpret the nuances in the text.

C Annotation Rules
A tweet was considered relevant or ‘on-topic’ for the EOD classification if:

1. The tweet refers to the protest for which it was scraped;
2. The tweet contains expressions of indignation towards the corresponding protest;
3. The tweet contains first-person observations of a protest and includes explicit disdain for the situation;
4. The tweet uses slurs, slang, and other inflammatory words to describe the opinions and actions of

others (e.g. protesters, government);
5. The tweet uses expressive symbols like capital letters and punctuation (e.g. exclamation marks) to

express their disdain towards the situation at hand;
6. The tweet shows support for the incitement of violence (towards any person or groups of people).

A tweet was considered irrelevant for the EOD classification, hence given ‘No discontent’, if:

1. The tweet contains solely observations regarding the situation at hand or the general public;
2. The tweet contains the person’s own opinion, but the person highlights the perspectives from both

sides, e.g., the protesters and the government;
3. The tweet contains expressions of confusion, e.g., towards what and why the protests are happening;
4. The tweet seems to contain sarcasm but it could be interpreted in multiple ways;
5. The tweet includes discussions about the topic at hand whereby the protest is used to support one’s

non-inflammatory opinions.

A tweet was excluded from the dataset, hence considered ‘off-topic’, if:

1. The tweet refers to a different protest for which it was scraped;
2. The tweet is a response to another tweet potentially related to the protest, but the content of the

considered tweet does not refer to the protest;
3. The tweet contains signs of discontent towards parties relevant in protests (e.g. police, protesters),

but it is not explicitly concerning the protest for which it was scraped.
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D Extra Results

Expression of discontent No discontent
Model Data FT PP ACC AUC P R F1 P R F1
LR ALL N Y .867 .629 .577 .293 .389 .890 .964 .925
LR Best PP Step † MA N Y .872 .642 .611 .318 .418 .893 .966 .928
LR MA N N .867 .646 .570 .335 .422 .895 .957 .925
BERT MA Y N .861 .541 .647 .091 .159 .866 .992 .924
BERTje MA Y Y .855 .537 .489 .091 .153 .865 .984 .921
BERTje MA Y N .882 .672 .664 .376 .480 .902 .968 .934
BERTje ALL Y N .862 .658 .863 .328 .475 .862 .988 .920
BERTje Emojis MA Y N .885 .672 .687 .372 .483 .901 .971 .935
BERTje Overs & Emojis ‡ MA Y N .886 .686 .681 .405 .508 .906 .968 .936
BERTje Oversampling AM Y N .791 .755 .691 .653 .672 .835 .858 .846
BERTje Oversampling EI Y N .902 .553 .391 .127 .191 .918 .980 .948
BERTje Oversampling MA* Y N .899 .752 .667 .549 .602 .929 .956 .942
BERTje Oversampling MA Y N .876 .706 .592 .467 .522 .913 .945 .929
BERTje ’22 Oversampling RO Y N .861 .633 .667 .294 .408 .876 .971 .921
BERTje ’23 Oversampling RO Y N .816 .660 .571 .395 .467 .856 .924 .889
mBERT MA Y N .877 .698 .603 .446 .513 .910 .950 .930
mBERT AM Y N .799 .720 .777 .506 .613 .804 .933 .864
mBERT AM Y Y .779 .684 .833 .407 .547 .769 .960 .854
mBERT Oversampling AM Y N .798 .759 .711 .646 .677 .835 .872 .853
mBERT Overs & Emojis AM Y N .803 .752 .746 .606 .668 .823 .899 .859
ST EN MA Y N .855 None None None None .855 None .922
ST EN MA N N .812 .526 .227 .124 .160 .862 .929 .894
ST EN Oversampling AM Y N .745 .708 .598 .605 .602 .815 .810 .812
ST EN Oversampling MA Y N .836 .725 .447 .570 .501 .924 .881 .902

Table 8: Comparison between the models from fine-tuning (FT) or not (Y and N, respectively), pre-processing (PP)
the data or not (Y and N, respectively) for the prediction type Expression of Discontent (EOD). Some models were
given a particular focus, e.g. emojis and oversampling the minority class. Highest scores on accuracy, precision,
recall, F1 and AUC are in bold. The numbers are rounded. Abbreviations ‘AM’, ‘EI’, ‘MA’, ‘RO’ and ‘ALL’ stand
for the Black Lives Matter (Amsterdam), curfew riots (Eindhoven), Black Pete (Maastricht), fireworks ban protest
(Rotterdam) and all four datasets, respectively. Notes: † LR was run with the combination of pre-processing steps
that provided the best results, and ‡ BERTje was run by combining the focus on emojis with oversampling. By
default, MA refers to a subset of the MA dataset, though MA* refers to the full dataset. When a model is marked
with ‘emojis’, we run the model on a subset of the MA dataset solely containing tweets with at least one emoji. This
subset was around 12% of the original dataset’s size.
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Expression of discontent No discontent
Model Run ACC AUC P R F1 P R F1
Bernice 1 .875 .792 .667 .659 .663 .922 .925 .923
Bernice 2 .870 .772 .646 .619 .632 .917 .925 .921
Bernice 3 .865 .793 .623 .679 .649 .926 .907 .917
Bernice 4 .869 .776 .662 .625 .643 .914 .926 .920
Bernice 5 .868 .785 .660 .649 .654 .917 .920 .919
BERTje 1 .860 .721 .674 .497 .572 .890 .944 .916
BERTje 2 .859 .745 .673 .555 .609 .895 .934 .914
BERTje 3 .872 .756 .689 .570 .624 .905 .941 .923
BERTje 4 .877 .754 .720 .558 .629 .904 .950 .926
BERTje 5 .864 .749 .670 .561 .611 .900 .935 .917
TwHIN-BERT-base 1 .853 .777 .620 .651 .635 .914 .903 .908
TwHIN-BERT-base 2 .861 .781 .637 .650 .643 .916 .911 .914
TwHIN-BERT-base 3 .858 .800 .611 .707 .656 .928 .894 .911
TwHIN-BERT-base 4 .864 .778 .647 .639 .643 .915 .918 .916
TwHIN-BERT-base 5 .860 .776 .637 .639 .638 .914 .913 .913
TwHIN-BERT-large 1 .820 None None None None .820 None .901
TwHIN-BERT-large 2 .830 .792 .551 .731 .628 .928 .854 .890
TwHIN-BERT-large 3 .810 None None None None .810 None .895
TwHIN-BERT-large 4 .815 None None None None .815 None .898
TwHIN-BERT-large 5 .864 .753 .650 .576 .611 .906 .929 .917
ST 1 .864 .761 .694 .589 .637 .899 .934 .916
ST 2 .870 .764 .656 .596 .625 .912 .931 .921
ST 3 .871 .766 .665 .601 .631 .912 .932 .922
ST 4 .874 .771 .690 .605 .644 .911 .937 .924
ST 5 .873 .767 .704 .594 .644 .906 .940 .923
LR 1 .820 .718 .532 .552 .542 .892 .884 .888
LR 2 .797 .704 .522 .542 .532 .875 .866 .870
LR 3 .812 .706 .558 .523 .540 .875 .889 .882
LR 4 .804 .706 .516 .541 .528 .882 .871 .877
LR 5 .805 .704 .523 .534 .529 .879 .875 .877

Table 9: Comparison between the models for EOD prediction with oversampling of the minority class. The models
are run five times in order to get insight into the range of the possible scores. The numbers are rounded, and the best
scores per metric are in bold.

Expression of discontent No discontent
Model Data ACC AUC P R F1 P R F1
BERTje AM .808 .755 .765 .600 .673 .822 .910 .864
Bernice AM .823 .806 .703 .760 .731 .885 .852 .868
TwHIN-BERT-large AM .637 None None None None .637 None .778
TwHIN-BERT-base AM .817 .782 .721 .687 .704 .858 .877 .868
BERTje EI .901 None None None None .901 None .948
Bernice EI .902 .616 .513 .260 .345 .923 .973 .947
TwHIN-BERT-large EI .901 None None None None .901 None .948
TwHIN-BERT-base EI .909 .591 .625 .195 .297 .918 .987 .951
BERTje MA .867 .595 .519 .222 .311 .888 .968 .926
Bernice MA .872 .723 .527 .519 .523 .925 .927 .926
TwHIN-BERT-large MA .865 None None None None .865 None .928
TwHIN-BERT-base MA .874 .644 .559 .328 .413 .901 .960 .930
BERTje RO22 .885 .680 .639 .397 .489 .908 .964 .935
BERTje RO23 .869 .761 .677 .587 .629 .907 .935 .920
Bernice RO22 .882 .718 .594 .491 .538 .920 .946 .933
Bernice RO23 .877 .760 .717 .573 .637 .905 .947 .926
TwHIN-BERT-large RO22 .894 .725 .663 .491 .564 .921 .960 .940
TwHIN-BERT-large RO23 .811 None None None None .811 None .896
TwHIN-BERT-base RO22 .875 .675 .575 .397 .469 .907 .953 .929
TwHIN-BERT-base RO23 .866 .728 .704 .507 .589 .892 .950 .920

Table 10: Comparison between the models Bernice, BERTje, TwHIN-BERT-base and TwHIN-BERT-large for the
EOD prediction across all four datasets without oversampling the minority class. The numbers are rounded, and the
best scores per metric are in bold.
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Expression of discontent No discontent
Model Run ACC AUC P R F1 P R F1
Bernice 1 .878 .788 .668 .647 .657 .923 .929 .926
TwHIN-BERT-base 1 .858 .778 .630 .648 .639 .915 .909 .912
BERTje 1 .865 .728 .715 .504 .591 .889 .952 .919
BERTje 2 .868 .744 .699 .544 .612 .898 .945 .921
BERTje 3 .875 .776 .681 .619 .649 .914 .933 .924
BERTje 4 .869 .717 .757 .469 .579 .884 .964 .923
BERTje 5 .872 .718 .776 .469 .585 .885 .968 .925
BERTje AVG .870 .737 .726 .521 .603 .894 .952 .922

Table 11: Comparison between the models Bernice, BERTje and TwHIN-BERT-base for EOD prediction without
oversampling. For BERTje, five runs were completed in order to get insight into the range of the possible scores.
The numbers are rounded, and the best scores are in bold.

Expression of discontent No discontent
Model Data ACC AUC P R F1 P R F1
BERTje AM .814 .770 .762 .639 .695 .834 .901 .866
BERTje EI .901 None None None None .901 None .948
BERTje MA .868 .678 .568 .410 .476 .904 .947 .925

Table 12: Test runs with BERTje for EOD prediction without oversampling on three separate datasets, namely AM,
EI and MA. The numbers are rounded.
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