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Abstract

Freedom of Information Act (FOIA) legisla-
tion grants citizens the right to request infor-
mation from various levels of the government,
and aims to promote the transparency of gov-
ernmental agencies. However, the processing
of these requests is often met with delays, due
to the inherent complexity of gathering the re-
quired documents. To obtain accurate estimates
of the processing times of requests, and to iden-
tify bottlenecks in the process, this research pro-
poses a pipeline to automatically extract these
timelines from decision letters of Dutch FOIA
requests. These decision letters are responses
to requests, and contain an overview of the pro-
cess, including when the request was received,
and possible communication between the re-
quester and the relevant agency. The proposed
pipeline can extract dates with an accuracy of
.94, extract event phrases with a mean ROUGE-
L F1 score of .80 and can classify events with
a macro F1 score of .79.

Out of the 50 decision letters used for testing
(each letter containing one timeline), the model
correctly classified 10 of the timelines com-
pletely correct, with an average of 3.1 mistakes
per decision letter.

1 Introduction

Timeline extraction is the process of extracting
dated events and ordering them along a timeline
(Cornegruta and Vlachos, 2016). The task can be
seen as a variant of event extraction, where the date
is the operand of the event, and a type is associated
with each date-event pair.

Our goal is to retrieve all triples of the form (date,
event, event class) from a given document using
a pipeline consisting of SpaCy and ChatGPT. Af-
ter the triples have been extracted, we place them
along a timeline to create an overview of the de-
cision process, an example of which can be seen
in Figure 1. Note that each event is grounded in

the document, and can be hyperlinked to the ex-
act position in the document, allowing for quick
verification. These constructed timelines can have
several purposes, such as the graphical summariza-
tion of content (Hoeve et al., 2022), as well as
being a part of process mining, where the event
classification helps to gain insights in the different
parts and their durations in a process. Furthermore,
timeline extraction over a (dynamic) corpus is a
valuable tool in automatic process monitoring. Our
timelines are machine interpretable overviews of
processes, making it easier to control and check
them in real-time. Thus, timeline extraction also
creates valuable metadata about temporal relations
and intervals of events and event sequencing (Allen,
1983).

This study focuses on extracting timelines from
decision letters produced by the Dutch government
in response to a request made under the Dutch
FOIA legislation. We used SpaCy to detect and
extract dates from sentences, and ChatGPT to ex-
tract the event phrases and their classes. Out of
the 524 triples in the test set, roughly 76% of them
were classified correctly, and out of the 50 decision
letters, the timelines of 10 of them were extracted
perfectly.

2 Related Work

The field of timeline extraction has seen quite some
interest in recent years, and it was featured as
part of the SemEval 2010 TempEval and SemEval
2015 TimeLine challenges (Pustejovsky and Ver-
hagen, 2009; Minard et al., 2015), where several
aspects, such as the grounding of dates with events
as well as the creation of cross-document timelines
for entities were addressed. Traditionally, the sys-
tems used for timeline extraction have consisted
of pipeline approaches, with a system containing
a Part-of-Speech tagger, Named Entity Recogni-
tion (NER) and coreference resolution modules
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Figure 1: A timeline with five dated and classified events

in succession to extract event phrases (Aone and
Ramos-Santacruz, 2000; Ahn, 2006; Minard et al.,
2015), and systems such as HeidelTime (Strötgen
and Gertz, 2010) to extract temporal phrases. As
the annotation of these timelines can be quite ex-
pensive, some works focused on automatically con-
structing additional data, such as work done by
Cornegruta and Vlachos (2016), who use distant
supervision to create timelines for entities and use
this additional data to train their pipeline model. A
major downside of these pipeline approaches, as
discussed by Du and Cardie (2020), is the propaga-
tion of errors from individual components in these
systems, harming overall performance. The authors
propose a method that does not use a pipeline, but
instead uses a BERT model to extract events by
posing the problem as a Question Answering task
and querying the model, which is in some regards
similar to our approach using ChatGPT. Another
approach that replaces part of the pipeline with a
neural component is work from Leeuwenberg and
Moens (2018), which relies on entity annotations
being present, and uses an LSTM network to pre-
dict the temporal durations of these entities, relative
to each other.

With the advent of pre-trained Large Language
Models (LLMs) such as ChatGPT and Llama (Tou-
vron et al., 2023), new event extraction methods
have been developed using these models (Xu et al.,
2023). These methods are similar to the ones us-
ing BERT, but instead prompt these large language
models to extract (actor, event, event type) triples
directly from the input text. Although some of
the models can be fine-tuned, a pre-trained LLM
can usually perform quite well on new tasks, es-
pecially when using few-show prompting or in-

context-learning. This involves providing several
examples of the task that has to be performed to the
model in the same prompt, helping the model in
performing the task. Several techniques and best-
practices for in-context learning exist, as surveyed
by Dong et al. (2022). In our paper we experiment
with the selection of the in-context examples, and
use BM25 to select the top-k most similar data-
points from the trainingset, an approach similar to
that used by Liu et al. (2021).

3 Method

3.1 Creation of the dataset

The dataset used in this research consists of 100
decision letters, written in Dutch, originating from
Dutch ministries, all published in 2022. These deci-
sion letters were released as part of the WOOGLE
project 1, and the documents are available as part
of a curated dataset on the Dutch Scientific Data
Repository (DANS)2.

SpaCy3 was used to extract sentences contain-
ing dates for annotation, which were subsequently
filtered using regular expressions to remove false
positives, resulting in a total of 812 sentences for
annotation. The annotation process also included
converting dates to ISO-format, such as first of June
2021 to 01-06-2021. The annotation was done by
two annotators using an encoding scheme intro-
duced by Schumann and QasemiZadeh (2015) for
the annotation of terms and phrases in specialized
domains. Events can be classified into eight pos-
sible classes, which were created through manual
inspection of the decision letters, and by consulting

1https://woogle.wooverheid.nl/
2https://doi.org/10.17026/dans-zau-e3rk
3https://spacy.io
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Figure 2: Example of an annotated segment of a decision letter (translated to English) with two dates each linked to
one event

Task κ N
Date 1.0 26
Event Phrase 0.68 26
Event Class 0.91 26
Relation 0.62 26

Table 1: Inter-annotator agreement for a subset of the
sentences calculated using Cohen’s Kappa (N=26)

experts familiar with the Dutch FOIA legislation
process.

To verify the agreement between the annotators,
Cohen’s Kappa was calculated for the dates, the
event phrases, the event classes and the relations
between dates and events (whether or not an event
was linked to the correct date). The scores for
these four different tasks are shown in Table 1. For
the inter-annotator agreement of the event phrases,
exact matching was used for the comparison, re-
sulting in a relatively low score. However, the
ROUGE-L F1 score, which measures the longest
common subsequence between phrases, yields a
score of 0.86, indicating a close alignment between
the phrases extracted by both annotators. The Rela-
tion class also shows a relatively low score, some-
thing that is partially caused by the fact that event
phrases consisting of multiple parts are rare, there-
fore having a large influence on the final agree-
ment score. All event phrases consisting of a single
phrase were correctly linked for both annotators.
An example of an annotated text is shown in Figure
2, where two dates are linked to one event each.

The dataset was splitted equally into a training
and a test set, where the two sets were split so
that they each contained complete documents. The
main statistics of both sets are presented in Table
2, and the distribution of the number of sentences
in each document and the number of dates per sen-
tence is shown in Figure 3. Of the 812 sentences in
the dataset, 14 percent of the sentences contained
more than one date.

3.2 Model

We used the gpt-3.5-turbo-1106 checkpoint of
ChatGPT, the latest iteration at the time of writ-
ing (December 2023), with the prompts written in
Dutch, but translated to English for presentation in
the paper. To facilitate the reproducibility of the
results, the ChatGPT model was run with a tem-
perature setting of 0.0, limiting the randomness in
the output of the model. The code and dataset are
publicly available on GitHub. 4

3.3 Our timeline extraction approach

Our timeline extraction pipeline operates directly
on the text extracted from a decision letter, ob-
tained using either text extraction tools for PDF,
or through optical character recognition software.
Below is a brief outline of the approach, also illus-
trated in Figure 4.

• Sentence Splitting The text extracted from a
PDF file is split into individual sentences with
a sentence tokenizer for Dutch from NLTK.

• Date Extraction Sentences containing dates
are extracted using SpaCy, and several rules
are applied to filter out non-dates.

• Event Phrase Extraction Given a sentence
and a list of dates, ChatGPT is prompted to
return the event phrase associated with each
date.

• Event Phrase Classification Given a list
of event phrases, ChatGPT is prompted to
classify the event phrase into seven possible
classes.

• Decision Date Classification Extract the De-
cision date using regular expressions, as these
dates are usually not linked to an event in text.

4https://github.com/irlabamsterdam/
TimeLineExtractionDecisionLettersCASE
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Portion Number of Documents Number of Sentences Number of dates

Train 50 376 414
Test 50 445 524

Total 100 812 938

Table 2: Overview of the number of documents, number of sentences and the number of dates for both the train and
test partitions
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Figure 3: Number of sentences in each document for the complete dataset (N=100) and the number of dates in each
sentence for all sentences in the dataset (N=812)

The individual steps of the algorithm are ex-
plained in more detail below.

Step 1: Sentence Splitting The first step in the
pipeline is the splitting of the text of a document
into separate sentences, which is done by using
a sentence tokenizer for Dutch from NLTK. By
splitting the text into sentences, sentences without
dates can easily be discarded in the next step.

Step 2: Extract sentences containing dates with
SpaCy In the second step, SpaCy is run to iden-
tify sentences that contain dates. This produces
quite a lot of false positives, which are filtered by
discarding dates that do not contain a month, as
most false positives had that form.

Step 3: Extract event phrases and classes using
ChatGPT The extraction and classification of
the events associated with the dates from Step 2
is done by prompting the model two times. In the
first step, a list of dates and a sentence containing
these dates is fed to ChatGPT, and the model has to
return the event phrase associated with each date,
or return ’no event’ if no event was detected.

Prompt: You are given a list of dates and a

sentence containing these dates. It is your task to
extract the descriptions of the events happening on
these dates, or to return ’No event’ if no event took
place on that date.

Return your output as a list of tuples with each
tuple consisting of a date and the event associated
with it.

Example input: Concerning the decision on
your WOO-request, October 1st, 2022

Example output: [(’2020-10-01’, ’Decision
on your WOO-request’)]

After these events were extracted, the model was
prompted a second time, now with the list of event
phrases, and was asked to classify them into the
seven possible classes. If no event was detected
in the first step then the event was automatically
labelled with ’no event’.

Prompt: You are given a list of event descrip-
tions and it is your task to classify each of these
descriptions into one of the following classes.
1. Decision period adjourned: The decision on the
WOO request has been adjourned
2. Contact: Communication took place between
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the person filing the request and the relevant
organization
3. WOO legislation in effect: The woo legislation
came into effect, on the first of May 2020
4. Confirmation request received: The confirma-
tion of receiving the WOO request
5. Request date: On this date a WOO request has
been filed, requesting information trough the WOO
legislation
6. Requested received: The WOO requested has
been received by the relevant organization
7. Other: Any description that does not fall under
any of the previous classes

Example input: [’you have been informed of
the latest status update at the departments of ILT
and RWS’]

Example output: [’contact’]

For both steps, the examples provided to Chat-
GPT were selected using an approach mentioned by
Liu et al. (2021). BM25 is used to select the top ex-
amples for both the event extraction and event clas-
sification prompts. In the case of event phrase ex-
traction, the examples were selected from the train-
ing set by retrieving the 5 most similar sentences
together with their ground truth event phrases. For
the classification of the event, 2 examples of simi-
lar event phrases were retrieved from the training
set for each event phrase in the sentence.

Step 3: Classifying decision dates As the deci-
sion dates are usually not linked to an event in the
text, but often appear at the top of a letter in a set
format, these were not extracted using ChatGPT,
but by using regular expressions to capture patterns
such as Datum: 2023-11-01.

3.4 Evaluation

The evaluation of the date extraction is done by
using accuracy, comparing the predicted an ground
truth dates. For the evaluation of the event phrase
extraction the ROUGE-L metric (Lin, 2004) is
used, which computes the Longest Common Sub-
sequence (LCS) between the tokenized represen-
tations of the ground truth and predicted texts.
This metric is well-suited for the evaluation of the
event extraction component, as the extracted events
should be literal extracts from the letter.

To determine whether or not an extracted event
phrase is correct, we follow work done by Kuhn

Figure 4: High level overview of the timeline extraction
pipeline for an input document.

et al. (2023) and classify an extracted event as cor-
rect only if it has a ROUGE-L F1 score of 0.5 or
higher.

We evaluate the total accuracy of the model both
in the percentage of triples that are classified cor-
rectly, as well as how many documents the pipeline
classifies completely correct. For the evaluation of
the event extraction and classification parts, only
the triples of dates that were returned by ChatGPT
were considered, as in several instances extra triples
that were not in the ground truth were returned
by ChatGPT. For the event classification task, the
inputs to the model were the ground truth event
phrases, to judge its classification performance
without being influenced by the previous steps.

4 Results

4.1 Date Extraction
The date extraction part of the pipeline achieves
an accuracy of .94 on all the dates in the test set.
When the model is incorrect, it was usually because
of ambiguity in the date, such as In the month of
June, where the model might pick a random date
belonging to that month.

4.2 Event Extraction
For the event phrase extraction, the model achieves
an average ROUGE-L F1 score of .80 on the event
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Table 3: Evaluation scores for event classification using ChatGPT (N=218)

Precision Recall F1-score Support

Decision period adjourned 0.93 0.93 0.93 29
Contact 0.89 0.79 0.84 42
WOO legislation in effect 1.00 1.00 1.00 16
Confirmation request received 1.00 0.98 0.99 44
Other 0.73 0.67 0.70 24
Request date 0.98 0.98 0.98 48
Request received 0.75 1.00 0.86 15

0.0 0.2 0.4 0.6 0.8 1.0
ROUGE-L F1 Score

μ=0.80

Figure 5: Distribution of the ROUGE-L F1 scores for
the event phrases extracted by ChatGPT.

phrases, with a precision of .83 and a recall of
.78. When thresholded at 0.5, 82% of the extracted
event phrases were correct. The distribution of the
ROUGE-L scores is shown in Figure 5. Although
most scores are quite close to one, there is a signifi-
cant number of event phrases that received a score
of zero. Upon further examination it was found that
these were exclusively cases where the date was
not associated with an event in the ground truth,
but the model still retrieved an event phrase.

4.3 Event Classification

Table 3 shows the results of the event classification
with ChatGPT, with an overall macro F1 score of
.79. The ’WOO legislation in effect’ class achieves
an almost perfect score, which is explained by the
fact that this event is almost always described using
the exact same phrase, simply specifying the date
on which the law became effective. The model
performs worst on the other class, which is unsur-
prising given the fact that this class contains all the
events that could not be classified into the other
classes and thus there is no clear description for
what fits in this class. In these cases, the provided
examples will most likely not help much either.

One of the reasons that the model performs very
well on the event classification task is that most of
the event phrases follow similar patterns and use
similar vocabulary across different documents, and
thus supplying the model with similar sentences in
the prompt helps in classifying the event correctly.

4.4 Decision Date Classification

The decision dates that were extracted using regular
expressions achieved an accuracy of .96, where two
mistakes were made out of the total of 48 triples
that contained a decision date.

4.5 Timeline Construction

Out of the 524 the triples in the test set, roughly
76% of them were completely correct, where a ma-
jority of the mistakes can be attributed to ChatGPT
failing to return a prediction for the date (for exam-
ples four dates being given as input put only three
event phrases being returned).

Finally, we look at the correctness of the con-
structed timelines, where each decision letter con-
tains exactly one timeline. In 20% of the letters,
the complete timeline was extracted correctly, with
the mode of the number of mistakes in a timeline
being 1 and the average being 3.2. This relatively
low amount of completely correct documents can
be explained by the fact that documents contain on
average roughly 8 dates, and thus classifying all of
them correctly is quite a strict way of evaluating the
performance. Although the amount of completely
correct timeline is relatively low, the fact that a
majority of the triples is correct and the mode of
the number of mistakes is quite low, means that
the graphical summarization can still be considered
useful in getting a rough idea on the timelines, and
mistakes can be easily spotted. Moreover, as there
is a clear chronological order in the events (a re-
quest has to be received before a confirmation can
be sent for example), this logic can be used to filter
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out obvious mistakes in event classification, and
will most likely result in even less errors.

5 Discussion

Although the proposed pipeline achieves good per-
formance on the task of event extraction and classi-
fication for decision letters, the fact that it relies on
ChatGPT, a commercial and closed-source product
has certain downsides. Although we have tried to
mitigate the inherent randomness in the ChatGPT
model, it is possible that there are minor inconsis-
tencies in performance between runs. A possible di-
rection for future work is the usage of open-source
LLMs such as Llama-2 to facilitate the usage of
this work in practice, and to alleviate some of the
aforementioned problems. The goal of this work
was to evaluate a pipeline consisting of SpaCy and
ChatGPT, with as little components as possible, to
prevent the propagation of errors. Although sev-
eral components could have been implemented by
using different models, such as a parsing-based ap-
proach for the event extraction, or by using another
neural model such as BERT, the fact that ChatGPT
is pre-trained meant that there was very little need
for training data, and a small dataset could be used
for evaluating the proposed approach.

6 Conclusion

We have shown that a quite accurate timeline ex-
tractor for a specific domain can be constructed
using a promptable LLM like ChatGPT, with a
very limited number of training examples, in a rela-
tively low-resource language such as Dutch, using
few-shot prompting and selecting similar examples
using BM25. For future work, we could look into
fine-tuning an open-source LLM such as Llama
for this specific task, or maybe consider generating
training samples for the task using an LLM and
using these to train another system.
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