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Abstract
End-to-end models for speech recognition and speech synthesis have many benefits, but we argue they also
face a unique set of challenges not encountered in conventional multi-stage hybrid systems, which relied on
the explicit injection of linguistic knowledge through resources such as phonemic dictionaries and verbalization
grammars. These challenges include handling words with unusual grapheme-to-phoneme correspondences,
converting between written forms like ‘12’ and spoken forms such as ‘twelve’, and contextual disambiguation of
homophones or homographs. We describe the mitigation strategies that have been used for these problems
in end-to-end systems, either implicitly or explicitly, and call out that the most commonly used mitigation tech-
niques are likely incompatible with newly emerging approaches that use minimal amounts of supervised audio
training data. We review best-of-both-world approaches that allow the use of end-to-end models combined with
traditional linguistic resources, which we show are increasingly straightforward to create at scale, and close with
an optimistic outlook for bringing speech technologies to manymore languages by combining these strands of research.

Keywords: speech recognition, speech sythesis, end-to-end modeling, text normalization, pronunciation
modeling

1. Introduction

In recent years, so-called ‘end-to-end’ models have
become increasingly popular for both automatic
speech recognition (ASR) and text-to-speech (TTS)
applications. The precise meaning of ‘end-to-end’
is not exactly defined, and there are many varia-
tions on the theme, but in the case of ASR, end-
to-end models are typically understood to be all-
neural systems that take in audio features and emit
some subword-level unit like bytes (Li et al., 2019),
graphemes, or wordpieces directly (Prabhavalkar
et al., 2017). Such all-neural systems side-step the
need for a manually-curated phonemic dictionary
of the target language (Sainath et al., 2018; Kim
et al., 2020), and contrast with ‘conventional’ or
‘hybrid’ approaches, which consist at least partially
of non-neural components, like a phonemic lexicon
finite-state transducer (Mohri et al., 2002) or hand-
written verbalization grammars (Sak et al., 2013) to
turn words like ‘twelve’ into ‘12’. Similarly, in TTS,
end-to-end architectures like Tacotron (Wang et al.,
2017) can take in graphemes and emit audio, again
without going through intermediate phases that are
common in conventional TTS systems, such as
text normalization to turn input like ‘12’ into ‘twelve’
(Sproat et al., 2001), and grapheme-to-phoneme
conversion, typically employing a combination of
phonemic dictionaries and machine-learning mod-
els (Bisani and Ney, 2008).

In conventional speech processing systems, with

multiple individual components involved, jointly op-
timizing over the entire system from start to finish
is hard, and errors may compound, which can be
detrimental to quality (Wang et al., 2017). By de-
sign, all-neural end-to-end approaches do not have
this issue, while also being much simpler to train
(Chiu et al., 2017), as well as being significantly
smaller in terms of disk size, enabling deployment
of high-quality models on devices like smartphones
(Kim et al., 2020). In addition, being able to avoid
the need for injecting linguistic knowledge, such as
phonemic dictionaries or verbalization grammars,
is frequently considered to be an advantage of end-
to-end modeling approaches—for example, (Wang
et al., 2017) points out that such components re-
quire ‘extensive domain expertise and are laborious
to design’, while an end-to-end approach ‘alleviates
the need for laborious feature engineering’. Simi-
larly, (Sotelo et al., 2017) argues that end-to-end
modeling for TTS ‘eliminates the need for expert
linguistic knowledge, which removes a major bottle-
neck in creating synthesizers for new languages’.

Unarguably, developing such linguistic resources
can take a non-negligible amount of effort, even
despite much progress on tools and methodolo-
gies that can help alleviate this burden (Kim and
Snyder, 2013; Rutherford et al., 2014; Deri and
Knight, 2016; Lee et al., 2020; Ritchie et al., 2019;
Bleyan et al., 2019; Ritchie et al., 2020). And it
is, of course, desirable to mitigate bottlenecks in
developing speech systems in whatever way possi-
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ble: if it were indeed possible to completely avoid
the need for linguistic resources while still building
systems that are in every way just as capable of
handling ASR or TTS tasks as conventional sys-
tems, or even better at doing so (as suggested
by Sainath et al. (2018)), that would be excellent.
However, this may be infeasible, as the relation-
ship between the spoken and the written form of
human languages is typically far from straightfor-
ward: such correspondences frequently turn out to
be full of entirely arbitrary phenomena that cannot
be derived, or that would be very difficult to derive,
through generalization from a randomly selected
large set of training data in the target language.

We provide an overview of such challenging cor-
respondences, and argue that this area has not
been receiving enough attention and analysis in the
literature on end-to-end systems, calling for more
research and analysis along the lines of (Fong et al.,
2019; Taylor and Richmond, 2019) to investigate
how well end-to-end speech modeling approaches
are equipped to deal with such problems. We fo-
cus on a practical description of the problem space
and common mitigation techniques more so than
empirical experiments, since the ability of end-to-
end speech systems to handle such arbitrary cor-
respondences will differ depending on factors such
the composition of the training data, plus model
architecture and size. We argue that these issues
will become all the more relevant as end-to-end
modeling approaches are adopted that use only
minimal amounts of supervised target-language
training data: for example, (Baevski et al., 2020; He
et al., 2021) report impressive progress on extend-
ing speech technologies to new languages using
just minutes of transcribed target-language audio,
but the resulting models are likely to struggle with
such arbitrary correspondences when no linguistic
resources are used.

2. Poverty of the Stimulus

As an example, assume for the sake of argument
that an end-to-end model’s training data contains
all numbers in the English language except for ‘12’
(and except numbers of which ‘12’ is a constituent,
like ‘112’ as ‘one hundred and twelve’). Given this
data, this hypothetical model would be unable to
know that ‘twelve’ should be transcribed as ‘12’ in
ASR tasks, or that ‘12’ can be read as ‘twelve’ in
TTS tasks. This is because there is no possible
generalization that would let the model determine
that the written form ‘12’ corresponds to the spoken
form ‘twelve’. To avoid generalizing to something
incorrect like ‘twoteen’ (by analogy with ‘fourteen’,
‘sixteen’, ‘seventeen’, and so on) or ‘ten-two’ (by
analogy with ‘twenty-two’, ‘thirty-two’, and so on),
an end-to-end model needs to observe at least

one example of this arbitrary correspondence in its
training data.

This problem is by no means limited to ‘12’ alone,
of course: even just among English numbers be-
tween 10 and 20, cases like ‘11’ and ‘eleven’,
‘13’ and ‘thirteen’, and ‘15’ and ‘fifteen’ are not
quite straightforwardly generalizable either. More
generally, such examples are somewhat reminis-
cent of what’s known in linguistics as the ‘poverty
of the stimulus’, which is the argument that chil-
dren are not exposed to enough information to cor-
rectly induce the rules of their native language, and
that it must therefore be the case that the human
brain must contain some form of innate knowledge
about how languages work (Laurence andMargolis,
2001). This debate is far from settled in linguistics,
but what is relevant to us here is the idea of ana-
lyzing a learner’s input to understand the limits of
generalization based on such training data, and to
test how well learners generalize at various points
of the learning process.

We believe end-to-end speech processing would
benefit from (1) taking into account the limits of
generalization when it comes to correspondences
between spoken and written forms of language, (2)
understanding to what extent the training data used
for a given model can theoretically allow it to learn
these correspondences, (3) evaluating the degree
to which this process is successful in practice, e.g.
through separate test sets for various types of nu-
meric sequences, or words with unusual grapheme-
to-phoneme correspondences, and (4) taking steps
to make available any missing linguistic knowledge
to the model in the next round of training, or at
inference time.

2.1. Semiotic Classes: Numbers, Times,
etc.

In our hypothetical example above, ‘12’ would need
to be observed in the training data for the model
to learn this unusual and arbitrary correspondence.
Including it in the training data, then, would be a
natural solution. And indeed, our argument is not
that an end-to-end model could never learn such
edge cases at all—we simply observe, in a flavor of
the poverty-of-the-stimulus argument, that the sys-
tem must have observed such idiosyncratic cases
at least once to be able to learn them.
Of course, this does raise the question of what

needs to be included in the training data. Some
correspondences will be generalizable: for exam-
ple, a system that observed in its training data all
the numbers between ‘20’ and ‘40’ apart from ‘33’
should be able to generalize correctly and produce
‘thirty-three’ for ‘33’, following the pattern of first
verbalizing the decade form (‘twenty’ or ‘thirty’) and
then using the regular cardinal number ‘three’ (as in



45

‘thirty-one’, ‘thirty-two’, and so on). In other words,
some examples are entirely arbitrary and idiosyn-
cratic, and need to be specifically covered individ-
ually, while for others, generalization is an option
as long as sufficient information is available from
which to generalize.

Now, even if a model observes such an entirely
idiosyncratic case such as ‘12’ only once at train-
ing time, the model may not remember this corre-
spondence; to our knowledge there has been no
research determining if there is a threshold of oc-
currences that is sufficient to teach an end-to-end
system a given correspondence. Presumably the
degree of arbitrariness and frequency both play a
role, as does the general model architecture, but
this seems like a rich area for analysis. However, an
end-to-end model would at least theoretically stand
a chance to get ‘12’ right if it was included even just
once in its training data; if it never observed this
case at all, it would stand no chance.
If the issues were limited to cases like like ‘10’,

‘11’ and ‘12’, this would perhaps pose only a limited
problem that could be easily addressed by includ-
ing relevant data at training time. However, even for
simple cardinal numbers in counting forms like ‘one’,
‘two’, ‘three’, a relatively complex induction needs
to be done to derive the correct correspondences
even just for forms between 1 and 999, as shown
by Ritchie et al. (2019); Gorman and Sproat (2016).
These inductions differ in complexity from one lan-
guage to another, but are rarely straightforward. In
the extreme, for some languages, the only option
for getting the numbers between 1 and 100 right
appears to be explicitly enumerating every single
form (Gorman and Sproat, 2016). This would imply
that an end-to-end speech system would also need
to observe every single form in its training data at
least once.
Cardinal numbers are, unfortunately, perhaps

among the easier correspondences to learn. There
are many classes of tokens for which there are
non-trivial correspondences between written and
spoken forms of human language, and they appear
in mostly any language; see e.g. van Esch and
Sproat (2017) which provides an overview of these
‘semiotic classes’, ranging from phone numbers like
‘1-800-GOOG411’ to times like ‘10:15’ (‘ten fifteen’
or ‘a quarter past ten’), and from measures like
‘10km’ to currency amounts like ‘HK$300’.

For end-to-end speech models, learning such
correspondences is difficult, with low accuracy
rates unless special measures are taken (Peyser
et al., 2019). In fact, as Sproat and Jaitly (2017);
Zhang et al. (2019) show, handling semiotic classes
is difficult even for standalone text-to-text neural net-
works that are dedicated entirely to transforming
between spoken-domain text strings like ‘twelve’
and written-domain text strings like ‘12’. Sproat

and Jaitly (2017); Zhang et al. (2019) point out
that even such text-to-text models frequently make
so-called ‘silly errors’ like verbalizing ‘16GB’ into
‘sixteen hertz’ instead of ‘sixteen gigabytes’—even
though for these networks, large amounts of rel-
evant data were available at training time, based
on which the correct behavior could have been
inferred.

2.2. Normal Words: Names, Loanwords,
Acronyms, etc.

Beyond semiotic-class tokens like ‘12’, ‘1-800-
GOOG411’, ‘10:15’, ‘HK$300’, and ‘16GB’, there
are also countless examples of English words
with idiosyncratic grapheme-to-phoneme map-
pings. For example, the pronunciation of the En-
glish word ‘Worchestershire’ is relatively idiosyn-
cratic, consisting of only three syllables. Put simply,
the rules of English orthography do not map one-
to-one onto English pronunciations—and this is
the case in many of the world’s languages (though
not everywhere). The complexity of various ortho-
graphic systems can be measured (van den Bosch
et al., 1994), and different orthographic systems
are known to have different degrees of orthographic
transparency (Katz and Frost, 1992). In practice,
this means that in some languages, the correspon-
dences between spoken and written forms will be
harder to learn than in others.
Indeed, cross-language comparisons of

grapheme-to-phoneme (G2P) conversion models
such as (van Esch et al., 2016; Lee et al., 2020)
show widely different accuracy rates across
languages. While the accuracy metrics achieved
by G2P models also depend on the amount of
training data available for the target language, as
well as factors such as the model architecture,
there is unmistakably an impact from the degree
of orthographic transparency in each language.
Some languages, like Spanish, have a reasonably
transparent orthography, and G2P accuracy rates
are usually high; languages like English, on the
other hand, feature large numbers of idiosyncratic
cases, which are much more challenging or even
impossible for a G2P model to predict based on
the training data, leading to lower accuracy rates.
Such challenging grapheme-to-phoneme corre-

spondences are known to impact the quality of end-
to-end speech models: for example, Taylor and
Richmond (2019); Fong et al. (2019) show that end-
to-end TTS models struggle to generate correct au-
dio for words with irregular or idiosyncratic G2P cor-
respondences. End-to-end ASR systems face sim-
ilar struggles (Kim et al., 2020; Prabhavalkar et al.,
2017), although to our knowledge the issue has
not been analyzed in detail. Unusual grapheme-to-
phoneme correspondences appear in many types
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of words, including in place names like ‘Worchester-
shire’, names of people and businesses (Rutherford
et al., 2014), names of artists (like ‘P!nk’, where the
‘!’ stands for an ‘i’, or ‘deadmau5’, read as ‘dead
mouse’), and loanwords (which may retain the
original spelling from their source language, as in
‘restaurant’ or ‘La Jolla’). Sometimes, otherwise en-
tirely unremarkable nouns suddenly involve an un-
predictable correspondence, as in ‘sword’, the only
word in the English language where the grapheme
‘w’ is silent in the onset cluster ‘sw’: compare, for
example, ‘swam’, ‘sweep’, and ‘swore’. Highly fre-
quent words may also have unusual grapheme-to-
phoneme correspondences, like English ‘one’. And
letter sequences (Sproat and Hall, 2014) such as
‘NASA’ (read as a word) and ‘C-SPAN’ (partially
read as a word, partially as a letter) present their
own idiosyncrasies—not to mention borrowed letter
sequences, such as ‘BBC’, which is read letter-by-
letter using English letter pronunciations in many
European languages.

As with semiotic-class tokens, it can range from
challenging to impossible for an end-to-end speech
model to predict the correct grapheme-to-phoneme
correspondence for a given word, depending on
the degree of arbitrariness of the relationship, the
training data, and the model’s generalization abil-
ity. According to the Census Bureau, there are
tens of thousands of geographical names in the
United States alone. Many of them are likely rea-
sonably amenable to generalization, but others (like
‘La Jolla’) will not be, and must be observed in the
training data for an end-to-end model to learn them.
In the extreme, cases like ‘deadmau5’ are presum-
ably sufficiently idiosyncratic as to be impossible for
an end-to-end system to predict correctly through
generalization from any other training data.

2.3. Homophones, Homographs, and
Context

For both semiotic-class tokens and normal words,
another issue can cause further challenges for ASR,
namely homophony—words or phrases that sound
the same, but have different spellings depending
on their meaning and context. For example, ‘three
eleven’ could be written as ‘3:11’ (as a time) or
‘3/11’ (as a date), and ‘Xanh’ (a popular restaurant
in Mountain View, California, which unfortunately
closed after the pandemic) shares its pronunciation
with ‘sun’. As an extreme example, if these terms
were only ever observed in isolation at training time,
the system would find it challenging to determine
that it should emit ‘dinner at Xanh in Mountain View’
(not ‘sun’) but ‘the sun is shining’ (not ‘Xanh’).

In TTS applications, homographs, or words that
are spelled the same but have different pronun-
ciations depending on context, pose similar prob-

lems: ‘Houston, Texas’ is pronounced differently
than ‘Houston Street, New York City’ (which is pro-
nounced like ‘how-ston’ not ‘hew-ston’), but again,
if the term ‘Houston’ was only ever observed in iso-
lation, the model would struggle to decide which of
the two pronunciations to use based on inference-
time context—assuming, of course, that both pro-
nunciations were even included in the training data.

3. Mitigation Techniques

The existence of such arbitrariness is not an argu-
ment against end-to-end modeling: our goal has
only been to point out that it is impossible for an end-
to-end model to correctly predict an entirely arbi-
trary phenomenon that it has not observed at train-
ing time—and that even for slightly less arbitrary
phenomena, such models may struggle. But given
the benefits of end-to-end modeling, it is clearly de-
sirable to see if these challenges can be mitigated
within the end-to-end paradigm.

Before discussing mitigation strategies, one
question that may come to mind is whether any
mitigation is in fact needed at all: one might argue
that handling these correspondences can simply
be called out-of-scope entirely. For example, an
ASR system could simply emit ‘twelve’ instead of
‘12’, and a TTS system could simply require that
only forms like ‘twelve’ are used in any input text.
However, in a real-world system this is typically in-
feasible or impractical, given that TTS applications
are generally expected to be able to handle generic
written-domain text, and given that downstream pro-
cessing of ASR transcriptions generally also relies
on written forms like ‘11:15’—for example, in con-
versational voice assistants that need to identify
times in transcribed spoken commands. Taking
this position is even harder in the case of words
with unusual grapheme-to-phoneme relationships:
it would be hard to argue that general-purpose ASR
or TTS systems do not need to correctly pronounce
or transcribe phrases like ‘La Jolla’.
First, we recommend setting up evaluation sets

that specifically aim to measure ASR or TTS qual-
ity for different categories of arbitrary correspon-
dences, such as words with unusual grapheme-
to-phoneme relationships, and different types of
semiotic classes, as in Peyser et al. (2019). Such
sets will help us understand the extent to which
these problems appear for a given model. The
question then becomes how to maximize accuracy
for these cases.

3.1. Large Training Data Sets
Ensuring that end-to-end systems see sufficient
data to correctly generalize all generalizable corre-
spondences, and to learn even the most arbitrary
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cases, is one possible approach. This does pose
some practical problems, since there will be many
words that are affected (especially in languages like
English, with its opaque orthography). But as one
increases the size of the training data, more corre-
spondences will be covered, mitigating the problem
to some extent—and with the abundance of data
in high-resource languages, the problem may even
be invisible entirely unless specific evaluations are
done, as in Peyser et al. (2019).

Theoretically, one could simply collect recordings
of all normal words and semiotic-class tokens in
the target language, but this would clearly be very
time-consuming, and it is not clear that it poses less
of a bottleneck than creating verbalization gram-
mars and phonemic dictionaries. In the extreme, it
is arguably impossible due to the infinite amount of
e.g. cardinal numbers, but at at any rate, recording
many hundreds of thousands words and phrases
would be challenging even for ASR, where training
data can be gathered from many speakers through
platforms such as Hughes et al. (2010); for TTS,
where high-quality single-speaker recordings have
typically been required, it would be entirely imprac-
tical.
In addition to practical factors that make adding

more training data a less-than-desirable mitigation
strategy, recent work also suggests that reason-
able levels of ASR or TTS quality can be obtained
by using only an hour or less of supervised target-
language audio (Baevski et al., 2020; He et al.,
2021), combined with self-supervised learning tech-
niques and/or multilingual modeling. Such work
is incredibly promising for addressing the single
biggest bottleneck in bringing speech technologies
to more languages, namely the scarcity of super-
vised training data, but it seems vanishingly unlikely
that 40 seconds of target-language audio (as in He
et al. (2021)) could contain sufficient information to
learn all relevant arbitrary correspondences for the
target language.
In some cases, multilingual modeling may help,

e.g. in predicting that ‘24’ should be verbalized
as ‘vingt-quatre’ in French, following the English
pattern. But equally, multilingual modeling may be
ineffective or even harmful for this problem, e.g.
when mixing English with German, where the cor-
rect verbalization of ‘24’ is not ‘zwanzig-vier’ (liter-
ally ‘twenty-four’), but ‘vier-und-zwanzig’ (‘four-and-
twenty’).

3.2. Supplementing Training Data with
Synthetic Audio

For ASR, another technique is to use TTS to gener-
ate synthetic data to supplement the training data
(Rosenberg et al., 2019): for example, Peyser et al.
(2019) showed that if a target-language TTS system

is available, it can be used to generate transcribed-
audio training examples for cases like ‘12’ and
‘twelve’ at very large scale. However, such ap-
proaches still requires the creation of some kind
of verbalization grammar (Sak et al., 2013; Ritchie
et al., 2019, 2020) to provide the correspondences
between the written-domain forms (like ‘12’) which
would serve as the ASR training target, and the
spoken-domain forms (like ‘twelve’) which would
be passed into the TTS system. And unless the
target-language orthography is extremely transpar-
ent, the TTS system itself will likely require a phone-
mic dictionary (recall cases like ‘one’) in order for
the synthetic audio it generates to have the correct
pronunciation. Similar synthetic-audio approaches
can be employed for phrases like ‘La Jolla’ with chal-
lenging grapheme-to-phoneme correspondences,
but again this would require a phonemic dictionary
to drive the generation of accurate synthetic audio.
In other words, such synthetic-data approaches
still require an investment in linguistic resources
that is no different from the investments needed
to build the linguistic components of conventional,
non-end-to-end systems.

3.3. Secondary Models
Yet another class of mitigation techniques involves
combining secondary models with the original end-
to-end model. For example, fusion techniques are
commonly used to connect end-to-end ASR mod-
els with neural text-only language models to cover
phrases that were not observed in the original train-
ing data (Kim et al., 2020). While it seems reason-
able that external language models can help with
contextual disambiguation (‘Xanh’ vs ‘sun’), their ef-
fect for words with unusual grapheme-to-phoneme
or arbitrary verbalization correspondences is un-
clear and requires further research; they are un-
likely to be a panacea, especially for highly idiosyn-
cratic cases. In another example, Serrino et al.
(2019) describes a module that allows for the use
of phonemic dictionaries to correct misrecognitions
from the upstream ASR system, but again at the
cost of requiring linguistic resources. In both ASR
and TTS, secondary neural models can also be
used for normalizing semiotic-class tokens before
or after the core end-to-end model, as in Zhang
et al. (2019); Peyser et al. (2019); such models do,
however, typically require large amounts of text-to-
text training data, as well as covering grammars,
both of which again require linguistic expertise.

3.4. Combining End-to-End and
Conventional Approaches

It is also possible to combine the best of both worlds,
so to speak, by training models using the end-to-
end paradigmwhich do however still use phonemes
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as an input or output unit: one recent example of
this is the Hybrid Autoregressive Transducer (HAT)
(Variani et al., 2020) for ASR, which combines end-
to-end models that output phoneme units with a
traditional finite-state transduction decoding graph
that uses a phonemic dictionary and verbalization
grammars. Similarly, in TTS, end-to-end models
can simply take phonemes produced by a conven-
tional text normalization front-end as input, e.g. as
in Skerry-Ryan et al. (2018); Yasuda et al. (2020).
In a related approach, (Kastner et al., 2019) de-
scribes an end-to-end TTS model that allows the
mixing of graphemes and phonemes in inference-
time inputs, allowing per-example control through
phonemic specifications where needed—but then
the question becomes how to decide when such
control should be exercised. Such best-of-both-
worlds approaches share one commonality: they
still require the same linguistic components as non-
end-to-end systems.

4. Conclusions

End-to-end speech models face challenges when
it comes to handling words with unusual grapheme-
to-phoneme correspondences (e.g. place names
and loanwords) and semiotic classes (e.g. num-
bers and time expressions), because there is a
large amount of arbitrariness in the correspon-
dences between spoken and written forms of hu-
man language, and because training data suf-
fers from poverty-of-the-stimulus issues. Tradi-
tional speech systems solved these challenges
through the explicit injection of linguistic knowledge,
e.g. through phonemic dictionaries or verbalization
grammars. With thousands of languages spoken in
our world, and very few of them covered by speech
technologies today, it would be great if we did not
need to curate such resources for every language,
but this is unlikely to be possible, given that the
mitigation strategies we reviewed still require sim-
ilar amounts of linguistic resources, as we have
discussed.

Importantly, we called out that the mitigation strat-
egy employed (mostly implicitly) for many end-to-
end systems will no longer work as end-to-end
approaches take hold that use relatively small
amounts of supervised training data. These ap-
proaches rely heavily on self-supervised learning
and multilingual modeling—an exciting develop-
ment that promises to help bring speech technolo-
gies to many more languages. At the same time,
as we have seen, these methods will likely need
to be combined with synthetic-data approaches (in
ASR), or best-of-both-world architectures, like the
use of phonemes produced by a conventional text
normalization front-end as the input unit to end-to-
end TTS models, or like HAT (Variani et al., 2020)

in ASR.
Fortunately, much work has been done to make

creating linguistic resources like phonemic dictio-
naries and verbalization grammars for new lan-
guages easier than ever (Kim and Snyder, 2013;
Rutherford et al., 2014; Deri and Knight, 2016; Lee
et al., 2020; Ritchie et al., 2019; Bleyan et al., 2019;
Ritchie et al., 2020), leading us to be optimistic
about the opportunities for bringing high-quality
ASR and TTS systems to more languages by com-
bining conventional linguistic resources with inno-
vative modeling approaches that require little su-
pervised audio training data.

5. Acknowledgements

Many thanks to Richard Sproat, Trevor Strohman,
Tara Sainath, Jonas Fromseier Mortensen, Pedro
Moreno, and Jeremy O’Brien for many lively water
cooler conversations on this topic over the years,
and for their thoughtful feedback.

6. Bibliographical References

Solomon Teferra Abate, Martha Yifiru Tachbelie,
and Tanja Schultz. 2020. Multilingual acous-
tic and language modeling for ethio-semitic lan-
guages. In Proceedings of Interspeech 2020,
pages 1047–1051.

Oliver Adams et al. 2019. Massively multilingual
adversarial speech recognition. In Proceedings
of NAACL 2019, pages 96–108, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Oliver Adams et al. 2021. User-friendly auto-
matic transcription of low-resource languages:
Plugging ESPnet into Elpis. In Proceedings of
ComputEL-4.

Adam Albright. 2009. Lexical and morphological
conditioning of paradigm gaps. Modeling un-
grammaticality in optimality theory, pages 117–
164.

Rosana Ardila et al. 2020. Common Voice: A
massively-multilingual speech corpus. In Pro-
ceedings of LREC 2020, pages 4218–4222, Mar-
seille, France. ELRA.

Alexei Baevski et al. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech rep-
resentations. arXiv:2006.11477.

Laurent Besacier et al. 2014. Automatic speech
recognition for under-resourced languages: A
survey. Speech Communications, 56:85–100.

https://doi.org/10.21437/Interspeech.2020-2856
https://doi.org/10.21437/Interspeech.2020-2856
https://doi.org/10.21437/Interspeech.2020-2856
https://doi.org/10.18653/v1/N19-1009
https://doi.org/10.18653/v1/N19-1009
https://doi.org/10.1016/j.specom.2013.07.008
https://doi.org/10.1016/j.specom.2013.07.008
https://doi.org/10.1016/j.specom.2013.07.008


49

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme
conversion. Speech Commun., 50(5):434–451.

David Blachon et al. 2016. Parallel speech collec-
tion for under-resourced language studies using
the Lig-Aikuma mobile device app. In Proceed-
ings of SLTU 2016, Yogyakarta, Indonesia.

Harry Bleyan et al. 2019. Developing pronuncia-
tion models in new languages faster by exploit-
ing common grapheme-to-phoneme correspon-
dences across languages. In Proceedings of
Interspeech 2019.

Nicholas Buckeridge and Ben Foley. 2020. Scal-
ing language data import/export with a data
transformer interface. In Proceedings of SLTU-
CCURL 2020, pages 121–125, Marseille, France.
ELRA.

Isaac Caswell et al. 2020. Language ID in the
wild: Unexpected challenges on the path to a
thousand-language web text corpus. In Proceed-
ings of COLING 2020.

Isaac Caswell et al. 2021. Quality at a glance:
An audit of web-crawled multilingual datasets.
arXiv:2103.12028.

Tania Chakraborty et al. 2021. A large scale
low-resource pronunciation data set mined from
Wikipedia. arXiv:2101.11575.

Po-Han Chi et al. 2021. Audio ALBERT: A lite BERT
for self-supervised learning of audio representa-
tion. arXiv:2005.08575.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu,
Rohit Prabhavalkar, Patrick Nguyen, Zhifeng
Chen, Anjuli Kannan, Ron J. Weiss, Kanishka
Rao, Katya Gonina, Navdeep Jaitly, Bo Li, Jan
Chorowski, and Michiel Bacchiani. 2017. State-
of-the-art speech recognition with sequence-to-
sequence models. CoRR, abs/1712.01769.

Mason Chua et al. 2018. Text normalization in-
frastructure that scales to hundreds of language
varieties. In Proceedings of LREC 2018.

Yu-An Chung et al. 2018. Unsupervised cross-
modal alignment of speech and text embedding
spaces. In Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates,
Inc.

Alexis Conneau et al. 2020. Unsupervised cross-
lingual representation learning for speech recog-
nition. arXiv:2006.13979.

J. Cui et al. 2015. Multilingual representations for
low resource speech recognition and keyword
search. In ASRU 2015, pages 259–266.

Aliya Deri and Kevin Knight. 2016. Grapheme-
to-phoneme models for (almost) any language.
In Proceedings of ACL 2016, pages 399–408,
Berlin, Germany. ACL.

Moussa Doumbouya, Lisa Einstein, and Chris
Piech. 2021. Using radio archives for low-
resource speech recognition: Towards an intelli-
gent virtual assistant for illiterate users. In Pro-
ceedings of the AAAI Conference on Artificial
Intelligence, volume 35.

Siyuan Feng et al. 2021. How phonotactics affect
multilingual and zero-shot ASR performance. In
ICASSP 2021.

Ben Foley et al. 2018. Building speech recogni-
tion systems for language documentation: The
CoEDL endangered language pipeline and infer-
ence system. In Proceedings of SLTU 2018.

Jason Fong, Jason Taylor, Korin Richmond, and
Simon King. 2019. A comparison of letters and
phones as input to sequence-to-sequence mod-
els for speech synthesis. In Proceedings of ISCA
SSW 2019, pages 223–227.

Kyle Gorman and Richard Sproat. 2016. Minimally
supervised number normalization. Transactions
of the Association for Computational Linguistics,
4:507–519.

Anmol Gulati et al. 2020. Conformer: Convolution-
augmented transformer for speech recognition.
In Proceedings of Interspeech 2020, pages
5036–5040.

Vishwa Gupta and Gilles Boulianne. 2020. Auto-
matic transcription challenges for Inuktitut, a low-
resource polysynthetic language. In Proceed-
ings of LREC 2020, pages 2521–2527, Marseille,
France. ELRA.

Mark Hasegawa-Johnson, Camille Goudeseune,
and Gina-Anne Levow. 2019. Fast tran-
scription of speech in low-resource languages.
arXiv:1909.07285.

Mark Hasegawa-Johnson et al. 2020. Grapheme-
to-phoneme transduction for cross-language
ASR. In Statistical Language and Speech Pro-
cessing, pages 3–19, Cham. Springer Interna-
tional Publishing.

Tomoki Hayashi et al. 2020. Espnet-TTS: Unified,
reproducible, and integratable open source end-
to-end text-to-speech toolkit. In ICASSP 2020,
pages 7654–7658. IEEE.

Mutian He, Jingzhou Yang, and Lei He. 2021.
Multilingual byte2speech text-to-speech mod-
els are few-shot spoken language learners.
arXiv:2103.03541.

https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.procs.2016.04.030
https://doi.org/10.1016/j.procs.2016.04.030
https://doi.org/10.1016/j.procs.2016.04.030
http://arxiv.org/abs/1712.01769
http://arxiv.org/abs/1712.01769
http://arxiv.org/abs/1712.01769
https://doi.org/10.1109/ASRU.2015.7404803
https://doi.org/10.1109/ASRU.2015.7404803
https://doi.org/10.1109/ASRU.2015.7404803
https://doi.org/10.18653/v1/P16-1038
https://doi.org/10.18653/v1/P16-1038
http://arxiv.org/abs/2010.12104
http://arxiv.org/abs/2010.12104
https://doi.org/10.21437/SSW.2019-40
https://doi.org/10.21437/SSW.2019-40
https://doi.org/10.21437/SSW.2019-40
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015


50

Stephanie Hirmer et al. 2021. Building representa-
tive corpora from illiterate communities: A review
of challenges and mitigation strategies for devel-
oping countries. In Proceedings of EACL 2021.

Nils Hjortnaes et al. 2020. Improving the language
model for low-resource ASR with online text cor-
pora. In Proceedings of SLTU-CCURL 2020,
pages 336–341, Marseille, France. ELRA.

Mathieu Hu et al. 2020. Kaldi-web: An installation-
free, on-device speech recognition system. In
Proceedings of Interspeech 2020: Show & Tell,
Shanghai, China.

Thad Hughes et al. 2010. Building transcribed
speech corpora quickly and cheaply for many
languages. In Proceedings of Interspeech 2010,
pages 1914–1917.

Pratik Joshi et al. 2020. The state and fate of lin-
guistic diversity and inclusion in the NLP world.
In Proceedings of ACL 2020, pages 6282–6293,
Online. ACL.

Anjuli Kannan et al. 2019. Large-scale multilin-
gual speech recognition with a streaming end-to-
end model. In Proceedings of Interspeech 2019,
pages 2130–2134.

Kyle Kastner, João Felipe Santos, Yoshua Bengio,
and Aaron Courville. 2019. Representation mix-
ing for TTS synthesis. In Proceedings of ICASSP
2019.

Leonard Katz and Ram Frost. 1992. The read-
ing process is different for different orthogra-
phies: The orthographic depth hypothesis. In
Leonard Katz and Ram Frost, editors, Orthogra-
phy, Phonology, Morphology, and Meaning, page
67–84. Elsevier North Holland Press, Amster-
dam.

Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee,
Jiyeon Kim, Ankur Kumar, Sungsoo Kim, Abhinav
Garg, and Changwoo Han. 2020. A review of on-
device fully neural end-to-end automatic speech
recognition algorithms. arXiv:2012.07974.

Young-Bum Kim and Benjamin Snyder. 2013. Op-
timal data set selection: An application to
grapheme-to-phoneme conversion. In Proceed-
ings of NAACL 2013, pages 1196–1205, Atlanta,
Georgia. ACL.

S. H. Krishnan Parthasarathi and N. Strom. 2019.
Lessons from building acoustic models with a
million hours of speech. In ICASSP 2019, pages
6670–6674.

Stephen Laurence and Eric Margolis. 2001. The
poverty of the stimulus argument. The British

Journal for the Philosophy of Science, 52(2):217–
276.

Jackson L. Lee et al. 2020. Massively multilingual
pronunciation modeling with WikiPron. In Pro-
ceedings of LREC 2020, pages 4223–4228.

B. Li, Y. Zhang, T. N. Sainath, Y. Wu, and W. Chan.
2019. Bytes are all you need: End-to-end mul-
tilingual speech recognition and synthesis with
bytes. In Proceedings of ICASSP 2019.

Xinjian Li et al. 2020. Universal phone recognition
with a multilingual allophone system. In ICASSP
2020, pages 8249–8253. IEEE.

Yusen Lin, Jiayong Lin, Shuaicheng Zhang, and
Haoying Dai. 2021. Bilingual dictionary-based
language model pretraining for neural machine
translation.

Chunxi Liu et al. 2020. Multilingual graphemic hy-
brid ASR with massive data augmentation. In
Proceedings of SLTU-CCURL 2020, pages 46–
52, Marseille, France. ELRA.

M. Mohri, F. Pereira, and M. Riley. 2002. Weighted
finite-state transducers in speech recognition.
Computer Speech & Language, 16(1):69–88.

Steven Moran and Daniel McCloy, editors. 2019.
PHOIBLE 2.0. Max Planck Institute for the Sci-
ence of Human History, Jena.

David R. Mortensen, Siddharth Dalmia, and Patrick
Littell. 2018. Epitran: Precision G2P for many lan-
guages. In Proceedings of LREC 2018, Miyazaki,
Japan. ELRA.

A. Oktem et al. 2020. Gamayun - language tech-
nology for humanitarian response. In 2020 IEEE
Global Humanitarian Technology Conference,
pages 1–4.

Pedro Javier Ortiz Suárez, Laurent Romary, and
Benoît Sagot. 2020. A monolingual approach
to contextualized word embeddings for mid-
resource languages. In Proceedings of ACL
2020, pages 1703–1714, Online. ACL.

V. Panayotov et al. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
ICASSP 2015, pages 5206–5210.

Daniel S. Park et al. 2019. SpecAugment: A simple
data augmentation method for automatic speech
recognition. Proceedings of Interspeech 2019,
pages 2613–2617.

Daniel S. Park et al. 2020. SpecAugment on large
scale datasets. ICASSP 2020, pages 6879–
6883.

http://arxiv.org/abs/2102.02841
http://arxiv.org/abs/2102.02841
http://arxiv.org/abs/2102.02841
http://arxiv.org/abs/2102.02841
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.21437/Interspeech.2019-2858
https://doi.org/10.21437/Interspeech.2019-2858
https://doi.org/10.21437/Interspeech.2019-2858
http://arxiv.org/abs/1811.07240
http://arxiv.org/abs/1811.07240
https://doi.org/10.1109/ICASSP.2019.8683690
https://doi.org/10.1109/ICASSP.2019.8683690
https://doi.org/10.1093/bjps/52.2.217
https://doi.org/10.1093/bjps/52.2.217
http://arxiv.org/abs/2103.07040
http://arxiv.org/abs/2103.07040
http://arxiv.org/abs/2103.07040
https://phoible.org/
https://doi.org/10.1109/GHTC46280.2020.9342939
https://doi.org/10.1109/GHTC46280.2020.9342939
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964


51

Niko Partanen and Michael Rießler. 2019. An OCR
system for the Unified Northern Alphabet. In
Proceedings of the Fifth Workshop on Compu-
tational Linguistics for Uralic Languages, pages
77–89, United States. ACL.

Matthias Petursson, Simon Klüpfel, and Jon Gud-
nason. 2016. Eyra - speech data acquisition
system for many languages. In Proceedings of
SLTU 2016, Yogyakarta, Indonesia.

Cal Peyser et al. 2019. Improving performance
of end-to-end ASR on numeric sequences. In
Proceedings of Interspeech 2019.

Jonas Pfeiffer et al. 2020. AdapterHub: A frame-
work for adapting transformers. InProceedings of
EMNLP 2020: Systems Demonstrations, pages
46–54, Online. ACL.

Daniel Povey et al. 2011. The Kaldi speech recog-
nition toolkit. In ASRU 2011.

Rohit Prabhavalkar, Kanishka Rao, Tara N. Sainath,
Bo Li, Leif Johnson, and Navdeep Jaitly. 2017.
A comparison of sequence-to-sequence models
for speech recognition. In Proceedings of Inter-
speech 2017, pages 939–943.

Manasa Prasad, Theresa Breiner, and Daan van
Esch. 2018. Mining training data for language
modeling across the world’s languages. In Pro-
ceedings of SLTU 2018.

Manasa Prasad et al. 2019. Building large-
vocabulary asr systems for languages without
any audio training data. In Proceedings of Inter-
speech 2019.

Vineel Pratap et al. 2020. Massively Multilingual
ASR: 50 Languages, 1 Model, 1 Billion Parame-
ters. In Proceedings of Interspeech 2020, pages
4751–4755.

S. Punjabi, H. Arsikere, and S. Garimella. 2019.
Language model bootstrapping using neural
machine translation for conversational speech
recognition. In ASRU 2019, pages 487–493.

Shruti Rijhwani, Antonios Anastasopoulos, and
Graham Neubig. 2020. OCR post correction for
endangered language texts. In Proceedings of
EMNLP 2020, pages 5931–5942, Online. Asso-
ciation for Computational Linguistics.

Sandy Ritchie et al. 2019. Unified verbalization for
speech recognition synthesis across languages.
In Proceedings of Interspeech 2019.

Sandy Ritchie et al. 2020. Data-driven parametric
text normalization: Rapidly scaling finite-state
transduction verbalizers to new languages. In
Proceedings of SLTU-CCURL 2020.

Andrew Rosenberg et al. 2019. Speech recognition
with augmented synthesized speech. In ASRU
2019.

Attapol Rutherford, Fuchun Peng, and Françoise
Beaufays. 2014. Pronunciation learning for
named-entities through crowd-sourcing. In Pro-
ceedings of Interspeech 2014.

Tara N. Sainath, Rohit Prabhavalkar, Shankar Ku-
mar, Seungji Lee, Anjuli Kannan, David Rybach,
Vlad Schogol, Patrick Nguyen, Bo Li, Yonghui
Wu, Zhifeng Chen, and Chung-Cheng Chiu.
2018. No need for a lexicon? Evaluating the
value of the pronunciation lexica in end-to-end
models. In Proceedings of ICASSP 2018.

H. Sak et al. 2013. Language model verbalization
for automatic speech recognition. In ICASSP
2013.

O. Scharenborg et al. 2020. Speech technology for
unwritten languages. IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
28:964–975.

S. Schneider et al. 2019. wav2vec: Unsupervised
pre-training for speech recognition. Proceedings
of Interspeech, pages 3465–3469.

Tanja Schultz and Alex Waibel. 2001. Experiments
on cross-language acoustic modeling. In Pro-
ceedings of the 7th European Conference on
Speech Communication and Technology.

Frank Seifart et al. 2018. Language documentation
twenty-five years on. Language, 94(4):e324–
e345.

Jack Serrino, Leonid Velikovich, Petar Aleksic, and
Cyril Allauzen. 2019. Contextual recovery of
out-of-lattice named entities in automatic speech
recognition. In Proceedings of Interspeech 2019,
pages 3830–3834, Graz, Austria.

Jiatong Shi, Jonathan D. Amith, Rey Castillo Gar-
cía, Esteban Guadalupe Sierra, Kevin Duh, and
Shinji Watanabe. 2021. Leveraging end-to-end
asr for endangered language documentation: An
empirical study on yoloxóchitl mixtec.

RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yux-
uan Wang, Daisy Stanton, Joel Shor, Ron J.
Weiss, Rob Clark, and Rif A. Saurous. 2018. To-
wards end-to-end prosody transfer for expressive
speech synthesis with Tacotron. In Proceedings
of ICML 2018.

Jose Sotelo, Soroush Mehri, Kundan Kumar,
João Felipe Santos, Kyle Kastner, Aaron
Courville, and Yoshua Bengio. 2017. Char2Wav:
End-to-end speech synthesis. In Proceedings of
ICLR 2017.

http://arxiv.org/abs/1907.01372
http://arxiv.org/abs/1907.01372
https://doi.org/10.21437/Interspeech.2017-233
https://doi.org/10.21437/Interspeech.2017-233
https://doi.org/10.21437/Interspeech.2020-2831
https://doi.org/10.21437/Interspeech.2020-2831
https://doi.org/10.21437/Interspeech.2020-2831
https://doi.org/10.1109/ASRU46091.2019.9003982
https://doi.org/10.1109/ASRU46091.2019.9003982
https://doi.org/10.1109/ASRU46091.2019.9003982
https://doi.org/10.18653/v1/2020.emnlp-main.478
https://doi.org/10.18653/v1/2020.emnlp-main.478
http://arxiv.org/abs/1712.01864
http://arxiv.org/abs/1712.01864
http://arxiv.org/abs/1712.01864
https://doi.org/10.1109/TASLP.2020.2973896
https://doi.org/10.1109/TASLP.2020.2973896
https://doi.org/10.1353/lan.2018.0070
https://doi.org/10.1353/lan.2018.0070
http://arxiv.org/abs/2101.10877
http://arxiv.org/abs/2101.10877
http://arxiv.org/abs/2101.10877
http://arxiv.org/abs/1803.09047
http://arxiv.org/abs/1803.09047
http://arxiv.org/abs/1803.09047


52

Richard Sproat, Alan W. Black, Stanley Chen,
Shankar Kumar, Mari Ostendorf, and Christo-
pher Richards. 2001. Normalization of non-
standard words. Computer Speech and Lan-
guage, 15(3):287–333.

Richard Sproat and Keith Hall. 2014. Applications
of maximum entropy rankers to problems in spo-
ken language processing. In Proceedings of
Interspeech 2014.

Richard Sproat and Navdeep Jaitly. 2017. RNN
approaches to text normalization: A challenge.
arXiv:1611.00068.

Piotr Szymański et al. 2020. WER we are andWER
we think we are. In Findings of EMNLP 2020,
pages 3290–3295, Online. ACL.

Jason Taylor and Korin Richmond. 2019. Analysis
of Pronunciation Learning in End-to-End Speech
Synthesis. In Proceedings of Interspeech 2019,
pages 2070–2074.

Anjana Vakil et al. 2014. lex4all: A language-
independent tool for building and evaluating pro-
nunciation lexicons for small-vocabulary speech
recognition. In Proceedings of ACL 2014: Sys-
tem Demonstrations, pages 109–114, Baltimore,
Maryland. ACL.

A.P.J. van den Bosch, A. Content, W.M.P. Daele-
mans, and B.L.M.F. de Gelder. 1994. Measuring
the complexity of writing systems. Journal of
Quantitative Linguistics, 1(3):178–188. Pagina-
tion: 11.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive
predictive coding. arXiv:1807.03748.

Daan van Esch, Mason Chua, and Kanishka Rao.
2016. Predicting pronunciations with syllabifica-
tion and stress with recurrent neural networks.
In Proceedings of Interspeech 2016.

Daan van Esch and Richard Sproat. 2017. An
expanded taxonomy of semiotic classes for text
normalization. In Proceedings of Interspeech
2017.

Daan van Esch et al. 2019. Writing across the
world’s languages: Deep internationalization for
Gboard, the Google keyboard. Technical report.

Nanne van Noord et al. 2021. Automatic annota-
tions and enrichments for audiovisual archives.
In ICAART 2021.

Ehsan Variani, David Rybach, Cyril Allauzen, and
Michael Riley. 2020. Hybrid autoregressive trans-
ducer (HAT). In Proceedings of ICASSP 2020.

Shafqat Mumtaz Virk et al. 2020. The DReaM
corpus: A multilingual annotated corpus of gram-
mars for the world’s languages. InProceedings of
LREC 2020, pages 878–884, Marseille, France.
ELRA.

Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J. Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy
Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob
Clark, and Rif A. Saurous. 2017. Tacotron: To-
wards end-to-end speech synthesis. In Proceed-
ings of Interspeech 2017, pages 4006–4010.

Shinji Watanabe et al. 2018. ESPnet: End-to-end
speech processing toolkit. In Proceedings of
Interspeech 2018, pages 2207–2211.

Guillaume Wisniewski, Séverine Guillaume, and
Alexis Michaud. 2020. Phonemic transcription
of low-resource languages: To what extent can
preprocessing be automated? In Proceedings of
SLTU-CCURL 2020, pages 306–315, Marseille,
France. ELRA.

Yusuke Yasuda, Xin Wang, and Junichi Yamag-
ishi. 2020. Investigation of learning abilities on
linguistic features in sequence-to-sequence text-
to-speech synthesis. arXiv:2005.10390.

Piotr Zelasko et al. 2020. That Sounds Familiar:
An Analysis of Phonetic Representations Trans-
fer Across Languages. In Proceedings of Inter-
speech 2020, pages 3705–3709.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural models of text nor-
malization for speech applications. Comput. Lin-
guist., 45(2):293–337.

https://doi.org/10.1006/csla.2001.0169
https://doi.org/10.1006/csla.2001.0169
https://doi.org/10.18653/v1/2020.findings-emnlp.295
https://doi.org/10.18653/v1/2020.findings-emnlp.295
https://doi.org/10.21437/Interspeech.2019-2830
https://doi.org/10.21437/Interspeech.2019-2830
https://doi.org/10.21437/Interspeech.2019-2830
https://doi.org/10.3115/v1/P14-5019
https://doi.org/10.3115/v1/P14-5019
https://doi.org/10.3115/v1/P14-5019
https://doi.org/10.3115/v1/P14-5019
https://arxiv.org/abs/1912.01218
https://arxiv.org/abs/1912.01218
https://arxiv.org/abs/1912.01218
https://doi.org/10.21437/Interspeech.2017-1452
https://doi.org/10.21437/Interspeech.2017-1452
https://doi.org/10.21437/Interspeech.2018-1456
https://doi.org/10.21437/Interspeech.2018-1456
https://doi.org/10.21437/Interspeech.2020-2513
https://doi.org/10.21437/Interspeech.2020-2513
https://doi.org/10.21437/Interspeech.2020-2513
https://doi.org/10.1162/coli_a_00349
https://doi.org/10.1162/coli_a_00349

	Introduction
	Poverty of the Stimulus
	Semiotic Classes: Numbers, Times, etc.
	Normal Words: Names, Loanwords, Acronyms, etc.
	Homophones, Homographs, and Context

	Mitigation Techniques
	Large Training Data Sets
	Supplementing Training Data with Synthetic Audio
	Secondary Models
	Combining End-to-End and Conventional Approaches

	Conclusions
	Acknowledgements
	Bibliographical References

