@inproceedings{wenbiao-etal-2024-going,
title = "Going Beyond Passages: Readability Assessment for Book-level Long Texts",
author = "Wenbiao, Li and
Rui, Sun and
Tianyi, Zhang and
Yunfang, Wu",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.100/",
pages = "1298--1309",
language = "eng",
abstract = "{\textquotedblleft}Readability assessment for book-level long text is widely needed in real educational applica-tions. However, most of the current researches focus on passage-level readability assessmentand little work has been done to process ultra-long texts. In order to process the long sequenceof book texts better and to enhance pretrained models with difficulty knowledge, we propose anovel model DSDR, difficulty-aware segment pre-training and difficulty multi-view representa-tion. Specifically, we split all books into multiple fixed-length segments and employ unsuper-vised clustering to obtain difficulty-aware segments, which are used to re-train the pretrainedmodel to learn difficulty knowledge. Accordingly, a long text is represented by averaging mul-tiple vectors of segments with varying difficulty levels. We construct a new dataset of GradedChildren`s Books to evaluate model performance. Our proposed model achieves promising re-sults, outperforming both the traditional SVM classifier and several popular pretrained models.In addition, our work establishes a new prototype for book-level readability assessment, whichprovides an important benchmark for related research in future work.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wenbiao-etal-2024-going">
<titleInfo>
<title>Going Beyond Passages: Readability Assessment for Book-level Long Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Wenbiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Rui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Tianyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wu</namePart>
<namePart type="family">Yunfang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“Readability assessment for book-level long text is widely needed in real educational applica-tions. However, most of the current researches focus on passage-level readability assessmentand little work has been done to process ultra-long texts. In order to process the long sequenceof book texts better and to enhance pretrained models with difficulty knowledge, we propose anovel model DSDR, difficulty-aware segment pre-training and difficulty multi-view representa-tion. Specifically, we split all books into multiple fixed-length segments and employ unsuper-vised clustering to obtain difficulty-aware segments, which are used to re-train the pretrainedmodel to learn difficulty knowledge. Accordingly, a long text is represented by averaging mul-tiple vectors of segments with varying difficulty levels. We construct a new dataset of GradedChildren‘s Books to evaluate model performance. Our proposed model achieves promising re-sults, outperforming both the traditional SVM classifier and several popular pretrained models.In addition, our work establishes a new prototype for book-level readability assessment, whichprovides an important benchmark for related research in future work.”</abstract>
<identifier type="citekey">wenbiao-etal-2024-going</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.100/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>1298</start>
<end>1309</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Going Beyond Passages: Readability Assessment for Book-level Long Texts
%A Wenbiao, Li
%A Rui, Sun
%A Tianyi, Zhang
%A Yunfang, Wu
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G eng
%F wenbiao-etal-2024-going
%X “Readability assessment for book-level long text is widely needed in real educational applica-tions. However, most of the current researches focus on passage-level readability assessmentand little work has been done to process ultra-long texts. In order to process the long sequenceof book texts better and to enhance pretrained models with difficulty knowledge, we propose anovel model DSDR, difficulty-aware segment pre-training and difficulty multi-view representa-tion. Specifically, we split all books into multiple fixed-length segments and employ unsuper-vised clustering to obtain difficulty-aware segments, which are used to re-train the pretrainedmodel to learn difficulty knowledge. Accordingly, a long text is represented by averaging mul-tiple vectors of segments with varying difficulty levels. We construct a new dataset of GradedChildren‘s Books to evaluate model performance. Our proposed model achieves promising re-sults, outperforming both the traditional SVM classifier and several popular pretrained models.In addition, our work establishes a new prototype for book-level readability assessment, whichprovides an important benchmark for related research in future work.”
%U https://aclanthology.org/2024.ccl-1.100/
%P 1298-1309
Markdown (Informal)
[Going Beyond Passages: Readability Assessment for Book-level Long Texts](https://aclanthology.org/2024.ccl-1.100/) (Wenbiao et al., CCL 2024)
ACL