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Abstract

Reinforcement learning with human feedback for aligning large language models (LLMs) trains
a reward model typically using ranking loss with comparison pairs. However, the training pro-
cedure suffers from an inherent problem: the uncontrolled scaling of reward scores during rein-
forcement learning due to the lack of constraints while training the reward model. This paper
proposes a Prior Constraints-based Reward Model (PCRM) training method to mitigate this
problem. PCRM incorporates prior constraints—specifically, length ratio and cosine similarity
between outputs of each comparison pair—during reward model training to regulate optimiza-
tion magnitude and control score margins. We comprehensively evaluate PCRM by examining its
rank correlation with human preferences and its effectiveness in aligning LLMs via RL. Exper-
imental results demonstrate that PCRM significantly improves alignment performance by effec-
tively constraining reward score scaling. As another bonus, our method is easily integrated into
arbitrary rank-based alignment methods, such as direct preference optimization, and can yield
consistent improvement. The code is available at https://github.com/wangclnlp/
DeepSpeed-Chat-Extension/tree/PCRM.

1 Introduction

Reinforcement learning with human feedback (RLHF) has been proven to be an advanced technology to
align large language models (LLMs) with human preferences (Ouyang et al., 2022; Ji et al., 2023; Wang
et al., 2023b). It builds upon preference data, which rates and compares different outputs given the same
input, where this rating is conducted by either human annotators or LLMs (Ouyang et al., 2022; Lee et al.,
2023; Cui et al., 2023; Dubois et al., 2024). In practice, RLHF trains a reward model on the preference
data with ranking loss for higher scores on preferred outputs than dispreferred ones. Then, RL algorithms
such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) are employed to fine-tune the LLM
with the aim of optimizing this reward. During RL training, the reward model will give scores as signals,
and the LLM will align the preference by increasing the probabilities of sampled outputs with higher
reward scores. It is discernible that the alignment of the LLM is significantly influenced by how well the
reward model is trained.

However, the training procedure of the reward model actually suffers from a failure mode: it learns
from the preference data with the standard ranking loss yet provides a reward score for the sampled
outputs during RL training. This training mode causes an inherent problem: the ranking loss increases
the score margin between the outputs of this comparison without constraint during the training procedure,
which makes an uncontrollable scale of scores in the process of RL training. For instance, the reward
model trained by ranking loss can predict reward scores with a relatively large margin to two sampled
outputs that do not differ very much (Zhu et al., 2023).

To address the problem, we propose a Prior Constraints-based Reward Model (PCRM) training
method in this paper, which incorporates prior constraints while training the reward model. Specifically,
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we select two features of the preference data for designing prior constraints: length ratio and cosine
similarity of the outputs with the same prompt. The length ratio is computationally less demanding and
directly reflects data differences, while the cosine similarity captures deeper semantic features despite
being more computationally intensive. These constraints effectively regulate the optimization magnitude
across different outputs for the same input, thereby controlling the margin of scores predicted by the
reward model.

We comprehensively evaluate the proposed PCRM in the following two ways. Firstly, we test the rank
correlation between the preferences predicted by PCRM and human preferences. It can assess the extent
to which the reward model can serve as a surrogate for human-derived preference signals. Secondly, we
verify the effectiveness of the PCRM in aligning an LLM via RL. This also demonstrates the influence of
constraints on alignment performance straightly. Notably, PCRM can yield a +2.48% improvement in the
GPT-4 win rate for the dialogue task compared to the traditional RLHF. Furthermore, we integrate our
method into direct preference optimization (DPO), a rank-based alignment method. The results show
that our method can also be effective in improving the rank-based alignment methods, e.g., a 2.95%
increase in the GPT-4 win rate on the dialogue task compared to DPO.

2 Related Work

Reinforcement learning with human feedback (RLHF) is a crucial technique to ensure that the behaviours
of large language models (LLMs) are consistent with human preferences (Stiennon et al., 2020; Ouyang
et al., 2022; Wang et al., 2023b). Recent works resorted to building a better reward model to improve
the performance of RLHF on LLMs. These methods could be classified into three groups. The first
group aimed to efficiently produce human preference data (Dubois et al., 2024; Cui et al., 2023; Lee et
al., 2023). For instance, Lee et al. (2023) directly employed an LLM to annotate the comparison pairs.
Significantly, the reward model trained on the LLM-annotated comparison pairs can achieve closer per-
formance when applied to RLHF than the one trained on human-annotated comparison pairs. The second
group tended to design fine-grained reward models to provide multiple reward scores for different reward
criteria (Cheng et al., 2023; Wang et al., 2023b; Wu et al., 2024; Zhong et al., 2024). Notably, Wang et al.
(2023b) learned various evaluation models from an LLM as reward models on the summarization task,
including reward models scored for relevance, scored for fluency, scored for consistency, and scored for
coherence. The third group that has attracted less attention generally explored how to merge multiple re-
ward models in RLHF, such as reward model ensemble (Coste et al., 2023) and learning reward weights
(Min et al., 2024). Different from these methods, in this paper, we proposed a superior training schema
that enables this reward model to give a more accurate score in RLHF. Specifically, we refined the con-
ventional ranking loss, typically utilized in reward model training, by incorporating prior constraints.
These constraints are designed to regulate the margin between the scores of various outputs generated
from the same input.

To the best of our knowledge, there is almost no previous work in training a reward model with prior
constraints. The few related one is LLaMA2 (Touvron et al., 2023), which added a margin component in
ranking loss for training each comparison pair. Although this margin simulates a constraint, it requires
a manual annotation, which significantly increases the cost of training the reward model. Additionally,
this work did not provide a specialized exploration or analysis on the topic of constraining the margin
of scores during training reward models. In comparison, all of our prior constraints were computed
automatically and did not require any human annotation. We also provided sufficient theoretical analysis
and experiments to constrain the margin of scores. Furthermore, although there are some methods such
as DPO (Amini et al., 2024) and RRHF (Yuan et al., 2023) that circumvent the need for training reward
models, they still suffer from an inherent limitation from ranking loss, which is mentioned in DPO
(Amini et al., 2024) without a solution. Our proposed PCRM can be easily extended to these methods to
yield some benefits (See Section 5.7.2).
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3 Background

Human-preference alignment training is a key technique to ensure that the behaviours of LLMs are
consistent with human preferences. Recent efforts to align LLMs have mainly been conducted via RLHF.
It typically includes three stages: 1) collecting preference data, 2) training a reward model with ranking
loss, and 3) optimizing an LLM against the reward model via RL.

3.1 Collecting Preference Data
The preference data consists of the given input x and the corresponding different outputs sampled from
LLMs trained by SFT (denoted as πSFT

θ ) or annotated by humans, which we refer to as (y1, y2, · · · , yn|x).
In the preference data, the different outputs are rated and ranked by humans or LLMs with specific aspects
(Ouyang et al., 2022; Dubois et al., 2024), which are denoted as (y(1) ≻ y(2) ≻ · · · ≻ y(i) ≻ y(j) ≻
· · · ≻ y(n)|x), where y(1) is the best while y(n) is the worst.

3.2 Training Reward Model
After preference data collection, we can train a reward model πRM

θ from the preference data, where
the training objective is to fit human preference. Note that we use πSFT

θ to initialize the reward model.
Suppose r∗ as the ideal model of human preference, based on the Bradley-Terry model (Bradley and
Terry, 1952), the distribution of human preference PHuman

(
y(i) ≻ y(j)|x

)
can be written as:

PHuman

(
y(i) ≻ y(j)|x

)
=

exp
(
r∗

(
y(i), x

))
exp

(
r∗(y(i), x)

)
+ exp

(
r∗(y(j), x)

) (1)

= σ
(
r∗(y(i), x)− r∗(y(j), x)

)
(2)

where y(i) denotes the data ranking i and σ denotes the Sigmoid activation function. When dealing
with multiple outputs more than two, similarly, we can induce PHuman(·) based on the more general
Plackett-Luce model (Plackett, 1975; Luce, 2005):

PHuman

(
y(1) ≻ y(2) ≻ · · · ≻ y(i) ≻ y(j) ≻ · · · ≻ y(n)|x

)
=

n∏
i=1

exp
(
r∗(y(i), x)

)∑n
j=i exp

(
r∗(y(j), x)

) (3)

To learn the preference distribution, we need to increase the probability of preferred outputs. Here, it is
typically achieved by a negative log-likelihood loss function:

Lr = − logPHuman

(
y(1) ≻ y(2) ≻ · · · ≻ y(i) ≻ y(j) ≻ · · · ≻ y(n)|x

)
(4)

= −
n∑

i=1

log
exp

(
r∗

(
y(i), x

))∑n
j=i exp

(
r∗

(
y(j), x

)) (5)

Specially, when n = 2 which means there is only a comparison pair, the loss would be:

Lr = − logPHuman

(
y(i) ≻ y(j)

)
(6)

= − log σ
(
r∗

(
y(i), x

)
− r∗

(
y(j), x

))
(7)

3.3 RL Training Against the Reward Model
In the process of RL training, we use the reward output πRM

θ as signals, combined with an RL algorithm.
Taking PPO as an instance, the corresponding loss for this training sample is given by:

max
πθ

Ex∼D,y∼πθ

[
πRM
θ (x, y)

]
− βDKL

[
πθ||πSFT

θ

]
(8)

where D is the dataset of RL training, x is the input, and y for the sampled outputs. DKL is the KL
dispersion which measures the distributional difference between πSFT

θ and πθ, multiplied by β which
controls their distance, as the bigger β is, the more significant constraint is applied.
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4 Prior Constraints-based Reward Model

Motivated by the challenges posed by the uncontrollable scale of scores in the reward model during the
RL training process, our aim is to constrain the score margin between the outputs of this comparison
when training the reward model. We propose the PCRM method to achieve this. Unlike conventional
ranking loss, the proposed PCRM can constrain the maximum score margin between the outputs of each
comparison with the length and cosine similarity features. In the following subsections, we will describe
our PCRM in detail.

4.1 Optimization Objective of PCRM
Given the input x and the reward model πRM

θ , the probability of y1 ≻ y2 can be written as:

PπRM
θ

(y1 ≻ y2|x) (9)

= PπRM
θ
(y1 − y2 ≻ 0|x) (10)

= σ
(
πRM
θ (y1, x)− πRM

θ (y2, x)
)

(11)

= σ
(
∆πRM

θ
(y1, y2, x)

)
(12)

where ∆πRM
θ
(·) denotes the margin in the evaluation scores predicted by the reward model πRM

θ . If the
reward model learns this probability with a standard ranking loss, the reward score of the preferred output
will increase; conversely, the reward score of the dispreferred output will decrease. This endeavour aims
to maximize the margin between the score of the preferred and dispreferred outputs as much as possible.
However, in RLHF, we do not just expect the reward model to be able to distinguish which output is more
preferred, but also to be able to give information on how much more one input is preferred. Consequently,
we conjecture that facilitating the reward model to learn an appropriate score margin across different
outputs could improve the performance of RLHF.

We achieve this goal by adding a maximum margin constraint, denoted as ∆∗(·), where it takes values
in the range (0,+∞). We re-derive Equation 9 with the constraint ∆∗(·) as follows:

PπRM
θ

(∆∗(y1, y2, x) ≻ y1 − y2 ≻ 0|x) (13)

= PπRM
θ

(
∆∗ > ∆πRM

θ
> 0

)
(14)

= PπRM
θ

(
∆∗ > ∆πRM

θ

)
× PπRM

θ

(
∆πRM

θ
> 0

)
(15)

= σ
(
∆∗ −∆πRM

θ

)
× σ

(
∆πRM

θ

)
(16)

Based on the above derivation, we have the negative log-likelihood loss similar to the vanilla one:

LPCRM = − logPπRM
θ

(
∆∗ > ∆πRM

θ
> 0

)
(17)

= − log σ
(
∆∗ −∆πRM

θ

)
− log σ

(
∆πRM

θ

)
(18)

We define the maximum margin constraint through a negative correlation with the similarity between
y1 and y2:

∆∗(y1, y2, x) =
β1

Sim(y1, y2, x) + β2
+ β3 (19)

where Sim(·) denotes the similarity of the different outputs. β1 controls the magnitude of the ∆∗(·), β2
controls the range of variation and β3 controls the offset. We employ length ratio and cosine similarity
to estimate Sim(·). When using the length ratio to estimate Sim(·), Sim(·) can given by:

Simlen rat(y1, y2, x) =
min(ϕ(y1), ϕ(y2))

max(ϕ(y1), ϕ(y2))
(20)
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where ϕ(y) denotes the length of y. Note that we do not need the input x to be involved when employing
the length ratio to estimate the Sim(·). When considering the cosine similarity as another estimation of
the Sim(·), written as:

Simcos sim(y1, y2, x) = 1− 1

π
× arccos

(
E(x, y1) · E(x, y2)

max(||E(x, y1)||2, ϵ) ·max(||E(x, y2)||2, ϵ)

)
(21)

where ϵ is a small value to avoid division by zero and arccos(·) is the inverse of the cosine function.
Inspired by the strong text encoding capability of the pre-trained model (Devlin et al., 2018; Xiao and
Zhu, 2023), we employ a pre-trained model like BERT to compute E(·). There are other choices to
define Sim(·) for specific tasks. For instance, we can use the ROUGE function (Lin, 2004) to define
Sim(·) in the summarization task.

4.2 Analysis of the Optimization for PCRM
To better understand the constrained optimization for PCRM, we take the derivative of the loss function.
The gradient of LPCRM with respect of the parameters θ is:

∇θLPCRM = ∇θ∆πRM
θ

×
(
σ
(
∆πRM

θ
−∆∗

)
− σ

(
−∆πRM

θ

))
(22)

As a comparison, we also take the derivative of one for vanilla reward loss, which can be written as:

∇θLRM = ∇θ∆πRM
θ

×
(
−σ

(
−∆πRM

θ

))
(23)

Compare Equation 22 with 23, we can find their difference σ
(
∆πRM

θ
−∆∗

)
which is always positive

and will decrease the coefficient of ∇θ∆πRM
θ

, constraining the optimization thereby.

When σ
(
∆πRM

θ
−∆∗

)
− σ

(
−∆πRM

θ

)
= 0 in Equation 22, it implies that ∆πRM

θ
−∆∗ = −∆πRM

θ
due

to the monotonic increase of the Sigmoid activation function. Thus, we can deduce ∆πRM
θ

= ∆∗

2 . Then

we can get the conclusion that when ∆πRM
θ

< ∆∗

2 , the coefficient of ∇θ∆πRM
θ

has the same sign with the
one of the vanilla reward gradient, meaning the same optimization direction with the origin; in contrast,
when ∆πRM

θ
> ∆∗

2 , there will be opposite optimization direction decreasing the margin of reward scores.
In this way, we can control the distance of scores of different outputs while optimizing the reward model.

5 Experiments

We evaluate the proposed PCRM in the following two ways. Firstly, we test the reward model trained
by PCRM. Secondly, we analyze the performance of applying this trained reward model to RLHF. We
conduct experiments on the commonly used generation tasks, including dialogue and summarization.

5.1 Datasets
The datasets used for each task are as follows:

• Dialogue: We employed AlpacaFarm (Dubois et al., 2024) dataset on dialogue task, which con-
sists of 10K supervised fine-tuning split, 10K pairwise preference split, 20K unlabeled split for RL
training, and 2K validation split based on 52k Alpaca data (Taori et al., 2023). For evaluation, we
employed their evaluation set, which contains 805 instructions selected from a series of open-source
datasets with real-world user interactions as reference instructions.

• Summarization: We used the filtered versions of the TL;DR dataset and human feedback dataset
provided by OpenAI (Stiennon et al., 2020) on summarization task, the former one for instruction
tuning and alignment, and the latter one for reward modeling. The TL;DR dataset is filtered to
ensure quality and contains 123.2K samples in the final version, including 116.7K for training,
6.4K for validating, and 6.5K for testing. The large, high-quality preference dataset of human
comparisons between summaries contains a 92.9K training set, a 33.1K validation set, and a 50.7K
test set. Due to the enormous computational cost caused by the vast testing set, we randomly
selected 10% as our final test set.
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5.2 Settings

Task Sim(·) β1 β2 β3 max len

Dialogue
len rat 10 0.001 -5

512
cos sim 20 0.001 -15

Summarization
len rat 10 0.001 -5

1024
cos sim 20 0.001 -15

Table 1: The hyper-parameters used in our experiments.

We conducted our experiments based on DeepSpeed-Chat1 with a cross-entropy loss on supervised
fine-tuning, where prompt parts were masked, and a ranking loss was employed by reward modeling.
We set the maximum sequence length to 512 and 1024 for the dialogue and summarization tasks, respec-
tively. For calculating the similarity between pair-wise data for setting prior constraints, we employed
the BERT-base model (Devlin et al., 2018) to encode paired data and then calculated the similarity be-
tween [CLS] embeddings. Considering that the maximum sequence length supported by BERT is 512;
however, the sequence length is 1024 for summarization, we set the tokenizer to truncate from the left,
i.e., truncating part of the prompt and calculating the semantic similarity of the remaining part. Addi-
tionally, the value of β1, β2 and β3 mentioned in Eq. 19 are shown in Table 1. The performance of other
hyper-parameters is reported in Section 5.7.1. Furthermore, we employed the top-p sampling method in
the process of generation, where the temperature and the p were set to 0.75 and 0.95, respectively.

5.3 Evaluation Metrics

We evaluated the effectiveness of our method comprehensively from two dimensions: training reward
models and aligning LLMs with the trained reward models. For training reward models, we scored
the pair-wise test set. Based on this, we calculated the accuracy of the predicted scores (for details of
calculating accuracy, see Appendix A). We trained three epochs on the training set and saved the model
for each epoch. We selected the best one with the validation set. We compared the performance of the
vanilla method with ours, as shown in the following section. To align LLMs with the trained reward
models, we used different metrics depending on the tasks. Specifically, for the dialogue task, we used
PandaLM (Wang et al., 2023c) and GPT-4 to choose a better one from the model output and the reference
and calculate the win rate following Rafailov et al. (2024). For the summarization task, except for GPT-4,
we also employ ROUGE (Lin, 2004) and BARTScore (Yuan et al., 2021) to evaluate the quality of the
summary generated by the model from the posts.

5.4 Results of Training Reward Models

The performance of the PCRM on the dialogue and the summarization task are presented in Table 2. We
can see that the accuracy of the PCRM increases slightly, either by calculating similarity with cosine
similarity or length ratio. As a comparison, we test the reward models trained with random and fixed
constraints, whose performance is close to the vanilla one with some decrease. This result demonstrates
the importance of the prior information. The appropriate value of the constraints also affects the perfor-
mance because the training object of PCRM can be divided into two parts: achieving higher accuracy
and controlling the distribution of the reward scores. The latter part may conflict with the former under
extreme constraints (See Section 5.7.1).

To further explore the distribution of reward scores, we visualize the relationship between the margin
of predicted reward scores and the similarity of the paired data on dialogue task, with or without con-
straints in Figure 1. The area with deeper colour in the figure represents more points gathering at that
position. The points in Figure 1 (a) are more dispersed than the ones shown in Figure 1 (b) below, as the
upper right part of the figures with constraints are more clean. From Figure 1 (b), we can observe that

1https://github.com/microsoft/DeepSpeedExamples
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Method Dialogue Summarization

Vanilla RM 54.93 72.20
PCRM-Random 54.13 71.70
PCRM-Fixed 54.40 71.70
PCRM-Length (Ours) 55.87 72.50
PCRM-Cosine (Ours) 56.53 72.60

Table 2: The accuracy of reward models on the dialogue and summarization task. “-Random” means
using random constraints, “-Fixed” means using fixed one, “-Cosine” means using constraints calculated
by cosine similarity, and “-Length” for length ratio.
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Figure 1: The distribution between the margin of predicted reward scores and the similarity of paired
data (calculated by cosine similarity or length ratio) with or without constraint on the dialogue task.
Each green point corresponds to a single data sample. The x-axis refers to the similarity calculated by
the cosine similarity of sentence embedding or by the ratio of sentence length. The y-axis refers to the
margin of the reward scores.

the margin of those points is limited to a lower level because of their higher similarity. This observation
confirms that our method can provide an effective constraint during the training of the reward model. We
can draw similar observations on the summarization task (See Figure 3 in Appendix B).

5.5 Results of Dialogue

The results of our alignment with PCRM on downstream tasks, as detailed in Table 3, show that PCRM
significantly outperforms the vanilla reward model. Specifically, when utilizing cosine similarity, PCRM
surpasses RLHF by +3.18 points on PandaLM and +2.48 points on the GPT-4 win rate in dialogue task.
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Method Dialogue Summarization

PandaLM GPT-4 Win ROUGE-L BARTScore GPT-4 Win

SFT 65.75 55.77 22.93 -6.31 41.83

RLHF 72.73 60.13 25.10 -5.17 70.53
PCRM-Random 70.81 59.75 24.03 -6.02 50.53
PCRM-Fixed 69.34 60.71 24.87 -6.09 52.21
PCRM-Length (Ours) 73.52 62.30 22.76 -4.90 71.87
PCRM-Cosine (Ours) 75.91 62.61 25.97 -5.34 72.52

Table 3: The performance of alignment with PCRM on downstream tasks.

β1 β3
Accuracy with

Simcos sim(·)
Accuracy with

Simlen rat(·)
10 -3 54.79 55.87
10 -5 55.73 55.87
10 -7 53.92 55.33
10 -9 52.26 51.60
20 -13 53.73 55.33
20 -15 56.53 55.73
20 -17 54.80 55.47
20 -19 55.20 55.20
30 -25 54.80 55.60
40 -35 55.60 55.07

Table 4: The performance of PCRM with different constraints measured by accuracy. The range and the
numerical size of the constraints are controlled with different pairs of β1, β3, and β2 is fixed to 0.001 for
computational stability.

The importance of meaningful constraints cannot be overstated. Our tests with PCRM using both
random and fixed constraints revealed that these constraints were either marginally effective or even
detrimental to alignment progress. Furthermore, we found that prior constraints enriched with additional
information yielded better results. This is evident from comparing the effectiveness of length ratio and
cosine similarity in calculating similarity; the superior performance of cosine similarity can be attributed
to its ability to capture implicit prior semantic information of sentences, whereas the length ratio ap-
proach is more superficial and offers less valuable information.

5.6 Results of Summarization

Except for the dialogue task, we achieve similar results with our PCRM method on the summarization
task as shown in Table 3. Specifically, PCRM with cosine similarity outperforms RLHF by +0.87 points
on ROUGE-L and +1.99 points on GPT-4 win rate. As to PCRM with length ratio, it outperforms
RLHF by +0.27 points on BART Score and +1.34 points on GPT-4 win rate. It is obvious that there
is a misalignment between ROUGE-L and BART Score- the models with high BART Score may not
necessarily achieve high ROUGE-L scores. We attribute this phenomenon to the probable low correlation
with human judgments, which is also reported in Wang et al. (2023a).

5.7 Analysis

5.7.1 Performance of the Variety Range and Numerical Size of Constraints on PCRM
The variety range and numerical size of constraints are two key factors that control the maximum score
margin and the strength of constraints. Therefore, we conduct experiments to study the impact of the
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Method PandaLM GPT-4 Win

SFT 65.75 55.77

DPO 75.64 60.96
PCDPO-Length (Ours) 77.02 61.11
PCDPO-Cosine (Ours) 78.11 63.91

Table 5: The experiment results of PCDPO.

variety range and the numerical size of constraints. Specifically, we explore with β2 fixed to 0.001 in
Equation 19 for computational stability, and different β1, β3, for variety range and numerical size on
PCRM. The results are summarized in Table 4. From the results, we can observe that the unsuitable
constraints may hurt the performance. We conjecture that the larger one may weaken the effect of
distribution control, and the smaller one may conflict with the typical optimization. Based on these
experimental results, we find that the optimal β1 and β3 are 20 and -15 for the cosine similarity constraint;
the optimal β1 and β3 are 10 and -5 for the length ratio constraint. Note that β2 prevents the occurrence
of a similarity Sim(·) of 0, so we do not tune it and simply set a relatively small value.

5.7.2 Integrating PCRM to DPO
Rafailov et al. (2024) proposes a direct preference optimization (DPO) method that bypasses the reward
modeling step and directly optimizes an LLM using preference data. However, this method still performs
optimization based on ranking loss, which has the same limitation during training with preference data.
Therefore, we attempt to integrate the proposed PCRM into DPO, constraining the direct preference
optimization. Suppose we have the LLM trained by SFT πSFT

θ , and based on it, we fine-tune the model
with DPO and preference data (y1, y2, x) ∼ D where y1 ≻ y2. Rafailov et al. (2024) points out that the
reward model can be represented as follows with some mathematical transformation on the optimization
objective of PPO:

πRM
θ (y, x) = β log

πRM
θ (y|x)

πSFT
θ (y|x)

+ β logZ(x) (24)

where Z(x) = Σyπ
SFT
θ (y|x) exp

(
1
βπ

RM
θ (y|x)

)
. Bring the above equation into Equation 16 and 18, we

can obtain the loss of Prior Constraints-based DPO (PCDPO):

LPCDPO = − logPπRM
θ

(
∆∗ > ∆πRM

θ
> 0

)
(25)

= − log σ
(
∆∗ −∆πRM

θ

)
− log σ

(
∆πRM

θ

)
(26)

= − log σ

(
∆∗ − β log

πRM
θ (y1|x)

πSFT
θ (y1|x)

+ β log
πRM
θ (y2|x)

πSFT
θ (y2|x)

)
− log σ

(
β log

πRM
θ (y1|x)

πSFT
θ (y1|x)

− β log
πRM
θ (y2|x)

πSFT
θ (y2|x)

)
(27)

With the theory above, we conduct experiments with the constraints on the alpaca dataset. The ex-
perimental results are shown in Table 5. From the results, we can find that PCRM can yield consistency
improvements in DPO. Notably, when armed with the cosine similarity constraint, we can obtain a +2.95
points improvement on the GPT-4 win rate.

5.7.3 Inference with Different Temperature
It is known to us that temperature influences the performance of inference, so we make inferences with
different sampling temperatures on the dialogue task three times and calculate their mean in case of
random variations while comparing different methods. Results are reported in Figure 2.

The experiment results are consistent with the previous. Our method, PCRM with cosine similarity,
outperforms the vanilla reward model no matter which sampling temperature is used, and the increase

CC
L 
20
24

Proceedings of the 23rd China National Conference on Computational Linguistics, pages 1395-1407, Taiyuan, China, July 25 - 28, 2024.
Volume 1: Main Conference Papers

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1403



0.00 0.25 0.50 0.75 1.00
55.0

60.0

65.0

70.0

75.0

80.0

Sampling Temperature

Pa
nd

aL
M

SFT PPO-baseline
PPO-len rat PPO-cos sim

Figure 2: PandaLM scores for different sampling temperatures using different methods. For each di-
alogue model, we conduct the generation three times and report the mean score of these generated re-
sponses.

of PCRM with length ratio outperforms most of the temperatures. As analyzed before, we infer that the
performance of the length ratio is limited due to the easy-to-learn prior information.

6 Conclusions

RLHF plays an important part in applications based on LLMs for their ability to align language models
with human preferences. As a proxy for human preferences, the reward model makes a significant
contribution. We have introduced PCRM, a method of training reward models with prior constraints
to better control the distribution of reward scores without sacrificing prediction accuracy. Instead of
optimizing the vanilla reward model with the goal of maximizing the margin of scores, PCRM restricts
the optimization process with the provided prior information and fits the distribution of reward scores for
better alignment. Furthermore, this method is applicable to DPO, which treats the language model as a
reward model and optimizes it directly. Through experiments on downstream tasks, we have validated
the effectiveness of this method.

7 Limitations

Our results raise several questions that are beyond the scope of the present study: How can we determine
the appropriate range of constraints for different tasks or datasets? For example, we explore hyperpa-
rameters in dialogue and summarization tasks, what about when it comes to a brand new task? Can the
function of the constraints be replaced with any other prior information, and if so, will that be effective?
Finally, it would be advantageous if the prior constraints could be learned automatically from data, rather
than being manually set.
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Appendix A. Calculating Accuracy of the Reward Scores

Suppose we have a test set for human preference (x, y1, y2) ∼ Dtest, in which y1 is preferred than y2
with the same x by human, and the corresponding scores predicted by the reward model are πRM

θ (y1, x),
πRM
θ (y2, x). The accuracy of the scores is defined as:

Acc(πRM
θ ,Dtest) =

Count(x,y1,y2)∼Dtest

(
πRM
θ (y1, x) > πRM

θ (y2, x)
)

Count ((x, y1, y2) ∈ Dtest)
(28)

where Count(·) denotes the total number of the samples that meet the condition.

Appendix B. Distribution of Reward Scores for Summarization Task
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Figure 3: The distribution between the margin of predicted reward scores and the similarity of paired
data (calculated by cosine similarity or length ratio) with or without constraint on the summarization
task.
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