@inproceedings{huaiming-etal-2024-ji,
title = "基于对比学习和排名一致性的古代汉语翻译质量评估模型({A}ncient {C}hinese translation quality evaluation model based on contrastive learning and ranking consistency)",
author = "Huaiming, Li and
Yanqiu, Shao and
Wei, Li",
editor = "Sun, Maosong and
Liang, Jiye and
Han, Xianpei and
Liu, Zhiyuan and
He, Yulan",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.12/",
pages = "171--182",
language = "zho",
abstract = "{\textquotedblleft}当前,虽然机器翻译的自动评估技术已展现出良好的性能,但将它们应用于古代汉语到现代汉语的翻译场景时效果并不理想。一方面,这些传统方法能较好地比较质量差异较大的译文的好坏,但是在评估质量相差不大的译文时往往难以区分优劣。另一方面,古代汉语的省略和复杂句式常导致翻译过程中出现漏译现象,而传统评估指标往往会给这类较差的译文偏高的分数。在本文中,我们提出了一种基于对比学习和排名一致性的古代汉语到现代汉语的翻译质量评估模型(CRATE)。该模型通过确保语义相似度和匹配度的排名一致性捕捉译文质量的细粒度排名信息。另外,我们在使用对比学习方法训练译文跟原文的匹配模型时,将原文自身作为负样本,有效解决了传统评估指标在译文出现漏译情况下仍给出高评分的问题。为了证明我们模型的有效性,我们构建了高质量的古代汉语到现代汉语翻译的人工评分测试集。实验结果表明,我们的模型优于强大的基线,与人类评分取得了更显著的相关性。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huaiming-etal-2024-ji">
<titleInfo>
<title>基于对比学习和排名一致性的古代汉语翻译质量评估模型(Ancient Chinese translation quality evaluation model based on contrastive learning and ranking consistency)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Huaiming</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shao</namePart>
<namePart type="family">Yanqiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiye</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“当前,虽然机器翻译的自动评估技术已展现出良好的性能,但将它们应用于古代汉语到现代汉语的翻译场景时效果并不理想。一方面,这些传统方法能较好地比较质量差异较大的译文的好坏,但是在评估质量相差不大的译文时往往难以区分优劣。另一方面,古代汉语的省略和复杂句式常导致翻译过程中出现漏译现象,而传统评估指标往往会给这类较差的译文偏高的分数。在本文中,我们提出了一种基于对比学习和排名一致性的古代汉语到现代汉语的翻译质量评估模型(CRATE)。该模型通过确保语义相似度和匹配度的排名一致性捕捉译文质量的细粒度排名信息。另外,我们在使用对比学习方法训练译文跟原文的匹配模型时,将原文自身作为负样本,有效解决了传统评估指标在译文出现漏译情况下仍给出高评分的问题。为了证明我们模型的有效性,我们构建了高质量的古代汉语到现代汉语翻译的人工评分测试集。实验结果表明,我们的模型优于强大的基线,与人类评分取得了更显著的相关性。”</abstract>
<identifier type="citekey">huaiming-etal-2024-ji</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.12/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>171</start>
<end>182</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于对比学习和排名一致性的古代汉语翻译质量评估模型(Ancient Chinese translation quality evaluation model based on contrastive learning and ranking consistency)
%A Huaiming, Li
%A Yanqiu, Shao
%A Wei, Li
%Y Sun, Maosong
%Y Liang, Jiye
%Y Han, Xianpei
%Y Liu, Zhiyuan
%Y He, Yulan
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F huaiming-etal-2024-ji
%X “当前,虽然机器翻译的自动评估技术已展现出良好的性能,但将它们应用于古代汉语到现代汉语的翻译场景时效果并不理想。一方面,这些传统方法能较好地比较质量差异较大的译文的好坏,但是在评估质量相差不大的译文时往往难以区分优劣。另一方面,古代汉语的省略和复杂句式常导致翻译过程中出现漏译现象,而传统评估指标往往会给这类较差的译文偏高的分数。在本文中,我们提出了一种基于对比学习和排名一致性的古代汉语到现代汉语的翻译质量评估模型(CRATE)。该模型通过确保语义相似度和匹配度的排名一致性捕捉译文质量的细粒度排名信息。另外,我们在使用对比学习方法训练译文跟原文的匹配模型时,将原文自身作为负样本,有效解决了传统评估指标在译文出现漏译情况下仍给出高评分的问题。为了证明我们模型的有效性,我们构建了高质量的古代汉语到现代汉语翻译的人工评分测试集。实验结果表明,我们的模型优于强大的基线,与人类评分取得了更显著的相关性。”
%U https://aclanthology.org/2024.ccl-1.12/
%P 171-182
Markdown (Informal)
[基于对比学习和排名一致性的古代汉语翻译质量评估模型(Ancient Chinese translation quality evaluation model based on contrastive learning and ranking consistency)](https://aclanthology.org/2024.ccl-1.12/) (Huaiming et al., CCL 2024)
ACL