@inproceedings{cairang-etal-2024-rong,
title = "融合多元特征表示的藏文命名实体识别方法赵小兵{\ensuremath{*}}2(Research on {T}ibetan Named Entity Recognition Using Multi-Feature Fusion Representation)",
author = "Ejian, Cairang and
Zhou, Maoke and
Chen, Bo and
Zhao, Xiaobing",
editor = "Maosong, Sun and
Jiye, Liang and
Xianpei, Han and
Zhiyuan, Liu and
Yulan, He",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.26/",
pages = "340--351",
language = "zho",
abstract = "``本文针对基于音节嵌入方式的藏文命名实体识别(TNER)中词汇信息和音节部件信息忽略的问题,提出了基于交叉Transformer架构的MECT-TL模型,融合了藏文音节信息、词汇信息和音节部件信息的多元数据特征。MECT-TL通过平面网络结构将藏文音节与词汇信息结合,并整合音节部件信息,有效提升了藏文实体识别的准确性。实验结果显示,相较于主流的TNER基准模型BiLSTM-CRF,本文模型在F1值上提高了5.14个百分点,与基于Transformer架构的TENER模型相比提高了4.18个百分点。这表明,融合藏文词汇和音节部件信息的方法可以显著提高TNER任务的性能。''"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cairang-etal-2024-rong">
<titleInfo>
<title>融合多元特征表示的藏文命名实体识别方法赵小兵\ensuremath*2(Research on Tibetan Named Entity Recognition Using Multi-Feature Fusion Representation)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cairang</namePart>
<namePart type="family">Ejian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maoke</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Maosong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Jiye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Xianpei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Zhiyuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Yulan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“本文针对基于音节嵌入方式的藏文命名实体识别(TNER)中词汇信息和音节部件信息忽略的问题,提出了基于交叉Transformer架构的MECT-TL模型,融合了藏文音节信息、词汇信息和音节部件信息的多元数据特征。MECT-TL通过平面网络结构将藏文音节与词汇信息结合,并整合音节部件信息,有效提升了藏文实体识别的准确性。实验结果显示,相较于主流的TNER基准模型BiLSTM-CRF,本文模型在F1值上提高了5.14个百分点,与基于Transformer架构的TENER模型相比提高了4.18个百分点。这表明,融合藏文词汇和音节部件信息的方法可以显著提高TNER任务的性能。”</abstract>
<identifier type="citekey">cairang-etal-2024-rong</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.26/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>340</start>
<end>351</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 融合多元特征表示的藏文命名实体识别方法赵小兵\ensuremath*2(Research on Tibetan Named Entity Recognition Using Multi-Feature Fusion Representation)
%A Ejian, Cairang
%A Zhou, Maoke
%A Chen, Bo
%A Zhao, Xiaobing
%Y Maosong, Sun
%Y Jiye, Liang
%Y Xianpei, Han
%Y Zhiyuan, Liu
%Y Yulan, He
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F cairang-etal-2024-rong
%X “本文针对基于音节嵌入方式的藏文命名实体识别(TNER)中词汇信息和音节部件信息忽略的问题,提出了基于交叉Transformer架构的MECT-TL模型,融合了藏文音节信息、词汇信息和音节部件信息的多元数据特征。MECT-TL通过平面网络结构将藏文音节与词汇信息结合,并整合音节部件信息,有效提升了藏文实体识别的准确性。实验结果显示,相较于主流的TNER基准模型BiLSTM-CRF,本文模型在F1值上提高了5.14个百分点,与基于Transformer架构的TENER模型相比提高了4.18个百分点。这表明,融合藏文词汇和音节部件信息的方法可以显著提高TNER任务的性能。”
%U https://aclanthology.org/2024.ccl-1.26/
%P 340-351
Markdown (Informal)
[融合多元特征表示的藏文命名实体识别方法赵小兵∗2(Research on Tibetan Named Entity Recognition Using Multi-Feature Fusion Representation)](https://aclanthology.org/2024.ccl-1.26/) (Ejian et al., CCL 2024)
ACL