@inproceedings{yujiao-etal-2024-rong,
title = "融合扩展语义和标签层次信息的文档级事件抽取(Document-Level Event Extraction with Integrating Extended Semantics and Label Hierarchy Information)",
author = "Fu, Yujiao and
Liao, Jian and
Li, Yang and
Guo, Zhangfeng and
Wang, Suge",
editor = "Maosong, Sun and
Jiye, Liang and
Xianpei, Han and
Zhiyuan, Liu and
Yulan, He",
booktitle = "Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)",
month = jul,
year = "2024",
address = "Taiyuan, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2024.ccl-1.32/",
pages = "418--430",
language = "zho",
abstract = "``文档级事件抽取是自然语言处理中的一项重要任务,面临论元分散和多事件提及的挑战,现有研究通常从文档的所有句子中抽取论元,通过论元角色建模捕获实体间关系,忽略了文档中事件-句子间的关联差异性。本文提出了一种融合扩展语义和标签层次信息的文档级事件抽取方法。首先,利用大语言模型对文本和事件类型标签与论元角色标签进行语义扩展,以引入更丰富的背景语义信息;其次,基于关联差异性的事件类型检测模块,获取文档中与事件类型高度相关的句子,通过约束候选实体的抽取范围,来缓解论元分散问题;进一步,针对文档提及的多个事件类型,利用有向无环图从候选实体中抽取论元,获取所有事件要素。在ChFinAnn和DuEE-Fin两个数据集上的实验结果表明,本文提出的方法相比基线模型可以有针对性地缓解多个事件所属论元分散的问题,有效地提升事件抽取的性能。''"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yujiao-etal-2024-rong">
<titleInfo>
<title>融合扩展语义和标签层次信息的文档级事件抽取(Document-Level Event Extraction with Integrating Extended Semantics and Label Hierarchy Information)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yujiao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhangfeng</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suge</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Maosong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Jiye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Xianpei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Zhiyuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Yulan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Taiyuan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“文档级事件抽取是自然语言处理中的一项重要任务,面临论元分散和多事件提及的挑战,现有研究通常从文档的所有句子中抽取论元,通过论元角色建模捕获实体间关系,忽略了文档中事件-句子间的关联差异性。本文提出了一种融合扩展语义和标签层次信息的文档级事件抽取方法。首先,利用大语言模型对文本和事件类型标签与论元角色标签进行语义扩展,以引入更丰富的背景语义信息;其次,基于关联差异性的事件类型检测模块,获取文档中与事件类型高度相关的句子,通过约束候选实体的抽取范围,来缓解论元分散问题;进一步,针对文档提及的多个事件类型,利用有向无环图从候选实体中抽取论元,获取所有事件要素。在ChFinAnn和DuEE-Fin两个数据集上的实验结果表明,本文提出的方法相比基线模型可以有针对性地缓解多个事件所属论元分散的问题,有效地提升事件抽取的性能。”</abstract>
<identifier type="citekey">yujiao-etal-2024-rong</identifier>
<location>
<url>https://aclanthology.org/2024.ccl-1.32/</url>
</location>
<part>
<date>2024-07</date>
<extent unit="page">
<start>418</start>
<end>430</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 融合扩展语义和标签层次信息的文档级事件抽取(Document-Level Event Extraction with Integrating Extended Semantics and Label Hierarchy Information)
%A Fu, Yujiao
%A Liao, Jian
%A Li, Yang
%A Guo, Zhangfeng
%A Wang, Suge
%Y Maosong, Sun
%Y Jiye, Liang
%Y Xianpei, Han
%Y Zhiyuan, Liu
%Y Yulan, He
%S Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
%D 2024
%8 July
%I Chinese Information Processing Society of China
%C Taiyuan, China
%G zho
%F yujiao-etal-2024-rong
%X “文档级事件抽取是自然语言处理中的一项重要任务,面临论元分散和多事件提及的挑战,现有研究通常从文档的所有句子中抽取论元,通过论元角色建模捕获实体间关系,忽略了文档中事件-句子间的关联差异性。本文提出了一种融合扩展语义和标签层次信息的文档级事件抽取方法。首先,利用大语言模型对文本和事件类型标签与论元角色标签进行语义扩展,以引入更丰富的背景语义信息;其次,基于关联差异性的事件类型检测模块,获取文档中与事件类型高度相关的句子,通过约束候选实体的抽取范围,来缓解论元分散问题;进一步,针对文档提及的多个事件类型,利用有向无环图从候选实体中抽取论元,获取所有事件要素。在ChFinAnn和DuEE-Fin两个数据集上的实验结果表明,本文提出的方法相比基线模型可以有针对性地缓解多个事件所属论元分散的问题,有效地提升事件抽取的性能。”
%U https://aclanthology.org/2024.ccl-1.32/
%P 418-430
Markdown (Informal)
[融合扩展语义和标签层次信息的文档级事件抽取(Document-Level Event Extraction with Integrating Extended Semantics and Label Hierarchy Information)](https://aclanthology.org/2024.ccl-1.32/) (Fu et al., CCL 2024)
ACL