基于联邦知识蒸馏的跨语言社交媒体事件检测(Cross-Lingual Social Event Detection Based on Federated Knowledge Distillation)

Zhou Shuaishuai (周帅帅), Zhu Enchang (朱恩昌), Gao Shengxiang (高盛祥), Yu Zhengtao (余正涛), Xian Yantuan (线岩团), Zhao Zixiao (赵子霄), Chen Lin (陈霖)


Abstract
“社交媒体事件检测是指在从各类社交媒体的内容中挖掘热点事件。在实际情况中,由于数据稀缺,社交媒体事件检测在低资源的情况下表现较差。现有的方法主要通过跨语言知识迁移等方式来缓解低资源问题,但忽略了数据隐私问题。因此,本文提出了基于联邦知识蒸馏的跨语言社交媒体事件检测框架(FedEvent),旨在将富资源客户端知识蒸馏到低资源客户端。该框架通过结合参数高效微调技术和三组对比损失,实现非英文语义空间到英文语义空间的有效映射,并采用联邦蒸馏策略,保障数据隐私的前提下实现知识的迁移。此外,我们还设计了一套四阶段生命周期机制以适应增量场景。最后,我们在真实数据集上进行实验以证明该框架的有效性。”
Anthology ID:
2024.ccl-1.36
Volume:
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
Month:
July
Year:
2024
Address:
Taiyuan, China
Editors:
Maosong Sun, Jiye Liang, Xianpei Han, Zhiyuan Liu, Yulan He
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
467–480
Language:
Chinese
URL:
https://aclanthology.org/2024.ccl-1.36/
DOI:
Bibkey:
Cite (ACL):
Zhou Shuaishuai, Zhu Enchang, Gao Shengxiang, Yu Zhengtao, Xian Yantuan, Zhao Zixiao, and Chen Lin. 2024. 基于联邦知识蒸馏的跨语言社交媒体事件检测(Cross-Lingual Social Event Detection Based on Federated Knowledge Distillation). In Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference), pages 467–480, Taiyuan, China. Chinese Information Processing Society of China.
Cite (Informal):
基于联邦知识蒸馏的跨语言社交媒体事件检测(Cross-Lingual Social Event Detection Based on Federated Knowledge Distillation) (Shuaishuai et al., CCL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.ccl-1.36.pdf